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Abstract 
This project improves the control mechanisms for a semi-autonomous wheelchair with an 

assistive robotic arm system, also known as Anna. Anna was designed by the Robotics and 

Intelligent Vehicles Research Laboratory (RIVeR Lab) at Worcester Polytechnic Institute (WPI). 

The system is aimed at increasing the self-sufficiency of individuals with Locked-In Syndrome 

(LIS). Throughout the development of Anna, the following control interfaces have been 

introduced: a joystick, a wireless brain-computer headset, and voice control device. These 

interfaces were integrated with the aim to increase a user’s interaction with their environment. 

The objectives of this project include the validation of the existing control interfaces, as well as 

the integration and design of new systems. The wireless brain-computer headset, used to 

implement the control system for wheelchair navigation, is validated through several user 

studies. An Electromyography (EMG) sensor system serves as an alternative control module for 

wheelchair navigation. To increase physical interaction with the environment through object 

manipulation, a 6 degree-of-freedom robotic arm system is integrated with Anna. The arm 

system includes a RGB-D camera for object detection and localization, enabling autonomous 

object retrieval to enable self-feeding. The project outcomes include a demonstration of Anna in 

various conditions performing navigation and manipulation tasks. 
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1. Introduction 

Modern day rehabilitative research has provided a multitude of assistive technologies for 

those affected by disability [1]. This has created great opportunities that were not previously 

available for this population.  However, there remains a gap in the assistive devices available to 

those who have limited to no mobility in their upper body. Commercially available power 

wheelchairs are some of the most common assistive devices for persons with limited mobility. A 

rising issue with these devices is that most implement a control interface that takes motion based 

commands from joysticks. This leaves those with little to no control of their hands few options.  

Fortunately, technologies have been developed that place an emphasis upon voice 

control, Electrocenphalogram signals (EEG) and Electromyogram signals (EMG).  The EEG and 

EMG signals are a measure of brain activity and muscle activity, respectively. Furthermore, there 

are a number of commercially available products that measure and process conscious thoughts, 

facial expressions, emotions, minor neck movements and minor hand gestures.  Products such as 

EPOC Emotiv Headset, Google Glass and Mindwave have made it feasible to integrate facial, 

vocal, and thought controls into existing products.  

Additionally, commercially available powered wheelchairs have limited environmental 

awareness to allow the user to avoid obstacles. Unfortunately, this awareness is not always 

enough to ensure the safety of a person with limited reactionary skills. Existing technology such 

as LiDAR and various cameras are capable or reading environmental input and processing said 

data.  These systems can and have been integrated into a powered wheelchair system and provide 

additional safety for the user. In addition, a number of robotic arms have been made available on 

the market and allow for the user to integrate their own control interfaces. Kinova Robotics’ Jaco 

arm can be configured to different control schemes and then integrated into existing products as 

well.  

In order to facilitate ease of movement for persons with disabilities, there are a range of 

individual requirements that this project will need integrate various control interfaces on a 

powered wheelchair system. By utilizing systems such as Emotiv and EMG sensors, the 

wheelchair system can assist a wide range of individuals with different levels of impairment. 

Additionally, to allow for increase in user independence, the Anna platform has integrated a 
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robotic arm. It was the purpose of this project to allow a user a range of movement and mobility 

to assist their life. 

2. Background 

2.1 Target Users  

This project aims to assist individuals that have little to no movement of arms and some 

movement of facial muscles. There are a number of conditions and diseases that limit the user’s 

movement. Since Anna is a multimodal system, it will be useful to individuals with various 

conditions.  This project is generally targeted toward those that have Locked-in Syndrome. 

Locked-in Syndrome (LIS) is a condition in which a person is conscious and alert but unable to 

communicate or interact with the world due to muscle function loss.  This can be caused by 

injury to the spinal cord, hemorrhage or trauma. The symptoms of this condition are quadriplegia 

and anarthria with preservation of consciousness [1].  LIS can be classified into three categories: 

classic, which is quadriplegia and anarthria with preserved consciousness and vertical eye 

movement; incomplete, which is the same as classic but with remnants of voluntary movement 

other than vertical eye movement; total, total immobility and inability to communicate, with full 

consciousness. Patients can learn with training to communicate with eye movements [1].  

Computers may also facilitate communication for those with LIS when augmentative 

communication devices are available [1]. Several conditions can cause LIS including, but not 

exclusive to the following: muscular dystrophy, multiple sclerosis, cerebral palsy, traumatic 

injury, and amyotrophic lateral sclerosis (ALS). These diseases will be described in the 

following sections.  

2.1.1 Muscular Dystrophy 

Muscular dystrophy (MD) is the term used to refer to a class of approximately 30 genetic 

diseases that manifest themselves by progressive weakness and degeneration of muscles that 

control movement [2].  The prognoses for individuals with MD vary depending on the person 

and the type of disease that they have. The most severe cases of MD will result in muscle 
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weakness, functional disability and loss of the ability to walk [3]. An individual with advanced 

MD may still have some arm control and facial control [2].  

2.1.2 Multiple Sclerosis 

Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system 

of an individual. These effects include: loss of balance, muscle spasms, weakness in limbs, an 

inability to walk, issues with coordination, numbness, facial pain and other nerve symptoms.  

These symptoms can arise as attacks that last for days, weeks or months [4]. After these attacks, 

there can be periods of little to no symptoms.  Currently, there is no cure for MS other than 

attempting to minimize symptoms by maintaining a healthy lifestyle.  

2.1.3 Cerebral Palsy 

Cerebral Palsy permanently affects movement and muscle coordination [5]. It is a 

neurological disorder that arises in infancy or early childhood. The Center for Disease Control 

(CDC) estimates that about an average of 1 in 323 children in the U.S. are diagnosed with 

cerebral palsy [6]. The causes of cerebral palsy are from abnormalities in parts of the brain that 

control muscle movement. Certain cases can be caused by head injury, bacterial meningitis or 

viral encephalitis. Symptoms of cerebral palsy vary on a case by case basis, however, symptoms 

can include the following: variations in muscle tone, stiff muscles, exaggerated reflexes, lack of 

muscle coordination,  tremors, involuntary movements, difficulty with precise movements, 

difficulty eating,  difficulty speaking, trouble walking and or inability to walk [6].  The team 

interviewed a family whose 20 year old son was diagnosed with cerebral palsy and the family 

articulated that their son could not walk, was nonverbal and had trouble with sustained 

movement. His current wheelchair functioned by him holding a pad when he wants move 

forward however, his spasticity would not allow him to hold the pad for a sustained period. He 

has no facial control but he can blink on command to communicate. Furthermore, he can 

communicate through his computer system, DynaVox Vmax, to give auditory feedback by 

choosing a set number of symbols.  
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2.1.4 Traumatic Injury 

Individuals can also lose control of their limbs due to traumatic injury. This can occur if 

the spinal cord is injured. Other major causes are stroke, trauma with nerve injury, poliomyelitis, 

cerebral palsy, peripheral neuropathy, botulism, spina bifida, multiple sclerosis, and Guillain-

Barré syndrome.  Quadriplegia is a term that indicates that part of the spinal cord inside ones 

neck has been injured and can result in a loss in feeling and movement of arms, legs and the 

center of one’s body [7] .  

2.1.5 Amyotrophic Lateral Sclerosis (ALS) 

Amyotrophic Lateral Sclerosis (ALS) is a condition in which affected individuals suffer 

from muscle atrophy and weakness. ALS often begins with muscle twitching and weakness in an 

arm or leg, or sometimes with slurring of speech. Eventually, ALS can affect your ability to 

control the muscles needed to move, speak, eat and breathe. The effects of the disease worsen as 

the disease progresses and over time, individuals will not be able to stand, walk, and use their 

hands or arms [8]. These individuals also have trouble speaking (dysarthria) and swallowing 

(dysphagia) [8]. Other symptoms include exaggerated reflexes [7]. The onset of the disease is 

most common in people between the ages of 40 and 60. After initial diagnosis more than half of 

all patients live up to three more years. Furthermore, about twenty percent of people with ALS 

live five years or more and up to ten percent will survive more than ten years and five percent 

will live 20 years [9]. It is important to consider information such as this when designing the 

future plans for the wheelchair.  
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Figure 1: Person with Amyotrophic Lateral Sclerosis 

2.2 Environment  

Ideally Anna will be used in homes, hospitals and nursing homes. These places are 

currently the most feasible because they are the most wheelchair friendly environments. For 

future research, there will be emphasis on using the wheelchair in all public areas including 

workplaces.  There are other wheelchair systems in development and academia that aim to 

provide the same assistive control that the wheelchair in discussion hopes to address. 

2.3 Other Wheelchairs 

 

Figure 2: Sip and Puff System for Wheelchair Control 

One type of wheelchair currently on the market utilizes the sip-and-puff system (SNP) 

[9]. With this system, a user either draws in air or exhales into a wand or a tube. This method 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://atwiki.assistivetech.net/index.php/Alternative_wheelchair_control&ei=nZ0-VYD8KsTEsAXMm4H4Cg&bvm=bv.91665533,d.b2w&psig=AFQjCNESJ8BmR3Q8L6-WkILx98LFCv-b1w&ust=1430253310865405
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requires individual calibration and will only recognize the commands from that specific user 

once implemented. SNP recognized four different commands, hard sip, soft sip, hard puff and 

soft puff. These act as directional commands with directions such as forwards, backwards, left, 

and right [9]. 

Another type of assistive control is the Eye and Gaze system. This system utilizes a 

camera that is placed in front of the user. By tracking the eyes for blinks and estimating gaze 

direction users are able to navigate the wheelchair as desired. This system can be adapted to any 

wheelchair by placing a camera in the front to capture an image of the user. The gaze direction is 

expressed by the horizontal angle of the gaze and this is derived from the triangle formed by the 

centers of the eyes and the nose. The gaze direction and eye blinking are implemented to for 

direction and timing commands respectively. The direction command correlates to the navigation 

of the movement of Anna and the timing command directs the wheelchair when to move. This 

creates ready, backward and stop inputs for Anna [9].  For some users of this system sustained 

movement of gaze may be an issue.  

A new system is being developed by a team at Georgia Institute of Technology called the 

Tongue Drive System (TDS). This system uses a magnetic tongue piercing and magnetic sensors 

placed on each side of the users head. The user can control the direction of the wheelchair by 

placing their tongue in different positions. The principal investigator of this project, Professor 

Maysam Ghovanloo, has stated that this invention is more useful for quadriplegics than voice 

commands because their voices may be weak [1]. This concept could also be applied to other 

devices and existing technologies as well. 

 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.cinefilos.it/videogames-news/emotiv-epoc-recensione-lheadset-per-controllare-il-pc-con-la-mente-177425&ei=RaE-Ve6eNMPLsAXN8oA4&bvm=bv.91665533,d.b2w&psig=AFQjCNEm_19YQYyUbVnhmkCDSDjuplaNaA&ust=1430254233799005
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Figure 3: The EPOC Emotiv Neural Headset 

Interactive Dynamics is a startup in Argentina that utilizes the EPOC Emotiv Neural 

Headset to control an existing commercially available wheelchair [9]. This Emotiv headset 

recognizes facial expressions, conscious thoughts, and emotions of the user by reading the 

electrical signals generated by the brain and muscles. These are used as inputs to control said 

wheelchair [9]. Interactive dynamics has partnered the Fundación Rosarina de Neuro-

Rehabilitación (the Neuro-Rehabilitation Foundation of Rosario) to further develop their 

product. The company and the foundation first trained the patients to use a combination of 

thoughts, words, and facial tics on the EPOC Emotive neural headset to control video game-style 

software. After the patients were trained on this system they were transferred to the electric 

chairs. The founders of the startup have stated that their device is meant for use within a person’s 

home rather than public use [9].  

The Massachusetts Institute of Technology is developing a voice controlled wheelchair 

with navigation [10]. Their wheelchair would allow a user to tell the wheelchair to go to a 

specific location. This system wheelchair can interpret conversational language that is picked up 

through a standard headset and microphone. Furthermore, the robotic wheelchair learns the 

layout of its native environment (hospital, rehabilitation center, home, etc.) through a narrated, 

guided tour given by the user or the user's caregivers. Thus, the wheelchair can move to any 

previously-named location under the same command. This technology is appropriate for people 

who have lost mobility due to brain injury or the loss of limbs, but who retain speech. The 

wheelchair has since been made available to patients at the Boston Home in Dorchester. The 

limitations of this wheelchair are that as certain degenerative disease progress, individuals voices 

may have weaker voices or lose their voice entirely [10]. Subsequently, many of those with LIS 

may only be able to use it for a short amount of time. 

2.4 User Requirements 

The United States currently has 1.7 million wheelchairs and powered scooters being used 

by its citizens. Of these users, at least 155,000 are in electric wheelchairs [12]. While powered 
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wheelchairs have been a great help to those who cannot push themselves, over 60% of users 

report they cannot perform standard daily activities [11]. 

As stated above, there are a variety of illnesses that restrict mobility to the extent that 

traditional wheelchairs are no longer sufficient. Movement is important for any person trying to 

accomplish daily tasks independently. In addition to mobility, many users also require a robotic 

arm to facilitate interaction with the world around them. This system merits several distinct 

requirements, both explicit and implied.  

This project would have to allow people to navigate in an alternative manner that is 

tailored to their need while seated in a wheelchair. Various control methods would be integrated 

to allow a wider range of useful control. Since some users have lost the ability to use a joystick, 

it is not unexpected that he or she would lose the ability to fully extend their arm. This is the 

reason that this project included a robotic arm. Since the user may be unable to control this arm 

with a joystick, an alternative control method is required. 

The goal is to produce a product that is safe for the user and surrounding people. Previous 

work has suggested the current battery can successfully power the wheelchair and control 

system. The additional power requirement of the robotic arm is negligible [12]. 

