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1 INTRODUCTION 

The electronics world is faced with various challenges when attempting to integrate analog signals 

and quantities with digital and discrete systems. Therefore, the existence of a tool that enables this 

integration is vital to many electrical engineers in today’s world. The Analog-to-Digital Converter 

(ADC) is not a new concept by any means, but is still a topic of interest when it comes to technology, 

due to its inevitable necessity in many systems being used today. Analog design engineers are 

always faced with important questions, such as: How can signals be converted faster, more 

accurately? How do we optimize our systems so that we can achieve simpler, yet smarter 

converters? Other issues, such as power consumption, complexity, interaction with other systems, 

and many other specifications have spawned several different types and designs of analog-to-digital 

converters. Yet, the market is still open to different options. Our project focuses on presenting a 

new option among the many present, with distinct features that are aimed to satisfy various 

applications for analog-to-digital converters. 

 

1.1 GOALS AND SPECIFICATIONS 
The goal of the project is to build vital components for the design of a Cyclic ADC, resulting in 

functional blocks that enable the simulation of a full conversion, complying with the following 

specifications: 

Table 1 - Specifications 

Specifications 

Circuit Type Integrated Circuit 
Maximum Size 1 mm2 
Process Type 0.18 μm 

Resolution 12-14 Bits 
Throughput 1 Msps 

Test Time Less than 1 sec 
Other Specifications Fully Differential 

 

The project is sponsored by the New England Center for Analog and Mixed Signal Design 

(NECAMSID) located at WPI. The manufacturing of the integrated circuit would be done by Jazz 

Semiconductor and the simulation components used are from Jazz Semiconductor’s library. 
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1.2 PROJECT MOTIVATION 
Our group’s choice to develop a self-calibrating, fully differential, cyclic analog-to-digital converter 

as a Major Qualifying Project was suggested to us by Professor John McNeill, who had previously 

worked in a similar project. Upon being given the project, we analyzed the academic and practical 

contributions that would be consequential to our research. The project shows itself to be unique 

due to a combination of characteristics. 

1.2.1 NON-LINEARITY 
Possibly one of the most interesting aspects of our design is that a linear relationship between the 

input and output within the chip’s differential amplifier is not necessary. This concept is very 

appealing to integrated circuit designers because it removes a requirement that is often tough to 

comply without complicated circuitry [1].  

1.2.2 DIGITAL CALIBRATION 
Another attractive feature of the circuit is that its calibration is expected to be done entirely in the 

digital domain. In other words, the correction for non-linearity in the circuit is done by an 

algorithm. This is considered a favorable feature because it allows for the chip to be smaller or 

enhanced, due to area not being consumed by a calibration portion of the circuit. Also, it may save 

analog designers from adding components to calibrate and test the chip before using it. An example 

of when this feature is useful is a circuit where several ADCs are connected to one digital module. 

The digital calibration must be done by a field-programmable gate array (FPGA) via an algorithm 

created specifically for this ADC. However, the scope of this document includes the analog 

integrated circuit design of this cyclic ADC. The digital algorithm was created simultaneously by 

Hattie Spetla, a graduate research student at New England Center for Analog and Mixed Signal 

Design (NECAMSID) at Worcester Polytechnic Institute. [Citation of Hattie’s paper] includes details 

of the algorithm’s functionality. 

1.2.3 SIMPLICITY AND INNOVATION 
Cyclic ADCs have a few advantages when compared to other types of converters – the first being 

that it generally involves less complex circuitry as a consequence of the digital calibration algorithm 

and the lack of a strictly linear differential amplifier. More importantly, in the realm of analog-to-

digital converters, cyclic ADCs have not been used as often as others, leaving more room for 

innovation and significant contributions to the field. 
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As noted above, the potential of this project is enormous. Therefore, we decided to tackle the 

challenge. The purpose of this document is to provide detailed understanding of our design of the 

Cyclic ADC and its components. 
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2 BACKGROUND 

The purpose of this section is to provide the reader enough background information to make design 

choices and configurations easier to understand. The materials and fields of study from which we 

obtain our design principles and theories shall all be introduced in this section. 

2.1 ANALOG-TO-DIGITAL CONVERTERS 
Analog-to-digital converters are devices used to transfer a continuous real-world signal into the 

discrete digital domain. The use of these converters is advantageous to society because they allow 

signals present in nature to be represented digitally. Since the ultimate goal of this project is to 

create an analog-to-digital converter (ADC), we must define the existent types present in today’s 

market. A common way to categorize these ADCs relates to the sampling frequency of the converter. 

The two most commonly used ADC types are Oversampling converters and Nyquist converters. 

2.2 ADC PERFORMANCE METRICS 
Before we can discuss some other characteristics and features of integrated circuits and ADCs, we 

must first define key terminology and performance metrics used to develop specifications for such 

circuits. This section will define and briefly explain some important metrics and terms used in ADC 

design (definitions provided by [2], [3], [4], [5], and [6]). 

Acquisition time (tacq) 

Acquisition time is the time after the sample stage in a sample-and-hold circuit output to 

experience a full-scale transition and settle within a specified percentage of its final value. 

Dynamic Range 

Dynamic Range is the ratio of the maximum allowable input swing and the minimum input level tha 

can be sampled with a specified level of accuracy. 

Spurious-Free Dynamic Range (SFDR)  

Sometimes referred to as a measurement of fidelity for circuits, the SFDR is the ratio of the rms 

value of the peak signal amplitude to the rms value of the amplitude of the peak spurious spectral 

component, over the specified bandwidth. 
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Figure 1 - Spurious-Free Dynamic Range Illustration [7] 

Effective Number of Bits (ENOB)  

It is a measure of the true dynamic performance level of a data converter. ENOB is calculated from 

the measured SNR based on the equation [2]: 

𝐸𝑁𝑂𝐵 =
 𝑆𝑁𝑅+𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛  − 1.76+20𝑙𝑜𝑔  

𝐹𝑢𝑙𝑙  𝑆𝑐𝑎𝑙𝑒  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝐴𝑐𝑡𝑢𝑎𝑙  𝐼𝑛𝑝𝑢𝑡  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
 

6.02
  

Eq. 1 

 

 

Signal-to-Noise Ratio (SNR) 

The ratio of the signal power to the noise power at the output is known as SNR. Mathematically it 

can be described simply as 

𝑆𝑁𝑅 =
𝑟𝑚𝑠  𝑆𝑖𝑔𝑛𝑎𝑙

𝑟𝑚𝑠  𝑁𝑜𝑖𝑠𝑒
  Eq. 2 

 

However, SNR has also a relationship with the effective number of bits, shown below: 

𝑆𝑁𝑅 𝑑𝐵 = 6.02 𝐸𝑁𝑂𝐵 +  1.76  Eq. 3 

 

Differential Non-Linearity (DNL) 

The difference between the actual step and the ideal step length of the ADC’s output is known as 

differential non-linearity [4]. For an ADC, DNL is the measure of variation in the digital output code, 

normalized to full scale, associated with a 1 least significant bit (LSB) change in the input code [2].  
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Figure 2 - Ideal (left) and Non-Ideal (right) Examples of ADC Transfer Function [4]  

A change resulting in an error greater than 1 LSB results in lost bits. 

