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Abstract 

The goal of the TAR Browser project was to develop a system to better extract single 

members from compressed TAR archives. To do so, the program must analyze a TAR archive 

(uncompressed or compressed with XZ or Bzip2 compression) and later use information from 

this analysis to extract a single desired member without decompressing much else. For many 

companies and users, this program can vastly improve efficiency when working with large TAR 

archives.  
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1. Introduction 

 The TAR Browser system aims to improve efficiency and performance when extracting 

members from large1 TAR archives compressed with either XZ or BZip2 compression. This is 

useful in many development environments, particularly for companies which keep large nightly 

builds or backups. Oftentimes, developers will have to open older archives and extract a single 

member to work with. Compression formats such as Bzip2 and XZ do not natively support file 

indexing; thus, when decompressing a compressed archive to extract a particular file, TAR will 

decompress the entire archive in order to extract this one member, which can be very time 

consuming and CPU intensive. The goal of the TAR Browser system is to eliminate this wasted 

time by pulling out and decompressing only the blocks of the archive on which the desired file 

exists. 

 TAR Browser consists of three separate Linux programs, written in C, which share a 

MySQL database. The Archive Analysis program explores an input TAR archive 

(uncompressed, or compressed with BZip2 or XZ) and stores relevant information in a 

database. This database is first created through MySQL commands, then populated with tables 

through a small database preparation program. This program tests database access and 

creates the necessary tables, and is discussed in Appendix B. The client program allows the 

user to explore the archive as if it were a mounted directory, open read-only copies of files, and 

extract desired files efficiently. This is done through FUSE, a filesystem in userspace [Oseberg]. 

The FUSE system queries the database, utilizing the information for each archive and member 

in order to present the contents of the input archive as a read-only filesystem. 

 

Figure 1.1: TAR Browser in action, navigating directories within an XZ archive 

                                                
1 In this paper, a large archive refers to a TAR archive of approximately 20 to 40 GB uncompressed. 
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This documentation will first cover the background details of this project, such as the 

origin of the problem, early decisions, and use cases. The development process will then be 

explored in more detail, going through the accomplishments, problems, and insights of each 

stage of development. This is followed by the functionality and technical details of the finalized 

TAR Browser system, as well as the accuracy and performance testing procedures. Final 

evaluations, as well as potential future work, will conclude this documentation. 

Appendix A consists of an installation guide for TAR Browser. The TAR Browser source 

code can be found at the following Github repository:  

https://github.com/tomorrow-nf/tar-as-filesystem 

 

 

https://github.com/tomorrow-nf/tar-as-filesystem
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2. Background 

 The problem of slow file extraction with large TAR archives was posed by Sean 

Davidson, the storage development principal engineer at Dell in Nashua, New Hampshire and 

Kyle Davidson’s father. The problem he presented is as follows: “To store static data efficiently 

and also be transportable across systems, compressed TAR files are used quite often. 

Accessing and extracting individual files inside a compressed TAR file can be time consuming 

and use precious file system resources, especially if they are very large compressed tar files 

consisting of tens of gigabytes.” TAR Browser was developed to resolve this problem, but is not 

specifically designed for use within Dell, and is not a sponsored project. 

 Many users prefer to use the TAR archive format paired with some form of compression 

rather than creating a zipfile. This is because a zipfile is made for easy random access but has 

a lower compression ratio. When a zipfile is created, each file that it includes is compressed 

individually, meaning that an archive of many small files is barely compressed because there 

may not be many patterns in a single file. TAR utilized with a compression method such as 

BZip2 or XZ handles this by creating a single large file out of its input files. Any compression 

routine run on a TAR archive has a large amount of data to look at for compression 

opportunities. Since the compression format sees its input as a single file, no file markers or 

other flags exist in the compressed stream to point out where the members of the TAR archive 

exist, meaning the archive must be decompressed before its contents can be viewed. 

 There are many types of compression formats applicable to TAR archives. In addition to 

handling uncompressed TAR archives, TAR Browser supports BZip2 and XZ. These two 

compression formats were chosen primarily because of their widespread use and usage of 

more modern algorithms [Ellingwood]. Initially, GZip support was planned as well, but this was 

dropped early on in the development process in favor of more commonly used formats due to 

time constraints. Potential support for other compression methods such as GZip will be 

discussed under Future Work. 

 Basic use cases were drafted early on in this project. Users should be able to explore 

TAR archives as if they were directories, open read-only members within these archives, and 

extract a copy of a member. The extracted member must be identical to the actual member 

within the archive, including details such as file permissions. Users cannot modify anything 

within the TAR archive, such as inserting new members (including those which have been 

extracted from the archive, then edited), moving member locations, and deleting or creating new 

members and directories. This functionality is similar to that of GNOME’s Archive Manager, 
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Ubuntu’s File Roller, and Windows Explorer’s handling of ZIP files. Users cannot update any 

information in the database through the FUSE program. A system running the analysis program 

can examine the contents of an archive, insert or modify information in the database, and create 

the database if it does not exist. The analysis program is incapable of editing the contents of an 

archive. These use cases outline the functionality of all three stages of TAR Browser: database 

preparation, archive analysis, and filesystem operations. 
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3. Development Process 

3.1. Initial Research and Planning 

The first two weeks of this project were spent researching the TAR archive format, 

comparing compression methods, and drafting up a development plan. Initial research led to the 

PTC MKS documentation regarding the format of TAR archives ["Format of Tar Archives."]. The 

official GNU TAR documentation provided more detailed information about the format [Free 

Software Foundation, Inc.]. The findings from both sources are discussed below. These sources 

proved to be sufficient in order to begin development on an uncompressed TAR analysis 

program. 

 Our research led us to the conclusion that TAR archives do not have their own header 

files, but each member within the archive has a header. These headers include information for 

each member such as the member’s filename, size, access permissions, UID, and GID. Each 

block within a TAR archive is guaranteed to be 512 bytes in length. TAR archives also include 

designated “end of archive” blocks, two blocks consisting of repeating zero bytes. It was clear 

that TAR Browser would need most of this information in order to function properly. 

 To examine the structure of a TAR archive, the Linux command od was used. This 

program dumps a file into standard output [Meyering, Jim]. od was run on a TAR archive with 

the –c option in order to display printable characters. This TAR archive was a small test archive; 

it was uncompressed and consisted of several images, text files, and directories. This printed 

out the bytes in a TAR archive as ASCII characters, including the contents of each field of the 

TAR headers. This simple analysis proved the accuracy of early research of the TAR format. 

 Several issues were discovered early on. For one, within a TAR archive, multiple 

members could have the same names. This is not an issue though, as the TAR header for each 

member includes the file path within the TAR archive. Taken as a whole string, the filepath plus 

the filename within an archive is always unique. Furthermore, planned GZip support had to be 

dropped, as it would clearly take too long and would not be very useful, as mentioned 

previously. BZip2 and XZ support would take priority, and GZip support was planned to be 

added if time permitted. 

 At the end of this phase, a development plan was put in place. Basic analysis and 

extraction programs for uncompressed TAR archives would first be built, as well as the 

necessary SQL database. While a simple extraction program would be written for each 

supported format, it should be noted that the early extraction programs were intended as proofs 

of concept; the logic is used in the final product, but none of these extraction programs are part 
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of the final submission. BZip2 was selected as the first compression method to work with, as 

research into this format showed that the BZip2 source is formatted with the intention of being 

imported into other programs. XZ support would follow, and the final stage would be to develop 

the FUSE filesystem. 

 

3.2. Uncompressed TAR Analysis and Extraction 

Support for uncompressed TAR archives was the logical first step in developing TAR 

Browser. Regardless of whether an archive is compressed or not, TAR Browser needs to be 

able to pull out a single block, decompress it if necessary, and store information about this 

block. As such, starting development with uncompressed TAR support would prove to be useful 

when working with BZip2 and XZ support, as the fundamental procedures are very similar. 

TAR Browser, when complete, would need to perform two main functions: analyzing an 

archive and storing this information in a database, and querying this database in order to display 

or extract a desired member. Development on uncompressed TAR support began with the 

analysis program. After performing any necessary checks to ensure the input file is a valid TAR 

archive, the program would need to analyze the first member header in the archive. The header 

of a TAR archive member holds vital information such as the filename and path of a member 

within the archive, the member’s length in bytes, and owner and permission information 

["Format of Tar Archives"]. As no decompression is necessary, any navigation and reading 

involved in analyzing an archive could be performed with fread(), fseek(), and fwrite(). 

The program would store the contents of each header field, and then the rest of the archive 

would need to be analyzed block by block in a similar fashion. The number of bytes and 

gigabytes read from an archive are stored separately so that the entire archive can be analyzed 

in one pass without overflow regardless of the size of the archive. Finally, the end of the archive 

can be checked. TAR archives always end in 1024 zero bytes, so a simple memory comparison 

would show whether the archive has been fully examined. 

At this point in development, the MySQL database was not yet implemented. The 

analysis program would simply print out information regarding the members within the archive, 

as shown in figure 3.1. 
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Figure 3.1: Output of the analysis program 

 As shown by this output, the initial TAR analysis program was successful. Much of this 

information would not become useful until later in development, such as the link information. As 

well, the initial program discarded information regarding the UID, GID, and mode; it was not until 

development began on FUSE that it became apparent that this information should be retained 

and not overwritten by FUSE, as a member extracted through TAR Browser must be identical to 

the member within the archive. 

 The next step would be to develop a simple extraction program. This program would 

eventually be scrapped, but it was implemented as a proof of concept to show that TAR 

Browser would be capable of using information about a single member in order to work with it. 