3. Navigation Enhancements 

3.1 Previous Work & Requirements 

Anna already had some assistive navigation for each control system. The current system 

would attempt to locate obstacles when moving forward. Anna would automatically move 

around these objects; if Anna detects it is heading for a wall, the system will move to a side and 

move along the wall. Unfortunately, this system had shortcomings.  
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3.1.1 Assistive Navigation with LiDAR 

 
Figure 4: UTM-30LX Hokuyo LiDAR Sensor 

LiDAR (Light Detection and Ranging) is a type of remote sensory technology used to 

measure distances between objects and the base sensor. The sensor reads the surrounding 

environment by bouncing a laser off of a mirror into the surrounding environment and recording 

the delay the light takes to return to its source. This delay is then used to calculate how far away 

objects are. A Hokuyo LiDAR sensor, shown in Figure 4, was mounted on the right arm rest of 

the wheelchair to generate a map of Anna’s surroundings [13]. Previous project groups chose to 

use a LiDAR over other similar sensors due to its high degree of accuracy despite its high cost. 

The sensors enable Anna to detect and avoid obstacles as well as follow walls within indoor 

environments. Unfortunately, the viewing area of the LiDAR sensor is limited by its current 

location. The 270 degree possible viewing range is always obstructed by both the user and Anna. 

In addition to this limitation, the sensor can only view objects within the same plane of the 

sensor (which is parallel to the floor), leaving obstacles located above and below the height of 

the sensor invisible. 

3.1.2 Relocation of LiDAR System 

Previous project work included creating assistive navigation for Anna. Using a LiDAR, 

the wheelchair would locate and avoid obstacles while following a wall. Unfortunately, this 

navigation was hampered by the location of the LiDAR. Since the LiDAR was located on the 
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arm rest of the wheelchair, much of its viewing range was blocked by the person sitting in the 

wheelchair. The arm rest was also subjected to additional movement compared to the wheelchair, 

decreasing the accuracy of the LiDAR’s readings. There were also no sensors in the back of the 

wheelchair, meaning there is a large blind spot, decreasing the accuracy of navigation. Anna also 

failed to detect any obstacle below waist level, meaning it would hit low objects. To improve the 

navigation of the wheelchair, sensors were moved to where they can maximize viewing range 

and obstacle sensing capabilities while still being free from harm. The ideal result was to 

increase the viewing range from 270 degree viewing range to around 360 degrees. 

3.2 Methodology 

As suggested by previous project groups, the semi-autonomous navigation could be 

improved by increasing the view range of the Hokuyo LiDAR sensor. The new location for the 

LiDAR had to meet several project requirements and needs. The new mounting location had to 

ensure the sensor:  

 Had a minimum 180 degree viewing angle in front of the wheelchair 

 Could detect objects within 1cm of the wheelchair foot plate 

 Did not impede wheelchair motion in any way 

 Could detect objects within 0.15m of the ground 

 Cannot change the wheelchair’s current ground clearance (mount closer to the ground 

than foot plate height) 

 Is protected from direct impact on all sides 

The team developed two different design configurations for mounting the LiDAR sensor. 

However, to meet the design requirements, the UTM-30LX Hokuyo LiDAR was replaced by a 

different model (URG-04LX-UG01) because of its smaller profile. Changing LiDAR sensors 

automatically reduced the view range from 30m to 6m but, this trade-off was acceptable due to 

the fact that Anna is primarily used indoors and smaller environments. The specifics of the 

design process can be viewed in Appendix A. Both configurations realized the best location for 

mounting the LiDAR was on the wheelchair’s footplate since it could see objects close to the 

ground without the wheelchair base blocking its view. It being anywhere on the footplate met 
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almost every requirement. The requirement that required the most effort was ensuring the sensor 

would be protected from impact on all sides. The final design for mounting the LiDAR sensor on 

the footplate is shown in Figure 5. 

 
Figure 5: Final Footplate Design 

The final design consisted of embedding the LiDAR into the front of the footplate. This 

enlarged the footplate surface area from the previous footplate design. This was to accommodate 

the protective box that shielded the sensor on all sides. The preferred material for manufacturing 

was Delrin plastic due to its durability and weather-resistant surface. However, the final design 

was not completed in Delrin. WPI’s laser manufacturing policies forbid cutting Delrin plastics 

due to the harmful gases dissipated when the plastic is burned. Instead, the footplate was laser 

cut out of Medium Density Fiberboard (MDF) due to its durability and low cost. The only 

tradeoff with using MDF is its extreme susceptibility to liquids. After fabrication, the new design 

was tested to ensure it met the relocation requirements.  

3.3 Results  

The manufactured product for the LiDAR sensor integration in the wheelchair footplate is 

shown in Figure 6. After installation, a requirement verification test was performed to validate 

that the design requirements were met. This test simply tested that the LiDAR viewing angle, 

minimum distance reading, and accuracy were consistent with its specification document. By 

visual inspection, when measuring the sensor output in Rviz, a visualization tool, the sensor was 

able to maintain its full 240 degree viewing range with ±0.03m accuracy. This outcome was well 

within the URG-04LX-UG01 Hokuyo specification sheet. 
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Figure 6: Completed Footplate with LiDAR 

Figure 7 shows the ROS Rviz output of the laser scan performed by the LiDARs together 

with a cost map. A cost map is a rendering of the environment in which sections, or cells, are 

given values based on the cost of reaching that location. The yellow lines are obstacles and green 

shows the foot print of the wheelchair. This image shows the wheelchair heading toward a corner 

surrounded on three sides.   

 
Figure 7: Anna Cost Map Laser Scan 
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3.4 Discussion 

The new LiDAR location successfully improved Anna’s existing semi-autonomous 

navigation. By placing a LiDAR sensor (URG-04LX-UG01) closer to the ground and at the 

front-center of the wheelchair, Anna was able to sense objects within close proximity of the 

ground over the complete viewing range of the sensor. However, being at the front of the 

wheelchair, Anna was unable to sense obstacles at the sides or rear of the wheelchair. To account 

for this, the original UTM-30LX sensor was mounted underneath the seat at the center point of 

the wheelchair. This is shown in Figure 8. Now, Anna uses two LiDAR sensors for a nearly 360 

degree viewing perimeter. A small portion of the environment is hidden by the arm mount, but 

no navigation faults have been observed. 

 

Figure 8: Final LiDAR Relocation 

The new design also improved the existing footplate design. Anna’s previous footplate 

required many washers that made the assembly process challenging.  Any time the footplate was 

disassembled, it was difficult to reassemble, taking around 15 minutes. The new design 

eliminated all washers from footplate assembly, regardless of the material. 

Although all requirements were met, the LiDAR/footplate assembly had two main 

improvements that should be included to further improve the design. Firstly, the footplate should 

be laser cut out of Delrin plastic instead of MDF. The plastic is more durable and protects against 

liquids unlike the MDF material. Secondly, a tilting mechanism should be added to the LiDAR 

mount. This mechanism would allow the sensor to tilt independently from the footplate. This 
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enables the LiDAR laser scan angle to be adjusted easily without adding spacers under its 

mounting point. 

4. Manipulation System 

4.1 Previous Work & Requirements 

There has been no previous project work to allow the user to manipulate their 

environment. That being said, stakeholders wanted an additional system to allow the user to 

interact with their environment. This would be measured by the ability to allow the user to feed 

themselves, a basic function needed to allow independence.  

4.1.1 Self-Feeding  

Many of the individuals that will use Anna will not have full control of their arms, vastly 

limiting the ways in which they can interact with the world around them. With these controller 

interfaces enabling these patients to navigate, they also need to be able to interact with their 

environment. 

Robotic Arm 

Being able to control a robotic arm is quite helpful for those that have little to no control 

of their arms since it would allow them to interact with their environment and become more self-

sufficient. Ideally, users would be able to perform tasks such as self-feeding. The method that the 

robotic arm is controlled should accommodate to suit the range of movement of the target user. 

For example, some patients may be able to control the arm using a joystick, while others have no 

control of their limbs and need to use either voice commands or even facial expressions to move 

the arm.  

An ideal robotic arm that would be installed on this wheelchair would have the following 

requirements: 

1)    Can lift everyday lightweight objects, such as an apple 

2)    Does not significantly increase the width of the wheelchair so it may still go through 

doorways  
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3)    Same weatherproof qualities as the wheelchair 

4)    Lightweight and energy efficient 

With these requirements, the user would successfully be able to better interact with the 

environment and perform tasks such as self-feeding.  

The JACO Robotic Arm designed by Kinova Robotics, as shown in Figure 2, has been 

selected as the arm for this project. This arm was selected because it was readily available and 

met the project requirements. The arm still needed to be integrated into the existing wheelchair 

system. 

 
Figure 9: Kinova Robotics Jaco Robot Arm [14] 

    This arm has many critical features that make it an ideal choice for this project, as shown 

in Table 1.  

Table 1: Jaco Robotic Arm features [14] 

Feature Description 

Lightweight Low weight of 5.7 kg 

3 flexible fingers  

Payload of 1.5 kg  

Weatherproof Resistant to the same condition as the power 

wheelchair 

Low energy consumption Consumes about the same energy as a light 

bulb 

Reach of 90 cm Long enough reach to pick up objects on a 

table 

JACO can be integrated into almost all the models and power configurations for 

wheelchair control. It is compatible with Windows and Ubuntu, and easily programmable in 
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C++, C#, or using their ROS driver. For this project, the ROS driver was used in conjunction 

with the existing system architecture. Figure 10 shows the Jaco arm on a standard wheelchair. 

 
Figure 10: Jaco Robot Arm on Wheelchair [12] 

The arm for this project was integrated in a location similar to the one shown in Figure 

10. This arm’s base location will be determined by attempting maximize the arm’s workspace 

while making sure the wheelchair is still capable of moving through doors. At first, the arm will 

be controlled by the remote control provided, in order for testing to be done. Once this 

installation is complete and it is functioning properly other methods of control (i.e. voice and 

emotive) will be explored.  

Object Detection with the Kinect or a Similar Camera 

In order for the robotic arm to be able to detect and pick up objects autonomously, a 3D 

sensor is needed. Several options were weighed.  Stereo cameras are light and can map in 3D, 

but require a relatively high amount of computing power. Another option is the Kinect for 

Windows v2 Sensor. This is a device with depth sensing technology, built-in color camera, an 

infrared (IR) emitter, and a microphone array. It can sense the location and movement of 

individual humans as well as their voices; it can track up to 6 people and 25 limbs per person. 

The overall price of the sensor is $200. This is significantly less that the price of the LiDAR 
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sensors on the wheelchair, which range from $1,000 - $5,000. In addition to the release of the 

sensor, Microsoft released a software development kit (SDK) that provides developers with 

drivers, tools, APIs, device interfaces, and code samples to facilitate the development of Kinect-

enabled applications for commercial deployment. Developers can build applications with C++, 

C#, VB.Net, Cx, or JavaScript [15]. 

There have been various projects completed that utilize the Kinect as a 3D sensor to 

recognize objects and detect the distance between the sensor and the object. At Cornell 

University, a team completed a project titled “3D Object Detection with Kinect” [16]. The main 

goal of their project was to have a robot be able to take the name of the object as an input, scan 

its surroundings, and move to the most likely matching object that it finds. There were five major 

components to their project: gather RGB-D images of the environment and stitch them together 

into a 3D map; implement a 3D image segmentation algorithm building on well-known 2D 

image segmentation algorithms: create a program to label and extract feature values from the 

segmented objects; choose a set of features, baselines, and a machine learning model to use; and, 

implement the automated planning and control for the robot.  

Another project that used the Kinect for 3D object detection was “A Category-Level 3-D 

Object Data Set: Putting the Kinect to Work” [17]. In this project, they compiled a large-scale 

dataset of images taken in domestic and office settings with the Kinect sensor. This dataset is 

intended for evaluating approaches to category-level object recognition and localization. There 

are over 50 different object classes that are represented with large variability in the appearance of 

object class instances.  

4.2 Methodology 

To achieve the project goal of to enable a user to engage their environment through 

object manipulation, a robotic arm-system was integrated with Anna. The arm-system consisted 

of the Kinova Robotics 6 Degree-Of-Freedom (DOF) Jaco robotic arm and an ASUS XTION 

PRO Live RGB-D camera. Together, the system allows the user to manually or autonomously 

retrieve objects within reach of the arm. Integrating the arm-system with Anna created new 

requirements for the existing wheelchair framework. The primary requirement being the new 
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system could not interference with the current footprint or performance capabilities of the 

wheelchair. 

4.2.1 Mounting the Arm-System 

The two devices, the actual arm and its control joystick, needed to be mounted directly to 

the frame of the wheelchair. However, the width of the mount needed to be consider since the 

wheelchair must to be able to pass through standard doorways. The camera was the simplest to 

mount because Anna already had a custom “Back-Rack” designed to support the addition of 

sensory equipment, such as this camera. New holes were drilled to accommodate this specific 

camera on the “Back-Rack” platforms. This gave multiple locations for mounting the camera 

while searching for the optimal mount point. Integrating the Jaco arm was much more involved, 

as there was no pre-existing wheelchair mount. Also, the wheelchair had to be reconfigured to 

provide a stable 24V power source for arm.  

 
Figure 11: Final Arm Mount 

Figure 11 shows the arm mount that was designed for the wheelchair. This mount would 

be fixed to the wheelchair by bolting it to the frame. A 24V DC-DC power converter was added 

to the wheelchair power unit to supply power the arm. In addition to adding the converter, the 

power unit was retrofitted to accommodate additional power ports for 5V and 12V in addition to 

the 24V port. The wheelchair frame was also retrofitted to make the power unit immovable after 
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being installed in Anna, as the existing location did not restrict the unit from moving while the 

wheelchair was in motion. 