Integral Non-Linearity (INL) 

Differently from DNL, the integral non-linearity relates to the maximum difference between the 

converter’s output from its ideal value. The ideal value can be described as a theoretical straight 

line drawn from minus full scale to positive full scale [2]. The figure below shows a graphical 

representation of this concept: 

 

Figure 3 - Integral Non-Linearity Example [4] 
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Quantization Error 

When a conversion is made, the number is quantized to a finite number of discrete values. The 

error associated with this process is known as quantization error. 

 

(a) 

 

(b) 

Figure 4 – (a) Quantization Process [8] and (b) Quantization Error Illustrations (right) [4] 

 

As Figure 4 shows, an analog input is quantized to a digital value. However, as Figure 4 indicates, 

there is always a margin where the input value falls between two quantization levels, giving the 

ADC its quantization error. Improving this margin correlates to increasing the ADCs resolution. 

Total Harmonic Distortion 

The concept of total harmonic distortion (THD) applies mostly to nonlinear systems where the 

power is present in the fundamental frequency as well as its harmonics. This presence of power in 

other frequencies contributes to THD. In general, total harmonic distortion is defined as the ratio of 

all harmonics generated to the original signal frequency [5]. Mathematically it is mainly expressed 

in units of dB by the following relationship [9], 

𝑇𝐻𝐷 = 10𝑙𝑜𝑔  
𝑉2

2 + 𝑉3
2 + 𝑉4

2 + ⋯ 

𝑉𝑓
2    

Eq. 4 

 

where Vhn is the voltage corresponding to the n-th harmonic of the signal and Vf is the fundamental’s 

voltage. 

THD can also be represented as a percentage, 

𝑇𝐻𝐷 =
 𝑉2

2 + 𝑉3
2 + 𝑉4

2 + ⋯ 

𝑉𝑓
 × 100  Eq. 5 
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Total harmonic distortion is especially important in ADCs when building the input and sampling 

blocks, as this report will further detail in its design section. 

2.3 OVERSAMPLING CONVERTERS 
As mentioned in Section 2.1, one of the major types of converters is the oversampling ADC, which 

exists in many variations. Oversampling ADCs are characterized as such due to having their 

sampling frequency being greater than twice the bandwidth of the signal, i.e. 

𝑓𝑛 > 2 ∙  𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡𝑠𝑖𝑔𝑛𝑎𝑙  . These types of circuits are implemented when attempting to obtain 

very high accuracy. This is possible because complex and precise analog circuitry is substituted by 

the oversampling ADC’s use of digital signal processing techniques. The sacrifice that is made in this 

case is the throughput that can be achieved [3]. 

 

Figure 5 - Block Diagrams for Nyquist and Oversampled ADCs 

One of the advantages of oversampled ADCs is that aliasing is much less of a concern, in comparison 

with Nyquist ADCs [3]. That is because the signal’s frequency spectrum has frequencies much more 

widely spaced, since the sampling rate is much greater than the signal’s bandwidth. A disadvantage 

of oversampling converters is that a large amount of samples are require to perform a conversion 

to a desired accuracy, versus the Nyquist ADCs, in which every conversion yields an individual 

result. 

Oversampled ADCs are a good option for converters where the signal is band limited, like music 

systems, etc. Since this project does not deal with an oversampling converter, we will not delve into 

more detail concerning oversampling converters.  
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2.4 NYQUIST CONVERTERS 
A Nyquist ADC is a type of ADC that samples the input signal at twice the bandwidth. This is the 

sampling rate adequate for recovering the original signal according to the Nyquist theorem, 

i.e. 𝑓𝑛 = 2 ∙  𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡𝐴𝐷𝐶  , where fn is the sampling frequency of the converter. There are several 

types of Nyquist ADCs in the analog design world. Johns and Martin [9] compares the present ADC 

types with their common uses in terms of speed and accuracy, shown below: 

Table 2 - Speed and Accuracy Correlation with ADCs 

Low-to-Medium Speed, 
High Accuracy 

Medium Speed, 
Medium Accuracy 

High Speed, 
Low-to-Medium Accuracy 

Integrating Successive Approximation 
Flash 

Two-Step 
Interpolating 

Oversampling Cyclic 
Folding 

Pipelined 
Time-Interleaved 

 

In the background portion of this paper, we will overview three types of converters that have been 

recently used in the NECAMSID Lab: Pipelined, Successive Approximation, and Cyclic. 

2.4.1 PIPELINED ADCS  
A common ADC structure, the pipeline converter receives its name from its multistage nature.  

 

 

Figure 6 - Block Diagram of a 16-bit Pipelined ADC [8] 

As Figure 8 shows, the analog input voltage VIN is sampled and enters the ADC. Each stage of the 

converter is responsible for the quantization of a range of bits. Once a stage is completed, its output 

residue voltage of becomes the next block’s input. A final block, containing an n-bit ADC resolves 

the less significant bits of the converter. Finally a digital block receives each block’s output and 

corrects for time and errors. The final decision is then composed. 
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2.4.2 SUCCESSIVE APPROXIMATION ADCS 
Successive-approximation ADCs are one of the most popular techniques for analog-to-digital 

conversion since they are fairly quick in terms of conversion time, while having moderate circuit 

complexity. There are several configurations that would qualify as successive-approximation 

converters. For brevity of this report, we will elaborate on main successive-approximation concept 

and a few variations. For more complete descriptions of different types of successive-

approximation ADCs refer to [9]. 

Some authors recommend that the reader compare the functionality of a basic successive-

approximation converter as a “binary search” algorithm [9]. An interesting way to think about this 

algorithm is to imagine a book with 256 pages, in which you have to guess the page number 

containing a specific event in the novel. However, you are only allowed to ask “yes/no” questions. 

Therefore, using the binary search algorithm, one would try to approximate the number by first 

asking the owner of the book if the event occurs on a page number greater than 128. If the answer 

is no, then the next question would then address if the event occurs on a page number greater than 

64. If so, then the remaining page range would then be divided by two and the same process would 

be repeated. A flow chart presented by [10] is shown below: 

 

Figure 7 - Flow Chart of Successive-Approximation Approach 
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The successive-approximation approach is similar to the anecdote above. The ADC works by 

successively determining the bits of the output starting from the most significant bit (MSB) and 

then checking the next bits. However, this method is very primitive for the world class types of 

ADCs found today. Therefore, many improvements to that concept have been added, such as a 

digital-to-analog converter (DAC) based approximation, using a block known as the Successive-

Approximation Register (SAR). A simple diagram of this functionality is shown below: 

 

Figure 8 - DAC-based Successive-Approximation Converter [9] 

In this case, a sample-and-hold block is usually needed so that the value being converted remains 

constant through the conversion. The SAR is entirely digital and the DAC’s specifications will mostly 

determine the speed and accuracy of the converter. 