FUSE would end up utilizing similar queries and functionality; opening a read-only member of 

an archive is, in essence, extracting the member to a temporary location. The extraction 

program would only need information regarding the size of the member and the member’s offset 

within the archive (in figure 3.1 above, this is output as “data begins at X GB and Y bytes”). A 

simple loop of reading and writing from the beginning of this offset until the bytes read is equal 

to the size of the member would prove to be successful. TAR Browser would be capable of 

extracting a member without processing the rest of the archive. 

 At this point, it became clear that the goals of TAR Browser were feasible. By utilizing 

offset information from a simple analysis, random access reading and extracting from a TAR 

archive was possible. The next step would be to implement the database. In theory, this should 
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not affect the functionality of TAR Browser. Instead of just printing the data, it would be stored 

into the database, and rather than accepting values in the commandline to extract a member, 

this program would query the database for this information. 

 

3.3. MySQL Database Implementation 

Both the analysis and extraction programs would next be modified to utilize a MySQL 

database2. A simple database creator program was put together. This program checks whether 

the database already exists. If the database does exist, it is updated; otherwise, an error is 

returned. The database itself must be created through MySQL beforehand. The final version of 

the database consists of six tables. These tables have remained unchanged throughout the 

majority of TAR Browser’s development cycle. The Archive List table holds information about 

analyzed archives. Each supported archive format has its own table as well. BZip2 and XZ 

utilize a second table for block information, but they will be explained shortly. It is worth noting 

that all three archive tables have a similar structure; archive and member name information is 

stored, followed by information on where each member is located within the archive. BZip2 and 

XZ utilize block map tables in addition to archive tables. All six tables can be viewed in detail in 

Appendix B. 

To fine tune the database implementation, a CNF file was created. The use of a CNF file 

allows the specifying of a database name, username, password, and other options for 

connecting to a MySQL database without the need to modify the source code of a program. The 

person who creates the specific SQL database for the program to use must also alter the CNF 

file to be able to access that database. This file allows for more flexibility of the TAR Browser 

database. 

 Once the Archive List and Uncompressed TAR tables were built, MySQL support could 

be added into the existing analysis and extraction programs. The basic functionality of each 

program would remain mostly unchanged. Both programs would first need the necessary 

database connection steps. Instead of printing out file information, the analysis program would 

store information regarding the archive itself into Archive List, and information about each 

member into the Uncompressed TAR table. The extraction program would then query the 

database for offset information instead of taking in hard-coded values. Implementing the 

database connection and queries did not affect the core functionality of these two programs, as 

                                                
2 For more information, see the official MySQL documentation here: 
http://dev.mysql.com/doc/refman/5.7/en/index.html 
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predicted. With these changes implemented, uncompressed TAR support was essentially 

complete until the addition of FUSE, and BZip2 would be the next focus. 

 

3.4. BZip2 Analysis and Extraction 

Compressed archive support was the natural progression from working with 

uncompressed TAR archives. BZip2 was chosen as it appeared to be simpler to work with. As 

well, the processes used to analyze a BZip2 archive would likely carry over to XZ support with 

some modifications; both formats utilize compressed blocks, and in theory, TAR Browser should 

be able to decompress single blocks through random access. TAR Browser would need to 

perform several important tasks for both analysis and extraction. Similarly to uncompressed 

TAR support, the program must be able to go through the archive block by block to record 

information about each member of the archive, such as the byte offsets of each block and the 

members located within each block. The key difference when compared to uncompressed TAR 

support is that each block of a BZip2 compressed archive must be decompressed in the 

analysis process. To extract a member, the program must be able to seek to the desired 

compressed block based on the results of a database query and decompress this block, as well 

as any other blocks containing parts of the member file. 

 Initially, the BZip2 API was utilized for TAR Browser development. In theory, API 

functions should allow the program to read in a single block utilizing the blocksize field in the 

BZip2 archive header. This method proved to be infeasible due to BZip2’s block structure. When 

a BZip2 archive is created, the data is first run-length encoded before being split into equal size 

blocks [Taylor, James, "SeekingInBzip2Files."]. The uncompressed size of a given block is 

unknown; the block size in a BZip2 header actually refers to the amount of run-length encoded 

data in the block, which is practically useless for TAR Browser’s purposes. 

 A bit of research led us to an open source, public domain program, Seek-BZip2, 

developed by Taylor Labs at John Hopkins University. This program outputs the bit offsets and 

uncompressed sizes of each block of a BZip2 archive by partially decompressing each block. 

Seek-BZip2 can also seek to the beginning of a block and decompress that block, which is 

exactly what TAR Browser would need to do. Seek-Bzip2 was altered to store a list of block 

locations and uncompressed sizes, and then implemented into TAR Browser. We confirmed 

with James Taylor that this was an acceptable route to take, as he released Seek-BZip2 to the 

public domain [Taylor, James. "Requesting Permission to Use Code.”]. 

 The modified Seek-BZip2 program adapted into TAR Browser essentially performed the 

exact functionality TAR Browser would need, all within a small, public domain program. It would 
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be unnecessary to write a new program that performs the exact same task, so Seek-BZip2 was 

slightly modified and implemented into TAR Browser. As well, licensing would not be an issue 

upon release, as the program is in the public domain. BZip2 support was essentially complete 

as a result of Seek-BZip2. 

 

3.5. XZ Analysis and Extraction 

 Initial research into the XZ format showed that, for our purposes, a TAR XZ archive is 

similar in structure to a TAR BZip2 archive. An XZ archive consists of a series of streams, which 

each hold a number of blocks. Each block has its own XZ header [The Tukaani Project. “The .xz 

File Format.”]. Thus, XZ support would be extremely similar to BZip2 support; TAR Browser 

would need to read one block at a time from a TAR XZ archive and store information required 

for random access to each member in the MySQL database. This information could then be 

queried by the FUSE filesytem once implemented. 

However, several issues were discovered early on in this process. For one, XZ archives 

consist of just one block unless the user creating the archive explicitly specifies a block size or 

runs the XZ program in a multi-threaded mode [The Tukaani Project. “The .xz File Format.”]. As 

such, TAR Browser would not be any more useful than conventional extraction methods for 

single-block archives. However, it is suggested in the official XZ documentation that any 

program utilizing XZ random access reads such as TAR Browser should recommend the usage 

of multi-block archives; this is addressed in the usage guide in Appendix A. As well, at this point 

in time, XZ is still in active development, which will undoubtedly cause issues in the future. 

 XZ archives consist of one or more streams, each with a header, one or more blocks, an 

index, and a footer. In order to analyze an archive for the TAR Browser database, the block 

number and uncompressed size of each member needs to be stored. This information is stored 

within the index of an XZ stream. The routine for XZ support, therefore, is to parse the index of 

an archive, and for each member, save all information that will be required for random access 

and accurate extraction. 

 This is where a major issue was encountered. The LZMA API included with the XZ 

source code proved to be useful for decompression, but the API does not support the type of 

random access reads TAR Browser would need. Lasse Collin, the lead developer of XZ, was 

contacted in regards to obtaining the information we would need from an archive. He suggested 

that we cannibalize a parse_indexes() function from the XZ source code itself: “The 

functionality of parse_indexes() should have been put into liblzma (or an I/O library) long 
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ago, but I don't get much development done. For now adapting parse_indexes() into your 

code is the best way” [Collin, Lasse. “XZ – Random Access Reads.”]. 

While this solution certainly felt like a workaround, it proved to work successfully. This 

will need to be updated in the future and is discussed further under Future Work, but for the 

initial release of TAR Browser, this method proved to be sufficient. Various aspects of the XZ 

format that were originally suspected to be difficult to work with, such as filters and multibyte 

integers, were all handled smoothly by the LZMA API when decompressing a single block. Once 

a TAR XZ archive could be analyzed, a simple extraction program was put together as a proof 

of concept once again. This extraction program was virtually identical to the BZip2 extraction 

program, as the formats are extremely similar for our purposes. With uncompressed TAR, 

BZip2, and XZ supported by TAR Browser in its current state, we could now begin development 

on the FUSE filesystem. 

 

3.6. FUSE Research and Development 

 With support for the three planned formats completed, work could begin on the FUSE 

filesystem. In short, FUSE can “mount” a directory, and when working inside this “mounted” 

directory kernel operations can be intercepted and handled by functions defined in the FUSE 

client/userspace program [Oseberg]. A user can then explore this filesystem in their file 

manager of choice. The FUSE used in TAR Browser would need to be able to mount an 

archive, allowing the user to explore this archive as if it were a directory. Any operations used 

with this FUSE would need to query the database and use this information to display or work 

with the archive’s members appropriately. 

The first step in FUSE development was to identify the functions that TAR Browser 

would need to work with. As the program operates on a TAR archive, the filesystem would need 

to be entirely read-only, so any functions that perform operations to change or write to the 

filesystem, such as write(), chmod(), and mkdir(), should return errors.  

Once these unneeded functions had been defined, returning the appropriate errors if the 

user tries to write anything within the archive, the next step of development was to create a 

functioning FUSE filesystem that would allow the user to browse through TAR archives as if 

they were directories. This required several functions to be implemented. These functions are 

getattr(), which allows a program to acquire the statistics of a file; access(), which allows 

a program to test the existence of a file as well as the file’s read and write permissions; 

readlink(), which essentially dereferences a symbolic link; and readdir(), which reports 
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the contents of a directory. Using these functions, a “view-only” filesystem, capable of exploring 

the inner structure of TAR archives, could be generated and tested. 

