
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2013

Native RFL Factors in Quartz
Chenchen Zhang
Worcester Polytechnic Institute

Luyang Zhang
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Zhang, C., & Zhang, L. (2013). Native RFL Factors in Quartz. Retrieved from https://digitalcommons.wpi.edu/mqp-all/1087

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212971037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1087?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

1	

	

Project ID:

Native RFL Factors in Quartz

Apr 2, 2012

A Major Qualifying Project submitted to the faculty of
Worcester Polytechnic Institute in partial fulfillment of the requirements for

the Bachelor of Science degree

Chenchen Zhang

Luyang Zhang

Advisors
Professor Jon Abraham

Department of Mathematical Sciences

Professor Micha Hofri
Department of Computer Science

2	

	

Table of Contents
Abstract	
 ..	
 4	

Acknowledgements	
 ..	
 5	

Authorship	
 Page	
 ...	
 6	

Table	
 of	
 Figures	
 ..	
 7	

List	
 of	
 Tables	
 ..	
 8	

Executive	
 Summary	
 ..	
 9	

Chapter	
 One:	
 Introduction	
 ...	
 11	

Chapter	
 Two:	
 Background	
 ...	
 12	

2.1 Bank of America and Global Markets Research Technology	
 ...	
 12	

2.2 Quartz	
 ...	
 13	

2.2.1 Quartz Platform	
 ..	
 13	

2.2.2 Quartz Development Process	
 ...	
 15	

2.2.3 Quartz Coding Styles	
 ..	
 16	

2.2.4 Version Control	
 ..	
 17	

2.3 Structured Credit Technology	
 ..	
 17	

2.4 CDO and CDO2	
 ...	
 18	

2.5 CDO Pricing	
 ...	
 20	

2.5.1 Gaussian Copula	
 ...	
 20	

2.5.2 CDO Pricing using Gaussian Copula	
 ..	
 22	

2.5.3 Random Factor Loading	
 ..	
 26	

Chapter	
 Three:	
 Methodology	
 ..	
 28	

3.1 Saving RFL Factors to Sandra	
 ...	
 28	

3.1.1 Market Model Object	
 ..	
 29	

3.1.2 UI Update and Implementation of Related Logic	
 ...	
 29	

3.1.3 Save RFL Factors to Different Datasets	
 ...	
 31	

3.2 Implementing REST service	
 ...	
 32	

3.2.1 Protocols for Requesting RFL Factors	
 ..	
 33	

3.2.2 Register Quartz Discovery Service/Redirection	
 ..	
 34	

3.2.3 JSON Object Formats	
 ...	
 34	

Chapter	
 Four:	
 Analysis	
 &	
 Performance	
 ...	
 36	

4.1 Test Overview	
 ..	
 36	

4.2 Unit Test for CDO2 Calibration/Marking Tool	
 ..	
 36	

3	

	

Chapter	
 Five:	
 Conclusion	
 ...	
 38	

References	
 &	
 Glossary	
 ...	
 39	

References	
 ..	
 39	

Glossary	
 ..	
 41	

Appendix	
 A:	
 Quartz	
 Development	
 Process	
 ...	
 43	

Appendix	
 B:	
 CDO2	
 Calibration	
 Tool	
 Test	
 Process	
 ...	
 46	

1.	
 Launch CDO2 Calibration Tool:	
 ...	
 46	

2.	
 How to run CDO2 Calibration Tool scripts from QzDev:	
 ..	
 46	

3.	
 How to check final results stored:	
 ...	
 46	

4.	
 Error testcase handling:	
 ..	
 50	

Test Case 1:	
 ...	
 50	

Test Case 2:	
 ...	
 51	

Test Case 3 & 4:	
 ..	
 56	

Possible Improvements to do:	
 ...	
 57	

Appendix	
 C:	
 REST	
 Service	
 for	
 CDO2	
 Calibration	
 Tool	
 Test	
 Process	
 	
 59	

1.	
 Launch REST service browser:	
 ..	
 59	

2.	
 How to check REST service read correct RFL factors	
 ..	
 60	

Appendix	
 D:	
 API	
 Documentation	
 for	
 RFL	
 Factor	
 Rest	
 Service	
 ...	
 62	

1.	
 Overview	
 ..	
 62	

2.	
 HTTP Calls	
 ...	
 62	

3.	
 Quartz Discovery Service / Redirection	
 ..	
 64	

4	

	

Abstract

The Global Markets Research Technology Department at Bank of America is on

track to launch the next generation, cross-asset technology platform Quartz. Previously,

each line of business at Bank of America operated on its own technology platform, which

caused duplication of large distributive databases. With the new Quartz platform, Bank of

America will alleviate the cost of replication by introducing Sandra database, a globally

replicated object store. In this project, our team focused on the database migration of

CDO (Collateralized Debt Obligation) square Calibration tool, an in-house proprietary

software tool used to price and analyze this certain credit derivative. We defined the new

data structure of CDO square, which is fully compatible with Quartz, and provided web

services so that CDO square objects are accessible to other applications on the Quartz

platform. We proposed and implemented the well-tested framework within which square

Calibration tool can communicate with the new Sandra database with comparably low

overhead and high stability.	

5	

	

Acknowledgements

Our group would likely to acknowledge many people for the chance to take part

in the project and the accomplishments result from it.

First, we are deeply grateful for our professors from Worcester Polytechnic

Institute for all of their input and support - Professor Jon Abraham, and Professor Micha

Hofri.

We also wanted to acknowledge our sponsor in Bank of America, Ron Toam.

Lastly we would like to thank our supervisor during the project work, Hyunmin Lee. We

truly appreciate the many hours of guidance and support she provided us during our time

at Bank of America.

6	

	

Authorship Page

Chenchen Zhang and Luyang Zhang contributed equally writing the report,

completing the methodology, and developing our final product.

7	

	

Table of Figures

Figure 1: Overview of Release Cycle	
 ...	
 15	

Figure 2: High Level System Overview of RFL Calibration Tool (1)	
 	
 29	

Figure 3: MarketDataSet Settings in CDO2 Calibration/Marking Tool	
 	
 30	

Figure 4: Hugs Components	
 ..	
 32	

Figure 5: High Level System Overview of RFL Calibration Tool (2)	
 	
 33	

8	

	

List of Tables

Table 1: Structured Credit Technology Internal Application	
 ...	
 18	

Table 2: RFLFactor Object Members	
 ...	
 35	

Table 3: RFLFactor Object	
 ..	
 35	

Table 4: Unit Test Cases for CDO2 Calibration/Marking Tool	
 ...	
 37	

9	

	

Executive Summary

Bank of America’s Structured Credit Technology (SCT) group is a global

development and support team located in New York City and London, which provides

effective and efficient end-to-end technology support to the Structured Credit Trading

Desk. The team is responsible for the development and maintenance of several

proprietary applications used by traders in Bank of America.

 The main goal of the WPI project team is to improve and upgrade BoA’s CDO2

Calibration Tool to follow the directive that in the future all the bank’s applications

should reside on the Quartz platform. It can be divided into two objectives.

 The first objective is to migrate database support from Camden to Sandra. Before

Quartz was introduced into Bank of America several years ago, Camden was the only

database used to store all CDO2 parameters and calculation results of the application. It is

becoming a legacy database, as we gradually move all data to Sandra, an objective

database that is more compatible with Quartz.

 Then we need to address the issue of how Risk Engine, where all calculation

results are produced, can have access to the data in Sandra. Our goal is to design a

convenient and efficient method without causing too much overhead on the database-

side. The solution we provided and implemented is setting up a REST service API for

Risk Engine that will return the JSON format of requested objects. It enjoys an advantage

over others by only using the basic HTTP methods and avoiding permission issues to

have access to Sandra.