2.4.2.1 Charge Redistribution ADC 

Shown in figure Figure 9 is an example of a charge-redistribution ADC [9]. In this case, an array of 

capacitors is used. Its advantage is that the sample and hold, DAC, and comparator blocks are all 

combined into one block. The following chart explains the operation of Figure 9: 

Table 3 - Charge-Redistribution (Figure 9) ADC Explanation 

Operation 
Mode 

Description 

Sample 
 All but the largest capacitor are charged to input voltage Vin while 

comparator is being reset. 
 The largest capacitor is set to Vref/2 

Hold 
 Comparator is taken off reset mode. 
 Capacitors are switched to ground, with the exception of largest capacitor, 

causing voltage on negative terminal of comparator Vx to become  –Vin/2.  

Bit Cycling 
 If Vin is negative, the largest capacitor is switched to ground. 
 If Vin is positive, the largest capacitor is remains at Vref/2.  
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Johns and Martin [9] catalogue other more complex types of SAR ADCs, which include calibration 

and error correction blocks.  

 

 

 

Figure 9 – 5-bit Charge-Redistribution ADC [9] 
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2.4.3 THE CYCLIC ADC 
A Cyclic converter, also known as an Algorithmic converter, is similar in operation to the successive 

approximation converter. However, in the case of the Cyclic ADC, the reference voltage is not 

altered. Instead, the error (or residue) of the amplifier is doubled [9]. 

 

Figure 10 – High Level Block Diagram of a Cyclic Converter [11] 

As the block diagram above outlines, the operation of the cyclic converter functions in the following 

manner: First, the input voltage is sampled by the sample-and-hold block. That value is then 

compared to a threshold voltage, upon which a digital decision is made, determining a bit value in 

the final sequence of the number sampled. A reference voltage is generated by a 1-bit digital-to-

analog converter which is dictated by the digital decision previously made. At the same time, the 

input value is amplified by a factor two (ideally). The amplified value is then summed to a reference 

voltage +/- VREF, leaving a residue voltage. The residue voltage then becomes the input of the 

residue amplifier. This cycle is repeated enough times required to achieve the desired resolution, 

earning the device its name. The sequence of decisions corresponds to the output value of the ADC. 

2.4.3.1 Understanding the Residue Amplifier 

A major part of the cyclic ADC is the residue amplifier. Therefore, in order to better comprehend the 

operation of the ADC, we can take a mathematical approach to explain this concept [11]. The 

equation below shows the relationship between the residue amplifier’s input and output:  

𝑣𝑟𝑒𝑠𝑜𝑢𝑡
= 𝐺 ∙ 𝑣𝑟𝑒𝑠 𝑖𝑛

− 𝑑 ∙ 𝑉𝑟𝑒𝑓  Eq. 6 

 

where G is the gain of the amplifier and d is the digital decision. 
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Assuming ideal conditions, after performing N cycles, the amplifier exhibits the following negative 

feedback loop relationship: 

𝑣𝑟𝑒𝑠𝑜𝑢𝑡 (𝑁) =  𝐺𝑁 ∙ 𝑣𝑟𝑒𝑠 𝑖𝑛
 −  𝐺𝑁−1𝑑1 + 𝐺𝑁−2𝑑2 + ⋯ +  𝐺0𝑑𝑁   ∙ 𝑉𝑟𝑒𝑓  Eq. 7 

 

We can also predict the output code of the ADC by rearranging Eq. 7 into the following form [11]: 

𝑣𝑟𝑒𝑠 𝑖𝑛

𝑉𝑟𝑒𝑓
=  

1

𝐺
𝑑1 +

1

𝐺𝑁−1
𝑑2 + ⋯ + 

1

𝐺𝑁
𝑑𝑁  −  

1

𝐺𝑁
 
𝑣𝑟𝑒𝑠𝑜𝑢𝑡 (𝑁)

𝑉𝑟𝑒𝑓
   

Eq. 8 

 

 

We can define the  
1

𝐺𝑁  
𝑣𝑟𝑒𝑠 𝑜𝑢𝑡 (𝑁)

𝑉𝑟𝑒𝑓
   term of the equation as the quantization error, and the first term as 

the output code x: 

𝑥 =  
1

𝐺
  𝑑1 +  

1

𝐺
 

2

𝑑2 + ⋯ +  
1

𝐺
 
𝑁

𝑑𝑁  
Eq. 9 

 

 
A plot relating the residue amplifier’s input and output can be created, as shown below: 

 

Figure 11 - Residue Plot at G=2 [11] 

 

Figure 12 - Residue Plot with G < 2 [11] 

 

However, maintaining a constant gain of 2 may be challenging. Therefore, when G < 2, the residue 

plot would look like Figure 12. This event makes it possible for two possible decisions for the same 

input value, adding redundancy to the ADC. However, at the same time, it adds a level of complexity 

to the calibration of the converter, which will be discussed in a further section of the document. 
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2.5 THE ROLE OF CAPACITORS  
As the previous section has outlined, the used of capacitors for ADCs is very common. In our, as the 

design sections of this paper will indicate, relies heavily on the use of multiple capacitors that will 

be switched constantly to perform the cyclic function of our ADC. Therefore, we must understand 

how they will affect our circuit and what constraints we are faced with when choosing the correct 

capacitors for our circuit.  

2.5.1 THERMAL NOISE 
Thermal noise is inherent to all electronic circuits and it is caused by a random motion of electrons 

in a conductor. It is a function of temperature and is constant over all frequencies. When designing 

an analog to digital converter, this noise must be accounted for in the design of the sampling 

capacitors. That way, the sample-and-hold amplifier (SHA) will achieve desirable signal-to-noise 

ratios.  Since the SNR is the integral of all the noise in a system, the lower the noise bandwidth, the 

less noise is sampled by the ADC.  Figure 13 below shows a model of a sample and hold switch with 

a dc input and a thermal noise.   

Hold 

 Capacitor

+

Vhold

-

Switch Resistance

Thermal 

Noise

Sample Switch

DC signal

 

Figure 13- Diagram of Hold capacitor with Thermal Noise 

When the sample switch is opened the voltage on the capacitor is the DC signal and the thermal 

noise at the instant the switch is opened. Since the characteristic of the sample and hold circuit is a 

low pass filter the noise above the cutoff frequency of the circuit is attenuated.  In order to reduce 

the bandwidth of the noise the hold capacitor must be sized according to the SNR needed.  

The equation below shows the relationship of capacitance and temperature to the RMS noise of a 

system, which is the ratio of capacitor size to the total thermal noise power of the RC circuit.  

𝑅𝑀𝑆 𝑛𝑜𝑖𝑠𝑒 =  
𝐾𝑇

𝐶
  

Eq. 10 
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2.6 OPTIONS FOR OUTPUT DRIVING 
Every analog-to-digital converter has to interact with an off-chip digital domain, usually an FPGA. 

Although sometimes designers may choose additional output drivers in their circuit at the expense 

of simplicity, there are methods used to improve output performance. In this case, various methods 

were researched. One particular method, known as Low Voltage Differential Signaling (LVDS), 

showed itself to be a promising option for our circuit. Section 2.6 outlines the existing 

configurations and applications of LVDS. 