4.2.2 Arm Trajectory Planning 

The goal of adding the arm was to allow the user with autonomous self-feeding 

capabilities. This required a working model of the environment to ensure that the arm would not 

collide with another object, a camera capable of locating objects and relaying that information to 

the arm as well as a program that allows these components to interact. The model created for this 

project can be seen in Figure 12. The model, shown in Rviz, is intractable using the panels on the 

left. A start state and goal state can be specified as well as the planning parameters (planning 

time, attempts and allowances for re-planning) can be specified. The path between the start and 

goal can be calculated and executed in simulation. 

 
Figure 12: Path Planning in ROS Rviz 

To allow the program to safely avoid hitting the human sitting in the chair, a human will 

need to modelled and added to the environment. This can be accomplished through changing the 

scene in which the planning is taking place. 

The current algorithm for path planning begins with a known arm configuration based on 

the joint positions reported by the arm’s sensors. In most cases, this was the arm’s standard 
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‘home position’ shown in Figure 12. Once the program is activated, the camera would return a 

point at which the object rested. A position above the object was then set as the goal point for the 

arm’s end effector with a set orientation. This orientation was chosen as a reliable approach for 

picking up objects. 

4.2.3 Vision System 

The ASUS XTION PRO Live RGB-D (Figure 13) was chosen as the camera for the arm-

system. This camera was chosen over the competitors such as the Kinect or CREATIVE 

SENZ3D camera because it has the optimal distance range (0.8m to 3.5m compared with 0.15 – 

1m) as well as a better degree of accuracy. Additionally, the Robot Autonomy and Interactive 

Learning Laboratory (RAIL Lab) at WPI had created an extensive image segmentation library 

for a similar arm-system using the same arm and camera. Using the pre-existing library available 

on GitHub, it was possible to calculate the centroid of objects placed on a flat surface and 

determine the object’s location centroid with respect to the base of the Jaco arm. The camera is 

shown in Figure 13. 

 
Figure 13: ASUS XTION PRO Live 

4.3 Results 

Overall, the manipulation system was a success. The camera was capable of recognizing 

the location of several objects on a table. The arm could navigate to this position while avoiding 

obstacles and bring the object to the user’s mouth. 

4.3.1 Mounting the Arm-System 

As shown in Figure 14, the camera was mounted high enough to see the table without the 

user blocking its view. The height of the mount is adjustable and the camera can change its 

angle. 
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Figure 14: Vision System Mounted on Back-Rack 

The camera was secured on the highest platform on the wheelchair “Back-Rack”. The 

final arm mount was constructed using 1.5” Aluminum T-Slot and 3” 8M screws. The mount 

configuration is shown in Figure 14. The final power unit (Figure 15) supports 16 power ports 

(nine 5V, six 12V, one 24V). 

 

 
Figure 15: Final Power Unit Ports 

4.3.2 Arm Trajectory Planning 

The program was able to repeatedly path plan to a known point in Cartesian space. The 

program would ensure that the arm would avoid known obstacles, such as the table and 

wheelchair. The orientation of the end-effector (hand) was not always exact, but the difference 

was negligible. The program had issues calculating joint positions for the arm given end-effector 
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position and orientation. It would take over 20 seconds a majority of the time to calculate this 

goal unless the orientation tolerances were set to 1 radian (~60 degrees). This was addressed by 

using a separate program to approximate joint values before path planning. This program was 

much more successful and would usually take less than half a second to calculate the joint 

positions. Once the joint values were calculated, the various poses needed to reach the goal could 

be found. 

In Figure 16, the arm is navigating from the ‘home position’ to a position pointing 

straight up. A trajectory is then simplified, published, and executed by the physical arm. All of 

the path locations along the trajectory are shown in Figure 16. 

 
Figure 16: Joint Trajectory Locations in ROS Rviz 

Various issues with Kinova’s API had to be worked around. For example, when the 

finger joints would move, the arm would ‘sag’, moving downward several centimeters. Finger 

control was also lost at certain locations, regardless of environmental factors. 

4.3.3 Vision System 

The camera was mounted on a platform that extended 12” forward from the “Back-

Rack”. This distance kept the Anna user’s head below the view of the camera. 

Figure 17 shows the Point Cloud output of the camera facing a table top with objects on 

the surface. This Rviz output screenshot shows the regions of the image that could not be 
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processed. The camera cannot sense glass or reflective surfaces. By comparing the camera view 

and the Point Cloud, the windows, Jaco arm, and part of the table surface do not appear in the 

output. Figure 18 shows how the output improves by changing the surface of the table. With the 

table cloth, more of the objects are present as well as the entire table surface. The Jaco arm 

surface is still not visible as the surface is reflective.  

 
Figure 17: Point Cloud Output on Reflective Surface 

 

 
Figure 18: Point Cloud Output on Non Reflective Surface 

Figure 19 shows the segmented output data from the camera. Using the RAIL image 

segmentation software package, the point clouds for all five objects are published as well as the 

3D Cartesian coordinates of the centroid of each object. 
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Figure 19: Segmented Objects on Horizontal Surface 

4.4 Discussion 

The system worked as specified and was able to repeatedly pick up objects without 

failure. The camera was accurate and reliable enough to send useful information to the arm and 

the arm was able to repeatedly navigate to poses in its workspace. 

4.4.1 Mounting the Arm-System 

The arm-camera system was successfully mounted and capable of supporting both the 

arm and the camera. The arm mount securely held the Jaco arm and its location enabled the arm 

to rest on the arm rest when not in use. The “Back-Rack” structure fully supported the camera 

allowing it to maintain its pose with respect to the wheelchair base. However, because of the 

wheelchair’s suspension system, when a user sits in the chair, it caused the seat moved 

downward from the rest position. Since the camera is on the “Back-Rack”, mounted directly to 

the seat, the camera position changes. This position varied depending upon where the user is 

sitting in the chair, thus making the static transformation between the camera and wheelchair 

base variable.  

The power unit effectively serves as a custom power strip for powering devices on Anna. 

Any future work on this unit should involve a complete redesign. Currently, there is very limited 

space where the unit is mounted. To make any adjustments the entire unit must be uninstalled 

from the wheelchair base. This could be improved by increasing the size of the plates that hold 

the unit together. 
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4.4.2 Arm Trajectory Planning 

The Jaco arm worked successfully in multiple trials and enabled self-feeding capabilities. 

The arm is able to pick up round solid foods such as apples or oranges. Further work could be 

done to allow more versatile self-feeding capability. The Jaco controller includes a mode that 

allows the user to pick up and object such as an open cup and maneuver it so it does not spill. 

Future work should include utilizing this mode for autonomous movement. The program does 

not currently re-plan its path if multiple objects are detected. This issue will need to be addressed 

in the future. 

Figure 20 shows the arm moving to a location to the right of the chair. The orange square 

sitting in the chair is there to represent the dimensions of a human being including error. The 

environment was changed to include a table and a wall to the right. 

 

Figure 20: Robot Model during movement 

4.4.3 Vision System 

After integrating the RAIL laboratory’s image segmentation software with Anna, the 

camera performed as described. The ASUS camera successfully segmented objects from 

horizontal surfaces. However, the camera IR depth technology was not capable of obtaining data 
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on reflective materials/surfaces. Image segmentation processes were improved by adding a table 

cloth to the surface. Additionally, it was challenging to compute and accurately approximate the 

position of objects due to the varying position of the camera. The measured static transformation 

between the camera and wheelchair base could unpredictably vary because the seat moved due to 

the suspension. However, for grasping spherical objects, a static transformation between the 

camera and the wheelchair base was assumed. This proved to be accurate enough for the objects 

used during testing (various sized balls).  

Future work for the vision system would include object recognition and environment 

mapping. Object recognition would enable the arm to grasp more than just spherical objects. If 

the camera was able to recognize the target, it could store the desired grasping pose for retrieving 

the object. As well as selecting a specific object amongst many objects. 

5. User Interface Design and Analysis 

5.1 Previous Work & Requirements 

The semi-autonomous wheelchair has four different user interfaces for controlling 

navigation: standard Xbox controller/keyboard, EPOC Emotiv control, Voice control, and 

joystick interface. 

5.1.1 Previous Work 

The Xbox controller and standard computer keyboard are used during development as the 

“control” interface for directing the wheelchair. The EPOC Emotiv control is a commercialized 

product that uses electromyography (EMG) to capture movement in the face and brain activity. 

Three control methods (Expressiv, Cognitiv, and Affectiv) were tested using the Emotiv to 

evaluate the user navigation ability. Unfortunately, none of these control schemes were 

implemented well with Expressiv reporting less than 50% accuracy during control, cognitive 

with around 35% accuracy following commands, and affective was not implemented at all due to 

poor readings. The four most successfully recognized expressions were in descending order: left 

smirk, right smirk, raise brow, and furrow brow. Voice control was implemented using about 

fifty different preprogrammed voice commands for controlling the wheelchair through a 
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microphone. The joystick interface was designed to control the original wheelchair joystick 

without altering the original construction. The prototyped joystick model suffered many 

complications and was not fully integrated into the present wheelchair design. 

5.1.2 Project Goals 

There are a various number of control interfaces to be implemented in this project. This is 

a critical aspect of designing Anna considering that it is specifically being targeted to those with 

a lack of upper mobility. Since this wheelchair system will be meant for a range of people with 

different levels of mobility it will need to be multi-modal. The team has decided upon 

implementing two distinct control schemes. The first will be utilizing inputs from the Emotiv 

headset. The previous project also utilized the Emotiv system; however, insufficient testing was 

conducted. Further investigation must be done upon the Expressiv and Affectiv suites.  The 

second system will be creating an EMG sensor to be placed on the arm. 

Emotiv Headset  

The Emotiv headset will be used to monitor facial expression and conscious thoughts. 

These will serve as inputs to the wheelchair navigation. A current issue is that the previous 

project did not collect sufficient data to evaluate the full capabilities the Emotiv headset has. 

There were a very limited number of trials conducted and there is no background data 

concerning each subject. In addition the previous team did not investigate the full capability of 

the Emotiv in terms of using it in the Expressiv and Cognitiv mode. 

The stakeholders for the Emotiv control interface are the wheelchair operators that are 

incapacitated from the neck down. These users would be able to control Anna using minor facial 

movements and conscious thoughts.  

One goal of this project is to improve the accuracy and robustness of the Emotiv control 

system in the assistive wheelchair. Currently, the accuracy for inputs from the Expressiv suite is 

50 percentile and the accuracy for the inputs from the Cognitiv suite is 35 percentile. At the 

culmination of this project it is hoped that both the accuracies for these systems will be at 75 

percentile. This will be completed by investigating previous trials done with the Emotiv and 

conducting trials that study each available command on the device.  
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An additional goal is to conduct experimental trials of the Emotiv’s Expressiv and 

Cognitiv modes with at least 25 subjects in order to create a probabilistic model of the system. 

These trials will include documentation of extensive information about each subject. This 

information will include but not be exclusive to hair length and gender. These subjects will 

perform controlled tasks and the results will be recorded. Then cross comparison will be utilized 

in order to determine if there are any correlations between a subjects bio-information to the 

results of the experiment. Furthermore, trials will be performed such that a probabilistic model 

for each input command can be produced. 

The purpose of integrating the Emotiv Headset into Anna’s system is to allow for a 

navigation controller that requires no movement of the arms. This aligns with the goals of the 

project which are to create an assistive wheelchair for individuals who have limited upper body 

mobility. For the Emotiv Headset to be successfully integrated into the wheelchair, there are a 

number of requirements and needs the system must fulfill. The most important need is that the 

user can actually control wheelchair navigation via commands from the Emotiv headset. Based 

on prior research, it has been deemed a requirement that the inputs from the Emotiv headset 

produce the desired output at least 75% of the time for the system to be considered successful.  

The Emotiv headset was used to monitor facial expression and conscious thoughts. These 

served as inputs to the wheelchair navigation. An issue that arose was that the previous project 

did not collect sufficient data to evaluate the full capabilities the Emotiv headset has. There were 

a very limited number of trials conducted and there is no background data concerning each 

subject. In addition the previous team did not investigate the full capability of the Emotiv in 

terms of using it in the Expressiv and Cognitiv mode. 
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Table 2: Needs and Requirements of Emotiv Control 

ID Need Description Cost Source Priority 

&emot 
Emotive 

Control 

The user will be able to navigate the 

wheelchair using the EPOC Emotiv 

Interface 

High 

$user, $nsf, 

$home, $care, 

$pw, $comp 

5 

&cog 
Cognitiv 

Control 

The inputs from the cognitiv system 

will produce the desired cognitiv 

commands 

High 

$user, $nsf, 

$home, $care, 

$pw, $comp 

5 

&exp 
Expressiv 

Control 

The inputs from expressiv system 

will produce the desired expressiv 

commands 

High 

$user, $nsf, 

$home, $care, 

$pw, $comp 

5 

&modul Modularity 

It will be possible to provide inputs 

from the various individual 

components of the wheelchair 

interface while using the Emotiv. 

High 
$user, $nsf, 

$comp 
4 

&rel Reliability 
The inputs from each interface will 

provide the desired output 
High $user, $nsf, 4 

%safeemo Safety Emotiv input shall be safe for the 

user to use 

High $user, $home, 

$care, $comp 
4 

%emoacc Accuracy The emotiv controller system will 

produce the accurate output at least 

75% of the time 

Low $user, $home, 

$care, $comp 2 

%indep Modularity The inputs from Emotiv will only 

produce the desired navigation 

command and will not affect other 

aspects of the wheelchair 

High $user, $nsf, 

$comp 

,$home, $care 
4 

 

The performance of this system is dependent upon how accurate the input commands are. 

There are a multitude of command options from the Affective, Cognitiv and Expressiv Suites. 