 For the current time being, it is still of Bank of America’s best interest to publish

CDO2 calculation results to both Camden and Sandra databases for stability issue. After

10	

	

discussing with the development team and analyzing all possible situations we may

encounter during the publishing process, we implemented specific error handling cases to

prevent inconsistency in database in the case of any database failure.

11	

	

Chapter One: Introduction

After the merger with Merrill Lynch, Bank of America has been addressed the

issue of efficient communication among offices all over the world. The typical tactical

approach to achieve integration via merger, silo, and transition no longer fits in our time

of uncertain markets, legislative demands, and regulatory scrutiny, and calls for a

strategic approach that defines cross firm standard based on common reference data,

enhanced client offerings, and an unified, cross-platform risk/trading platform. In the first

year of strategic vision progress, Bank of America focuses on putting together teams,

design architecture, coding and prototyping, and documentation. Currently, Bank of

America enters into the second stage of strategic vision that stresses adoption, pilots and

education.

Quartz platform is introduced with all trades, market data, analytics, and risk

measures that help Bank of America to improve pricing, risk management and use of

capital. Quartz is designed with quick turnaround for maintainable instruments, pricing,

risk management, lifecycle support, settlements, and approval workflow.

As part of the structure credit trading department, our project group is responsible

for contributing to the credit trading application within Quartz platform by implementing

and modifying functionalities of existing applications. The whole development process

strictly follows the general standard and convention of Quartz development process,

which includes implementing, testing, checking into repository, reviewing and finally

pushing into production environment.

12	

	

Chapter Two: Background

2.1 Bank of America and Global Markets Research Technology

Bank of America is one of the world's largest financial institutions, serving

individual consumers, small- and middle-market businesses and large corporations with a

full range of banking, investing, asset management and other financial and risk

management products and services.

The company provides unmatched convenience in the United States, serving

approximately 56 million consumer and small business relationships with approximately

5,600 retail banking offices and approximately 16,200 ATMs and award-winning online

banking with 30 million active users. (Bank of America Overview, 2012)

Bank of America is among the world's leading wealth management companies

and is a global leader in corporate and investment banking and trading across a broad

range of asset classes, serving corporations, governments, institutions and individuals

around the world. Bank of America offers industry-leading support to approximately 4

million small business owners through a suite of innovative, easy-to-use online products

and services. The company serves clients through operations in more than 40 countries.

Bank of America Corporation stock (NYSE: BAC) is a component of the Dow Jones

Industrial Average and is listed on the New York Stock Exchange. (Bank of America

Overview, 2012)

Global Markets and Research Technology & Operations (GMRT&O) is a division

under Global Technology & Operations in Bank of America. It provides end-to-end

technology solutions and operations support for the Global Markets businesses including

Equity, Electronic Trading, Rates & Currencies, Credit & Structured Products,

13	

	

Commodities, Research, Sales and Capital Markets. In addition, the group is responsible

for establishing an Architecture and Strategy framework for consistency across the

Global Markets platforms. (Global Markets and Risk Technology (GMRT), 2012)

2.2 Quartz

2.2.1 Quartz Platform

Quartz is the next generation, cross-asset technology platform for Bank of America

Merrill Lynch Global Markets.

As technology becomes the key in times of uncertain markets, legislative demands,

and regulatory scrutiny, Bank of America Merrill Lynch Global Markets attempts to

improve pricing, risk management, and use of capital along with the traditional algorithm

trading. (Quartz Academy - Overview Session, 2010)

Quartz platform integrates trades, market data, analytics, and risk measure

functionalities across all asset groups. Several of the major Quartz components that we

have used in the implementation process include: (Relevant Quartz Components, 2010)

• QzDesktop: the launchpad for globally distributed applications

• QzDev: the Quartz IDE to develop Python code in

• Sandra: the Quartz object-based data store

• HUGS: the Quartz grid scheduler to run code in parallel

• Bob: the Quartz scheduling agent to run jobs

• QzTable: models large datasets from various sources

• AMPS: a high performance messaging system, utilized by Quartz

14	

	

The Quartz Desktop will bootstrap the quartz platform on your windows machine. It

ensures that you are always running the latest version of the quartz platform. Each

application is represented as an icon within a folder in quartz desktop. An icon simply

points to a python script in the source database which implements your application.

(QzDesktop , 2010)

QZDev is Quartz’s integrated development environment (IDE). The key integrated

features include ability to write python code using the Quartz core libraries as well as

standard Python libraries, an integrated Python Shell with a built-in debugger, a central

source control repository, an ability to search and reuse all source to all Quartz

applications and tools, and an integrated agile process with a code-review process.

Sandra is a multithreaded C++ server which runs primarily on Linux. The Quartz

development team writes its own database server to support features like: (Sandra

Features, 2010)

• Support for thousands of clients (for grid computing)

• Minimizing read/write contention by using optimistic locking and foregoing read

isolation.

• Seamless schema migration. Support for lazy migration of old schemas.

• Globally synchronized via log replication.

• Transaction log exposed as a first class api for a consistent way to support

notifications/auditing/replication.

• Multiple write masters across WAN links, no single point of failure

• Optimistic locking

15	

	

• Conflict resolution at an object/transaction granularity

• Authentication/entitlements as yourself instead of generic db admin accounts

2.2.2 Quartz Development Process

The three primary goals for the Quartz development process are, a minimum

learning curve for application development, provide ultra-fast turnaround, and ship

robust, high-quality applications.

Analysis	
 and	
 Development

Test	
 Development

QA	
 Testing

UAT

In	
 Production

Analysis	
 and	
 Design

Test	
 Scope	
 Analysis

Cycle

1

2

Dev

QA

Dev

QA

Prod

Prod

Role
Week	
 1 Week	
 2 Week	
 3 Week	
 4 Week	
 5 Week	
 6

Time

Week	
 7 Week	
 8 Week	
 9 Week	
 10

3

Dev

QA

Prod

4

Dev

QA

Prod

UAT

UAT

UAT

UAT

Figure 1: Overview of Release Cycle

The development cycle contains seven phases:

• The Analysis and Design phase, where the developer identifies the necessary

functionality and integrate them into the system

• The Test Scope Analysis, where QA analyze the range of tests needed for the new

functionality.

16	

	

• Development phase, where the developer implements the needed functionality.

• The Test Development phase, where QA defines tests and implements automated

tests to achieve the needed testing scope.

• The QA Testing phase, where the testing is made and bugs are identified and

escalated.

• The UAT phase, where the User gets involved and signs off the added

functionality.

• The Production phase, where the functionality has entered the live production

environment.

2.2.3 Quartz Coding Styles

The coding standards employed by the Quartz team are based on the

recommendations within the PEP 8 - Style Guide.

The Quartz project follows the general Python coding style. A few relevant rules from

the guide:

• Use 4 space tabs per indentation level. Never mix tabs and spaces

• Imports should be on separate lines

• Avoid spaces immediately inside parentheses, brackets or braces

• Avoid naked exceptions

• ‘Single-quote strings when possible’

17	

	

2.2.4 Version Control

All production code is stored in the Sandra database referred to source, which

contains local replicas in various geographical areas. Although every file edited by

developer is loaded from source, when developer finishes the implementation and tries to

save the changes, the modified file will be saved in developer’s own user area, which

lives in a database called “homedirs”.

Any time QzDev runs Python code and needs to load a new module, it will look

inside “homedirs” first, and then in source. It will do that for all users, and each user has

their own user area in “homedirs”.