 

 

Figure 3.2: Exploring the contents of a TAR XZ archive 

Finally, to enable true read-only access within the filesystem, the  open() and read() 

functions would need to be defined. In the case of the TAR Browser filesystem, the open() 

function was written to work differently from its standard Linux counterpart. Normally, this 

function returns a file descriptor that can be used by other system calls such as read() and 

write(). However, this would not be possible within an archive. The files shown by this 

filesystem do not actually exist on disk, and so they cannot have an open file handle, which is 

required by the native open() call. Instead, the TAR Browser FUSE open() function queries 

the MySQL database for the existence of the member within the archive. If the file is found to 

exist in the database, a unique ID number is returned as a file handle. This ID can be used to 

quickly re-query the desired file’s information from the database. The read() function, which 

normally reads bytes from a file descriptor, utilizes the ID returned from open() to query block 

and member data offsets from the database. This uses code recycled from the “proof of 

concept” extraction functions from early development in order to decompress the member if 

necessary and read the requested member data from the TAR archive holding this member. 

Of note is that each of the functions mentioned, with the exception of open() and 

read(), function independently and do not share information. These functions could operate in 

any order. As such, each function initiates a separate MySQL database connection, queries the 

necessary tables to retrieve information, and finally closes the MySQL connection before 

returning. This also acts as a failsafe. If the MySQL database crashes or closes due to an error, 

the FUSE functions will only fail until the database recovers. If FUSE initiates a single 
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connection instead, then it will continue to run but will not recover when the database issue is 

resolved. 

Once the FUSE filesystem was implemented, the first release of TAR Browser was 

essentially complete. The next step would be to evaluate TAR Browser in terms of accuracy and 

performance. 
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4. Functionality 

4.1. Database Preparation 

 As discussed in section 3.3, the MySQL database preparation program creates the 

necessary tables for the database. This must be run before the archive analysis or TAR 

Browser programs. The MySQL database must already exist; the name of the database to use 

is set in TarBrowserConnectOptions.cnf; a sample CNF file is included with the TAR Browser 

source code. This CNF file also allows specification of a username, password, and host. The 

Prepare Database program checks for a database on the system by the name defined in the 

CNF file. If this database exists, the tables in Appendix B are created if they do not exist. Once 

the database has been built, it can be utilized by the other two programs of the TAR Browser 

package. 

 

4.2. Archive Analysis 

 The final archive analysis program is mostly left unchanged from the completion of XZ 

support. All three archive analysis programs (uncompressed TAR, BZip2, and XZ) are now 

functions which can be called from a single executable based on the type of archive that is 

being analyzed. This main executable is also responsible for checking whether the archive is a 

valid file. 

 Each of the three analysis functions begins by connecting to the database and beginning 

a transaction. The ArchiveList table is queried for an archive with this name. If it does not exist, 

it is added, and if it does, the user is prompted as to whether they want to overwrite the existing 

information in the database. If the user does overwrite this information, every table 

corresponding to this archive type is purged of tuples concerning this archive (for example, for a 

BZip2 archive, Bzip2_files, Bzip2_blocks, and ArchiveList are cleared of this archive). 

 For an uncompressed TAR archive, the program begins reading data from the archive. 

When a member’s header is found, the header is parsed and stored into a “headerblock” data 

structure. This structure holds all of the fields within a TAR header. There is the possibility that 

the member’s full path within the TAR archive or the target path of a link is too long to be held in 

the buffer allocated in a TAR header. In this case, the member name displayed in the TAR 

header is “././@longlink” and the data corresponding to this TAR header is the filename path or 

link path of the next real TAR entry. If the “././@longlink” is found, the next real TAR header 

evaluated has its appropriate field, its name or link target, overwritten by the data of the longlink 
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entry. The program, now pointing at the end of the header, records information from the header 

as well as its current position in bytes and gigabytes (which corresponds to the position of the 

member), inserts this information into the database, skips the actual data of this member, then 

begins reading more data. This will be the next header in the archive unless the program has 

reached the end of archive blocks, in which case analysis completes and if no errors have 

occurred the SQL transaction is committed. 

 TAR BZip2 and TAR XZ archives function extremely similarly. Each function 

incorporates a block decompression function appropriate for the archive file type; this helper 

function reads and decompresses a single block of the archive into memory. The XZ version 

uses the grab_block() function from the cannibalized XZ source code and requires only a file 

name and a block number. The BZip2 version requires the file name and block number, but also 

uses a “blockmap” struct, defined by Seek-BZip2, in order to know the offsets of each block. 

Aside from the differences in decompression, the rest of the analysis for BZip2 and XZ archives 

is remarkably similar; the blockmap structure is even used in XZ and functions as intended, 

despite being written for BZip2. Each analysis function begins with a database connection, 

starting a transaction, and querying ArchiveList for the existence of this archive, identically to 

the process used in uncompressed TAR analysis. Before looping through the archive, the first 

block is decompressed so we have some initial data to work with. The rest of the archive is then 

processed very similarly to analyzing an uncompressed TAR archive. The analysis is performed 

in the same manner as described in for uncompressed TAR archives above, with one major 

exception. Instead of reading from a file, data is read from a decompressed block. If at any point 

the amount of data left in the block is not enough to fill a complete TAR header or skip over the 

TAR entry’s data, the program reads as much data as it can, discards the block, decompresses 

the next block, and reads the remaining data from the beginning of the newly decompressed 

block. Every time a member within the TAR archive is analyzed, an insertion query is then 

generated based on information within its header, as well as information obtained about what 

blocks this member lives in. When analysis of the archive is finished, the blockmap is also 

stored into the database under the appropriate “_blocks” table. Refer to Appendix B for the 

information stored into these tables. 

In addition, an option to reduce the output of the program was incorporated. With an 

additional argument, the user can now limit the output they see to just the prompts requiring 

user input and error messages. Without this argument, information about each member in the 

archive being analyzed is printed to standard output. Refer to the Usage Guide in Appendix A 

for an example. 
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4.3. TAR Browser Filesystem 

 As TAR Browser works through FUSE, the program provides the infrastructure for a 

computer’s file manager to view the inner members of analyzed TAR archives as if they had 

been extracted to the filesystem. Any program or text editor may then open read-only copies of 

the files displayed inside these TAR archives. FUSE does this by intercepting system calls using 

a kernel module and redirecting those system calls to user defined functions where we can 

program the functions to behave in a different way. What follows is a discussion of the behavior 

of the overridden functions. 

 Functions that modify or change the state of the filesystem are programmed to return 

immediate errors. These functions are mknod(), mkdir(), symlink(), unlink(), rmdir(), 

rename(), link(), chmod(), chown(), truncate(), utimens(), write(), statfs(), 

and fallocate(). The functions that are implemented into the FUSE of TAR Browser share 

some common structure. They all begin by initiating a MySQL database connection and end by 

terminating it. Each function’s behavior is split into three different possibilities based on what the 

function directed toward: the FUSE root (“/”) directory, where the FUSE filesystem is mounted; 

an existing TAR archive (for example, “/archive.tar.xz”); or something within the tar archive 

(such as “/archive.tar/test.txt”). 

 The FUSE getattr() function’s expected behavior is the same as the lstat() 

function. It is expected to fill a file statistics structure with information about the file it is called 

on. Each of the three possibilities explained prior will populate this structure in a different way. In 

the FUSE of TAR Browser, root directory statistics are pulled from the directory where FUSE is 

mounted. In the case of an existing archive, the location of that archive on the system is queried 

from the database and the lstat() function is performed on the archive. If getattr() is 

called on an archive member, then all information about the member is queried from the 

database. 

 The FUSE access() function’s expected behavior is nearly identical to its system- 

defined counterpart. The target can be tested for existence, as well as read, write, and execute 

permissions. In the case of a directory or a TAR archive (which the FUSE system views as a 

directory), if the tested access level contains write permissions, the access() call returns an 

error, as TAR Browser’s filesystem will always be read-only. In the case of a member within a 

TAR archive, any access test that is not an existence or read-only test returns an error for the 

same reason. 
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 The FUSE readlink() function dereferences a symbolic link and places the link target 

into a buffer. If called on the FUSE root directory or a TAR archive, an error is returned as these 

are not links in this system. If called on a member of a TAR archive, a MySQL query is sent to 

retrieve the member’s information. If the member is not a link, then an error is returned. 

Otherwise, the link’s target is placed into the buffer provided to the function. 

 The FUSE readdir() function populates a list with the contents of the directory it is 

called on. If called on the FUSE root directory, the MySQL Archive List table is queried and all 

existing archives are added to the list. Otherwise, a query with the appropriate pattern matching 

is sent to the table associated with the archive type being examined (such as CompXZ for 

compressed XZ files) and the results are added to the list. 

 The FUSE open() function expects the same behavior as the native open(), inserting 

a file handle into a file information structure. If called on the FUSE root directory an error is 

returned; this directory cannot be opened as a file. If called against an archive or archive 

member, the unique ID of the appropriate MySQL table is stored in the file structure for later 

use. 

 The FUSE read() function behaves similarly to the native read() function of Linux. 