However, Anna’s pilot will use a limited number of set input commands that are set. In order for 

the principal investigators of this project to implement the most successful commands extensive 

testing must be completed to determine which commands have the highest success rate. 

Subsequently, performance tests were designed with the intention of testing approximately 25 

human subjects. The subjects were recruited via word of mouth by the principal investigators and 

advertising within the Electrical and Computer Engineering Department. Figure 21 shows the 

decision process used when determining whether to integrate these systems with Anna.  

https://docs.google.com/document/d/1dDmP28voBIDdgspA9jW7E_wT7l_W0Ym6TGwAfLS80wg/edit?usp=drive_web#heading=h.gjdgxs
https://docs.google.com/document/d/1dDmP28voBIDdgspA9jW7E_wT7l_W0Ym6TGwAfLS80wg/edit?usp=drive_web#heading=h.gjdgxs
https://docs.google.com/document/d/1dDmP28voBIDdgspA9jW7E_wT7l_W0Ym6TGwAfLS80wg/edit?usp=drive_web#heading=h.3znysh7
https://docs.google.com/document/d/1dDmP28voBIDdgspA9jW7E_wT7l_W0Ym6TGwAfLS80wg/edit?usp=drive_web#heading=h.3znysh7
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Figure 21: Decision Diagram for Emotiv System 

 

EMG Sensor 

Another goal for this project is to be able create a device that incorporates a muscle 

signals to drive the wheelchair. There is currently project within the RIVeR lab that involves 

creating a modular EMG board that will be able to detect muscle signals and transfer the signals 

into a command. The proposed idea is to integrate EMG with wheelchair drive control is through 

detecting the muscle signals when the user makes a fist or moves certain fingers. The wheelchair 

base will be calibrated to the user that will determine what voltage threshold will determine that 

the user did flex a particular muscle.    

To be able to accomplish this goal, the modular EMG board would have to be transferred 

into a prototype circuit board (PCB). From there, the EMG PCB with be tested to determine the 

different voltage thresholds for different muscle contractions and then continue more testing 



 

 

 

 

31 

 

 

 

once the board is integrate with Anna.  The goal to be able to have the user flex an arm muscle 

and have the wheelchair react by either moving forward, backward, right, or left.  

The purpose of the EMG board was to be able to detect muscle tissue signals on a limb 

and amplify the signal to determine whether or not the muscle was flexed.  The final goal for this 

component of the project is to control wheelchair navigation and Jaco arm movement via small 

hand movements. Currently board can measure up to two muscles and outputs 2 voltage signals. 

The EMG input system is comprised of the EMG board and three electrodes for each muscle 

including pads. The voltage signals are measured using an oscilloscope.  In order for the system 

to be successful different inputs must different inputs must amplify the distinct signals which can 

be measured using the oscilloscope. The design for this EMG board must meet the following 

requirements: must be the size of a Tiva Board and each testing point must be placed before each 

stage of the amplifier circuit.   

The most important need is that the user can actually control wheelchair navigation via 

commands from the EMG Board. Another need is that the system must be modular. This means 

that each system of the board can be changed or expanded to suit the user’s needs. This also 

means that the board will allow multiple connects and shield expandability for multiple electrode 

connections. Furthermore, this board must be able to connect with other shield boards and it 

must not be bigger than the size of the Tiva board in length and width. Other basic requirements 

include designing the board with a voltage input of 3.3V, have inputs for the electrodes and 

output a voltage signal. 
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Table 3: Needs of the EMG control system 

 

IID 
Requirement Description Cost Source Priority 

%tes Testing 

The board should allow in 

board testing between each 

stage 

High $user 5 

%mod Modularity 

The board shall be configured 

to allow multiple shield 

boards to be added 

High $user 4 

%rel reliability 

The board should be able to 

continuously recognize 

muscle signals 

Low $user 5 

%acc Accuracy 

The board shall be able to 

detect  muscle signals from 

just moving a finger 

High $user 5 

%saf Safety 

The board shall not break 

down or cause the user 

electric shock 

Low $user 4 

  

5.2 Methodology 

The Emotiv system was tested and optimized for Anna’s users. The code was validated 

and trails were conducted. The EMG board was tested and improved through several 

generations. 

5.2.1 Emotiv Testing Procedure 

The purpose of this study was to determine which facial and cognitive commands for the 

Emotiv headset have the highest rates of success in terms of controlling Anna’s motion. These 

trials aim to assess the success of a various inputs on various users. Then the data was analyzed 

utilizing cross-correlation. This was accomplished by gathering information about a subject’s 

pigmentation and fatigue. Then the subjects was given a training session on how to use the 

EPOC Emotiv headset. Then the subjects will attempt to control Anna using given commands. 

https://docs.google.com/document/d/1Begz0w29XJYUU9g0PvIgKhEnHlChcqcZF0FeoO6gb_A/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1Begz0w29XJYUU9g0PvIgKhEnHlChcqcZF0FeoO6gb_A/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1Begz0w29XJYUU9g0PvIgKhEnHlChcqcZF0FeoO6gb_A/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1Begz0w29XJYUU9g0PvIgKhEnHlChcqcZF0FeoO6gb_A/edit#heading=h.gjdgxs
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Each subject’s success with accomplishing each command was recorded. Then the data was 

analyzed. 

There is a specific procedure for conducting the Emotiv trials. First the Emotiv headset 

must be fully charged. Furthermore, to ensure good contact and a controlled experiment each 

electrode node will receive three drops of saline before being placed in the headset. The headset 

will then be turned on. The USB will then be placed into the computer with the Emotiv SDK 

application such that the headset can connect to the SDK. Upon the first screen the investigator 

can check the quality of the connection. 

The subject will then arrive and they will complete the required preliminary information 

sheet. The subject will then be debriefed on the entire procedure and asked if they have any 

questions or concerns. The subject was given instructions on how to use the Emotiv headset and 

then they will place the headset on their head. The principal investigators will check the Emotiv 

headset placement and the apparent connection of the Emotiv nodes to the SDK and adjust the 

headset accordingly. Once the connection is optimal the connection state of each node was 

recorded. 

 

Figure 22: Emotiv Facial Expression Trial 

The subjects will then be explained to that there are two testing suites: Cognitiv and 

Expressiv. The subject will then complete training on each suite within the SDK. For the 

Cognitiv suite training consists of virtually moving an object through conscious thoughts. The 

Expressiv suite consists of a blue avatar mimicking the detected facial movements that the 

headset picks up from the user. Figure 22 shows an individual, a project member, doing the 
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Expressiv training. Once the subject has completed all trainings then the subject will use a 

Qualtrics survey to fill out their initial conditions. 

The subject will then begin the testing program that was created by the principal 

investigators. The testing program consists of a series of prompts asking for the name of the 

subject, length of each trial, and length of buffer time between each trial. The user will then 

begin the Expressiv trial. The Expressiv trial consists of the program giving prompts to complete 

each of the 12 Expressiv commands in randomized order. The subject will have a 3 second 

window to complete the command and then a three second buffer time between each command. 

There was no notification if the subject has done the command correctly to ensure a blind study. 

Furthermore, once all 12 commands have been exhausted the subject will repeat this 9 more 

times to create 10 total trials for Expressiv. Then the subject was given 2 minutes of rest. 

The subject will then complete the Cognitiv Suite. There are 12 total Cognitiv 

commands. However, since the Emotiv system can only retain user profiles for 4 active Cognitiv 

commands at a given time the trials for Cognitiv was presented in 3 groups of 4 commands. This 

means that the subject is given prompts for the first 4 specific commands in randomized order 

and repeats this 9 more times. The subject will then move to the next group of Cognitiv 

commands and complete the prompts until there are 10 trials for each of the 3 Cognitiv groups. 

The student investigators will thank the subject for participating in the study and cautiously 

remove the Emotiv Headset. The subject will receive a follow up email within 24 hours of the 

test to ask if there are any concerns or questions. 

While the Expressiv and Cognitiv testing programs are being run the result from each test 

is output to an external csv file. This file contains the command that was called, which time the 

command was called, what other extraneous command signals were picked up and if the correct 

command was detected. Furthermore, the csv file displays the strength of each of the signals 

called. All of this information was logged into a Qualtrics survey that is specific to each trial 

subject. The principal investigators will then perform statistical analysis and cross correlation. 

5.2.2 Testing the Emotiv ROS Driver Code 

Once the modifications to the existing Emotiv Expressiv ROS Driver code have been 

made, the new implementation needs to be tested to determine its accuracy and efficiency, and 
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compared to the existing driver to have a head-head comparison. Two different tests was 

conducted to quantify how accurate and effective the new modifications are. 

Accuracy Trials 

 The first set of trials that was conducted was similar to the general Emotiv trials 

that were done for both the Expressiv and Cognitiv commands. The same general setup 

procedure for the headset and computer was taken. The student investigator will load the trial 

program that utilizes the modifications made in the drive code. Once the subject has arrived, 

he/she was told about the testing procedure, how to use the headset, and asked to fill out the 

waiver.  

The main difference with this trial program and the previous ones is that now instead of 

being prompted to perform certain expressions, the subject was prompted to perform a certain 

action (i.e. “Move Forward”. Once the user has the headset on, the student investigator will 

explain to the subject how to trigger each of the six different commands: move forward, move 

backward, stop, rotate left, rotate right, and pause/activate the wheelchair base. When the subject 

feels comfortable in performing each of these actions and feels like their expressions are 

accurately being portrayed on the SDK, the investigator can begin the program. Depending on 

which one the subject found to be more accurately portrayed on the SDK, they can choose during 

the program start up to use ‘Look Left’ and ‘Look Right’ for the rotation commands, or use 

‘Smirk Left’ and ‘Smirk Right’ The subject was asked to run through 10 rounds of the trials.  

Once completed, the student investigator will load the trial program that tests the pre-

existing Emotiv ROS driver code. This code has different methods in how it performs the 

actions, so the investigator will explain to the student how to accurately pick up each of these 

commands. When the subject feels comfortable performing each of the required expressions to 

perform these commands, the trials began. The subject was asked to run through another 10 

rounds of the trials. At any time after a round is completed for both set of trials, the subject can 

take a break. 

Similar to the previous trials, the results are being outputted to an external CSV file while 

the trial is running. This file contains the action that was called, which time the action was called, 

what other extraneous actions were picked up and if the correct action was detected. There was a 
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total of five subjects who will conduct the trials. The principal investigators will then perform 

statistical analysis to determine how accurately each action was registered. With this, the 

investigators was able to make a head-head comparison between the two sets of code and 

determine how much more accurately one program will pick up the commands performed by the 

user.  

Time Trials 

The second set of trials will measure how efficiently a user can navigate around its 

surroundings. There was an environment that the user was asked to navigate around. The team 

will set up an obstacle course with tables that will force the subject to use the various commands 

of controlling Anna to successfully navigate around the course.  

Since these trials was conducted after the accuracy trials, the user will already be familiar 

with the headset and have trained their expressions. The student investigator will explain the 

course to the subject, and also show the subject how to use the emergency stop located on the 

wheelchair in case anything goes wrong. Once the subject is ready, the investigator will start the 

program and start timing the user. The subject will need to first toggle to active mode and then 

navigate the obstacles. Once the subject is at the finish line, they will need to toggle back to 

pause mode and only then will the investigator stop the clock. This trial was conducted a total of 

three times, and then the investigator will switch to the other program. Before starting the trial 

for this program, the investigator needs to make sure that the connection of the headset remained 

the same. Then, the investigator will explain how to issue each command with this program and 

then the user will navigate the course three more times while being timed. 

5.2.3 EMG Testing Procedure 

The purpose of this study is to determine which muscle movements for the EMG to have 

the highest rates of success in terms of controlling Anna’s movement. These trials aim to assess 

the success of a various inputs on various users and determine the minimum voltage threshold in 

detecting a muscle flexing. Then the data was analyzed utilizing basic statistical analysis. This 

was accomplished by analyzing the output signals from various users of different arm muscle 

movements. At this time human subjects will comprise of members of the team. The team will 
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then determine which movements constitute optimal output for the majority of users then 

implement these commands to Anna. 

When testing the board all components must be in use. This test requires a voltage 

source, oscilloscope, EMG board, 3 electrodes, electrode pads and a human subject.  To begin 

the test the board must have a power source and the electrodes must be attached. Attach the 

oscilloscope to board outputs. The voltage range should roughly be 0 to 3.3V and the time scale 

should be approximately 0.5 seconds. Then attach the electrode pad to a muscle. The Red pad 

should be at the beginning of the muscle and the black pad should be at the end of the muscle. 

The white pad is the reference. Then the power should be turned on and ideally the oscilloscope 

was outputting a flat signal. The subject will flex the muscle and a voltage peak will appear.  

 
Figure 23: Decision Diagram for the EMG board design 

 

5.3 Results 

The Emotiv commands, after being optimized had 85% accuracy with a 4% false 

detection rate. The remaining 11% was no detection when a command was being issued. The 
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EMG did not meet the initial goal of integration, but the design was improved over several 

variations. 

5.3.1 Emotiv 

This section outlines the results and analysis of using Expressiv and Cognitiv control 

with the Emotiv headset. The Expressiv commands consist of different facial movements that 

manifest itself in EMG signals. In contrast Cognitiv commands consist of different conscious 

thoughts that manifest itself as EEG signals.  

Overall Results from Expressiv 

There are three types of commands that the Expressiv Mode monitors which include the 

following: Upper Face Movement Commands, Lower Face Movement, and Binary Eye 

Commands. The Upper Face Movement Commands include Furrow and Eyebrow (raise 

eyebrow). The Lower Face Movements consist of Clench, Smile, Laugh, Left Smirk and Right 

Smirk. The Binary Eye Commands are: Blink, WinkLeft, WinkRight, LookLeft and LookRight. 