2.6.1 UNDERSTANDING LVDS 
Usually used for output blocks of ADCs, Low-Voltage Differential Signaling is a technology that was 

officially introduced in 1994 by National Semiconductor. It was born out of the necessity to create 

high performance solutions that consume little power and are susceptible to less noise than the 

common techniques of the time, while being cost-effective, such as RS-442 and RS-485 standards. A 

competing technology was Emitter Coupled Logic (ECL). However, it is incompatible with standard 

logic levels, uses negative power rails, and leads to high chip-power dissipation [12]. 

Table 4 - Comparison Table of Differential Standards 

 

2.6.2 THE CONCEPTS BEHIND LVDS 
LVDS, as the name suggests, is differential – meaning that it makes use of two signals to function. At 

the cost of using an extra trace and space, noise is considerably reduced through common-mode 

rejection. As a consequence, many improvements can be made to the design, such as: 

 Signal swing can be dropped to only a few hundred millivolts due to signal-to-noise 

rejection improvement 

 Rise time is shorter, resulting in faster data rates 

 Very low power consumption across a wide range of frequencies due to low swing and 

current-mode driver outputs 
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2.6.3 DIFFERENT TYPES OF LVDS 
The table below shows the different variations of LVDS found in the market today: 

Table 5 - Industry Standards for Various LVDS Technologies [13] 

 

While the concept of LVDS is the foundation of the standards found in the table above, there are 

various applications for each one. Power consumption, performance, and target application are 

among the differences listed above. For brevity, we will analyze the typical LVDS standard and how 

it applies to this project. If applicable, the other technologies may be explored. 

Different Configurations of LVDS 

There are three common Bus types of LVDS configurations. They are: 

 Point-to-Point 

 Multidrop 

 Multipoint 

 

2.6.3.1 Point-to-Point 

Being the simplest configuration, Point-to-Point offers a direct path from the transmitter to the 

receiver. This is favorable for use in the highest data rates, due to the simple path. A variation of 

this configuration can be seen in Figure 15. All figures in this section are extracted from [12]. 

 

Figure 14 - Point-to-Point Configuration 

 

Figure 15 - Data Distribution Using Point-to-Point Configuration 
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2.6.3.2 Multidrop 

Multidrop is most efficient when various parts of a circuit need to receive the same information. 

There is one driver and two or more receivers along the bus, as the figure below illustrates: 

 

Figure 16 - Multidrop Configuration 

2.6.3.3 Multipoint 

A multipoint configuration uses various drivers and receivers. The advantage to this circuit is that it 

can send information from multiple areas of the circuit, if necessary. However, this configuration 

can get quite complex and speeds are generally lower than the other simpler configurations. 

 

Figure 17 - Example of a Three-Node Multipoint Configuration 

 

2.6.4 CONTRASTING LVDS TYPES AND CONFIGURATIONS 
The article released by National Semiconductor entitled “The Many Flavors of LVDS” [12] 

summarizes the available technologies with the configurations used by them. This matrix is shown 

below: 

Table 6 - Bus Configurations vs. Standards 
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2.6.5 A TYPICAL LVDS CIRCUIT 
The following picture illustrates a high-level configuration for a LVDS circuit. Notice the detail 

showing the reduction in interference due to the interaction in electric fields between the wires, 

which are usually placed as a twisted pair. 

 

Figure 18 - LVDS Driver and Receiver [13] 

In the driver-receiver configuration shown in Figure 18, a 3.5mA current source is found in the 

driver. Due to the high impedance “op-amp characteristic” of the receiver, all of the current flows 

through the 350mV resistor in place. When the driver makes a switch, the current changes 

direction of flow across the resistor and results in a logic state “one” or “zero.” Figure 19 illustrates 

this concept. 

 

Figure 19 - Digital Signaling Model 
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2.6.6 APPLICATIONS 
There are various applications for LVDS. As previously mentioned, the advantages presented by 

LVDS make it a popular technology. Listed below are three common applications of LVDS within 

integrated circuits. 

 Line drivers/receivers – Commonly used to convert single-ended signals into formats for 

transmission over a cable or backplane. 

 SerDes – Serializer/deserializer pairs are used to multiplex a number of low-speed CMOS 

lines and to transmit them as a single channel running at a higher data rate.  

 Switches – Used instead of bus architectures for high data rates. Commonly used for clock 

distribution. LVDS is one of the most suitable signaling standards for clocks of any 

frequency because of reliable signal integrity. 

2.6.7 ASSESSING LVDS IN THE ADC DESIGN PROCESS 
There are various factors to consider when choosing a signaling standard, such as: 

 Required bandwidth 

 Ability to drive cables, backplanes, or long traces 

 Power budget 

 Network topology (point-to-point, multidrop, multipoint) 

 Serialized or parallel data transport 

 Clock or data distribution 

 Compliance to industry standards 

 Need or availability of signal conditioning 
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2.7 THE SPLIT-ADC CONCEPT 
One of the key characteristics of our project is that it is meant to use a Split-ADC architecture. The 

figure below illustrates the basic principle of the split-ADC. Instead of using one converter, the chip 

will have two ADCs performing the same steps over the same input. The output then becomes the 

average of both results. The difference of each ADC’s output is then sent to the error estimation 

block, which is located off chip, in the digital realm [14]. 

 

Figure 20 - Illustration of Split-ADC Concept [11] 

Ideally, the concept behind the split-ADC architecture is simple to comprehend: when the difference 

between outputs xA and xB is zero, the calibration has occurred. This concept is important because it 

will reduce the circuit’s calibration time significantly, as explained in [11]. The following graph 

contrasts the single ADC approach versus a split architecture. 

 

 

Figure 21 - Split ADC Characteristics in Contrast with Single ADC Approach 
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As Figure 21 shows, the trade off in complexity is small compared to the advantages in calibration. 

At the same time, the general speed, power and noise of circuit remains the same. This is because 

the same parts are used but in proportions of one half the original size. 

2.8 THE CURRENT MIRROR 
Biasing is very important to our project, making the necessity to build current sources imminent. 

One of the most common forms of creating a current source is by using a MOSFET current mirror.  

The current mirror relies on the assumption that transistors are closely matched, meaning that they 

are fabricated under the same conditions, matching closely the values of the transistors’ threshold 

voltages, mobility, and oxide capacitance. Therefore, since this level of matching and precision can 

only be achieved in integrated circuits, the current is not commonly realized with discrete 

components. Figure 22 shows a basic configuration for a current mirror. 