This function places requested data into a provided buffer. If called on the FUSE root directory. 

an error is returned. If called on an archive, the MySQL table of archives is queried using the 

number stored in place of the file handle. From that query, the true path to the archive on the 

system is retrieved. The archive is then opened and read from using native open() and 

read() functions. If called on a member of a compressed archive, the archive’s blockmap is 

queried from the database and stored in memory. In the case of a member of an uncompressed 

archive, the blockmap step is skipped, as this is unnecessary for an uncompressed archive. The 

information required to extract the member is then queried from the appropriate table of the 

database. The blocks the desired member exists on are then decompressed (if necessary) and 

the file’s data is copied into the buffer provided to the read() function. 
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5. Evaluation 

5.1. Testing Procedures 

 TAR Browser would need to be tested for accuracy and efficiency. The program would 

be useless if the member extracted from an archive is not identical to the member that is still 

within the archive. In terms of efficiency, recall one of the major goals of the TAR Browser 

project; accessing a single member within a large TAR archive is currently a slow process that 

TAR Browser aims to improve. In theory, extracting only the necessary blocks should be much 

faster than extracting an entire archive only to return the desired member, but this would need 

to be tested thoroughly. Finally, testing TAR Browser’s toll on CPU performance would be 

valuable as well. While subpar performance would not be much of an issue if speeds are still 

greater than current extraction methods, extremely poor performance would be detrimental to 

the project; many machines would not be able to handle this software well. 

 

5.2. Accuracy Tests 

 Accuracy tests were straightforward. The Linux diff command detects any differences 

between two files [Eggert et al.]. This command would be run on a member within a FUSE 

supported directory for an archive and the actual file extracted from this archive through default 

TAR extraction. These two files should be identical, and thus diff should not output anything. 

This process would be repeated for several different files for each type of archive; as no 

measurements are taken for these tests, formal trials were not deemed necessary. 

 

5.3. Accuracy Test Results 

 Simple accuracy tests through diff proved that the members within the FUSE 

filesystem for an archive and files extracted from an archive through the TAR program were 

identical. As seen in figure 5.1, there is no output when running this command; diff  only 

outputs text if there is a difference between the two files. As such, every bit of these two files is 

identical.  
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Figure 5.1: Results of running “diff” on a file within several archives compared to the original file 

 This command was run on several files of several different uncompressed TAR, TAR 

BZip2, and TAR XZ archives, all with the same result. While there are no formal metrics that can 

be provided for these tests, these have sufficiently shown that the members output from TAR 

Browser are identical to those within the archives. Thus, TAR Browser’s accuracy is undisputed. 

 

5.4. Efficiency and Performance Tests 

 Efficiency and performance testing would be performed in a similar manner. A 

comparison of access times was performed on a 2.7 gigabyte TAR archive created from the /usr 

directory of a Linux filesystem. TAR BZip2 and TAR XZ compressed archives were created with 

the same contents. The XZ archive was forced to include multiple blocks through XZ’s “--

blocksize” option. Members were extracted from these archives through the TAR program, 

specifically by running tar xvf <path to member> on each archive. To achieve an 

accurate comparison with the TAR program’s extraction utility, the cp command was used on 

members within different archives through FUSE. GNU TAR in particular was tested, as the 

machine running the tests is an Ubuntu Linux virtual machine. Both commands end by writing a 

file to a different location, resulting in similar I/O overhead after the desired file has been loaded 

into memory. The goal is to speed up access times, so any system I/O time needed to load the 

file into memory counts against that method’s access time. These tasks would be measured 

through the native Linux time command, which outputs the elapsed time in minutes and 

seconds (the time a task takes to run completely), as well as the System and User CPU times. 

 All recorded tests were performed on the same computer within an Ubuntu Linux 12.04.5 

virtual machine. This computer runs on an Intel Core2 Duo T6600 2.20 GHz CPU and is running 
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Windows 7 64-bit. The virtual machine, built in Oracle VirtualBox 4.3.6 r91406, is given 100% of 

resources of one CPU core and 1 GB of RAM.  

Five members at various points within each archive were selected (these files were 

consistent with each of the three archives tested). The first and last members within these 

archives were included in these five selected members. Five trials were performed for each 

member of each archive type for each extraction method (TAR Browser versus tar xvf 

<path to member>). 

 

5.5. Efficiency and Performance Test Results 

The tables below show access time comparisons between FUSE access and native TAR 

commands for uncompressed TAR, TAR BZip2, and TAR XZ archives. The times are split into 

real time (real), user CPU time (UCPU), and system CPU time (SCPU). 
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Table 5.1: Uncompressed TAR access times: 

Block in 

archive: 

Position/Total 

Path to Member Average of FUSE 

access times* 

(Five trials) 

Average of GNU 

TAR access 

times* (Five trials) 

5 / 174797 usr/share/aptdaemon/lintian-

fatal.tags 

Real:  0.1496 

UCPU: 0.0 

SCPU: 0.0128 

Real:  37.3018 

UCPU: 0.4048 

SCPU: 5.1080 

43700 / 174797 usr/share/icons/Humanity/actions/24/

media-record.svg 

Real:  0.1688 

UCPU: 0.0016 

SCPU: 0.0112 

Real:  36.9380 

UCPU: 0.3600 

SCPU: 4.9888 

87398 / 174797 usr/share/cups/doc-root/help/ref-

snmp-conf.html 

Real:  0.1464 

UCPU: 0.0016 

SCPU: 0.0120 

Real:  37.1464 

UCPU: 0.3832 

SCPU: 4.9672 

131098 / 174797 usr/src/linux-headers-3.2.0-

70/arch/arm/mach-

mmp/Makefile.boot 

Real:  0.1608 

UCPU: 0.0072 

SCPU: 0.0096 

Real:  37.2514 

UCPU: 0.4136 

SCPU: 4.9864 

174797 / 174797 usr/sbin/atd Real:  0.1246 

UCPU: 0.0064 

SCPU: 0.0104 

Real:  37.0798 

UCPU: 0.3880 

SCPU: 5.0616 

TOTAL 

AVERAGES 

 Real: 0.15004 

UCPU: 0.0042 

SCPU: 0.0112 

Real: 37.1435 

UCPU: 0.3899 

SCPU: 5.0224 

 

*  Real times reported in seconds. UCPU and SCPU times reported in clock ticks [Linux Man-pages Project].
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Table 5.2: BZip2 Compressed TAR access times 

Block in 

archive: 

Position/Total 

Path to Member Average of FUSE 

access times* 

(Five trials) 

Average of GNU 

TAR access 

times* (Five trials) 

5 / 174797 usr/share/aptdaemon/lintian-

fatal.tags 

Real:  0.3066 

UCPU: 0.0016 

SCPU: 0.0136 

Real:  365.7694 

UCPU: 135.8460 

SCPU: 217.3444 

43700 / 174797 usr/share/icons/Humanity/actions/24/

media-record.svg 

Real:  0.3190 

UCPU: 0.0032 

SCPU: 0.0112 

Real:  365.145 

UCPU: 138.5128 

SCPU: 214.6980 

87398 / 174797 usr/share/cups/doc-root/help/ref-

snmp-conf.html 

Real:  0.2888 

UCPU: 0.0016 

SCPU: 0.0144 

Real:  369.1124 

UCPU: 141.4858 

SCPU: 215.9180 

131098 / 174797 usr/src/linux-headers-3.2.0-

70/arch/arm/mach-

mmp/Makefile.boot 

Real:  0.2916 

UCPU: 0.0024 

SCPU: 0.0096 

Real:  375.3136 

UCPU: 145.6212 

SCPU: 218.3894 

174797 / 174797 usr/sbin/atd Real:  0.1850 

UCPU: 0.0016 

SCPU: 0.0144 

Real:  369.8356 

UCPU: 143.3066 

SCPU: 215.2846 

TOTAL 

AVERAGES 

 Real: 0.2782 

UCPU: 0.0021 

SCPU: 0.0126 

Real: 369.0352 

UCPU: 140.9545 

SCPU: 216.3269 

 

*  Real times reported in seconds. UCPU and SCPU times reported in clock ticks [Linux Man-pages Project].
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Table 5.3: XZ Compressed TAR access times 

Block in 

archive: 

Position/Total 

Path to Member Average of FUSE 

access times* 

(Five trials) 

Average of GNU 

TAR access 

times* (Five trials) 

5 / 174797 usr/share/aptdaemon/lintian-

fatal.tags 

Real:  3.7720 

UCPU: 0.0008 

SCPU: 0.0240 

Real:  199.8374 

UCPU: 58.8464 

SCPU: 134.4202 

43700 / 174797 usr/share/icons/Humanity/actions/24/

media-record.svg 

Real:  3.4630 

UCPU: 0.0008 

SCPU: 0.0240 

Real:  198.4076 

UCPU: 59.0072 

SCPU: 132.7284 

87398 / 174797 usr/share/cups/doc-root/help/ref-

snmp-conf.html 

Real:  6.0990 

UCPU: 0.0024 

SCPU: 0.0240 

Real:  196.6448 

UCPU: 58.7888 

SCPU: 131.0488 

131098 / 174797 usr/src/linux-headers-3.2.0-

70/arch/arm/mach-

mmp/Makefile.boot 

Real:  3.4012 

UCPU: 0.0008 

SCPU: 0.0256 

Real:  196.9826 

UCPU: 58.0526 

SCPU: 130.9584 

174797 / 174797 usr/sbin/atd Real:  3.6910 

UCPU: 0.0024 

SCPU: 0.0232 

Real:  203.1924 

UCPU: 61.0520 

SCPU: 134.5644 

TOTAL 

AVERAGES 

 Real: 4.08524 

UCPU: 0.0014 

SCPU: 0.0242 

Real: 199.0130 

UCPU: 59.1494 

SCPU: 132.7440 

 

*  Real times reported in seconds. UCPU and SCPU times reported in clock ticks [Linux Man-pages Project]. 
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5.6. Conclusions 

 These tests have shown that TAR Browser is both accurate and efficient. Accuracy has 

already been discussed; the files output by TAR Browser are identical to those extracted from 

an archive through traditional means. Any corruption would have been reported by diff. TAR 

Browser therefore accurately “extracts” members from uncompressed TAR, compressed TAR 

BZip2, and compressed TAR XZ archives. 