They are called such because unlike the other commands which exhibit a “strength value” from 0 

to 1 these commands only output as zeros or ones.  

For this experiment, 29 subjects with the Upper Face Movement Commands and the 

Lower Face Movement Commands were tested. 10 subjects were tested for the Binary Eye 

Commands. As stated in the previous section, subject health characteristic data was taken as 

well. The following table, Table 4, displays the percent of the window active when the command 

is requested. For the Binary Eye Commands subjects were asked to rapidly complete a given 

command at two designated intervals within a 4.9 second window. For the Upper Face 

Movement Commands and the Lower Face Movement Commands, the subjects were asked to 

complete the command by sustaining a movement for as long as they could for the 2.9 second 

window given. Therefore, the numbers represent a percentage of the respective window that the 

command was correctly detected. For the Binary Eye Commands the actual value in seconds the 

window was active with the correct command is the given number multiplied by 4.9 seconds. For 

all other commands, the actual value in seconds the window was active with the correct 

command is the given number multiplied by 2.9 seconds. These numbers were calculated from 

the average amount of durations from 10 subjects. It is evident that if a command was requested 
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it was typically detected by the Emotiv Headset once the user underwent training. It is important 

to consider when observing these values that when the Binary Eye Values were completed it was 

requested that the subjects complete these commands rapidly. It was show in the data that the 

Binary Eye duration values are much less than the other command duration values.  

Table 4: Percent of Each Window Active for Expressiv Testing 

Command 

Percent of Window 

Active 

Blink 0.0808 

WinkLeft 0.0195 

WinkRight 0.0317 

LookLeft 0.0507 

LookRight 0.0575 

Eyebrow 0.2687 

Furrow 0.3567 

Smile 0.1593 

Clench 0.4014 

SmirkLeft 0.2528 

SmirkRight 0.2251 

Laugh 0.2546 

 

Table 4 displays the results on the various accuracies of eye movements. The first column 

indicates which command each subject was requested to perform or as it has been termed was 

“Expected Commands.” The other columns indicate which commands were actually detected, as 

such have been termed “Actual Results.” One can read the table by looking at the first column to 

see which command was the Expected Command and then move across that specific row to see 

what was actually detected. It is important to specify how these numbers were derived.  

For the Binary Eye Commands each user was prompted during the requested command to 

do the eye command twice during two specific intervals. Since there were 10 trials it is expected 

each user to do the specified Binary Eye Command at total of 20 times. Since there were two 

separate windows as long as the command was detected at least once within a window it was 

counted as one instance. If the command was not detected at all in a window it was counted as a 

zero. Thus, it could be concluded if the eye command was intentional and detected. Thus to 

calculate the eye commands, simply used the following equation: 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =
𝐸𝑦𝑒𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
 

Equation 1: Average Detection Rate for Binary Eye Commands 

Table 5: Actual Commands Captured for Binary Eye Commands 

Expected Blink WinkLeft WinkRight LookLeft LookRight 

Blink 0.6707 0.0593 0.0936 0.02 0.005 

WinkLeft 0.2143 0.1664 0.0121 0.0436 0.0593 

WinkRight 0.1164 0.0321 0.2471 0.04 0.0571 

LookLeft 0.15 0.005 0.1421 0.2686 0.3121 

LookRight 0.0957 0.035 0.105 0.2393 0.42 

Eyebrow 0.165 0.0471 0.0814 0.0793 0.06 

Furrow 0.06 0.02 0.1071 0.035 0.0943 

Smile 0.3786 0.025 0.04 0.02 0.02 

Clench 0.1221 0.055 0.035 0.04 0.015 

SmirkLeft 0.2443 0 0.01 0.03 0.02 

SmirkRight 0.15 0.025 0.0321 0 0 

Laugh 0.4486 0.1193 0.1021 0.0543 0.0436 

Neutral 0.2107 0.0221 0.0121 0 0 

 

For the Upper Face Movement Commands and Lower Face Movement Commands a 

different approach was used to tabulate the efficacy and success of each command. For these 

commands the subject was instructed to do the command and had a 3.9 second window to do so. 

In addition for these commands the signal strength could range from 0 to 1 depending on how 

well the signal was detected. Thus an integral system was utilized to evaluate the strength of 

each command. If a signal was detected the signal strength was multiplied by the duration of that 

signal. Each of these integrals was added for each trial and then divided by 3.9*1*10. This value 

was used because 3.9 is the highest obtainable integral considering if there was a window of 3.9 

and a perfect signal of 1 was detected the whole time. And there are 10 trials so it was multiplied 

by 10. This was able to provide a weighted average of all the signals and their strength values. 

Table 6 displays the results of this testing.  

𝑆𝑖𝑔𝑛𝑎𝑙𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = ∑ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 ∗ 𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 ∗ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
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Equation 2: Signal Strength Calculation for Expressiv Commands 

Table 6: Signal Strength for Actual Commands for Expressiv Testing 

Expected Eyebrow Furrow Smile Clench SmirkLeft SmirkRight Laugh 

Blink 0.0094 0.1391 0.016 0.002 0.0555 0.074 0.0101 

WinkLeft 0.0105 0.126 0.0252 0.0045 0.0883 0.0846 0.032 

WinkRight 0.0162 0.1265 0.0122 0.0073 0.0281 0.1245 0.0441 

LookLeft 0.0114 0.203 0.0284 0.0022 0.0775 0.092 0.0146 

LookRight 0.0133 0.1606 0.0123 0.0009 0.0306 0.1462 0.0316 

Eyebrow 0.1667 0.044 0.0157 0.0454 0.0122 0.0119 0.0912 

Furrow 0.0253 0.1693 0.0135 0.0104 0.0274 0.0282 0.023 

Smile 0.0044 0.0586 0.1323 0.0032 0.067 0.1382 0.0742 

Clench 0.0591 0.0122 0.0298 0.3119 0.0227 0.0416 0.0492 

SmirkLeft 0.0032 0.0995 0.0467 0.0007 0.2121 0.0789 0.0227 

SmirkRight 0.0112 0.0781 0.0528 0.0006 0.0615 0.2881 0.0316 

Laugh 0.0065 0.0504 0.059 0 0.0547 0.1123 0.1826 

Neutral 0.0066 0.0689 0.0172 0.0014 0.06 0.1082 0.0137 

 

Table 7 gives the signal average strength for the expected state and its respective correct 

command.  

Table 7: Average Correct Signal Strength 

Expected 

State 

Correct Signal 

Strength 

Blink 0.6707 

LookRight 0.42 

Clench 0.3119 

SmirkRight 0.2881 

Laugh 0.2881 

LookLeft 0.2686 

WinkRight 0.2471 

SmirkLeft 0.2121 

Furrow 0.1693 

Smile 0.1693 

Eyebrow 0.1667 

WinkLeft 0.1664 
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Figure 24: Graph of Correct Actual State Signal Strength Values 

As seen in Figure 24, the correct detections states were the highest for Blink, Look Right, 

Clench, Smirk Right, Laugh, and Look Left. This is not taking into consideration if these 

commands have high false detection rates. Furthermore, this is merely a weighted average of the 

signal strength. This means that if a command was implemented such as Furrow the threshold for 

acting upon this command would need to be lower than the weighted average which is around 

.16. Some commands although they have high rates of detection cannot be implemented because 

they are not a distinct enough facial movement. Figure 8 displays the average false detection 

signal.  
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Table 8: Average False Detection Signal Strength 

Expected 

Command 

Average False Detection 

Signal 

SmirkRight 0.036908333 

Furrow 0.037016667 

Clench 0.040141667 

Blink 0.040333333 

Neutral 0.043408333 

SmirkLeft 0.046333333 

Eyebrow 0.054433333 

WinkRight 0.054954545 

WinkLeft 0.058366667 

Smile 0.0691 

LookRight 0.072541667 

LookLeft 0.086525 

Laugh 0.087566667 

 

 

 
 

Figure 25: Graph of Average False Detection Signal 

 

As seen in Figure 25, Smirk Right, Furrow, Clench, Blink, and Smirk Left were all the 

commands with the least amounts of false detection. This is important to take into consideration 
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because a command cannot be implemented simply because it has high rates of detection. It must 

read that signal when Anna’s user has intended it to occur.  

Creating Correlations 

Given that the data was linear and associated with a time, it was possible to do cross 

correlation with each different command and then assess if a positive correlation coefficient was 

found.  This was computed in Matlab by using the ‘corr(X,Y)’ function. This function returns a 

p1-by-p2 matrix containing the pairwise correlation coefficient between each pair of columns in 

the n-by-p1 and n-by-p2 matrices X and Y. In this case X would be an expected command and Y 

would be an actual command. Below depicts the actual formula that this command computes. 

Mean values μX and μY and standard deviations σX and σY of each of the matrices is defined as 

such. This command will compute the Pearson correlation coefficient between the two values. 

This allows one to determine if there is linear dependence between these commands. The 

coefficient value can range from 1 to -1. 1 Indicates that there is a perfect correlation and -1 

indicates a negative correlation. Meanwhile 0 will indicate that there is no relationship.  

 
Equation 3: Covariance 

 

Below are the values that had a correlation coefficient above 0. These are listed because 

although there is not a perfect linear relationship between these values there is some positive 

relationship. This demonstrates that certain commands have a greater affinity to be mistaken for 

other commands. This occurs often for movements that include a similar type of movement.  
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Table 9: Positive Correlation Coefficients between Correct Commands 

Expected Actual 

Correlation 

Coefficient 

Furrow Eyebrow 0.2347 

Smile SmirkLeft 0.0104 

Smile SmirkRight 0.3376 

Clench SmirkRight 0.348 

SmirkRight Laugh 0.0149 

SmirkRight Smile 0.3789 

 

As shown in Table 9, Raise Eyebrow was detected often when Furrow was expected. 

Smirk Left and Smirk Right were often detected when Smile was expected. Smirk Right was 

detected when Clench was expected. Laugh and Smile were detected when Smirk Right was 

requested. This information was important because when integrating these commands into Anna 

it is important to note which commands are apt to be misread by the Emotiv. It is pertinent that 

the incidence of false commands is minimized as much as possible.  

Drawing Trends 

In addition to gathering data overall results were differentiated by various health 

information. Given the setting of the experiment it was found that characteristics that could 

affect results the most were male versus female results and long hair versus short hair results. 

Table 10 shows the signal strength differences for male and female subjects. 

Table 10: Correct Signal Strength for Females vs Males 

Expected 

State 

Correct Signal Strength for 

Females Expected State 

Correct Signal Strength for 

Males 

Eyebrow 0.161 Eyebrow 0.1244 

Furrow 0.1895 Furrow 0.1948 

Smile 0.0508 Smile 0.123 

Clench 0.1759 Clench 0.3173 

SmirkLeft 0.1236 SmirkLeft 0.2053 

SmirkRight 0.0373 SmirkRight 0.2564 

Laugh 0.1301 Laugh 0.1439 
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Figure 26: Average Signal Strength for Males versus Females 

By looking at the data in Figure 26, it appears that the commands such as Eyebrow, 

Furrow, and Laugh have similar averages for females and males. However, Clench, SmirkLeft, 

Smirk Right and Smile have substantially higher averages for males. Based on the testing this 

could be inferred that since males typically have shorter hair the electrodes have much better 

contact with the scalp. In addition, the false commands for males and females are shown below 

in Table 11 and Figure 27. The false commands were added and averaged to filter them out. 

Table 11: False Detections for Female and Males 
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Figure 27: False Detection Signals for Males versus Females 

Observing the false detection signal averages the averages do not seem substantially 

different from one another on a holistic level. One could predict females would have higher false 

averages since the correct averages were much lower than the male correct averages but this does 

not appear to be true. This may because movements in general were much harder to detect on 

females, thus reducing false detections as well.  

Table 12:  Correct Signal Averages with Various Hair Length 

Expected Correct Signal Average for 

Subjects with Hair >2in 

Expected Correct Signal Average for 

Subjects with Hair >2in  

Eyebrow 0.1218 Eyebrow 0.1581 

Furrow 0.2267 Furrow 0.1702 

Smile 0.1095 Smile 0.0683 

Clench 0.355 Clench 0.1699 

SmirkLeft 0.2157 SmirkLeft 0.1273 

SmirkRight 0.2703 SmirkRight 0.0559 

Laugh 0.127 Laugh 0.1322 
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Figure 28: Correct Signal Averages for Subjects with Various Hair Length 

In addition, throughout this experiment, hair length was recorded. While conducting the 

experiment, it was found that it was difficult to maintain good contact with subjects that had 

longer hair lengths.  Good contact can be defined as that at least twelve of the electrodes were a 

green color which indicates the best contact possible.  

Looking at the information in Table 12 and Figure 28, it is clear that for all expressions 

other than Eyebrow and Laugh subjects with a hair length of less than 2 inches had substantially 

higher signal averages. This was expected because if a subjects hair is shorter the electodes will 

have a much better contact with the scalp. In addition, since the electrodes are soaked in saline it 

was often found that the hair in contact would absorb the saline solution and dry out the 

electrodes. This was especially an issue in cases where an individual had longer and thicker hair.  

This aspect should be considered as it could cause variability amongst users of the Emotiv 

In addition, it was requested by stakeholders that this experiment compare the 

performances of the subjects during the first five trials as well as the performance during the last 

five trials. It was hypothesized that perhaps subjects will tire during the last five trials and be 

more prone to error. 
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Table 13: Correct Signal Averages for First Five Trials versus Last Five Trials 

 

 

Figure 29: Correct Signal Average for First Five Trials versus Last Five Trials 

This hypothesis seems to be unsupported. For the last five trials the signal strengths of 

Blink, Wink Left, Look Left, Look Right, Furrow, Clench, Smirk Left, Smirk Right and Laugh 

were all much higher during the last five trials. These numbers were found by simply averaging 
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all users signal strengths during the first five and last five trials. This may suggest that users may 

be more adept at executing certain commands in later trials. This may be because users have had 

practice and have acclimated to the system although definite reasoning can not be concluded 

from this data.  