2.3 Structured Credit Technology

By definition, structured credit trading usually refers to products consists of

different tranches of portfolios of credit instruments. Common types of structured credit

products include cash CDOs, synthetic CDOs, and nth-to-default baskets. (Structured

credit, 2012)

In order to price CDO, Bank of America is currently developing a tool named

“CDO2 Calibration Tool” to retrieve the raw data from Sandra database and send the data

into risk engine, which calculates the results based on the random factor loading model.

Table 1 below describes different sub-applications existing within the Quartz that

that are developed by the Structured Credit Technology team at Bank of America.

Application Description

Cash and CDS Volume By Date The application will support similar
functionality as excel pivot tables. The user
will be able specify what columns will be

18	

	

grouped by across both the vertical and
horizontal dimension.

Index Options Market Making A phased approach for adopting Index
Options into Quartz. Phase 1: will involve
migrating ivol functionality to Quartz and
updating the market data model used to
store data Phase 2: Build out a Index
Option pricing/marking tool which
leverages pricing and calibration
of upfronts-> vols Phase 3: feed external
systems

Bond Option Vol Upload Tool The Bond Option Vols Publish application
provides users with functionality to
interface with Camden. Users can retrieve
vol levels, edit it and publish edited data to
Camden.

CDO2 Calibration/Marking Tool Interfaces directly with Risk Engine and
calculates RFL calibration parameters for
CDO2 trades and these results can be
written into Sandra database.

Table 1: Structured Credit Technology Internal Application

2.4 CDO and CDO2

CDO, which stands for collateralized debt obligation, is a type of structured asset-

based security that is issued by special entities and collateralized by debt obligations,

most of the time high-risk and high-yield bonds and loans. CDOs were seen to be

flourishing during 2000 – 2007 and became an extremely high-profit credit derivative for

investment banks. But then they suffered great losses and have been almost destroyed in

the subprime mortgage crisis, because of the unabatedly growing issuance of CDOs and

the declining quality of their collateral of which a large proportion is subprime bonds. It

is estimated that CDOs take responsibility for nearly 542 billion dollars in write-downs

for investment banks since the start of financial crisis. (Katherine, 2009)

19	

	

In spite of the fact that CDO collapsed and investors flee from this area during

subprime crisis, CDO is still of interest to the market. In 2010, Citigroup became the first

investment bank underwriter for. It is also reported that JP Morgan, Bank of America and

Deutsche Bank are approaching managers of leveraged loans to offer terms for new

CDOs. (Bloomberg, 2010)

 CDO-squared is identical to a CDO except for the asset securing the obligation.

(CDO-Squared, 2012) Instead of backing by a pool of bonds, loans and other credit

instruments, CDO-squared are backed by other CDO tranches. Namely, A CDO-squared

is a CDO of a CDO. The underlying collateral consists of single tranches of CDOs or a

mixed pool of CDO tranches and asset–backed securities. Banks could resell the credit

risk they get in CDOs by issuing CDO-squared. The first CDO-squared deal was the

USD 343m Zais Investment Grade (Zing I) deal in 1999.

20	

	

2.5 CDO Pricing

2.5.1 Gaussian Copula

In probability theory and statistics, a copula is a kind of distribution function that

is commonly used to describe the dependence between random variables. Copula gains

its popularity by allowing easy modeling and estimation the distribution of random

vectors by separating the estimation of marginal and copula. (Copula (probability

theory), 2012)

Consider a random vector . Suppose its margins are

continuous, i.e. the marginal CDFs are continuous functions. By

applying the probability integral transform to each component, the random vector

 has uniform margins.

The copula of is defined as the joint cumulative distribution

function of : (Copula (probability theory), 2012)

Gaussian copula is a distribution over the unit cube . Suppose	
 we	
 have	
 a	

correlation	
 matrix ,	
 the	
 Gaussian	
 copula	
 with	
 parameter	
 matrix	
 	
 can	
 be	

expressed	
 as

21	

	

where represents the inverse cumulative distribution function of a standard normal

and is the joint cumulative distribution function of a multivariate normal distribution with

mean vector zero and covariance matrix identical to the correlation matrix.

The density of Gaussian copula can be expressed as (Arbenz, 2011)

where is the identity matrix.

To help understand the concept of Gaussian Copula, it would be helpful to

illustrate with a two-dimension Gaussian Copula. (Schmidt, 2006)

,

where is the 2 × 2 matrix with 1 on the diagonal and otherwise. denotes the cdf of

a standard normal distribution while is the cdf for a bivariate normal distribution

with zero mean and covariance matrix . Note that this representation is equivalent to

22	

	

2.5.2 CDO Pricing using Gaussian Copula

In the paper “On Default Correlation: A Copula Function Approach”, Gaussian

copula is firstly applied to CDOs, and this method is rapidly adopted by financial

institutions to correlate associations between multiple securities. (David X. Li, 2012)

Different from standard credit derivative products, which are simply based on a

single underlying credit risk, CDO is associated with a portfolio of credit risk, and

therefore needs a distinct approach to evaluate default correlation. Tradition way to

define default correlation is based discrete events, which categorize according to survival

or nonsurvival at an important period such one year. For example, if we denote

where EA, EB are defined as the default events of two securities A and B over 1 year.

Then the default correlation between two default events EA and EB, based on the

standard definition of correlation of two random variables, are defined as follows

This discrete event approach has been taken by Lucas [1995]. Hereafter we simply call

this definition of default correlation the discrete default correlation.

One disadvantage of this existing definition is its assumption that default

correlation depends on a specific rather than a general time interval. In order to

generalize the definition, we introduce a random variable called “time-until-default” to

represent the length of time before a define point of event, usually known as default, is

23	

	

occurring.

With this new random variable, we could define the default correlation of two

entities A and B with respect to their survival times, or time-until-default, and as

follows

Here is the marginal default probability of and up to any default time t in the

future could be obtained by

based on the corresponding credit curve,

This expression of default correlation is usually known as survival time correlation,

which enhances the discrete default correlation by generalizing the dependent time

interval. Now the question is, for an n credit portfolio, such as CDO, how should we

24	

	

determine the joint distribution function given the marginal distribution and a correlation

structure? The solution offered by the author is copula function.

In the two dimension Gaussian copula, which is also called bivariate normal

copula

where is the bivariate normal distribution function with correlation coefficient , and

 is the inverse of a univariate normal distribution function. If we set the correlation

parameter to asset correlation and denote the survival times for A and B as and ,

the joint default probability can be calculated as follows (Li, 2000)

where and are the distribution functions for the survival times and .

Here is a sample default correlation versus length of time interval generated by applying

the Gaussian copula.

Deductively, we could use the same approach to construct high dimension copula to

25	

	

model the credit portfolio of arbitrary size.

Here we provide a numerical example to illustrate the process of applying Gaussian

copula to model default correlation versus time until default.

Given two credit curves as following:

We then apply formula

to obtain marginal default probability of and . Thusly the joint default probability

can be calibrated by

26	

	

2.5.3 Random Factor Loading

Traders use CDO2 Calibration Tools to price the CDO by sending market data to

the risk engine, which is implemented based on a mathematic model that extends the

classical Gaussian Copula by introducing random factor loading.