 Tables 5.1, 5.2, and 5.3 all demonstrate remarkably similar data in terms of both 

efficiency and performance. TAR Browser is clearly much more efficient at extracting a file than 

the native TAR tools. Actual running times for TAR Browser’s tasks were less than a second on 

average for uncompressed archives and for compressed TAR BZip2 archives, and about 4 

seconds for TAR XZ archives. In contrast, tar xvf extraction took about 37 seconds for 

uncompressed archives, over 6 minutes for TAR BZip2 archives, and about 3.5 minutes for TAR 

XZ archives. The dramatic differences in time are a result of TAR Browser’s extraction methods. 

GNU TAR decompresses and extracts the entire archive, then copies the desired member to a 

new location outside of the archive. TAR Browser only handles the necessary blocks, 

decompressing and copying only the desired member. The overhead of working with the entire 

archive is only performed once per archive with TAR Browser; this is done when analyzing the 

archive; accessing any member after analysis no longer has this overhead, while traditional 

extraction methods such as GNU TAR process the entire archive each time. Times were 

extremely consistent with each file tested, regardless of where the file was located within the 

archive being tested; this is true for both TAR Browser and GNU TAR. 

 TAR Browser is not only much faster than traditional extraction, but our data shows that 

it has a much lighter toll on CPU performance than GNU TAR as well. TAR Browser never took 

more than 0.0256 seconds in CPU time (SCPU for TAR XZ archives), whereas extraction from a 

compressed archive took over 100 seconds in CPU time for compressed archives. For 

uncompressed archives, GNU TAR typically took around 5 seconds System CPU time and 

0.3899 seconds User CPU time. The difference between TAR Browser and GNU TAR when 

handling uncompressed archives is not too significant in our tests. However, at a large scale (for 

example, a 20 GB or greater archive), these differences may become much more noticeable; 

this will not be tested, as compressed archives are of greater concern for this project. In 

contrast, the difference in performance between TAR Browser and GNU TAR for both TAR 

BZip2 and TAR XZ archives is extreme. The reasoning is the same as for real time; GNU TAR 

decompresses the entire archive, then saves the desired member, while TAR Browser only 
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decompresses and extracts this member. Again, TAR Browser’s analysis program does have 

this overhead, but is only performed once per archive (unless the archive is updated in the 

future). 

 

5.7. Concerns 

 While we are extremely confident in TAR Browser’s improvements over traditional 

extraction methods, there are always improvements that could be made with any study. 

 The overhead of the copying a file through Linux (and thus through FUSE) is 

comparable to that of copying a file once it has been extracted into memory. However, as no 

true parallel exists between TAR Browser and traditional file extraction aside from this, this data 

may not be completely reliable. Still, we believe it to be so, as both TAR Browser and GNU TAR 

are performing very similar tasks in these tests. The differences in overheard (after the file is in 

memory) between the two methods are negligible. 

 As well, only the GNU standard TAR program was tested against TAR Browser. POSIX 

TAR, as well as other programs such as File Roller or the Gnome Archive Manager, were not 

tested. More research could be done to compare TAR Browser to these alternatives. GNU TAR 

was chosen for comparison as it is included with most popular Linux distributions and is 

essentially the source of modern TAR functionality [Free Software Foundation, Inc.]. 

 Once major concern was that hardware played a role in the test results. These tests 

were performed on a fairly outdated machine. To be safe, a subset of these tests was run on a 

more powerful machine, a desktop with an Intel Core i7-3770K CPU (3.50 GHz) running a 32-bit 

Ubuntu 14.04 LTS virtual machine through VMWare Player 6.0.5 build-2443746. Only the first 

and last members of each archive were tested, and an average of three trials was taken. This 

data is inconclusive as a result of technical issues when trying to extract files from a TAR.BZ2 

archive through GNU TAR. 
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Table 5.4: Uncompressed TAR access times (Subset of tests on second machine) 

Block in 

archive: 

Position/Total 

Path to Member Average of FUSE 

access times* 

(Three trials) 

Average of GNU 

TAR access 

times*  

(Three trials) 

5 / 174797 usr/share/aptdaemon/lintian-

fatal.tags 

Real:  0.2300 

UCPU: 0.0000 

SCPU: 0.0070 

Real:  22.6977 

UCPU: 0.0120 

SCPU: 1.1520 

174797 / 174797 usr/sbin/atd Real:  0.0190 

UCPU: 0.0000 

SCPU: 0.0010 

Real:  22.8653 

UCPU: 0.0160 

SCPU: 1.1520 

 

*  Real times reported in seconds. UCPU and SCPU times reported in clock ticks [Linux Man-pages Project]. 

 

Table 5.5: XZ Compressed TAR access times (Subset of tests on second machine) 

Block in 

archive: 

Position/Total 

Path to Member Average of FUSE 

access times* 

Average of GNU 

TAR access 

times* 

5 / 174797 usr/share/aptdaemon/lintian-

fatal.tags 

Real:  1.6680 

UCPU: 0.0000 

SCPU: 0.0000 

Real:  64.5260 

UCPU: 23.2760 

SCPU: 40.4973 

174797 / 174797 usr/sbin/atd Real:  1.8453 

UCPU: 0.0000 

SCPU: 0.0000 

Real:  64.1653 

UCPU: 22.8120 

SCPU: 40.6853 

 

*  Real times reported in seconds. UCPU and SCPU times reported in clock ticks [Linux Man-pages Project]. 
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While data for TAR BZip2 could not be obtained on this machine, the data for tests run 

on uncompressed TAR and TAR XZ archives is similar to the data from our formal tests. The 

differences in both real time and CPU time were noticeably faster when compared to the tests 

run on the first machine, but the differences between FUSE and GNU TAR access times are still 

substantial for these two formats. We do not believe hardware played a major role in the formal 

TAR Browser tests. 

Despite these concerns, we do not believe that there are any major issues with this 

study. TAR Browser outperformed GNU TAR in every test performed, and any potential issues 

with these tests appear to be minor. 
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6. Future Work 

 

6.1. Public Open Source Release 

TAR Browser will be released and maintained as an open source, public domain project. 

The current GitHub repository3 is planned to be kept in place. TAR Browser does utilize XZ as a 

dependency, as well as modified code from Seek-BZip2, as discussed previously. Seek-BZip2 

has been released to the public domain [Taylor, James. "Requesting Permission to Use Code."]. 

The LZMA libraries (liblzma) are in the public domain as well [The Tukaani Project. "XZ Utils."]. 

The files from which TAR Browser cannibalized XZ source code, are also in the public domain. 

No other code from TAR, BZip2, or XZ source is included in our project; the imported code and 

utilities are all considered public domain. FUSE itself is released under a GPL license, but no 

licensed code, such as the FUSE libraries, are included in the TAR Browser package.  

 

6.2. XZ Support Maintenance 

 As TAR Browser will be an open source project, maintenance will be vital. In particular, 

XZ support will need to be improved down the road due to the cannibalization of the XZ source 

code. XZ is still in active development, and Lasse Collin specifically mentioned that our current 

methods to support this format will break in future releases of XZ: “There is one likely backward-

incompatible future update that will break the current parse_indexes(): metadata support. I 

plan to add a new Stream type (indicated by a bit in Stream Flags) for Streams that hold 

arbitrary metadata. I don't have the exact details decided yet but I will try to keep it simple and 

thus relatively easy to take into account in parse_indexes()-like situation too. Very probably 

metadata will be used rarely, so it will rarely affect code that doesn't support it” [Collin, Lasse. 

“XZ – Random Access Reads]. 

As a result, the developers maintaining TAR Browser will have to keep up to date with 

XZ development and resolve these issues in the future. Luckily, BZip2 development has more or 

less ceased, so it should not be problematic due to future updates. The last update to BZip2 

was version 1.0.6, released in September, 2010, so it seems unlikely that there will be large 

future updates [Seward, Julian]. 

  

                                                
3 https://github.com/tomorrow-nf/tar-as-filesystem 
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6.3. Improvements and Expansion 

 TAR Browser was built fairly modularly. Introducing support for further compression 

formats would not be a very difficult task. Most compression methods utilize blocks in a similar 

way to BZip2 and XZ. As a result, all one would need to do is develop a method to seek to and 

decompress a single block of a compressed archive. The database would need to be updated, 

as well as the analysis program. Supporting other compression methods would not be a trivial 

task, but it is certainly a feasible expansion to TAR Browser in the future. 

 

6.4. Final Thoughts 

TAR Browser succeeds as a solution to the proposed problem. The members shown 

within the read-only filesystem are identical to those within the archives, as shown by our 

accuracy tests. Performance and efficiency testing has shown dramatic improvements in both 

categories when comparing TAR Browser to GNU TAR, one of the most commonly used TAR 

management programs. If TAR Browser is implemented as planned, users will undoubtedly 

notice these improvements in regular usage. 
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Appendices 

Appendix A: TAR Browser Installation and Usage Guide 

 

Installation: 

 

This installation guide assumes you are compiling TAR Browser from source. If you 

already have the executables (tarbrowser, prepareDatabase, and analyze_archive), you do not 

need this guide. 

 

Unpacking and Database Setup: 

1. Download and unpack the TAR Browser source code from the TAR Browser Github 

repository: 

https://github.com/tomorrow-nf/tar-as-filesystem/archive/master.zip 

2. Download the MySQL Client Library: 

http://dev.mysql.com/downloads/connector/c/  

3. Set up a MySQL server or use an existing one: 

a. Create a database on the server to be used by this program. 

b. Create a user with permissions to access the database. 

c. Alter the four fields of TarBrowserConnectOptions.cnf to the values necessary to 

access the database. 

d. TarBrowserConnectOptions.cnf should remain in the same directory as the TAR 

Browser executable (tarbrowser). 

e. Refer to the MySQL documentation if assistance is required with these steps. 