  

Figure 22 - Current Mirror Example 

According to the MOSFET Square Law, we can define the current in the transistors as [3]: 

𝐼𝐷 =
𝜇𝑛𝐶𝑜𝑥

2

𝑊

𝐿
(𝑉𝐺𝑆 − 𝑉𝑡)2  Eq. 11 

where ID is the MOSFET drain current, Cox is the capacitance of the oxide, W is the width of the 

transistor, L is the length, VGS is the gate to source voltage and Vth is the threshold voltage of the 

transistor. Therefore for the current ID1 in transistor M1, we can solve for VGS1, 

𝑉𝐺𝑆1 =  
2∙𝐼𝐷1 ∙𝐿1

𝜇𝑛𝐶𝑜𝑥 𝑊1
+ 𝑉𝑡1  Eq. 12 
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As shown in Figure 22, by tying the MOSFET gates together, we force the following relationship: 

𝑉𝐺𝑆1 =  𝑉𝐺𝑆2   

We can now input our value for VGS1 into the current of the second transistor: 

𝐼𝐷2 =
𝜇𝑛2𝐶𝑜𝑥 2

2

𝑊2

𝐿2
  

2∙𝐼𝐷1 ∙𝐿1

𝜇𝑛𝐶𝑜𝑥 𝑊1
+ 𝑉𝑡1 − 𝑉𝑡2 

2

   

Assuming the matching conditions mentioned above, we can assume that 

𝜇𝑛1 =  𝜇𝑛2 

𝐶𝑜𝑥1 =  𝐶𝑜𝑥2 

𝑉𝑡1 =  𝑉𝑡2 

Simplifying our results to 

𝐼𝐷2 =  𝐼𝐷1  
 
𝑊2
𝐿2

 

 
𝑊1
𝐿1

 
    Eq. 13 

When comparing the current mirror to an ideal current source, the model falls short in a few 

aspects. For example, an ideal source has infinite AC impedance, while a MOS mirror has finite 

impedance. Also, the current mirror will have frequency limitations due to capacitive parasitics.  

2.9 THE DIFFERENTIAL PAIR 
The differential pair, sometimes referred to as the differential amplifier, is a vital part of our circuit. 

According to Sedra and Smith, “the differential pair is the most widely used building block in analog 

integrated-circuit design.” This is because differential amplifiers are less susceptible to noise than 

their single-ended counterparts and they also allow for biasing of an amplifier without the use of 

bypass and/or coupling capacitors, saving space on the chip being manufactured [15]. As with the 

current mirror, in integrated circuits, the differential pair relies largely on the ability to match 

components.  

The differential pair can be used in various configurations. In this section we will explore two 

modes of operations: common-mode and differential gain modes. An example of a differential pair 

is shown below: 
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Figure 23 - Differential Amplifier Example [16] 

The differential pair consists of a symmetrical system of two MOSFETS sharing the same bias 

current. The parameters in each transistor can be extracted using the square law equation, seen in 

Eq. 11: 

𝐼𝐷 =
𝜇𝑛𝐶𝑜𝑥

2

𝑊

𝐿
(𝑉𝐺𝑆 − 𝑉𝑡)2   

where the currents at each transistor are equal to 
𝐼𝐷

2
. 

2.9.1 BARTLETT’S BISECTION THEOREM 
The functionality of the system can be explored using Bartlett’s Bisection Theorem, which is based 

on the symmetry of circuits and explores the fact that any two inputs can be represented in a 

common mode and a differential mode. 

 

 

Figure 24 –Amplifier Model 

 

Figure 25 - Common Mode Model 

 

Figure 26 - Differential Mode Model 
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The common-mode voltage can be defined as: 

𝑉𝑐 =
𝑉1+𝑉2

2
  Eq. 14 

And the differential voltage as: 

𝑉𝑑 = 𝑉2 − 𝑉1 Eq. 15 

Using this concept, we can also verify that: 

𝑉1 = 𝑉𝑐 −
𝑉𝑑

2
  Eq. 16 

and 

𝑉2 = 𝑉𝑐 +
𝑉𝑑

2
  Eq. 17 

 

We can represent the half circuit of each circuit model for the example in Figure 23 using the 

bisection theorem, as shown below: 

 

Figure 27 - Half-Circuit Model of the Common Mode  

 

Figure 28 - Half-Circuit Model of the Differential Mode 
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A graph of the large signal characteristics of the differential pair is shown below: 

 

Figure 29 - Signal Input-Output Characteristics of the Differential Input to Each Output 

 

Figure 30 - Large Signal Input-Output Characteristic for the Differential Input to the Differential Output 

To simplify calculations and circuitry it is common practice to attempt to operate with the linear 

areas of the curves shown above. As we said in the introduction, one of our project’s major steps is 

that non-linearity is not as much of a pertinent issue to our circuit, as we will see in later sections.  
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3 HIGH-LEVEL DESIGN 

The objective of this section is to give a brief high level overview of the integrated circuit being 

designed for this project. 

3.1 BLOCK DIAGRAM 
The figure below displays a proposed block diagram for the device. Several sub blocks are displayed 

in the diagram. This approach gives us a modular idea of the design. 

They main blocks found in our design are:  

 Switch Capacitor Array 

 Open Loop Differential Amplifier 

 Bias Circuitry 

 Comparator Network 

 Logic Sub Block  

 Output Drivers 

 

 

Figure 31 - Block Diagram 
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3.2 THE I/O PIN LIST 
***REDO THIS SECTION AFTER TALKING ABOUT PINS AGAIN!*** 

 

Figure 32 - I/O Pin Diagram 

The block diagram is a starting point toward the more complex steps of the design. As mentioned 

above, the block diagram can be used as an analytical tool for simplifying the design steps. Besides 

the block diagram the I/O pin diagram is featured is this report. The I/O pin diagram is designed 

with several assumptions in mind and due to such conditions it is a subject to changes as needed in 

future. 
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4 THE INPUT BLOCK 

The input of our ADC is composed of a sample-and-hold circuit that will enable us to obtain the 

analog input into the input capacitors. Our input block can appear quite complex at first, since we 

are using multiple capacitors. Therefore, for simplicity and visualization of concept, we will first 

start with a basic concept for the input block, shown below: 

 

Figure 33 - Schematic of Input Block 

As the figure above shows, in this simplified version of the input block, the input voltage Vin is 

sampled onto capacitor C1. It is done so through a CMOS transmission gate, a configuration 

involving a pair of opposite type MOSFETs. The use of transmission gates eliminates the 

undesirable threshold voltage effects which give rise to loss of logic levels [3]. The capacitor is 

sampled at every positive of edge of the clock cycle, indicated in this case as Vclkp, and at every 

negative edge of its inverted version, Vclkm, to bias the p-channel transistor.1 

 

  

                                                             
1
 Note: Biasing for transistor M3 is simplified. In actual implementation, the gate voltage on M3 in Figure 33 is 

delayed slightly to reduce charge injection.  



 
 

34 

4.1 TRANSISTOR SIZE OPTIMIZATION 
Transistors in this block need to be properly sized to accommodate our circuit. This task is more 

important than it seems. The transistor sizes will help determine and/or improve several factors of 

the ADC, such as spurious-free dynamic range and total harmonic distortion. Therefore, an 

optimization exercise was necessary to determine the correct widths of the transistors which 

would meet our goals for distortion and acquisition time.  

4.1.1 DEALING WITH THE PRESENCE OF DISTORTION 
One might wonder why distortion is such an important issue to such a simple circuit, like our input 

block. The key is that distortion is present due to variations on the gate voltage. We’ll start by 

looking at the equation for the “on” resistance of the MOSFET: 

𝑅𝐷𝑆𝑜𝑛
=

𝑉𝐷𝑆

𝐼𝐷
=

1

𝜇𝑛𝐶𝑜𝑥
𝑊

𝐿
 𝑉𝐺𝑆 −𝑉𝑇𝐻  

  Eq. 18 

All of the values in Eq. 18 are mostly constant, with the exception of the voltage from gate to source, 

which will constantly with the sampling nature of the input. This change in VGS causes the internal 

resistance of the transistors to change as well. Since the transistor sizes will be different, the values 

in RDSon will not change uniformly. All of these factors contribute to distortion of the signal. 