The idea of random factor loading is published in “Extensions to the Gaussian

copula: random recovery and random factor loadings” as a research result by Leif

Anderson and Jakob Sidenius. (Leif Andersen, 2004)

In this extension, some shortcomings of the basic Gaussian model are well

resolved. As all the portfolio credit models aim to do, RFL intends to stimulate the

default co-dependence between different obligators. To put it simply, we would like to

know whether a default obligator would likely to make another obligator susceptible to

default. It is widely assumed by financial industry professionals that there exists the

correlation between the defaults of each obligator, as is firmly backed up by the empirical

study. To put it more specifically, the family of Gaussian Copula Modeling involves the

usage of a copula function, of which use is to stitch together marginal single-obligator

27	

	

default probabilities into a joint default distribution. (Leif Andersen, 2004) But same as

its ancestor, RFL is still not and intends not to be a perfect economic model. People can

enjoy the statistical convenience that gives them the approximation of a complex relation

fairly easily, but totally relying on RFL proves to be disastrous, as what has already been

shown in the financial crisis.

28	

	

Chapter Three: Methodology

3.1 Saving RFL Factors to Sandra

 “CDO2 Calibration Tools” interfaces with Risk Engine directly and generate RFL

calibration parameters for a given set of CDO2 child trades and these results then be

uploaded to Camden.

The current application is written in Python on the Quartz platform and the

calculated results (RFL factors - Scale Result 1, Scale Result 2, Scale Result 3, Threshold

Result 1 and Threshold Result 2) are uploaded to Camden.

Figure 1 below depicts a very high level system level overview and interactions of

project 1 with the rest of system.

RFL/MSTCDO

Sandra	
 Object	
 Store

Risk	
 Engine
Camden

RSAPI	

Adapter

Camden	

Adapter

RFLXML	

Parser DAO

RFL	

AMPS	

Mktdata	

DBDBDB	

RFL	
 RFL	

29	

	

Figure 2: High Level System Overview of RFL Calibration Tool (1)

3.1.1 Market Model Object

In order to save RFL factors to Sandra, we need to decide how to store those data

into a useful form. We need to define market data object. Currently, there are a total of

seven values populated to the user interface:

Include: indicate whether a row of data is selected or not

Is Shadow: indicate if the row selected should be stored as the shadow set

Basket Name: the market basket name

Trade ID: each trade is identified with its own ID

Curve Name: name of the market curve

Detach Points: indicator for the measurement of seniority of CDO tranches

Initial Guess Key: the value of first key for the iteration procedure

After we submit the set of data above to the risk engine, we would expect to

receive a set of three scale results and two threshold results upon successful processing of

data by risk engine. The calculation results will be stored in the four arrays in the market

data object as “ThresholdsBase”, “ThresholdsShadow”, “ScalesBase”, “ScalesShadow”

with the corresponding market basket name and calibration parameters.

3.1.2 UI Update and Implementation of Related Logic

For the fact that CDO2 will upload RFL factors to Sandra along with saving them

in Camden. Current UI needs to be updated and related logic needs to be implemented.

Project	
 1)	
 Save	
 RFL	
 factors	
 to	

Sandra	

30	

	

For example, user should be able to set environment variables such as MarketDataSet and

MarketDataDate of Sandra database.

The current user interface only enables the user to configure the market data date

setting. As a result, we also need to integrate within the interface the functionality to

configure the market data set. In the process of saving RFL factor into Sandra database,

an absolute path needs to be specified that indicates the directory where the factors

should be stored. Part of the path will be “Mktdata” as illustrated by Figure2, under the

“Mktdata” directory we need to append the market data set and market data date settings

accordingly. The final directory path for writing RFL object will appear in the format

“SandraDB/Mktdata/MarketDataSet/MarketDataDate/RFLObject”.

Figure 3: MarketDataSet Settings in CDO2 Calibration/Marking Tool

In addition, parts of the current UI have been updated to make sure it is consistent

with up-to-date convention.

1. Database environment information has been added to title bar.

2. Combine the date picker so that the new ‘Database Publish Date’ reflects the

MarketDataDate for both Camden and Sandra database.

3. A new status bar has been added at the bottom to reflect current MarketDataSet

and MarketDataDate of Sandra.

31	

	

3.1.3 Save RFL Factors to Different Datasets

Currently, RFL factors are uploaded in Camden to two datasets, “IRP Historical”

and “RFL Shadow”. We also need to consider this dataset concept and save RFL factors

to different datasets in Sandra depending on “Is Shadow?” value on the UI. After our

team design the new market data object which distinguishes the shadow and non-shadow

set of scale results and threshold results by allocating four arrays, we eliminate the need

to store the object in two different data sets in Sandra. Eventually, the shadow and non-

shadow row of data will be condensed as one row and then written into the Sandra

database.

During the first two weeks, our team has implemented the function that stores

RFL object into Sandra by using AMPS and Bob scheduler in the Quartz platform. After

constructing an AMPS message that contains all the necessary information about a RFL

object, we then publish the message to the AMPS server “sct_dev” under the topic

“SCT/RFL/PUB/REQUEST”. Finally, the Bob job script that listens to this topic writes

the RFL object into Sandra database under the directory specified by the information

contained in AMPS message.

However, one of the biggest disadvantages to store the RFL object via

AMPS/Bob scheduler is its limited ability of error handling. Therefore, our team re-

develops the function by using Hugs scheduler in the Quartz platform.

Hugs is a custom grid scheduler used by Quartz. It is implemented in C++ and

currently runs on top of Data Synapse, but can also run independently. Hugs allows you

to write Python code that runs in parallel on a distributed grid, which is why it is faster

32	

	

than AMPS when we have a huge amount of data to send. It is kind of running tasks on

distributed systems. Jobs can be monitored using the Hugs Monitor. (Hugs - The Quartz

Grid Scheduler, 2012)

Figure 4: Hugs Components

3.2 Implementing REST service

This project’s objective is to implement API Risk Engine will utilize to access

published RFL factors that have been stored in Sandra.

Figure 2 below depicts a very high level system level overview and interactions of project

2 and the rest of the system.

Project	
 2)	
 REST	

service	
 RFL	

33	

	

RFL/MSTCDO

Sandra	
 Object	
 Store

Risk	
 Engine
Camden

RSAPI	

Adapter

Camden	

Adapter

RFLXML	

Parser DAO

Figure 5: High Level System Overview of RFL Calibration Tool (2)

The REST Service will live on the Quartz grid and should be found using

Quartz’s Service Discovery protocol. The Service Discovery Protocol will provide the

server name and port, which can be used to access the REST Service. Requests may be

submitted to the service discovery server and will be automatically redirected to the RFL

factors service.

3.2.1 Protocols for Requesting RFL Factors

It is the feature of REST service that it only makes use of the basic command,

such as GET, POST, PUT, DELETE and other existing functionalities of the well-known

HTTP protocol. The REST service greatly simplify the process of requesting RFL factors

from Sandra database, as well as prevent the access issues which may cause problems for

clients.

With the service running, a client will only need a URL to gain read access to the

requested RFL Factors.

For Example:

RFL	

34	

	

• GET /RFLFactors/{DataSet}/{MarketDate} HTTP/1.1

o Returns an array containing all RFL factor objects for dataset {DataSet} and market

date {MarketDate}

• GET /RFLFactors/{DataSet}/{MarketDate}/{Name} HTTP/1.1

o Returns the RFL factor object for the specified {DataSet} , {MarketDate}, and

{Name}.

3.2.2 Register Quartz Discovery Service/Redirection

The RFL factor REST service is required to be registered within Quartz service

directory, for the reason that any client looking to use the REST service could find it

using the Quartz Discovery Service. To be specific, service clients can access all rest

services through the discovery service URL. Requests will be automatically redirected to

the corresponding service under the registered service name. It is worth noting that the

URL will change every day, thusly making Quartz Discovery Service the only way

through which we can locate the REST service.