Cognitiv Results and Analysis 

There are four types of Cognitiv commands which were tested for this experiment: Right, 

Left, Push and Neutral. These commands were completed by allowing the subjects to train these 

four command for a maximum time of 20 minutes. For the Cognitiv commands only three 

commands can be stored in the user signature at a time and the team agreed that these three 

commands would be the most intuitive. This experiment was more limited and five subjects were 

tested. 

As with the Expressiv commands the following table displays the percent of the window 

active when the command is requested.  The subjects were asked to complete the command by 

sustaining a movement for as long as they could within the 9.9 second window given. Therefore, 

the numbers shown are a percentage of the respective window that the command was correctly 

detected. The actual value in seconds the window was active with the correct command is the 

given number multiplied by 9.9 seconds. These numbers were calculated from the average 

amount of durations from five subjects. These values are shown in Table 14. It is important to 

note how low all of the values show are in comparison with the Expressiv values. Although each 

subject was asked to sustain the command it is clear that the command was difficult to sustain for 

such an extended period of time. 

Table 14: Average Percent Active During Trial  

Expected Right Left Push 

Right 0.0854 0.0172 0.0692 

Left 0.0835 0.0912 0.0349 

Push 0.0452 0.0202 0.196 

Neutral 0.0627 0.0323 0.0066 

 

In the following table the first column indicates which command each subject was 

requested to perform or as they have been termed “Expected Commands.” The other columns 
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indicate which commands were actually detected, as such, have been termed “Actual Results.” 

One can read the table by looking at the first column to see which command was the Expected 

Command and then move across that specific row to see what was actually detected. It is 

important to specify how these numbers were derived. For the Cognitiv commands the subject 

was instructed to do the command and had a 9.9 second window to do so. In addition for these 

commands the signal strength could range from 0 to 1 depending on how well the signal was 

detected. Thus an integral system was utilized to evaluate the strength of each command. If a 

signal was detected strength of the signal was multiplied by the duration of that signal. Then the 

integrals of each trial was summed. This sum was divided by 9.9*1*10. This value was used 

because 3.9 is the highest obtainable integral considering if there was a window of 9.9 and a 

perfect signal of 1 was detected the whole time. And there are 10 trials it was multiplied by 10. 

This was able to provide a weighted average of all the signals and their strength values.   

Table 15: Average Signal Strengths of Cognitiv Trials 

Expected Right Left Push 

Right 0.0339 0.0054 0.0355 

Left 0.0332 0.0426 0.0175 

Push 0.0179 0.0073 0.1184 

Neutral 0.022 0.0095 0.0025 

 

By viewing the values in Table 15 it is clear that the cognitive signal strengths are 

relatively low values compared to the Expressiv signal strength values. Furthermore the values, 

shown in Table 15 are so low that the correct expected signal strength values are nearly 

indiscernible from the incorrect actual outputs. For example when ‘Right’ is expected the correct 

signal strength value is 0.0339, however when ‘Right’ is expected the actual signal strength for 

Push is 0.0355. This is higher than the average for the correct value. This is not the same case for 

‘Left’ and ‘Push’ however the correct signal strength values in these cases are not substantially 

higher than the false actual signal strengths.  

Emotiv Driver Accuracy Trials 

After testing five subjects with both the modified driver program and the existing 

program, the two programs were directly compared and the enhancements made were quantified. 
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Table 16 shows the average results from the original program and Table 17 shows the average 

results from the modified program.  

Table 16: Trial Results from Original Emotiv Driver Program 

Expected Stop Forward Left Right Back Pause  

Stop 96% 20% 12% 4% 2% 22% 

Forward 80% 68% 10% 10% 8% 10% 

Left 24% 16% 60% 38% 0% 8% 

Right 24% 14% 32% 56% 2% 14% 

Back 70% 60% 4% 8% 4% 10% 

Pause X 26% 14% 8% 0% 54% 

Neutral 18% 6% 6% 4% 0% 4% 

 

 
Table 17: Trial Results from Modified Emotiv Driver Program 

Expected Stop Forward Left Right Back Pause  

Stop 98% 2% 0% 2% 16% 0% 

Forward 10% 92% 2% 2% 2% 0% 

Left 2% 0% 70% 4% 0% 0% 

Right 0% 0% 0% 76% 0% 0% 

Back X 6% 0% 0% 82% 4% 

Pause 8% 0% 4% 0% 0% 92% 

Neutral 0% 0% 0% 0% 0% 0% 

 

In Table 16, there is an X under Expected Pause / Actual Stop because in order to execute 

pause, stop would have to be executed three separate times. Because of this, the value of 

Expected Pause / Actual Stop would be very high, but it doesn’t affect the behavior of Anna. The 

same is done in Table 17 for Expected Stop / Actual Back; in order to execute ‘Move Backward’, 

the user needs to hold their eyebrows elevated which would also trigger ‘Stop’.  

The colors on the tables represent several criteria. The yellow diagonal is used to 

represent the desired output. Boxes in red represent any percentages over 30% that are not the 

expected output. Boxes in orange represent any percentage between 20-30% that is not the 

expected output. Also, since the expected output for neutral is desired to be very low so there are 

less false detections, any percentage above 10% in the expected state neutral is highlighted. 
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5.3.2 EMG Control 

This section outlines the results and analysis of developing and using the EMG board as a 

control system on Anna. The goal of the EMG board was to have an interface from which the 

user can control the JACO Arm. The premise of this segment of the project was to design the 

circuit onto a printed circuit board and integrate it with Anna. A circuit was already created and 

tested from a previous undergraduate project involved with the RIVER Lab. The printed circuit 

board went through three design phases before finalization.  

First Design phase 

The first circuit board was a 2 by 2.5 inch board that was designed to fit on top of the 

Tiva C-Series LaunchPad board using pin headers. The input signals from the electrodes are 

received at the top of the board. On the board, there are two electrode units. Each unit contains a 

positive, negative and reference electrode that measures the electrical activity in each muscle.  

The inner pin headers are for the wireless XBEE module. The wireless XBEE module is to 

connect the TIVA board to a wireless transmitter. Originally, the XBEE was going provide the 

board different ways to connect with Anna.  

Using the testing method describe previously, the board was tested on a forearm to 

determine if it can detect and amplify the muscle electrical activity. The reason for choosing the 

forearm was because of the connection of the ring finger connected to one of the arm tendons. 

Moving the ring finger flexed the tendon without having the flex the entire arm. The voltage 

output signal ranged from the board ranged from 2 Volts to 3 Volts. However, it was observed 

that voltage fluctuation was not caused by the forearm tendon flexing.  One hypothesis as to why 

the voltage was fluctuating was because the two footprints of the INA118U operational amplifier 

on the board were flipped backwards. The next step for the board was to fix the design flaws, and 

produce a smaller simpler board with less components. 

Second Design Phase 

The second iteration of the EMG board was similar to the first but now surface mount 

components were used. The original board had through-hole components, which have a bigger 

footprint that surface mounts components. An important part of the second design phase was that 

a cleaner board layout was created. Due to the fact that the previous board made it difficult to 
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determine what was connected to each component, the second board had sequential components 

that were laid out horizontally. Figure 30 shows the difference between the first and second 

design.  

 
Figure 30: PCB Configuration 

The input from the electrodes was received on the left side of the board along with the 

input voltage and ground. The 5 volt power supply was connected to the DC-to-DC converter to 

reduce the voltage to 3.3 volts. The output voltage from the circuit is received from the right side 

of the board. 

There were still issues with the output voltage on the board. The voltage was settling 

around 0 Volts. To determine if this was an issue with the DC-to-DC convertor, 3.3 volts was 

directly applied to the circuit. It was noticed that the circuit still need an input voltage reference 

to the INA118U amplifier so 2.5 volts were directly connected. With a voltage around the 3.3 

volts, the circuit was tested to determine if it would detect the muscle electrical activity. The 

circuit did not detect the muscle activity. 

Third Design Phase 

Due to time and manufacturing constraints, the next design was transferred to a 

Peripheral board instead of a printed circuit board. Figure 31 shows the simpler version of the 

circuit that contains one unit circuit. 
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Figure 31: Third Iteration of the EMG Board 

The circuit produced a signal around 3.3 Volts and responded to the muscle flexing. The 

signal was sensitive enough to display voltage spikes of both the ring finger and pinky moving. 

The next step in testing the board was to see if the board could detect muscle electrical activity in 

the neck area. The electrodes were place along the neck muscle. This muscle was chosen due to 

the presumed range of movement the target user may have. The output voltage signal for the 

neck movement was not as sharp as the muscle movement on the forearm, however, the 

electrical activity could be activated for longer periods.  

Original Plan 

Originally, the plan was to have the output voltage from the EMG board is connected to 

the Tiva launch pad as well as powered it. To determine whether a muscle was flexed, the 

voltage values are converted to digital values through the ADC on the Tiva launch pad. The 

values are map to an index values from 0 to 4095.  To determine if the voltage spiked, indicating 

that a muscle was flexed, the data values from the Tiva Launchpad were averaged every 10 data 

points and compared to the previous average set. Both the average of the set and an indicator was 

prints to the serial port. With the averaging code loaded onto the Tiva Board, a ROS node was 

created to take the average values and publishes them to a node.  

Sensor Board 

The original plan for the integration of the EMG board and Anna was to connect the 

EMG board to the Tiva Launchpad. However due to limitations, it was decided that the Sensor 
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Hub would be used to connect the EMG with Anna. This did, however, present some connection 

issues. 

To solve the issue with the Tiva LaunchPad, the Team used a previous MQP project’s 

module called the WAMNET Sensor Hub. The Sensor Hub is a board that provides low level 

sensor hardware a way to communicate to a high level computer. One of the advantages to using 

the Sensor Hub was that there were already drivers and templates that were created in ROS.  

Using the Sensor board, a script and launch file was created that would take in the 

average of the ADC values over a small period of time. From testing, it was decided was would 

be the threshold average ADC value that would determine whether a muscle was flexed. 

Whether the muscle was flexed or not, the script published a string command of either “forward” 

or “stop”. 

5.4 Discussion 

5.4.1 Emotiv 

It is evident that when choosing signals a variety of factors must be taken into 

consideration. It is important the command have a relatively high signal average such that when 

integrating into the Anna system the signal threshold for executing a command does not activate 

frequently. A threshold would mean a command needed to be recognized for a certain amount of 

time reliably before it was executed. In addition, a very important factor is that a given command 

is not prone to eliciting false signals. This could be dangerous if a command is not intended and 

executes it could potentially harm the person using Anna. For example if smile has a high signal 

average but it also has a high average false detection average it should not be utilized. In 

addition, one must consider the normal range of expressions a person uses on a day to day basis. 

For example a command such as Blink was difficult to implement since individuals blink so 

often. If a command such as this is to be used one must implement a specific pattern. Such as 

Blink 30 times within a one minute window and then Anna will move.  

In addition, although limited subjects were used based on the given data it is not 

recommended that Cognitiv commands be used as a control scheme. The duration times are 

extremely low comparatively speaking. In addition, the signal strengths a very low and the 
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correct signal strengths are nearly undiscernible from the false signal strengths. This would make 

it very difficult to integrate this with Anna considering that thresholds must be created.  

Given the current data the most reliable commands are Smirk Left, Furrow, Clench, and 

Smirk Right. Although these commands do not necessarily have the highest signal strength 

averages they do have the lowest false detection averages. This means that when the user intends 

to do one of these commands it is picked up and other user expressions are not misconstrued as 

these commands.  

Modifying the Emotiv ROS Driver Code 

After consulting with the group advisor and testing the existing driver code, there were 

several issues that were determined that are listed below. Each of these issues was addressed to 

make the program more accurate and efficient. 

Issue 1: Performing ‘Rotate Left’ and ‘Rotate Right’ is unreliable, because the headset 

is not very accurate in detecting ‘Looking Left’ and ‘Looking Right’.  

According to the Emotiv Expressiv trial data, ‘Looking Left’ and ‘Looking Right’ are 

only accurately detected 27% and 42% of the time, respectively. Furthermore, the data shows 

that ‘Looking Right’ was wrongfully detected 31% of the time when the user looked left, and 

‘Looking Left’ was wrongfully detected 24% when the user looked right. When the users tried to 

perform the action of ‘Rotating Left’ and ‘Rotating Right’, they were able to do so 60% and 56% 

of the time, respectfully. The false detections rate, however, was high suggesting that this 

method was unreliable. When ‘Rotate Left’ was expected, ‘Rotate Right’ was executed 38% of 

the time. Vice versa, ‘Rotate Left’ was executed 32% of the time when ‘Rotate Right’ was 

expected.  

The trial results for ‘Smirk Left’ and ‘Smirk Right’ came out fairly accurate; there were 

no expressions that had a higher weighted average than each of these commands when they were 

the expected command. Logically, using these two commands to control the rotation of the 

wheelchair made sense since ‘Smirking Left’ would ‘Rotate Left’ and ‘Smirking Right’ would 

‘Rotate Right’. In order to prevent false detections, a moving average filter was used to trigger 

the actions based off of their respective expressions. The moving average window is two seconds 

long. The program creates a queue for all of the ‘Smirk Left’ and ‘Smirk Right’ values and 

timestamps that are sent to it. It takes the average of all of these values, and if the value is above 
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the set threshold value, it will trigger the action. The program self-manages this queue; once the 

first element in the queue is over two seconds away from the last element, it will pop the first 

element out and keep popping out if needed until the time is less than two seconds. The threshold 

that the program is set to was determined by the weighted average values of ‘Smirk Left’ and 

‘Smirk Right’ from the initial trials. Since this value represented the weighted average per 

second, the threshold is set to double that value since it is a two second window.  