4. Run the “make prepareDatabase” command utilizing the included makefile. 

a. If making the prepareDatabase program fails, ensure that the MySQL client library 

was installed successfully. 

  

Archive Analysis Setup: 

1. Make sure a relatively current version of XZ Utils is available on your machine. 

a. The currently installed version can be checked by running “xz –V” 

b. We recommend version 5.2.0 or later. The latest version can typically be installed 

through your Linux distro’s package manager, or it can be found here:  

https://github.com/tomorrow-nf/tar-as-filesystem/archive/master.zip
http://dev.mysql.com/downloads/connector/c/
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http://tukaani.org/xz/ 

2. Run the makefile command “make analyze_archive” command using the included 

makefile 

a. If errors are produced, you may have to update your installed version of XZ Utils 

 

TAR Browser Setup: 

1. If FUSE is not already installed on your system download it from here: 

http://fuse.sourceforge.net/ 

a. Follow the official FUSE documentation in order to install FUSE 

2. Run the command “make tarbrowser” using the provided makefile. 

3. Create an empty directory which will become the mount point for the FUSE filesystem 

http://tukaani.org/xz/
http://fuse.sourceforge.net/
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Usage: 

 

 Using TAR Browser effectively is a three-step process. The database must be prepared; 

this only needs to be done once per system. Archives must be analyzed, populating the 

database. The TAR Browser program can then be used to explore any archives that have been 

analyzed. 

 

 

Preparing the Database: 

1. Run “./prepareDatabase” to create the necessary tables in your database. 

a. This program will not delete any existing tables or table entries. If you wish to 

recreate a table or the entire database, the existing tables and entries must be 

removed through the MySQL commandline. 

2. The “prepareDatabase” program will notify you if there is a problem setting up the database. 

a. If any errors arise, ensure that the MySQL database and the CNF file are set up 

properly. 

 

Analyzing Archives: 

1. The archive analysis program can be used to analyze any TAR archive (.tar), XZ 

Compressed TAR Archive (.tar.xz), or BZip2 Compressed TAR Archive (.tar.bz2) using the 

command “./analyze_archive filename”. 

a. You can add the -q option (for “Quiet”) to the end of analyze_archive to only receive 

output when necessary: ./analyze_archive filename –q 

i. This is the only commandline option available with the archive analysis 

program. (–Q is also allowed, but is identical to its lowercase counterpart –q). 

ii. With this option, output regarding archive and member details will not be 

shown. The user will be notified when the program completes and commits 

entries to the database, or an error occurs. 

b. Each TAR archive must be analyzed separately. The analyze_archive program will 

only accept one archive at a time. 

c. One property to note is that XZ does not naturally allow random access. The “xz --

list filename” command can be used to display the number of blocks in an XZ 

compressed file. If there is only one block, the file can still be analyzed but there is 
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no overhead reduction from analyzing it. XZ allows you to create multi-block archives 

through the --blocksize option when compressing an archive. It is recommended to 

compress archives with a block size such that at least 20 blocks are created, or (for 

larger archives) each block is at least 200 MB. This is highly dependent on the size 

of the archive. 

d. If an error occurs during database communication, the archive analysis program will 

notify the user and roll back any transactions. 

 

 

Browsing Archives: 

1. Mount the FUSE filesystem by using the command “./tarbrowser <FuseDir>” where 

FuseDir is the path to the directory where you wish to mount to (ex. ../../home/FuseDir). 

a. FUSE runs in the background by default. 

b. If you wish to see a log of what FUSE is doing in the terminal add a “-d” argument to 

the previous command, this will cause FUSE to not run in the background and 

instead output information about running tasks to the terminal. 

c. The FUSE filesystem process can be terminated by unmounting the directory in 

which it is loaded (/FuseDir in the example above). 

2. You can now browse through any successfully analyzed archives as if they were 

uncompressed read-only directories from the directory mentioned in step 1. These can be 

browsed from the terminal or through most file explorers, such as Nautilus. 

a. TAR Browser is intended for use by a single user or to be run on a server.
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Appendix B: TAR Browser SQL Database 

This is a description of the MySQL tables used by the three programs described in this report. 

 

The ArchiveList table contains a list of all archives that have been analyzed: 

 

ArchiveList: 

ArchiveID   – An integer identification number associated with an entry in the table. 

ArchiveName  – The name of the archive file this entry relates to. 

ArchivePath   – The path within the system where the file referenced by ArchiveName exists. 

Timestamp   – A string denoting the last time the archive file was modified. This is used to 

                            determine if the archive file is still valid for use by the program. 

 

 

The UncompTar table contains a list of all members found in uncompressed TAR archives, as 

well as the information required to extract them: 

 

UncompTar: 

FileID    – An integer identification number associated with an entry in the table. 

ArchiveID   – An integer that associates the table entry with an entry in the ArchiveList table. 

ArchiveName  – The name of the archive file this entry exists inside. 

MemberName – The name of the archived member this entry refers to. (ex. File.txt) 

MemberPath   – The path to this archived member within the physical archive. 

      (ex. Dir_one/Dir_two) 

GBoffset  – The number of gigabytes that must be skipped to reach the file this entry refers  

      to. 

BYTEoffset  – The number of bytes that must be skipped after GBoffset to reach the desired  

        file. 

MemberLength – The bytes of data in this archived member. 

LinkFlag  – Preserved link flag entry from the TAR header of this file. 

DirFlag  – A Y/N character flag indicating whether this entry refers to a directory or not. 

Mode   – Preserved permission bits from the TAR header of this file. 

UID   – Preserved user ID from the TAR header of this file. 

GID   – Preserved group ID from the TAR header of this file. 

LinkTarget  – If the file referenced by this entry is a link this is path the link points to. 
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The Bzip2_files table contains a list of all members found in compressed TAR BZip2 archives, 

as well as information required to extract them: 

 

Bzip2_files: 

FileID    – An integer identification number associated with an entry in the table. 

ArchiveID  – An integer that associates the table entry with an entry in the ArchiveList table. 

ArchiveName  – The name of the archive file this entry exists inside. 

MemberName – The name of the archived member this entry refers to. (ex. File.txt) 

MemberPath   – The path to this archived member within the physical archive.  

          (ex. Dir_one/Dir_two) 

Blocknumber  – The compressed block where the first byte of the file’s data begins. 

BlockOffset   – The number of bits that must be discarded before you reach the beginning of  

          the block referred to by Blocknumber. 

InsideOffset     – The number of bytes that must be discarded within the block referenced by  

             Blocknumber to reach the first byte of this entry’s data. 

MemberLength – The bytes of data in this archived member. 

LinkFlag     – Preserved link flag entry from the TAR header of this file. 

DirFlag     – A Y/N character flag indicating whether this entry refers to a directory or not. 

Mode      – Preserved permission bits from the TAR header of this file. 

UID      – Preserved user ID from the TAR header of this file. 

GID      – Preserved group ID from the TAR header of this file. 

LinkTarget        – If the file referenced by this entry is a link this is path the link points to. 

 

 

The Bzip2_blocks table contains a list of all blocks in compressed BZip2 archives, as well as 

information required to extract them: 

 

Bzip2_blocks: 

ArchiveID   – An integer that associates the table entry with an entry in the ArchiveList table. 

ArchiveName  – The name of the archive file this entry exists inside. 

Blocknumber  – The compressed block within “ArchiveName” that this entry refers to. 

BlockOffset   – The number of bits that must be discarded before you reach the beginning of  

          the block referred to by Blocknumber. 

BlockSize   – The number of uncompressed bytes that this block contains. 
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The CompXZ table contains a list of all members found in compressed TAR XZ archives, as 

well as the information required to extract them: 

 

CompXZ: 

FileID    – An integer identification number associated with an entry in the table. 

ArchiveID   – An integer that associates the table entry with an entry in the ArchiveList table. 

ArchiveName  – The name of the archive file this entry exists inside. 

MemberName – The name of the archived member this entry refers to. (ex. File.txt) 

MemberPath   – The path to this archived member within the physical archive.  

         (ex. Dir_one/Dir_two) 

Blocknumber  – The compressed block where the first byte of the file’s data begins. 

BlockOffset   – Placeholder, currently unused as XZ contains this information in an index. 

InsideOffset   – The number of bytes that must be discarded within the block referenced by  

         Blocknumber to reach the first byte of this entry’s data. 

MemberLength – The bytes of data in this archived member. 

LinkFlag  – Preserved link flag entry from the TAR header of this file. 

DirFlag  – A Y/N character flag indicating whether this entry refers to a directory or not. 

Mode    – Preserved permission bits from the TAR header of this file. 

UID    – Preserved user ID from the TAR header of this file. 

GID    – Preserved group ID from the TAR header of this file. 

LinkTarget   – If the file referenced by this entry is a link this is path the link points to. 

 

 

The CompXZ_blocks table contains a list of all blocks in compressed TAR XZ archives, as well 

as the information required to extract them: 

 

CompXZ_blocks: 

ArchiveID – An integer that associates the table entry with an entry in the ArchiveList table. 

ArchiveName – The name of the archive file this entry exists inside. 

Blocknumber – The compressed block within “ArchiveName” that this entry refers to. 

BlockOffset  – The number of bits that must be discarded before you reach the beginning of     

   the block referred to by Blocknumber. 