4.1.2 PERFORMING A PARAMETRIC ANALYSIS 
Our goal for this analysis was to determine the input block’s transistor widths. From previous 

design experience, professor McNeill recommended the following assumptions: 

 The p-channel (M2) transistor will have a width that is 4 times larger than its n-channel 

MOSFET equivalent 

 The n-channel MOSFET (M3) on the top plate of the capacitors should have a width 

proportional (by a factor of x), but not necessarily equal, to the n-channel MOSFETs (M1) on 

the bottom plate 

We can look at this issue as a matter of how much total transistor width we can afford in the chip, in 

terms of chip area. Therefore, we can determine the total width, WTotal, as a function of M1’s width, 

as shown below: 

𝑊𝑇𝑜𝑡𝑎𝑙 = 𝑊𝑄1
+  𝑊𝑄2

+ 𝑊𝑄3
=  𝑊 + 4𝑊 + 𝑥𝑊 Eq. 19 

Rearranging, 

𝑊𝑇𝑜𝑡𝑎𝑙 =  5 + 𝑥 ∙ 𝑊 

𝑊 =
𝑊𝑇𝑜𝑡𝑎𝑙

 5+𝑥 
  Eq. 20 
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As a result, we created a series of graphs, where the values for x, W, and WTotal were swept, to find 

the smallest transistors that would fit our needs. The two main characteristics that relate to these 

values are acquisition time and total harmonic distortion.  To deliver values for those attributes, we 

had to run several parametric equations on Cadence. The following table indicates the values that 

were simulated:  

Table 7 - Swept Attributes 

x 0.1 0.2 0.5 1 2 5 10 

WTotal 10µm 20µm 50µm 100µm 200µm 500µm 1mm 2mm 5mm 10mm 

 
 
The title of each graph indicates the values used for WTotal. On the y-axis, the red lines indicate THD 

and the blue lines indicate acquisition time. The x-axis indicates the value of x. 

Note: The values of x are scaled by a factor of 20, in order to accommodate simulation criteria in Cadence. 
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The results are summarized in the table below: 

Table 8 - Summarized Optimization Results of tACQ and THD 

WTotal 

 [µm] 
x tACQ 

[ns] 
THD 
[%] 

10 0.25 85 1.8 
20 0.5 50 1.0 
50 0.5 30 0.6 

100 0.5 12 0.3 
200 0.5 6 0.15 
500 0.5 3 0.06 

1000 0.5 1.9 0.035 
2000 0.5 1.5 0.025 
5000 0.5 1.1 0.016 

10000 0.5 1.09 0.012 

 
The values chosen were dictated by minimum of THD, which happened at the lower side of 

acquisition time curve. We can observe that there is a relationship between the total width of the 

transistors and the parameters simulated. This relationship is shown below in Figure 34 and Figure 

35. 

 
Figure 34 - THD and WTotal Relationship 

 
Figure 35 - Acquisition Time and WTotal Relationship 

 
As the figures above indicate, the larger widths will give us better parameters. However, the sizes 

used for testing are rather large and must be taken into account, meaning that a compromise will be 

made. As a result, our next step was to set goals for distortion and acquisition time that will 

establish the basis for this compromise. 
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4.1.2.1 Goals for Parameters 

To ensure that our design is competitive, Professor McNeill has indicated that from experience, the 

level of total harmonic distortion should be less than 0.01%. Once again, the Professor’s experience 

in analog integrated circuit design served as a guide for an acquisition time goal. As defined in the 

introduction of the paper, the ADC will perform one million samples per second, translating into 1 

conversion per microsecond. Therefore, we have decided to allow twenty percent of this time for 

sampling the input. The reason for this will be discussed later. Therefore, the goals for our ADC 

input parameters are as follows: 

Table 9 - Parameter Goals 

Parameter Goal 

Total Harmonic Distortion < 0.01% 

Acquisition Time < 200 ns 

 
As the graphs show, the acquisition time is not an issue for us, since all measurements met the 

required goal. The reason for such a loose acquisition time goal will be explained in a further 

subsection. 

4.1.3 CHOOSING TOTAL WIDTH 
When looking at our simulation results, we can see that the total harmonic distortion levels found 

were not below the expected mark of 0.01%. The reason for this is inferred to be the limitations of 

the simulator. The simulations were done under various conditions and yielded different results. 

However, when looking at Cadence’s description of the THD formula, some parameters were not 

easily editable. As a result, we assumed that the total harmonic distortion levels are low enough at 

high values for total width that we were at a very safe margin at a WTotal value of 5mm. 

As stated in Eq. 20, the equation derived that gives us our parameters for width is: 

𝑊 =
𝑊𝑇𝑜𝑡𝑎𝑙

 5+𝑥 
  

Since we have established through the analysis that the total width is 5mm, we can plug in the 

respective values from Table 9. 

𝑊 =
5𝑚𝑚

 5+0.5 
  

 𝑊 = 909µ𝑚  
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Summarizing our new transistor widths: 

Table 10 - Values for Transistor Widths 

 M1 M2 M3 

Expression W 4W xW 

Value 909 µm 3.63 mm 454.5 µm 

 

4.2 REDUCING THE NOISE FLOOR 
Until this point in the design of the input block, acquisition time has been a specification easily met. 

However, the reason for which we allotted 200ns for the ADC to sample is related to spectral noise 

reduction and SNR. In order words, the internal “on” resistance of the MOSFETs, combined with the 

input capacitor, create a frequency roll-off at a high frequency. The picture below shows an example 

of this case.  

 

Figure 36 – Motivation for Noise Floor Reduction 

If rDSon takes on a value of 50 Ω, the frequency roll off, fh, will be found at 8 MHz, or in theory, 

𝑓 =
1

2𝜋∙𝑅𝐶
  Eq. 21 

The blue shading indicates the location of the frequency roll-off. However, since our ADC’s 

bandwidth is simply 500 kHz, we can decrease the length of the noise floor by adding a resistance 

to the circuit, as shown in Figure 37. 



 
 

40 

 

Figure 37 - New Input Circuit Model with Added Resistor 

To find this resistance, we must find how many time constants are necessary to obtain the precision 

desired for the ADC. In this converter, since we are attempting to have a 16-bit converter, the 

accuracy level is going to be within ½ Least Significant Bits of the ADC, as shown below: 

𝑡𝑎𝑙𝑙𝑜𝑤 = ln 217  ∙ 𝜏  Eq. 22 

where τ is the RC circuit’s time constant and tallow is the value pre-determined as the input sampling 

duration. Restructuring the equation, we’ll have: 

𝜏 =
𝑡𝑎𝑙𝑙𝑜𝑤

ln 217 
≈  

200 𝑛𝑠

12
= 16 𝑛𝑠   

 
Knowing that our   𝜏 =  𝑅𝐶   time constant is 16ns, we can solve for the resistor size. Since we have 

a capacitor value of 4pF on C1, 

𝑅 =
16 𝑛𝑠𝑒𝑐

4𝑝𝐹
   

 
𝑅 = 4𝑘𝛺  

As expected, the input block will now have its acquisition time increased drastically. However, we 

had already allotted 200ns for the sampling of the circuit. To ensure the acquisition time is under 

200ns, the figure below shows the acquisition time according to the different resistance values from 

0 to 10kΩ: 
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Figure 38 - Acquisition Time Dependence after Adding New Resistor 

4.2.1 RESISTOR TOLERANCE 
According to the JAZZ library help files, the resistor tolerances will vary approximately by 25%. 