The accuracy trials show that this new method for detecting ‘Rotate Left’ and ‘Rotate 

Right’ is more accurate than the old method. ‘Rotate Left’ was accurately detected 70% of the 

time, and ‘Rotate Right’ 76% of the time. Their percentage of false detections for the opposite 

direction was decreased to 4% and 0% respectively.  

Issue 2: The program’s method for toggling between pause and active is unreliable and 

difficult to perform. 

The existing code used a pattern detection method to toggle between pause and active 

mode. The user would need to perform the following pattern to trigger this action: ‘Raise 

Eyebrow’, ‘Neutral’, ‘Raise Eyebrow’, ‘Neutral’, ‘Raise Eyebrow’. This action was only 

accurately detected 54% of the time by the trial subjects. Also, this action had a relatively high 

false detection of ‘Move Forward’ with this command being executed 26% of the time when 

‘Pause’ was expected.  

Since the other actions are performed using lower or upper facial movement, it was 

decided that using an eye movement to trigger this action could be an effective method. Using 

the Emotiv Expressiv Trial Data, the headset is fairly reliable in detecting ‘Blink’; this 

expression was detected accurately 67% of the time. Studies show that an individual blinks 15-

20 times per minute, which is roughly one blink every 3 to 4 seconds. The modified program 

requires the individual to repeatedly blink in a short window of time to trigger this command; 

approximately five blinks in five seconds should trigger this command. The trial data shows that 

the subjects were able to perform this action accurate 92% of the time, which is 38% more 

accurate than how it was being done before. The percentage of false detections was also 

significantly reduced; the highest percentage of false detections for this command was now 

‘Stop’ at only 8%. 
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Issue 3: False detections for ‘Stop’ are frequent, because it triggers off of any non-zero 

value for ‘Raise Eyebrow’. 

While the accuracy of issuing the ‘Stop’ command for the existing driver code was high 

at 96%, there were also a significant amount of false detections. When ‘Stop’ was expected, 

‘Pause’ was executed 22% of the time, ‘Move Forward’ 20% of the time, and ‘Rotate Left’ 12% 

of the time. In order to decrease this number of false detections, a moving average filter was used 

similar to the one talked about in issue 1 and set a threshold which stop had to be above. The 

accuracy of this method was 98%, and the percentage of false detections decreased for most of 

the other commands. The only command that saw an increase in false detections was ‘Move 

Backward’ which rose to 16%. Additionally, the code was modified that it would not repeatedly 

publish stop if the user kept their eyebrows’ raised.  

Issue 4: ‘Move Forward’ and ‘Move Backwards’ could accidentally be mistaken for 

each other since they rely on the same expression. 

The existing program requires the user to hold the ‘Clench’ expression for anywhere 

between 0 to 1 seconds to trigger ‘Move Forward’. In order to trigger ‘Move Backwards’, the 

user needs to hold the ‘Clench’ expression for anywhere between 3 to 4 seconds. The accuracy 

trial data shows that the users were able to perform these actions 68% and 4% accurately, 

respectively. For false detections, ‘Move Backward’ was triggered 8% of the time when ‘Move 

Forward was expected, and ‘Move Forward was triggered 60% of the time when ‘Move 

Backward was expected. Since the desired actions results in movement in the complete opposite 

direction, it is not logical to make it so the same expression would control both movements.  

The new method for detecting backwards relies on continually holding the ‘Raise 

Eyebrow’ expression. Since the only other action that relies on this expression is ‘Stop’, the 

wheelchair would only be able to move backwards if it is currently stopped, which is logical. 

While the user is raising their eyebrows, the program is taking the weighted average of this 

signal and if that signal passes a certain threshold, it triggers the back movement. The program 

uses a resetting moving average filter; once a signal of zero is detected for ‘Raise Eyebrow’, the 

wheelchair stops moving backwards and this weighted average is set back to zero. The accuracy 

trial results show that this method for detecting ‘Move Backward’ is 82% accurate, which is 78% 

greater than the old method. 
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The new method to detect ‘Move Forward’ is similar to how ‘Rotate Left’, ‘Rotate 

Right’, ‘Stop’, and ‘Toggle Pause’ are detected using the moving average. The program puts the 

values for ‘Clench’ into a queue, self manages the queue, takes the weighted average, and 

triggers once it is above the average. The accuracy trials show that ‘Move Forward’ was 

accurately detected 92% of the time, which is 24% greater than with the old method. 

Issue 5: The program uses the universal signatures for each expression as opposed to 

giving the user the option to use their own trained signatures. 

The existing program does not have the option to use a custom profile that has the user’s 

trained signatures recorded. Training the expression allows the headset to more accurately detect 

the expressions by customizing the detection to the user’s EMG signals. The new program gives 

the user the ability to have his/her custom profile in place and detect the expressions based off of 

this profile. In order to use this new program, the user must open the Emotiv Control Panel SDK 

and connect to the EmoEngine. From here, the user can create and manage profiles, and train 

each expression. Then, the user can start the Emotiv ROS Driver as usual, and the program will 

connect to the control panel. 

Issue 6: The program is not customizable.  

The existing method does not allow the user to have the ability to change what 

expressions trigger what actions, or to change the thresholds required to trigger these actions. 

The new program is much more user friendly and allows the user to control the expressions that 

are used, the thresholds for each commands, and the moving windows for each command. All of 

these values can be changed in a YAML file and then the program can be run like normal. Users 

for this program need to follow the protocol currently defined in order to properly configure the 

program.  

5.4.2 EMG Control 

The EMG was not able to be fully integrated with Anna. One problem that occurred was 

that the electrode Pads were unreliable in detecting muscle electrical activity. For a period of 

time the electrode pads would pick up the muscle activity and then the signal would be dropped. 

It was inferred that electrode pads did not continue to have full contact with the skin or the gel in 

the pads became dry. For the future, there will need to be testing of different electrode pads to 

determine which electrode Pad will work with the circuit.  
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Another issue was integrating the circuit and the Sensor Hub into one whole module. 

Currently the circuit is mounted on a temporary board, ideally the circuit will be successfully 

integrated on a PCB board. There are currently new board prints read to be manufactured. 

6. Social Implications 

This project aims to assist individuals that have less muscle control and need an 

alternative control system. During this project, the team had the opportunity to meet with 

someone who needed a specialized wheelchair. Because of his cerebral palsy, this individual 

could not fully move his fingers and arms, making controlling the wheelchair difficult. Anna 

would be able to assist him by providing the alternative methods of control. He would be able to 

more fully interact with his environment due to the object manipulation system that was added. 

This project seeks to help those with LIS increase their self-sufficiency by providing them with 

the tools to do so. This project was tested in an apartment-style environment so show that such 

an environment could be properly navigated and interacted with. At the culmination of this 

project, all control schemes have been tested and human subjects were able to have been used. 

The next steps in this design process would be fully integrating each control scheme and creating 

testing Anna in a holistic manner as well as adding different environment manipulation 

functionalities.  

7. Conclusions 

This project was a hybrid of robotic, computer science, electrical and biomedical 

principles.  The system requirements that were agreed upon at the start of this project have been 

achieved. At the culmination of this project various aspects of Anna have been innovated and or 

improved. Currently Anna now has autonomous self-feeding capabilities available for its user. 

This is complete with a working model of the environment to prevent collision and a camera 

capable of recognizing various surrounding objects. Furthermore, Anna is equipped with two 

intuitive interfaces. The first of which is Emotiv Control. By completing substantial human trials 

the team was able to identify the most optimal commands for navigating Anna with five degrees 

of freedom. In addition, the EMG Control can also be integrated in the future so minor neck 
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movements can initiate the arm or drive Anna. The final system design can be shown in Figure 

32. The diagram shows the string inputs and the resulting motions for both the wheelchair base 

and the robotic arm. 

 

Figure 32: System Diagram for Anna 
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9. Appendix A: LiDAR Relocation 

LiDAR System Requirements 

 

ID 

Requirement Description Cost Source Prio- 

rity 

%ran Viewing range The system shall be capable of view 180° in front 

the wheelchair 

High $user 5 

%mind Minimum viewing 

distance 

The system shall be able to view objects within 

0.01 m of the front of the wheelchair 

High $user 4 

%movec Wheelchair 

movement 

The system shall be not inhibit the wheelchair’s 

ability to move 

Low $user 5 

%objav Object detection The system shall be able to detect objects higher 

than 0.15m from the ground and within 3 m of the 

wheelchair 

HIgh $user 5 

%gnd Ground clearance The system shall not decrease the wheelchair’s 

ground clearance 

   

 
LiDAR Relocation Requirements 

The main categories of concern for relocating the forward pointed LiDAR sensor are location and 

protection. The final design solution for relocating the LiDAR sensor must meet the requirements 
described below. 

 

Location  

Mounted in the new location, the LiDAR sensor shall: 

 have an unobstructed viewing range of or exceeding 180 degrees from the front edge of the 

footplate 

 be capable of sensing objects greater than 0.15m in height that are in contact with the ground 

 be capable of sensing objects within 3m of the front edge of the footplate 

 not decrease the clearance height between the current footplate position and the ground 

 permit the current footplate to fully return to the upright stowed position 

 not obstruct the motion of the front wheels on wheelchair 

https://docs.google.com/document/d/1Begz0w29XJYUU9g0PvIgKhEnHlChcqcZF0FeoO6gb_A/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1Begz0w29XJYUU9g0PvIgKhEnHlChcqcZF0FeoO6gb_A/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1Begz0w29XJYUU9g0PvIgKhEnHlChcqcZF0FeoO6gb_A/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1Begz0w29XJYUU9g0PvIgKhEnHlChcqcZF0FeoO6gb_A/edit#heading=h.gjdgxs
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Protection 

The new location design must: 

 protect the LiDAR sensor from its surroundings on ALL (6) sides 

 protect the LiDAR sensor from collisions, including but not limited to: 

 the user striking the sensor when mounting/dismounting the wheelchair 

 the sensor striking objects, walls, bystanders, etc. in it’s path 

 objects, bystanders, etc. striking the sensor 

 include some mechanism for heat dissipation 

 include a mechanism for absorbing shock to protect the sensor from abrupt stops when the 
footplate goes from the stowed to open position* 

 

*Requirement only necessary if the sensor is mounted on/in the footplate 

 

Configuration Options 

Currently, there are two proposed relocation options, each with two configurations. All options and 

configurations are designed to use a SOKUIKI sensor because of it’s size, range, and cost. 

 

Relocation Option 1 

Option 1 places the sensor inside the existing steel footplate frame. The top and bottom plates of the 

footplate would enclose the sensor thus effectively protecting it on all sides. This option would 

increase the thickness of the footplate but not change the current clearance height under the footplate. 

A metal plate would be mounted under the sensor to the steel frame to dissipate heat. The sensor 

would have a near complete 180 degree viewing area obstructed only by existing support bolts in the 

foot plate that could be removed. The two configurations for this option include mounting the sensor 
with the laser closer to top or bottom of the footplate. 

 

Advantageous: 

Reinforced protection from the existing steel 

Protected on all 6 sides 

https://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html
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Heat is dissipated 

Can sense objects greater than 0.15m in height 

Can sense objects within 3m of the front edge of the footplate 

 

Limitations: 

180 degree viewing area not free from obstructions 

Current sensor boards would be relocated 

 
Relocation Option 2 

Option 2 places the sensor at the center of the front edge of the footplate. The top and bottom plates 

of the footplate and front edge of the existing steel frame would enclose the sensor on 3 sides. The 

remaining edges would be protected by a bar that screwed directly to the steel frame. This option 

would increase the thickness of the footplate but not change the current clearance height under the 

footplate. A metal plate would be mounted under the sensor to the steel frame to dissipate heat. The 

sensor would have a complete, unobstructed viewing range exceeding 180 degrees. The two 

configurations for this option include mounting the sensor with the laser closer to top or bottom of 
the footplate. 

 

Advantageous: 

Protected on all 6 sides 

Heat is dissipated 

Can sense objects greater than 0.15m in height 

Can sense objects within 3m of the front edge of the footplate 

Viewing range greater than 180 degrees 

Current sensor boards don’t have to move 
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Limitations: 

No reinforced protection from existing steel frame 

 

The advantages and disadvantages are discussed in the decision diagram shown in the figure below. 

 
Figure 33: Decision diagram for the LiDAR location 
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10. Appendix B: Emotiv Control System 

IRB Testing Documents 

Purpose of Study: 
 

The purpose of this study is to determine which facial and cognitive commands for the Emotiv 

headset have the highest rates of success in terms of controlling Anna, a semi-autonomous 

wheelchair system. This project aims to create an assistive wheelchair for individuals that have 

little to no movement of arms and some movement of facial muscles. There are a number of 

conditions and diseases that limit said movement. Since this device is multimodal, it will be 

useful to individuals with various conditions. This project is generally targeted toward those that 

have Locked-in Syndrome. Locked-in Syndrome (LIS) is a condition in which a person is 

conscious and alert but unable to communicated or interact with the world. This is why an 

Emotiv headset would be useful in navigating the chair.  

 

The Emotiv headset is used to monitor facial expression and conscious thoughts. These will 

serve as inputs to the wheelchair navigation. A current issue is that the previous project did not 

collect sufficient data to evaluate the full capabilities the Emotiv headset has. There were a very 

limited number of trials conducted and there is no background data concerning each subject. In 

addition the previous team did not investigate the full capability of the Emotiv in terms of using 

it in the Expressiv and Cognitiv mode. 