BlockSize – The number of uncompressed bytes that this block contains.
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Appendix C: Raw Data From Testing 

 
 This section contains the raw data from the TAR Browser efficiency and performance 
tests. Evaluations were made based on the averages from this data. For more details regarding 
testing, refer to section 5: Evaluation. 

 
Uncompressed TAR FUSE access time: 
 
usr/share/aptdaemon/lintian-fatal.tags  
-- trial1 -- access time: 0m0.432, UCPU time: 0m0, SCPU time: 0m0.020 
-- trial2 -- access time: 0m0.087, UCPU time: 0m0, SCPU time: 0m0.012 
-- trial3 -- access time: 0m0.076, UCPU time: 0m0, SCPU time: 0m0.012 
-- trial4 -- access time: 0m0.073, UCPU time: 0m0, SCPU time: 0m0.008 
-- trial5 -- access time: 0m0.080, UCPU time: 0m0, SCPU time: 0m0.012 
 
usr/share/icons/Humanity/actions/24/media-record.svg  
-- trial1 -- access time: 0m0.416, UCPU time: 0m0.004, SCPU time: 0m0.016 
-- trial2 -- access time: 0m0.104, UCPU time: 0m0, SCPU time: 0m0.012 
-- trial3 -- access time: 0m0.087, UCPU time: 0m0, SCPU time: 0m0.008 
-- trial4 -- access time: 0m0.101, UCPU time: 0m0.004, SCPU time: 0m0.008 
-- trial5 -- access time: 0m0.136, UCPU time: 0m0, SCPU time: 0m0.012 
 
usr/share/cups/doc-root/help/ref-snmp-conf.html  
-- trial1 -- access time: 0m0.362, UCPU time: 0m0.004, SCPU time: 0m0.012 
-- trial2 -- access time: 0m0.094, UCPU time: 0m0, SCPU time: 0m0.012 
-- trial3 -- access time: 0m0.106, UCPU time: 0m0., SCPU time: 0m0.016 
-- trial4 -- access time: 0m0.079, UCPU time: 0m0.004, SCPU time: 0m0.004 
-- trial5 -- access time: 0m0.091, UCPU time: 0m0, SCPU time: 0m0.016 
 
usr/src/linux-headers-3.2.0-70/arch/arm/mach-mmp/Makefile.boot  
-- trial1 -- access time: 0m0.385, UCPU time: 0m0.004, SCPU time: 0m0.016 
-- trial2 -- access time: 0m0.096, UCPU time: 0m0.004, SCPU time: 0m0.008 
-- trial3 -- access time: 0m0.113, UCPU time: 0m0.008, SCPU time: 0m0.004 
-- trial4 -- access time: 0m0.111, UCPU time: 0m0.012, SCPU time: 0m0.012 
-- trial5 -- access time: 0m0.099, UCPU time: 0m0.008, SCPU time: 0m0.008 
 
usr/sbin/atd  
-- trial1 -- access time: 0m0.361, UCPU time: 0m0.008, SCPU time: 0m0.012 
-- trial2 -- access time: 0m0.075, UCPU time: 0m0.012, SCPU time: 0m0.008 
-- trial3 -- access time: 0m0.057, UCPU time: 0m0.004, SCPU time: 0m0.012 
-- trial4 -- access time: 0m0.056, UCPU time: 0m0.008, SCPU time: 0m0.004 
-- trial5 -- access time: 0m0.074, UCPU time: 0m0.000, SCPU time: 0m0.016 
 
 
Bzip2 TAR FUSE access time: 
 
usr/share/aptdaemon/lintian-fatal.tags  
-- trial1 -- access time: 0m0.584, UCPU time: 0m0.000, SCPU time: 0m0.024 
-- trial2 -- access time: 0m0.233, UCPU time: 0m0.008, SCPU time: 0m0.012 
-- trial3 -- access time: 0m0.233, UCPU time: 0m0.000, SCPU time: 0m0.012 
-- trial4 -- access time: 0m0.222, UCPU time: 0m0.000, SCPU time: 0m0.012 
-- trial5 -- access time: 0m0.261, UCPU time: 0m0.000, SCPU time: 0m0.008 
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usr/share/icons/Humanity/actions/24/media-record.svg  
-- trial1 -- access time: 0m0.536, UCPU time: 0m0.000, SCPU time: 0m0.016 
-- trial2 -- access time: 0m0.260, UCPU time: 0m0.004, SCPU time: 0m0.008 
-- trial3 -- access time: 0m0.292, UCPU time: 0m0.004, SCPU time: 0m0.012 
-- trial4 -- access time: 0m0.254, UCPU time: 0m0.004, SCPU time: 0m0.008 
-- trial5 -- access time: 0m0.253, UCPU time: 0m0.004, SCPU time: 0m0.012 
 
usr/share/cups/doc-root/help/ref-snmp-conf.html  
-- trial1 -- access time: 0m0.503, UCPU time: 0m0.000, SCPU time: 0m0.016 
-- trial2 -- access time: 0m0.251, UCPU time: 0m0.004, SCPU time: 0m0.008 
-- trial3 -- access time: 0m0.225, UCPU time: 0m0.000, SCPU time: 0m0.016 
-- trial4 -- access time: 0m0.239, UCPU time: 0m0.004, SCPU time: 0m0.020 
-- trial5 -- access time: 0m0.226, UCPU time: 0m0.000, SCPU time: 0m0.012 
 
usr/src/linux-headers-3.2.0-70/arch/arm/mach-mmp/Makefile.boot  
-- trial1 -- access time: 0m0.502, UCPU time: 0m0.004, SCPU time: 0m0.008 
-- trial2 -- access time: 0m0.252, UCPU time: 0m0.004, SCPU time: 0m0.004 
-- trial3 -- access time: 0m0.238, UCPU time: 0m0.000, SCPU time: 0m0.012 
-- trial4 -- access time: 0m0.256, UCPU time: 0m0.004, SCPU time: 0m0.012 
-- trial5 -- access time: 0m0.210, UCPU time: 0m0.000, SCPU time: 0m0.012 
 
usr/sbin/atd  
-- trial1 -- access time: 0m0.390, UCPU time: 0m0.000, SCPU time: 0m0.012 
-- trial2 -- access time: 0m0.156, UCPU time: 0m0.000, SCPU time: 0m0.020 
-- trial3 -- access time: 0m0.117, UCPU time: 0m0.004, SCPU time: 0m0.008 
-- trial4 -- access time: 0m0.135, UCPU time: 0m0.004, SCPU time: 0m0.016 
-- trial5 -- access time: 0m0.127, UCPU time: 0m0.000, SCPU time: 0m0.016 
 
 
XZ TAR FUSE access time: 
 
usr/share/aptdaemon/lintian-fatal.tags  
-- trial1 -- access time: 0m4.672, UCPU time: 0m0.000, SCPU time: 0m0.020 
-- trial2 -- access time: 0m3.525, UCPU time: 0m0.000, SCPU time: 0m0.028 
-- trial3 -- access time: 0m3.636, UCPU time: 0m0.000, SCPU time: 0m0.032 
-- trial4 -- access time: 0m3.560, UCPU time: 0m0.004, SCPU time: 0m0.020 
-- trial5 -- access time: 0m3.467, UCPU time: 0m0.000, SCPU time: 0m0.020 
 
usr/share/icons/Humanity/actions/24/media-record.svg  
-- trial1 -- access time: 0m3.915, UCPU time: 0m0.000, SCPU time: 0m0.036 
-- trial2 -- access time: 0m3.339, UCPU time: 0m0.000, SCPU time: 0m0.020 
-- trial3 -- access time: 0m3.348, UCPU time: 0m0.000, SCPU time: 0m0.020 
-- trial4 -- access time: 0m3.376, UCPU time: 0m0.000, SCPU time: 0m0.024 
-- trial5 -- access time: 0m3.337, UCPU time: 0m0.004, SCPU time: 0m0.020 
 
usr/share/cups/doc-root/help/ref-snmp-conf.html  
-- trial1 -- access time: 0m7.729, UCPU time: 0m0.000, SCPU time: 0m0.024 
-- trial2 -- access time: 0m5.709, UCPU time: 0m0.004, SCPU time: 0m0.020 
-- trial3 -- access time: 0m5.705, UCPU time: 0m0.000, SCPU time: 0m0.032 
-- trial4 -- access time: 0m5.641, UCPU time: 0m0.000, SCPU time: 0m0.024 
-- trial5 -- access time: 0m5.711, UCPU time: 0m0.008, SCPU time: 0m0.020 
 
usr/src/linux-headers-3.2.0-70/arch/arm/mach-mmp/Makefile.boot  
-- trial1 -- access time: 0m3.827, UCPU time: 0m0.000, SCPU time: 0m0.020 
-- trial2 -- access time: 0m3.355, UCPU time: 0m0.004, SCPU time: 0m0.024 
-- trial3 -- access time: 0m3.252, UCPU time: 0m0.000, SCPU time: 0m0.024 
-- trial4 -- access time: 0m3.326, UCPU time: 0m0.000, SCPU time: 0m0.036 
-- trial5 -- access time: 0m3.246, UCPU time: 0m0.000, SCPU time: 0m0.024 
 
 
 
 



39 
 

 
 
usr/sbin/atd  
-- trial1 -- access time: 0m4.032, UCPU time: 0m0.000, SCPU time: 0m0.020 
-- trial2 -- access time: 0m3.579, UCPU time: 0m0.000, SCPU time: 0m0.028 
-- trial3 -- access time: 0m3.600, UCPU time: 0m0.004, SCPU time: 0m0.020 
-- trial4 -- access time: 0m3.653, UCPU time: 0m0.004, SCPU time: 0m0.028 
-- trial5 -- access time: 0m3.591, UCPU time: 0m0.004, SCPU time: 0m0.020 
 