3.2.3 JSON Object Formats

For the sake of convenience, it is required that all returned RFL Factors should be

in the format of JSON. JSON, which is the abbreviation of JavaScript Object Notation, is

a text-based open standard designed for human-readable data interchange. It is used

primarily to transmit data between a server and web application, serving as an alternative

to XML.

Example:

RFLFactor JSON Object

Name	
 Value	

Name	
 String,	
 corresponds	
 to	
 the	
 identifier	
 of	
 the	
 RFL	
 factor	

35	

	

Entry	
 String,	
 corresponds	
 to	
 market	
 data	
 entry	
 date	
 (i.e.	
 market	

date)	
 of	
 the	
 credit	
 RFL	
 factor,	
 with	
 format	
 YYYYMMDD.	

DataSet	
 String,	
 corresponds	
 to	
 the	
 (Sandra)	
 dataset	
 of	
 the	
 credit	

RFL	
 factor.	

QuotedBy	
 String,	
 corresponds	
 to	
 the	
 identity	
 of	
 the	
 user	
 or	
 service	

which	
 published	
 the	
 creditRFLFactor	

QuotedAt	
 String,	
 corresponds	
 to	
 the	
 date	
 and	
 time	
 the	
 surface	
 was	

quoted	
 at	
 in	
 ISO8601	
 format	
 (UTC	
 time),	
 e.g.	
 "2012-­‐11-­‐
30T16:51:14Z"	

ScaleBase	
 Array	
 of	
 string,	
 corresponds	
 to	
 value	
 of	
 scale	
 in	
 RFL	
 base	

factor.	

ScaleShadow	
 Array	
 of	
 string,	
 corresponds	
 to	
 value	
 of	
 scale	
 in	
 RFL	

shadow	
 factor.	

ThresholdsBase	
 Array	
 of	
 string,	
 corresponds	
 to	
 value	
 of	
 threshold	
 in	
 RFL	

base	
 factor.	

ThresholdsShadow	
 Array	
 of	
 string,	
 corresponds	
 to	
 value	
 of	
 threshold	
 in	
 RFL	

shadow	
 factor.	

Table 2: RFLFactor Object Members

{	

	
 'name':	
 'ML_DECIBEL_8654_PARENT',	

	
 'entry':	
 '2012-­‐11-­‐30',	

	
 'dataSet':	
 'CREDIT_NY',	

	
 'quotedBy':	
 ‘luyang.zhang’,	

	
 'quotedAt':	
 '2012-­‐11-­‐30T16:51:14Z',	

	
 ‘ScaleBase’:	
 ['4.454431266528465',	
 '0.13498698341468446',	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

'0.1366913808148539'],	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'ScalesShadow':	
 ['4.454509804485647',	
 '0.1345869487137669',	

'0.13635125877537008'],	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'ThresholdsBase':	
 ['-­‐4.0',	
 '2.644373074971677E-­‐4'],	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'ThresholdsShadow':	
 ['-­‐4.0',	
 '4.254511530306401E-­‐4'],	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'CalibrationParams':	
 {}	
 	
 	
 	

}

Table 3: RFLFactor Object

36	

	

Chapter Four: Analysis & Performance

4.1 Test Overview

In order to verify that an application operates as it was designed to, various types

of test need to be conducted before the application gets pushed into production

environment. Common types of tests include: unit tests that are run by developers,

scenario tests that define an end to end business scenario, benchmark tests that validate

the response times of the applications or scenarios, regression tests that extend scenario

tests for all possible data points and are executed to ensure old functionality works in the

wake of new changes, and performance tests that are a special form of regression tests

that help validate the performance of the applications under varying stress/load

conditions.

4.2 Unit Test for CDO2 Calibration/Marking Tool

The whole purpose of the project is to implement the functionality that enables

CDO2 Calibration Tool to effectively communicate with Sandra database, as Bank of

America are planning to remove Camden database completely next year and thusly facing

the need to preserve the original database functionalities.

Inevitably and predictably, most of the quality assurance testing will focus on

checking the consistency of performance when CDO2 Calibration Tool interacts with

both databases.

37	

	

Test
Case
No.

Publish
to
Camden

Publish
to
Sandra

Test case Result

1 O O Camden publish and
Sandra publish

Should both successful

2 O X Camden publish and
Sandra publish

Camden: Rollback
Sandra : Should not
publish anything

3 X O Camden publish and
Sandra publish

Camden: Should not
publish anything
Sandra : Rollback

4 X X Camden publish and
Sandra publish

Camden: Should not
publish anything
Sandra : Should not
publish anything

Table 4: Unit Test Cases for CDO2 Calibration/Marking Tool

The table above illustrate all the possible outcomes of CDO2 Calibration Tool

publish function. The current publish function will write the data to both Camden and

Sandra database and therefore introduces four situations that could possibly happen.

Test case1 would be the ideal situation, which neither Camden nor Sandra encounters any

problems when CDO2 Calibration Tool writes the RFL object into the database. Under

this circumstance, we need to compare the objects that are finally saved in both

databases.

However, in test case2, only Camden successfully receives the data published

from the user interface. In this case, we need to rollback the Camden publish process and

log any errors or exceptions raised while the CDO2 Calibration Tool is trying to publish

to Sandra database. Because of the implementation of publish function, publish to Sandra

will not be attempted if publish to Camden is not successful. The logic of implementation

eliminates the possibility of test case3.

Lastly, it is obvious that nothing should be written to both databases, if neither

one of the publish attempts succeeds.

38	

	

Chapter Five: Conclusion

The previous CDO2 Calibration/Marking Tool interfaces with the risk engines and

saves all the calculation results into Camden database, which is a traditional SQL

database. However, for a risk & trading system where users generally end up storing

complex instruments, model parameters, trades, and market data objects, SQL database

has the disadvantage of potentially exposing the internal data representation to end users.

Although stored procedures and views could in some extent alleviate this situation, SQL

doesn’t enforce this practice and makes it easier for the schemas to leak out into interface.

 Sandra, as an object database, is thusly used by all regular Quartz applications. It

is written in C++ for performance reasons, but its main API is in Python. By creating a

general purpose object database that is closely integrated with the pricing/risk framework,

we can simplify the task when we need to define new instruments, pricing models, or

changes the attributes on the existing objects.

 In this project, we have accomplished the database migration from Camden to

Sandra by implementing the related database functionalities by using Hugs grid

scheduler. The function enables the CDO2 Calibration/Marking Tool to interface and

publish data into Sandra database with basic error checking and reporting attributes. A

complete and thorough QA test has been conducted by comparing and analyzing the

performances and results generated when CDO2 Calibration/Marking Tool interacted

with both databases.

39	

	

References & Glossary

References	

	

Arbenz,	
 P.	
 (2011).	
 "Bayesian	
 Copulae	
 Distributions,	
 with	
 Application	
 to	
 Operational	

Risk	
 Management	
 -­‐	
 Some	
 Comments".	
 Methodology	
 and	
 Computing	
 in	
 Applied	

Probability	
 Forthcoming	
 .	

Bank	
 of	
 America	
 Overview.	
 (2012).	
 Retrieved	
 2012	
 йил	
 December	
 from	
 Bank	
 of	

America:	
 http://investor.bankofamerica.com/phoenix.zhtml?c=71595&p=irol-­‐

homeprofile#fbid=nEzwyDXx8OL	

Bloomberg.	
 (2010).	
 CLOs	
 to	
 End	
 12-­‐Month	
 Drought	
 in	
 Citigroup	
 Deal:	
 Credit	

Markets.	
 Bloomberg	
 .	