That assumption is made based on the following documentation: 

 

Therefore, we can see that our circuit may have a higher acquisition time than expected at 5kΩ. 

However, that time is still below the 200ns mark. 

Table 11 – Effect of Tolerances 

 -25% Expected +25% 

Value 3 kΩ 4 kΩ 5 kΩ 
tACQ 111 nsec 148 nsec 185 nsec 

 
To see the variation, the THD was also simulated. We can see that the swing in distortion does not 

vary much, as shown in Figure 39. 
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Figure 39 - THD Dependence on Resistor Variation 

 
Using Eq. 21, our roll-off frequency will now be 

𝑓 =
1

2𝜋∙𝑅𝐶
=

1

2𝜋∙16𝑛𝑠
= 9.95 𝑀𝐻𝑧   

 
𝑓 ≈ 10 𝑀𝐻𝑧   

 

As stated in Section 2.5.1, the SNR of ADC is the integral of all the noise in a system. Therefore, by 

reducing the noise floor, we have reduced the signal-to-noise ration of the ADC as well. 

4.2.2 IMPLEMENTATION OF INPUT BLOCK 
In the actual input block, we will use 4 capacitors in of size 1pF. Therefore we have to size all 

transistors accordingly. The next page shows a diagram of this concept. Also, a Split-ADC 

architecture will be used, meaning that the capacitor values will be half of the current values. 

Instead of four capacitors, eight will be used and the resistor will be sized appropriately. 
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5 THE SWITCHED CAPACITOR NETWORK 

One of the key characterisitcs of the Cyclic ADC is that it is able to use sampled values after a 

decision has been made and apply those values to the residue amplifier. The ability to do analog 

math with these values and sample the input with ease comes from the switch capacitor array. 

 

Figure 40 - Switch Capacitor Array Block and its Interaction with other Blocks 

The switch capacitor network interacts with every block of our design, since the values on the 

capacitor dictate the input and output values of the ADC. 

It is not surprising that an extensive amount of time was spent in this network. This section will 

serve to explain the various switch capacitor designs create and the reasons why those designs 

were discontinued. We will also overview the final design and its benefits. 
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5.1 DEFINING THE CORRECT NUMBER OF CAPACITORS FOR THE NETWORK 
An important of our design, which adds to its level of complexity, is the number of capacitors used 

in the network. More capacitors equate to more transistors being used for switching and 

transmission. Therefore, our approach is to be conservative in the number of capacitors used. 

5.1.1 USING ONE CAPACITOR 
Before we describe our approach it is important to define what is meant by using one capacitor. As 

the simplified diagram below shows, there is one capacitor on the input and one capacitor on the 

output of the differential amplifier. The differential counterpart is not considered in this example 

for simplicity. One capacitor means that the amplifier’s input will have one capacitor and the 

amplifier’s output will have one capacitor as well. This number is doubled for the differential 

functionality.  

 

Figure 41 - Example of Using One Capacitor 

Although the approach of using one capacitor makes the circuit’s functionality very simple, this 

approach proved to be ineffective immediately. This is due to a simple factor. Symbolized in the 

graph as VDAC is the block responsible for choosing a decision based on a previous block. The 

decision created by this block results in the switching to its respective voltage reference. However, 

since our differential amplifier does not have a perfect gain of 2, two additional decisions need to be 

made. With this design, two additional voltage references would need to be created. Since industry 

standards and common practice usually limit the amount of off-chip reference voltages, we felt it 

was necessary to introduce an extra capacitor to incorporate decisions -2, -1, 0, +1, and +2. 
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5.1.2 USING TWO CAPACITORS 
To incorporate the desired decisions, the use of 2 capacitors was then implemented. Since we have 

a positive, negative, and common mode reference voltage available for each capacitor, the resulting 

decision would be represented as the diagram below indicates: 

 

Figure 42 - Diagram of Decisions with 2 Capacitors 

As Figure 42 indicates, the sum of the value on the top plates of the capacitors will be the input of 

the differential amplifier. This approach makes it possible to introduce the desired +/- 1 decisions. 

In comparison with Figure 41, the value of each capacitor in this new design is half the size of the 

single capacitor configuration, making the total capacitance the same. 

 

5.1.3 TESTING THE TWO CAPACITOR SYSTEM 
As our testing indicated, implementing the +/- 1 decisions was now possible, but not as effective as 

expected. The circuit used for testing this decision is shown below: 

 

Figure 43 - Test Circuit for +/- 1 Decision 
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In other decisions, no charge is redistributed into the capacitors before switching. However, in this 

case, the issue lies with the fact that the +/- 1 decision mode does give the two capacitors a 

difference in potential, meaning that the capacitors will redistribute their charge when attached to 

the same node. Also, for our differential amplifier to obtain the predertimend desired settling time 

of 1 nanosecond or less, the MOSFET widths had to be made very large. As result, the parasitics on 

the gates of the transistors cause a tremendous amount of charge injection into the capacitors. The 

figure belows shows this occurance: 

 

Figure 44- Example of Charge Injection: Capacitor being Switched between a 500µm PMOS and a 250µm NMOS 

As the transient response above shows, over 100mV of impact is done by charge injection, indicated 

by point M1. Therefore a new alternative had to be created. 

 

5.2 THE FINAL SWITCH CAPACITOR DESIGN: FOUR CAPACITORS 
Our approach in resolving this issue was to try to minimize the charge injection coming from the 

gate of the transistors. This effect is due to a high internal resistance of the transistor, caused by 

low overdrive voltages. The low overdrive voltage was mainly found in the transistors that switch 

to Vicm. Consequently, an alternative was to not use Vicm as a reference voltage. Instead, some analog 

math would be done with four capacitors to give the same voltage levels desired in the previous 

iterations of the design. Therefore, by increasing the number of capacitors, we can decrease the 

overdrive voltage on the MOSFETs and have less charge injection. We used a total of 4 capacitors, 

each with a value of ¼ of the original.  
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The following figure shows the new manner in which the decisions are made: 

 

Figure 45 - Method for Using 4 Capacitors 

Figure 46 shows the simulated circuit for the 4 capacitor approach: 

 

Figure 46 - Circuit Implemented with 4 Capacitors 
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Using the 4 capacitor implementation, the overdrive voltages for the MOSFETS are much greater, 

reducing the Rdson of the MOSFETs allowing much smaller widths to be used. Using this 

implementation charge injection is reduced by a factor of about 4. The figure below shows a 

comparison of the 2 capacitor model and the 4 capacitor model for the implementation of the +1 

decision.  