 

These trials aim to assess the success of a various inputs on various users. Then the data was 

analyzed utilizing cross-correlation. This was accomplished by gathering information about a 

subjects pigmentation, fatigue and other health statistics. Then the subjects was given a training 

session on how to use the EPOC Emotiv headset. Then the subjects will attempt to control the 

wheelchair using given commands. Each subjects success with accomplishing each command 

was recorded. Then the data was analyzed.  
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Study Protocol 
 

Below is a breakdown of what each trial will consist of: 

 

Steps Description Allotted 

Time 

1 Fill out required preliminary information sheet. The sheet will be filed in a 

secure location 
3 

2 Explain what the procedure consists of (shown below). Ask the subject if 

there are any questions or concerns 
10 

3 Have headset with the applied saline (each node with will be wet) on nodes 

already ready. Explain to subject that the headset will have to be on head and 

ask permission to adjust headset 

5 

4 Boot up headset. Adjust headset for best possible connection via the nodes 

on the subject  
5 

5 Record the connection state of each node. The available states would be: 
No connection (gray) 
Poor connection (red) 
Okay connection (Orange) 
Good connection(Yellow) 
Complete connection (Green) 

2 

6 Explain what the Cognitiv suite test is to the subject 2 

7 Begin with a two minutes of rest for the subject.  2 

8 Begin practice test for each of the cognitive skills. There are # of tests: 
 

15 

9 Allow the subject 5 minutes of rest. 5 

10 Test and record the reaction times and accuracy the subject cognitively 

choosing what to do with the Cognitiv suite 
15 

11 Thank subject for participating in study and cautiously remove the Emotiv 

headset 
c 

 

Total expected time: 1 hour and 10 minute 
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Informed Consent Agreement for Participation in a Research Study 
 

Investigators:  Tanishq Bhalla, Marisa Warner, Rashida Nayeem 

 

Contact Information: ECE Department 

    WPI 

    100 Institute Road 

    Worcester, MA  01609 

    Tel. 508-831-5555, Email: jqworcester54@wpi.edu 

 

Title of Research Study:  Intuitive interface of an Assistive Controlled Wheelchair 

 

Sponsor:  WPI RiVER LAB 

 

Introduction: 

You are being asked to participate in a research study.  Before you agree, however, you must be 

fully informed about the purpose of the study, the procedures to be followed, and any benefits, 

risks or discomfort that you may experience as a result of your participation.  This form presents 

information about the study so that you may make a fully informed decision regarding your 

participation.  

 

Purpose of the study: 

The purpose of this study is to determine which facial and cognitive commands for the Emotiv 

headset have the highest rates of success in terms of controlling Anna. This project aims to create 

an assistive wheelchair for individuals that have little to no movement of arms and some 

movement of facial muscles. There are a number of conditions and diseases that limit said 

movement. Since this device is multimodal, it will be useful to individuals with various 

conditions.  This project is generally targeted toward those that have Locked-in Syndrome. 

Locked-in Syndrome (LIS) is a condition in which a person is conscious and alert but unable to 

communicated or interact with the world.  This is why an Emotiv headset would be useful in 

navigating the chair.  
 

The Emotiv headset will be used to monitor facial expression and conscious thoughts. These will 

serve as inputs to the wheelchair navigation. A current issue is that the previous project did not 

collect sufficient data to evaluate the full capabilities the Emotiv headset has. There were a very 

limited number of trials conducted and there is no background data concerning each subject. In 

addition the previous team did not investigate the full capability of the Emotiv in terms of using 

it in the Expressiv and Cognitiv mode. 
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These trials aim to assess the success of a various inputs on various users. Then the data will be 

analyzed utilizing cross-correlation. This will be accomplished by gathering information about a 

subject’s pigmentation, fatigue and other health statistics. Then the subjects will be given a 

training session on how to use the EPOC Emotiv headset. Then the subjects will attempt to 

control the wheelchair using given commands. Each subject’s success with accomplishing each 

command will be recorded. Then the data will be analyzed.  

. 

 

Procedures to be followed: 

You will be seated in front of a laptop and Emotiv headset. You will be asked wear the Emotiv 

headset. The nodes on the headset will be covered in saline.  You will be asked to perform 

various cognitive exercises and facial gestures. After a period of rest you will be asked to repeat 

the exercises and gestures which the student investigators will record the time and accuracy of 

each task. Certain exercises and gestures will require much less effort than others. Rest will be 

provided between each exercise and gesture. Your participation will last for a maximum of 2 

hours.  

 

Risks to study participants: 

 

There is some possibility you may also experience mental fatigue from the concentration 

required to complete the tasks. 

 

Benefits to research participants and others: 

There is no direct benefit to you. 

 

Record keeping and confidentiality: 

Records of your participation in this study will be held confidential so far as permitted by law.  

However, the study investigators, the sponsor or it’s designee and, under certain circumstances, 

the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be able to inspect 

and have access to confidential data that identify you by name.  Any publication or presentation 

of the data will not identify you. 

 

Compensation or treatment in the event of injury: 

In the unlikely event of physical injury resulting from participation in the research, you 

understand that medical treatment may be available from WPI, including first aid emergency 

care, and that your insurance carrier may be billed for the cost of such treatment.  No 

compensation for medical care can be provided by WPI.  You further understand that making 

such medical care available, or providing it, does not imply that such injury is the fault of the 

investigators.  You do not give up any of your legal rights by signing this statement. 

 

Cost/Payment: 

You will not receive any payment for the completion of the study.  
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For more information about this research or about the rights of research participants, or in 

case of research-related injury, contact: 

Prof. Jane Q. Worcester, ECE Department, WPI, 100 Institute Road, Worcester, MA (Tel. 508-

831-5555).  You may also contact the chair of the WPI Institutional Review Board (Prof. Kent 

Rissmiller, Tel. 508-831-5019, Email: kjr@wpi.edu) or WPI’s University Compliance Officer 

(Michael J. Curley, Tel. 508-831-6919). 

 

Your participation in this research is voluntary.  Your refusal to participate will not result in 

any penalty to you or any loss of benefits to which you may otherwise be entitled.  You may 

decide to stop participating in the research at any time without penalty or loss of other benefits.  

The project investigators retain the right to cancel or postpone the experimental procedures at 

any time they see fit.  Data obtained in this experiment will become the property of the 

investigators and WPI.  If you withdraw from the study, data already collected from you will 

remain in the study. 

 

By signing below, you acknowledge that you have been informed about and consent to be a 

participant in the study described above.  Make sure that your questions are answered to your 

satisfaction before signing.  You are entitled to retain a copy of this consent agreement. 

 

 

 

___________________________   Date:  ___________________ 

Study Participant Signature 

 

 

 

 

___________________________                                

Study Participant Name (Please print)    

 

 

 

 

____________________________________ Date:  ___________________ 

Signature of Person who explained this study 
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Protocol for Using the Modified Emotiv_ROS_Driver  

1) Determine if user has run through the full Emotiv Expressiv Trials 
2) If no to #1, skip to #5 
3) Look up the Eye Movement and Expression tables 
4) Open the emotiv_ope.yaml file. Follow the steps below and change the values of the variables in 

bold, and then save the file 
 
Key: C = Clench, RE = Raise Eyebrow, SL = Smirk Left, SR = Smirk Right, LL = Look Left, LR = 

Look Right 
I = Intended, A = Actual Example: SLI = Smirk Left Intended 
Highly Suggested > Suggested > Not Suggested 
 
If (Look Left Intended / Look Left Actual > 0.7) && (Look Left Intended / Look Right Actual < 0.1) 
LookLeft = Highly Suggested 
Else if (Look Left Intended / Look Left Actual > 0.5) && (Look Left Intended / Look Right Actual < 

0.2) 
LookLeft = Suggested 
Else 
LookLeft = Not Suggested 
 
(FOLLOW SAME FOR LOOK RIGHT) 
If (Smirk Left Intended / Smirk Left Actual > 0.30) && (Smirk Left Intended / Smirk Right Actual < 

0.05) && (Neutral Intended / Smirk Left Actual < 0.1) 
SmirkLeft = Highly Suggested 
else if (Smirk Left Intended / Smirk Left Actual > 0.20) && (Smirk Left Intended / Smirk Right 

Actual < 0.1) && (Neutral Intended / Smirk Left Actual < 0.1) 
SmirkLeft = Suggested 
else 
SmirkLeft = Not Suggested 
 
(FOLLOW SAME FOR SMIRK RIGHT)  
 
If (LookLeft > SmirkLeft) && (LookRight > SmirkRight) 
goLeftExpression = “LookingLeft” 
leftThreshold = 0.1 
 

goRightExpression = “LookingRight” 
rightThreshold = 0.1 
else if (SmirkLeft > LookLeft) && (SmirkRight > LookRight) 
goLeftExpression = “EXP_SMIRK_LEFT” 
leftThreshold = 2 * SLI/SLA 
 

goRightExpression = “EXP_SMIRK_RIGHT” 
rightThreshold = 2 * SRI/SRA 
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else if (The values are equal to each other) 
The user can pick either the eye movements or the smirks depending on what they feel more 

comfortable with. Be sure to set the values for the threshold accordingly to as shown in the previous 

conditions depending on what has been selected.  
else  
it is advised that the user re-trains their expressions and calculate the data again. 
forwardThreshold = 2 * Clench Intended / Clench Actual 
stopThreshold = 2 * Neutral Intended / Raise Eyebrow Actual 
backwardThreshold = 4 * Raise Eyebrow Intended / Raise Eyebrow Actual 
 
5) Start the EmoEngine and connect it to the Emotiv Control Panel SDK 
6) Make any adjustments in trainings until the user feels that the control panel is accurately depicting 

their actions 
7) Launch roslaunch emotiv_epoc_driver emotiv_ope_combo_exp.launch 
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11. Appendix C: EMG Control System 

 
Figure 34: EMG Board Schematic 
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12. Appendix D: Terminology 

Term Meaning 

Affectiv One of the three modes that the Epoc Emotiv 

Headset uses. This mode can detect emotional 

states from electroencephalogram signals and 

classify them.  

Anarthria A loss of control of the muscles of speech, 

resulting in the inability to articulate words. 

The condition is usually caused by damage to 

a central or peripheral motor nerve. 

Anna A wheelchair-manipulator system developed 

by RIVeR Laboratories which will allow 

locked-in individuals, who are unable to 

interact with the physical world through 

movement and speech, to perform activities of 

daily living (ADL). The future directions of 

Anna include designing a modular, semi-

autonomous robotic wheelchair platform with 

a 7-DOF robotic arm, control through a 

Body/Brain Computer Interface (BBCI) and 

developing obstacle avoidance 

Cognitiv One of the three modes that the Epoc Emotiv 

Headset uses. This mode can detect conscious 

thoughts from electroencephalogram signals 

and classify them.  

Correlation (variable) A statistical relationship between two random 

variables or two sets of data 

Cost Map This is a Robot Operating System Package 

This package provides an implementation of a 

2D cost map that takes in sensor data from the 

world, builds a 2D or 3D occupancy grid of 

the data and inflates costs in a 2D cost map 

based on the occupancy grid and a user 

specified inflation radius.  

Degree-Of-Freedom (DOF) The number of directions in which an 

independent motion can occur.  

Delrin An engineering thermoplastic used in 

precision parts 

Electromyography (EMG) An electro diagnostic method for calculating 

and chronicling the electrical activity created 

by skeletal muscles. 
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Epoc Emotiv A brain computer interface developed by 

Emotiv systems that measures EEG and EMG 

signals from a user and then classifies them 

into different states. The headset is capable of 

operating in three different modes which 

include Cognitiv, Affectiv, and Expressiv.  

Expressiv One of the three modes that the Epoc Emotiv 

Headset uses. This mode can detect and 

classify facial expressions from 

electromyography signals.  

Image Segmentation The process of partitioning a digital image 

into multiple segments (sets of pixels, also 

known as super pixels). The goal of 

segmentation is to simplify and/or change the 

representation of an image into in order to 

analyze the data.  

IR Infrared 

IRB Also known as Institutional Review Board, 

this is a committee that was established to 

help investigators understand and comply 

with the ethical guidelines and regulatory 

requirements for research involving human 

subjects. The IRB's overall goal is to promote 

and support efforts to conduct innovative 

research at WPI which protects the rights and 

promotes the welfare of human subjects.  

Jaco Arm A robotic arm developed by Kinova systems 

that has six degrees of freedom with unlimited 

rotation on each axis. There are three under 

actuated fingers that can be independently 

controlled as well. The arm can be controlled 

via Robot Operating System.  

Kinematic Chain An assembly of rigid bodies connected by 

joints that is the mathematical model for a 

mechanical system. 

LiDAR Also known as Light Detection and Ranging, 

is a remote sensing technology that measures 

a distance by illuminating a target with a laser 

and analyzing the reflected light.  

Localization Locating obstacles in the environment with 

respect to Anna.  

PCB A printed circuit board that mechanically 

supports and electrically connects electronic 

components.  
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Point Cloud A set of data points that are in a three-

dimensional (X, Y, Z) plane and typically 

represent the external surface of an object.  

Quadriplegia A condition resulting in the paralysis of all 

four limbs or all physical movement below 

the neck.  

Red Green Blue Depth (RGB-D) camera Depth sensing technology that captures Red 

Green Blue (RGB) images as well as per-

pixel depth information.  

Robot Operating System (ROS) A framework of libraries and tools for open 

source robotic control.  

Rviz A visualization tool available in Robot 

Operating System. 

Sensor Board A board developed by a previous Major 

Qualifying project that connects low level 

hardware to a high level computer. It was 

designed to integrate sensors onto Anna 

Trajectory The path of a moving object through space as 

a function of time.  

 


	Worcester Polytechnic Institute
	Digital WPI
	2015-04-30

	Design and Validation of Control Interfaces for Anna
	Daniel Charles Fox
	Marisa Nicole Warner
	Rashida Tamiza Nayeem
	Tanishq Bhalla
	Tenell Glen Rhodes
	Repository Citation


	Design and Validation of Control Interfaces for Anna