CDO-­‐Squared.	
 (2012).	
 Retrieved	
 2012	
 йил	
 December	
 from	
 Investopedia:	

http://www.investopedia.com/terms/c/cdo2.asp#axzz2EHpMMYQH	

Copula	
 (probability	
 theory).	
 (2012	
 йил	
 October).	
 Retrieved	
 2012	
 йил	
 December	

from	
 wikipedia:	
 http://en.wikipedia.org/wiki/Copula_(probability_theory)	

David	
 X.	
 Li.	
 (2012).	
 Retrieved	
 2012	
 йил	
 December	
 from	
 wikipedia:	

http://en.wikipedia.org/wiki/David_X._Li	

Global	
 Markets	
 and	
 Risk	
 Technology	
 (GMRT).	
 (2012).	
 Retrieved	
 2012	
 йил	
 Dec	
 from	

Bank	
 of	
 America:	
 http://campus.bankofamerica.com/americas/analyst/technology-­‐

developer-­‐and-­‐analyst-­‐program-­‐%E2%80%93-­‐global-­‐markets-­‐and-­‐risk-­‐

technology-­‐(gmrt).aspx	

Hugs	
 -­‐	
 The	
 Quartz	
 Grid	
 Scheduler.	
 (2012).	
 Retrieved	
 2012	
 йил	
 December	
 from	

Quartz	
 Documentation:	

40	

	

http://lnyce23217.bankofamerica.com:8181/docs/sphinx/html/components/hugs.

html	

Katherine,	
 A.	
 (2009).	
 The	
 Story	
 of	
 the	
 CDO	
 Market	
 Meltdown.	

Leif	
 Andersen,	
 J.	
 S.	
 (2004).	
 Extensions	
 to	
 the	
 Gaussian	
 copula.	
 Retrieved	
 2012	
 йил	

December	
 from	
 Journal	
 of	
 Credit	
 Risk:	

http://www.risk.net/digital_assets/4487/v1n1_Andersen_new.pdf	

Li,	
 D.	
 X.	
 (2000).	
 On	
 Default	
 Correlation:	
 A	
 Copula	
 Function	
 Approach.	
 Journal	
 of	

Fixed	
 Income	
 ,	
 43-­‐54.	

Quartz	
 Academy	
 -­‐	
 Overview	
 Session.	
 (2010).	
 Retrieved	
 2012	
 йил	
 December	
 from	

Quartz	
 Documentation:	
 Bank	
 of	
 America	
 internal	
 web	
 page	

QzDesktop	
 .	
 (2010).	
 Retrieved	
 2012	
 йил	
 December	
 from	
 Quartz	
 Documentation:	

Bank	
 of	
 America	
 internal	
 web	
 page	

Relevant	
 Quartz	
 Components.	
 (2010).	
 Retrieved	
 2012	
 йил	
 December	
 from	
 Quartz	

Documentation:	
 Bank	
 of	
 America	
 internal	
 web	
 page	

Sandra	
 Features.	
 (2010).	
 Retrieved	
 2012	
 йил	
 December	
 from	
 Quartz	

Documentation:	
 Bank	
 of	
 America	
 internal	
 web	
 page	

Schmidt,	
 T.	
 (2006).	
 Coping	
 with	
 Copulas.	
 Leipzig:	
 Copulas	
 -­‐	
 From	
 Theory	
 to	

Applications	
 in	
 Finance.	

Structured	
 credit.	
 (2012).	
 Retrieved	
 2012	
 йил	
 December	
 from	
 Creditflux:	

http://www.creditflux.com/Glossary/Structured-­‐credit/	

	

41	

	

Glossary

AMPS: AMPS (Advanced Message Processing System) is a high performance

publish-subscribe messaging system, with database-like, State-of-the-World

(SOW) querying functionality.

BOB: Bob is the scheduling system for Quartz. You can run a Bob agent on any

Linux EFS-enabled machine to add your machine as a slave to run jobs on.

CDO: Collateralized debt obligations (CDOs) are a type of structured asset-

backed security (ABS) with multiple "tranches" that are issued by special purpose

entities and collateralized by debt obligations including bonds and loans.

Hugs: Hugs is a custom grid scheduler used by Quartz. It is implemented in C++

and currently runs on top of Data Synapse, but can also run independently. Hugs

allows you to write Python code that runs in parallel on a distributed grid. Jobs

can be monitored using the Hugs Monitor. Hugs history can be browsed using

Hugs History.

Qztable: A qztable.Table represents a tabular data set or a timeseries in quartz.

Qztable can load data from a range of sources: sql, csv, hdf5, kdb, etc. as well as

programmatically in Python. Qztable is written in C++, and interfaces to quartz

through swig.

42	

	

REST: REpresentational State Transfer (REST) is a style of software architecture

for distributed systems such as the World Wide Web. REST has emerged as a

predominant Web service design model.

Sandra: Sandra is the object database used by all regular Quartz applications. It is

written in C++ for performance reasons, but its main API is in Python.

YAML: YAML is a human-readable data serialization format that takes concepts

from programming languages such as C, Perl, and Python, and ideas from XML

and the data format of electronic mail (RFC 2822). YAML was first proposed by

Clark Evans in 2001, who designed it together with Ingy döt Net and Oren Ben-

Kiki. It is available for several programming languages.

	

	

	

	

	

	

	

	

	

	

	

43	

	

Appendix A: Quartz Development Process

ANALYSIS AND DESIGN
Role

• Developer
Prerequisites

•
Description

• Define requirements
• Define architecture

Meeting Sessions
• Persons responsible for QA and Dev make sure the knowledge of functionality is

handed over
Check Points for Successful Completion

• JIRA exists

DEVELOPMENT
Role

• Developer
Prerequisites

• JIRA exists
Description

• Develop functionality
• Develop tests
• Peer review code

Meeting Sessions
• Dev informs QA when the functionality is tied down enough for QA to implement

tests
• PM and Dev ensures that development will complete before intended QA Testing

cycle
Check Points for Successful Completion

• Code is reviewed and approved
• Tests have acceptable coverage, including

o Testing intended function
o Testing integration with neighbouring components
o Testing special cases

• All tests run successfully
• JIRA handed over to QA

ANALYSIS AND DEVELOPMENT
Role

44	

	

• QA
Prerequisites

• JIRA Exists
• Requirements and functionality well known by QA.

Meeting Sessions
• Persons responsible for QA and Dev make sure the knowledge of functionality is

handed over
• Dev and QA teams discuss to identify functionality potentially affected by the

new functionality
Description

• Define QA Tests for new functionality
• Identify existing functionality which will be affected

o Identify existing QA tests for affected functionality or
o Develop new QA tests for testing interaction between the new and existing

functionality.
• Automate QA Tests
• Update Regression suite

o Select tests from Automated QA Test suite as well as Developers’ tests.
• Review QA Test coverage

Check Points for Successful Completion

• QA Tests have acceptable coverage
• Affected functionality has been identified and QA Tests for their interaction with

the new functionality are available.
• Regression suite is updated

QA TESTING
Role

• QA
Prerequisites

• JIRA handed over to QA
• Functionality has been developed
• QA Tests have been identified and developed

Meeting Sessions
• QA informs Dev of bugs
• Dev and QA teams discuss to identify functionality potentially affected by the

new functionality
Description

• Run QA Tests
• Run Free-form testing
• Defer ticket to developer if bug is found
• Write JIRA tickets for non-related errors

Check Points for Successful Completion

45	

	