 
Uncompressed TAR “xvf” access time: 
 
usr/share/aptdaemon/lintian-fatal.tags  
-- trial1 -- access time: 0m38.731, UCPU time: 0m0.452, SCPU time: 0m5.612 
-- trial2 -- access time: 0m37.132, UCPU time: 0m0.376, SCPU time: 0m4.976 
-- trial3 -- access time: 0m36.924, UCPU time: 0m0.412, SCPU time: 0m5.104 
-- trial4 -- access time: 0m37.129, UCPU time: 0m0.408, SCPU time: 0m4.892 
-- trial5 -- access time: 0m36.593, UCPU time: 0m0.376, SCPU time: 0m4.956 
 
usr/share/icons/Humanity/actions/24/media-record.svg  
-- trial1 -- access time: 0m36.544, UCPU time: 0m0.392, SCPU time: 0m4.928 
-- trial2 -- access time: 0m36.997, UCPU time: 0m0.400, SCPU time: 0m5.044 
-- trial3 -- access time: 0m37.400, UCPU time: 0m0.316, SCPU time: 0m5.020 
-- trial4 -- access time: 0m36.818, UCPU time: 0m0.396, SCPU time: 0m4.936 
-- trial5 -- access time: 0m36.931, UCPU time: 0m0.296, SCPU time: 0m5.016 
 
usr/share/cups/doc-root/help/ref-snmp-conf.html  
-- trial1 -- access time: 0m37.064, UCPU time: 0m0.388, SCPU time: 0m4.800 
-- trial2 -- access time: 0m37.111, UCPU time: 0m0.388, SCPU time: 0m5.060 
-- trial3 -- access time: 0m37.219, UCPU time: 0m0.376, SCPU time: 0m4.972 
-- trial4 -- access time: 0m37.413, UCPU time: 0m0.380, SCPU time: 0m5.108 
-- trial5 -- access time: 0m36.925, UCPU time: 0m0.384, SCPU time: 0m4.896 
 
usr/src/linux-headers-3.2.0-70/arch/arm/mach-mmp/Makefile.boot  
-- trial1 -- access time: 0m37.435, UCPU time: 0m0.452, SCPU time: 0m4.848 
-- trial2 -- access time: 0m37.509, UCPU time: 0m0.360, SCPU time: 0m5.048 
-- trial3 -- access time: 0m37.335, UCPU time: 0m0.372, SCPU time: 0m5.132 
-- trial4 -- access time: 0m37.130, UCPU time: 0m0.376, SCPU time: 0m5.020 
-- trial5 -- access time: 0m36.848, UCPU time: 0m0.508, SCPU time: 0m4.884 
 
usr/sbin/atd  
-- trial1 -- access time: 0m37.273, UCPU time: 0m0.452, SCPU time: 0m4.964 
-- trial2 -- access time: 0m37.208, UCPU time: 0m0.344, SCPU time: 0m5.060 
-- trial3 -- access time: 0m36.815, UCPU time: 0m0.404, SCPU time: 0m5.080 
-- trial4 -- access time: 0m37.027, UCPU time: 0m0.364, SCPU time: 0m5.116 
-- trial5 -- access time: 0m37.076, UCPU time: 0m0.376, SCPU time: 0m5.088 
 
 
Bzip2 TAR “xvf” access time: 
 
usr/share/aptdaemon/lintian-fatal.tags  
-- trial1 -- access time: 6m3.097, UCPU time: 2m14.676, SCPU time: 3m35.989 
-- trial2 -- access time: 6m3.973, UCPU time: 2m16.273, SCPU time: 3m35.285 
-- trial3 -- access time: 6m3.745, UCPU time: 2m15.872, SCPU time: 3m35.105 
-- trial4 -- access time: 6m3.568, UCPU time: 2m15.480, SCPU time: 3m35.665 
-- trial5 -- access time: 6m14.464, UCPU time: 2m16.929, SCPU time: 3m44.678 
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usr/share/icons/Humanity/actions/24/media-record.svg  
-- trial1 -- access time: 6m2.755, UCPU time: 2m14.436, SCPU time: 3m36.009 
-- trial2 -- access time: 6m6.213, UCPU time: 2m18.537, SCPU time: 3m35.989 
-- trial3 -- access time: 6m2.124, UCPU time: 2m19.937, SCPU time: 3m30.733 
-- trial4 -- access time: 6m2.328, UCPU time: 2m18.345, SCPU time: 3m31.641 
-- trial5 -- access time: 6m12.305, UCPU time: 2m21.309, SCPU time: 3m39.118 
 
usr/share/cups/doc-root/help/ref-snmp-conf.html  
-- trial1 -- access time: 6m3.664, UCPU time: 2m17.717, SCPU time: 3m34.041 
-- trial2 -- access time: 6m5.119, UCPU time: 2m21.729, SCPU time: 3m31.897 
-- trial3 -- access time: 6m5.946, UCPU time: 2m20.269, SCPU time: 3m34.225 
-- trial4 -- access time: 6m22.675, UCPU time: 2m23.861, SCPU time: 3m46.698 
-- trial5 -- access time: 6m8.158, UCPU time: 2m23.853, SCPU time: 3m32.729 
 
usr/src/linux-headers-3.2.0-70/arch/arm/mach-mmp/Makefile.boot  
-- trial1 -- access time: 6m2.369, UCPU time: 2m17.853, SCPU time: 3m33.229 
-- trial2 -- access time: 6m26.235, UCPU time: 2m27.197, SCPU time: 3m47.810s 
-- trial3 -- access time: 6m9.972, UCPU time: 2m23.273, SCPU time: 3m35.669 
-- trial4 -- access time: 6m6.674, UCPU time: 2m21.493, SCPU time: 3m34.033 
-- trial5 -- access time: 6m31.318, UCPU time: 2m38.290, SCPU time: 3m41.206 
 
usr/sbin/atd  
-- trial1 -- access time: 6m7.512, UCPU time: 2m22.717, SCPU time: 3m33.249 
-- trial2 -- access time: 6m7.936, UCPU time: 2m21.509, SCPU time: 3m35.253 
-- trial3 -- access time: 6m11.742, UCPU time: 2m22.957, SCPU time: 3m37.446 
-- trial4 -- access time: 6m8.946, UCPU time: 2m23.461, SCPU time: 3m34.261 
-- trial5 -- access time: 6m13.042, UCPU time: 2m25.889, SCPU time: 3m36.214 
 
 
XZ TAR “xvf” access time: 
 
usr/share/aptdaemon/lintian-fatal.tags  
-- trial1 -- access time: 3m16.310, UCPU time: 0m57.644, SCPU time: 2m12.384 
-- trial2 -- access time: 3m20.769, UCPU time: 0m59.272, SCPU time: 2m14.392 
-- trial3 -- access time: 3m23.074, UCPU time: 0m59.056, SCPU time: 2m17.117 
-- trial4 -- access time: 3m21.311, UCPU time: 0m59.056, SCPU time: 2m15.648 
-- trial5 -- access time: 3m17.723, UCPU time: 0m59.204, SCPU time: 2m12.560 
 
usr/share/icons/Humanity/actions/24/media-record.svg  
-- trial1 -- access time: 3m15.960, UCPU time: 0m57.664, SCPU time: 2m11.760 
-- trial2 -- access time: 3m11.250, UCPU time: 0m56.832, SCPU time: 2m7.984 
-- trial3 -- access time: 3m22.115, UCPU time: 0m59.128, SCPU time: 2m16.277 
-- trial4 -- access time: 3m26.148, UCPU time: 1m2.868, SCPU time: 2m16.249 
-- trial5 -- access time: 3m16.565, UCPU time: 0m58.544, SCPU time: 2m11.372 
 
usr/share/cups/doc-root/help/ref-snmp-conf.html  
-- trial1 -- access time: 3m10.887, UCPU time: 0m57.196, SCPU time: 2m7.480 
-- trial2 -- access time: 3m19.312, UCPU time: 1m0.004, SCPU time: 2m12.520 
-- trial3 -- access time: 3m14.712, UCPU time: 0m58.184, SCPU time: 2m10.172 
-- trial4 -- access time: 3m22.909, UCPU time: 1m0.468, SCPU time: 2m15.584 
-- trial5 -- access time: 3m15.404, UCPU time: 0m58.092, SCPU time: 2m9.488 
 
usr/src/linux-headers-3.2.0-70/arch/arm/mach-mmp/Makefile.boot  
-- trial1 -- access time: 3m15.457, UCPU time: 0m57.692, SCPU time: 2m8.748 
-- trial2 -- access time: 3m10.222, UCPU time: 0m55.987, SCPU time: 2m8.028 
-- trial3 -- access time: 3m22.229, UCPU time: 0m59.396, SCPU time: 2m14.360 
-- trial4 -- access time: 3m19.743, UCPU time: 0m58.548, SCPU time: 2m13.040 
-- trial5 -- access time: 3m17.262, UCPU time: 0m58.640, SCPU time: 2m10.616 
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usr/sbin/atd  
-- trial1 -- access time: 3m12.333, UCPU time: 0m56.492, SCPU time: 2m8.732 
-- trial2 -- access time: 3m21.216, UCPU time: 0m59.148, SCPU time: 2m15.068 
-- trial3 -- access time: 3m30.296, UCPU time: 1m5.308, SCPU time: 2m17.041 
-- trial4 -- access time: 3m34.247, UCPU time: 1m5.584, SCPU time: 2m20.473 
-- trial5 -- access time: 3m17.870, UCPU time: 0m58.728, SCPU time: 2m11.508
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