• All active QA Tests run successfully
• Tickets for newly found bugs written

USER ACCEPTANCE TESTING
Role

• UAT
Prerequisites

• All active QA Tests run successfully
Description

• User signs off new functionality
• User signs off the removal of bugs

Check Points for Successful Completion
• User has signed off all functionality in the ticket

PRODUCTION
Role

• User
Prerequisites

• User has signed off functionality in the ticket
Description

-
Check Points for Successful Completion

-

46	

	

Appendix B: CDO2 Calibration Tool Test Process

1. Launch CDO2 Calibration Tool:

In order to test CDO2 Calibration Tool, please look for CDO2 Calibration Tool in

QzDesktop. (/Credit/Beta/TEST/CDO2 Calibration Tools (QA))

2. How to run CDO2 Calibration Tool scripts from QzDev:

All relevant scripts were pushed to “sct_staging” area. The scripts pushed are as follows:

Script Name Is Main?

credit/sct/apps/RFL/RFLSandraDAO.py

credit/sct/apps/RFL/RFLPanel.py Yes

credit/sct/apps/RFL/RFLXML.py

credit/sct/apps/RFL/rflhugs.py

credit/sct/apps/RFL/__init__.py

To run the CDO2 Calibration Tool script, open “credit/sct/apps/RFL/RFLPanel.py” in

QzDev.

3. How to check final results stored:

Check List before click the Publish button on CDO2 Calibration Tool:

1. Make sure Risk Engine Env = QA, Camden Env: QA

2. Selected the rows to publish and submit to Risk Engine

47	

	

3. Wait until calculation results populate to the user interface (numbers should

be populated in following five columns: Scale Result1, Scale Result2, Scale

Result3, Threshold Result1, Threshold Result2)

4. Make sure dataset settings (settings -> Dataset Settings) are configured as

following:

a. RFL Camden Dataset: ScenarioTest1

b. Shadow RFL Camden Dataset: ScenarioTest2

c. RFL Sandra Dataset: RFL_test

5. Click Publish button

CDO2 Calibration Tool:

48	

	

Scenario Test1 (Base Results): Check if calculated numbers were correctly published to

Camden for the basket name (RFL Label). For testing purpose, “ScenarioTest1” Camden

dataset is used to publish only base rows. (Rows on UI that “IsShadow” column NOT

checked.)

Scenario Test2 (Shadow Results): Check if calculated numbers were correctly published

to Camden for the basket name (RFL Label). For testing purpose, “ScenarioTest2”

Camden dataset is used to publish only shadow rows. (Rows on UI that “IsShadow”

column checked.)

Sandra Database:

49	

	

If selected rows were successfully published to Sandra, following message will be

displayed on the row on UI:

Example: It shows which Sandra DB and MarketDataSet the RFL numbers published to.

Unlike in Camden which publishes Base and Shadow numbers in separate Camden

dataset (i.e. ScenarioTest1 and ScenarioTest2), we save only ONE object for shadow and

base rows with same basket name (which is RFL Label). This CreditRFLFactor Sandra

object contains ScalesBase, ScalesShadow, ThresholdsBase, ThresholdsShadow fields

and each calculated numbers in UI will be saved in its respective Sandra object field in

lists.

50	

	

4. Error testcase handling:

The tool will try to publish in the order of 1) first to Camden, and if this is done

successfully then 2) to Sandra.

The behaviors that will happen in each possible error cases are listed below.

No

.

Publish to

Camden

Publish to

Sandra

Test Case Result

1 Successful Successful Camden
publish and
Sandra publish

Should both successful.

2 Successful Error Camden
publish and
Sandra publish

Camden: Should be published successfully.
Sandra: Should not publish anything, error message
will be displayed on the UI.
This error occurred entries should be re-published
by user manually from the UI.

3 Error Successful Camden
publish and
Sandra publish

Camden: Should not publish anything.
Sandra: If Camden publish fails, the tool stops
publishing and does not even attempt to publish in
Sandra at all.
These rows should be re-published by user
manually from the UI.

4 Error Error Camden
publish and
Sandra publish

Camden: Should not publish anything.
Sandra : Should not publish anything.
These rows should be re-published by user
manually from the UI.

In following section we explain each test case in more detail.

Test Case 1:

If everything goes well, that’s what we expect to see!

51	

	

On UI:

1) It will publish first to Camden and then Sandra.

2) When publish is completed the UI will look like this:

Test Case 2:

We want to test the case where RFL factors can be successfully published to Camden,

while have problems during Sandra publish. One possible reason for failure in Sandra is

that the Hugs environment specified in CDO2 Calibration Tool can’t be found.

Procedure:

1. Choose a dummy Hugs scheduler in Settings -> Computer Grid Settings. This will

cause publish to Sandra fails (while publish to Camden will be successful.).

52	

	

2. Under Settings -> Dataset Settings, let RFL Camden dataset and Shadow RFL

Camden dataset be ‘ScenarioTest1’ and ‘ScenarioTest2’, respectively. Double-

check the data entries for corresponding date have been created so that publishing

to Camden should be all smooth.

3. Submit RFL Factor Parameters to risk engine. Wait until all the calculation results

are ready to send.

In this case, we select RFL Factors ML_DECIBEL_8980_PARENT and

ML_DECIBEL_8852_PARENT (referred to as ‘M8980’ and ‘M8852’ in the

following text). If everything goes well, at last two base records and two shadow

53	

	

records will be sent to ScenarioTest1 and ScenarioTest2 in Camden, respectively,

and two RFL Factor objects will be sent to Sandra.

4. Click ‘Publish’.

a) Start to send the base of ‘M8980’ to Camden.

b) Base of ‘M8980’ is successfully sent to ScenarioTest1 in Camden. Since we

don’t have the complete RFL Factor object, we will wait until the shadow of

‘M8980’ is sent to Camden and start to publish it to Sandra if both records are

successfully saved in Camden.

In above screen shot it shows publish to Camden has been successfully

completed.

c) After ‘M8980’ have been fully sent to Camden, we begin to try publishing

‘M8980’ to Sandra.

54	

	

d) Failure to publish to Sandra because the Hugs scheduler we choose doesn’t

exist. Log the error in the console and continue with the next object, ‘M8852’.

e) Basically ‘M8852’ proceeds the same way.

55	

	

f) We failed all the Sandra jobs…In this case, the calculation results of ‘M8890’

and ‘M8852’ will remain in Camden. But error messages will show in the

console saying Sandra object needs to be republished later. Nothing will be

published for these entries in Sandra.

56	

	

Test Case 3 & 4:

Test Case 3 and Test Case 4 are grouped together because they enjoy something in

common. If any error occurs during the process of publishing base or shadow of RFL

Factor to Camden, we will skip the part of publishing this object to Sandra.

To cause a failure in publishing to Camden, we can choose a dataset which doesn’t exist

in Camden.

There are two possibilities under this test case.

1. Both Camden publishes failed; In this case nothing will be published to both

Camden and Sandra.

Errors message is logged in the console and no need to republish,

2. Either base or shadow failed in publishing.

In this case, publish to Camden dataset ScenarioTest1 (for base) will be

completed successfully. Publish to non-existing Camden dataset will cause error

and in this case nothing will be published to Camden.

57	

	

If any of the rows (shadow or base) for the same basket name occurred error,

nothing will be published to Sandra for that basket name. Only the baskets that

both shadow and base rows were successful will be published to Sandra. (This is

because shadow and base rows for the same basket will be created as ONE

Sandra object).

Errors message is logged in the console and the user will have to republish later.

Possible Improvements to do:

1. The error message of Sandra error is not very useful. It could be hard to tell from

the error message where something goes wrong.

2. There is no permanent log. Currently we only record all error information in the

console of the application, which will be lost if the app is closed.

3. If by any chance we have to republish the RFL Factor to Sandra, we couldn’t skip

the part of first republishing it to Camden, which seems like a waste of time and

may be something what we want to avoid.

58	

	

4. It is not so easy to see from the status column whether a particular RFL Factor

object needs to be republished. (As far as I am concerned, only in the case that

both Camden publishes failed, a republish will not be required. Otherwise we

have to do the republish later to make sure Camden and Sandra are consistent.)

59	

	

Appendix C: REST Service for CDO2 Calibration Tool Test Process

1. Launch REST service browser:

While the discovery service is generally intended for programmatic access, we can

browse the available REST services here: http://qzsd.bankofamerica.com:8814/

Click into sct-rfl-rest-dev. You can find the URL of RFL REST service through the

Quartz Discovery Service.

Click the URL. We entered the service routing mapo for RFL REST service. Currently

there are two services provided to gain access to RFL factors in Sandra.

It can either return an array containing all RFL factor objects for given dataset{DataSet}

and market date{MarketDate}, or return the RFL factor object for the specified

dataset{DataSet}, market date{MarketDate} and name{Name}.

60	

	

2. How to check REST service read correct RFL factors

Open the Sandra DB browser. Switch to credit_dev database. Then go to the directory

/MktData/CREDIT_NY/20121130/ and there are four RFL factors saved under that date.

Enter

http://lnyce23221.usnycbt.amrs.bankofamerica.com:10008/creditRFLFactors/CREDIT_N

Y/20121130

We get returned with the	
 JSON	
 representations	
 of	
 RFL	
 objects	
 under	
 that	
 date.	

61	

	

Enter

http://lnyce23221.usnycbt.amrs.bankofamerica.com:10008/creditRFLFactors/CREDIT_N

Y/20121130/ML_DECIBEL_8844_PARENT.

We	
 will	
 get	
 returned	
 with	
 the	
 JSON	
 representation	
 of	

ML_DECIBEL_8844_PARENT.RFL.	

	

62	

	

Appendix D: API Documentation for RFL Factor Rest Service

1. Overview

This document describes the API Risk Engine will utilise to access published RFL factors

that have been stored in Sandra.

2. HTTP Calls

The REST Service lives on the Quartz grid and can be found using Quartz’s Service

Discovery protocol1. The Service Discovery Protocol will provide the server name and

port which can be used to access the REST Service. Requests may be submitted to the

service discovery server and will be automatically redirected to the volatility service.

• Requests to the REST Service are made using HTTP.

• No HTTP headers in the request are needed.

• No message body data is needed.

• Returns from requests are in JSON format.

The following protocols for requesting RFL factors will be implemented

• GET / CreditRFLFactors /{DataSet}/{MarketDate} HTTP/1.1

o Returns an array containing all credit RFL factor objects for dataset {DataSet} and

market date {MarketDate}

• GET /CreditRFLFactors/{DataSet}/{MarketDate}/{Name} HTTP/1.1

o Returns the credit RFL Factor object for the specified {DataSet} , {MarketDate}, and

{Name}.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	

http://lnyce23217.bankofamerica.com:8181/docs/sphinx/html/components/servi
cediscovery.html	

	

63	

	

{MarketDate} must be in YYYYMMDD format, e.g. 20121130.

{DataSet} is the market dataset in Sandra, e.g. CREDIT_NY

{Name} is the top-level identifier of the credit RFL factor, e.g.

ML_DECIBEL_8654_PARENT

* Note, the rest service will auto detect requests from desktop browsers (e.g. Firefox,

Internet Explorer) and render responses in HTML for viewing convenience. Non-

rendered, native JSON messages can be forced by appending fmt=json as a request

parameter: GET /CreditRFLFactors/CREDIT_NY/20121205?fmt=json

GET /creditRFLFactors/CREDIT_NY/20121130/ML_DECIBEL_8654_PARENT
HTTP/1.1
 {
 'Name': 'ML_DECIBEL_8654_PARENT',
 'Entry': '2012-11-30',
 'DataSet': 'CREDIT_NY',
 'QuotedBy': ‘luyang.zhang’,
 'QuotedAt': '2012-11-30T16:51:14Z',
 ‘ScaleBase’: ['4.454431266528465', '0.13498698341468446',
'0.1366913808148539'],
 'ScalesShadow': ['4.454509804485647', '0.1345869487137669',
'0.13635125877537008'],
 'ThresholdsBase': ['-4.0', '2.644373074971677E-4'],
 'ThresholdsShadow': ['-4.0', '4.254511530306401E-4'],
 'CalibrationParams': {}
Example 1 HTTP Request and Response for a single credit RFL factor.

GET /creditRFLFactors/CREDIT_NY/20121130 HTTP/1.1
 {
 'Name': 'ML_DECIBEL_8654_PARENT',
 'Entry': '2012-11-30',
 'DataSet': 'CREDIT_NY',
 'QuotedBy': ‘luyang.zhang’,
 'QuotedAt': '2012-11-30T16:51:14Z',
 ‘ScaleBase’: ['4.454431266528465', '0.13498698341468446',
'0.1366913808148539'],
 'ScalesShadow': ['4.454509804485647', '0.1345869487137669',

64	

	

'0.13635125877537008'],
 'ThresholdsBase': ['-4.0', '2.644373074971677E-4'],
 'ThresholdsShadow': ['-4.0', '4.254511530306401E-4'],
 'CalibrationParams': {}
}

{
 'Name': 'ML_DECIBEL_8654_PARENT',
 'Entry': '2012-11-30',
 'DataSet': 'CREDIT_NY',
 'DuotedBy': ‘luyang.zhang’,
 'QuotedAt': '2012-11-30T16:51:14Z',
 ‘ScaleBase’: ['4.454431266528465', '0.13498698341468446',
'0.1366913808148539'],
 'ScalesShadow': ['4.454509804485647', '0.1345869487137669',
'0.13635125877537008'],
 'ThresholdsBase': ['-4.0', '2.644373074971677E-4'],
 'ThresholdsShadow': ['-4.0', '4.254511530306401E-4'],
 'CalibrationParams': {}
}

Example 2 HTTP Request and Response (truncated) for all credit RFL factors for dataset and market date

3. Quartz Discovery Service / Redirection

All Credit RFL factor REST services will be registered with the Qz service directory at

http://qzsd.bankofamerica.com:8814/. Service clients can access all rest services through

the discovery service URL. Requests will be automatically redirected to the

corresponding service under the registered service name.

qzsd.bankofamerica.com:8814/sct-rfl-rest-
dev/creditRFLFactors/CREDIT_NY/20121130/ML_DECIBEL_8654_PARENT

The request url above will automatically be redirected to the current grid server and port
corresponding to the service name, sct-rfl-rest-dev:

lnyce23220.usnycbt.amrs.bankofamerica.com:10008/creditRFLFactors/CREDIT_NY/20
121130/ML_DECIBEL_8654_PARENT

Example 3 HTTP Request and Response for browser listing available databases

65	

	

To distinguish environments, credit RFL factor rest services will follow a naming

convention.

Environment Service Name
Dev sct-rfl-rest-dev
QA sct-rfl-rest-qa
Production sct-rfl-rest-prod
<env> sct-rfl-rest-<env>
Table 1 REST service environment naming convention.

	Worcester Polytechnic Institute
	Digital WPI
	April 2013

	Native RFL Factors in Quartz
	Chenchen Zhang
	Luyang Zhang
	Repository Citation

	Microsoft Word - Wall Street MQP Report.docx