 

Figure 47- Comparison of 2 and 4 Capacitor Implementation of +1 Decision 

As seen in the figure above, using the four capacitor circuit for the implementation of the +1 

decision reduces the input settling time to around 340ps while reducing the charge injection to 

38mV.   As seen in the figure below, this improvement is seen across various capacitor voltages.  

 

Figure 48 Comparison of 2 and 4 Capacitor Implementation of +1 Decision 
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5.3 DETERMINING VOLTAGE REFERENCE VALUES FOR SWITCHED CAPACITORS 
The voltage references being used by the ADC were originally found when using a two capacitor 

approach. However, the reference voltages were kept for the four capacitor approach. The solution 

is based on the principle that the positive and negative reference voltages can be found when the 

difference between them is the common output voltage after shorting the inputs and outputs of the 

differential amplifier.  

 

Figure 49 - Derivation for Reference Voltages 

Therefore, we can derive the following two equations: 

𝑉𝑟𝑒𝑓𝑚 −   𝑉𝑜𝑢𝑡𝑚𝑖𝑛 − 𝑉𝑜𝑐𝑚  =  𝑉𝑖𝑐𝑚   Eq. 23 

 
𝑉𝑟𝑒𝑓𝑝 −   𝑉𝑜𝑢𝑡𝑚𝑎𝑥 − 𝑉𝑜𝑐𝑚  =  𝑉𝑖𝑐𝑚  Eq. 24 

which, after some basic manipulation, will turn into: 

𝑉𝑟𝑒𝑓𝑚 =  𝑉𝑖𝑐𝑚 +  𝑉𝑜𝑢𝑡𝑚𝑖𝑛 − 𝑉𝑜𝑐𝑚  Eq. 25 

 
𝑉𝑟𝑒𝑓𝑝 =  𝑉𝑖𝑐𝑚  + 𝑉𝑜𝑢𝑡𝑚𝑎𝑥 − 𝑉𝑜𝑐𝑚  Eq. 26 

 
Plugging in our values (specified in section 6.2), we get: 

𝑉𝑟𝑒𝑓𝑚 =  1.09𝑉 +  0.96𝑉 − 1.3𝑉 

𝑽𝒓𝒆𝒇𝒎 =  𝟎. 𝟕𝟓𝑽  

𝑉𝑟𝑒𝑓𝑝 =  1.09𝑉 + 1.64𝑉 − 1.3𝑉 

𝑽𝒓𝒆𝒇𝒑 =  𝟏. 𝟒𝟑𝑽  
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6 DIFFERENTIAL AMPLIFIER 

The following section concerns the differential amplifier block. Shown below is the schematic 

representation of the differential amplifier and supportive components attached to it. The behavior 

of the differential amplifier and equations that governed its qualitative analysis were introduced 

previously in section 2.9. The role of each supportive component will be described in separate 

sections that follow.  The goal regarding the design of the differential amplifier was using an open-

loop differential amplifier in order to reduce the power consumption. The nonlinearity introduced 

by the open-loop configuration was planned to be processed by digital means.  

Shown below is the differential amplifier circuit in transistor level. Components that form the 

whole circuits will be described below. In order to gets a better understanding regarding the role of 

each transistor in this circuit; it would be helpful to group together the ones that interact with each 

other. 

VDD

I_in (input current to bias 

the block)

RD RD

VDDVDD

Out1 Out2

Gnd

Reset_Out

Vocm

Reset_Out

Vocm

In1 In2

Reset_In Reset_In

Vicm Vicm

VDD

M3rep M4rep

M1 M2

M5

M6 M7

M8
M9

M10

M11
M12

 

Figure 50-Schematic Representation of Differential Amplifier 
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6.1 FUNDAMENTAL COMPONENTS OF THE DIFFERENTIAL AMPLIFIER 
Indentifying transistors that form parts of the differential amplifier are listed below. By doing so, 

one can simplify the analysis of a complicated circuit such as the circuit in discussion. 

 The main part of this circuit is the differential amplifier that is composed by M1, M2, M9, 

and both RD resistors. 

 Replica bias sub circuit is composed by M3rep, M4rep, M5, and M11.   

 The transistor, M10, sets the gate voltage for M9 and M11. 

 Transistors M6 and M7 allow for resetting the output of the differential amplifier to a 

known value of the output common mode. 

 Transistors M8 and M12 also allow for resetting the input of the differential amplifier to 

input common mode value.    

6.2 DIFFERENTIAL AMPLIFIER VOLTAGE LEVELS 
Another aspect of the differential pair design was choosing the input, output, and common mode 

voltage levels for the device.  In order to start the design for this part known variables were listed 

and several assumptions were initially considered.  

 Power supply rails range from ground (VSS = 0V) to VDD = 1.8V.   

 Threshold voltage for the transistors used in designing the differential amplifier was 

selected, Vth = 0.45V. The threshold voltage was found in the available Jazz libraries.  

 

Figure 51- Differential In-Out Characteristic 
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The derivation of the voltage levels started based on four equations, which will be discussed in this 

section. The first set of equations involves determining the triode crashes within the differential 

amplifier.  The derivation of the following equations were based on the limitations that differential 

amplifier faces. Below is shown the input output characteristic graph for the differential amplifier 

which served as a guide to derive the equations that govern the input and output ranges of the 

differential pair.  

The low triode crash happens when inputs are equal to each other. In other words: 

𝐿𝑜𝑤 𝑡𝑟𝑖𝑜𝑑𝑒 𝑐𝑟𝑎𝑠 →  𝑉𝐼𝑃 = 𝑉𝐼𝑀 = 𝑉𝐼𝐶𝑀  Eq. 27 

 
An assumption made regarding the transistor, M9, that serves as the biasing of the differential 

amplifier was that the minimum drain to source voltage must be equal to, VDS = 0.3V for this device 

to be in saturation region. 

Below are shown known voltages and the equation for the gate to source voltage for M1. 

Vth = 0.45V     

VDS = 0.3V     

 𝑉𝐺𝑆1 = 𝑉𝑡 +  𝑉𝑜𝑣1  Eq. 28 

 
The four base equations used were the following;  

Eq. 29 describes the low triode crash of the device: 

𝑉𝐼𝐶𝑀 −  𝑉𝑡 +  𝑉𝑜𝑣1 = 0.3𝑉 Eq. 29 

 
Equation Eq. 30 describes the high triode crash of the device: 

𝑉𝑡 − 0.15 =  𝑉𝐼𝐶𝑀 +
𝑉𝐼𝑅

2
 −   𝑉𝑂𝐶𝑀 +

𝑉𝑂𝑅

2
    Eq. 30 

 
Equation Eq. 31 describes the output voltage range for the differential pair that is given by: 

𝑉𝑂𝑅 = 𝐺 ∗ 𝑉𝐼𝑅  Eq. 31 
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Equation Eq. 32 relates the input range of the differential amplifier assumed to be at a value 

approximately equal to M1 overdrive voltage: 

𝑉𝐼𝑅 ≈ 𝑉𝑜𝑣1 = 0.15V  Eq. 32 

 
By using all the assumptions made above and values available, the VICM value can be found as shown. 

Plugging in Vth and solving for VICM, we obtain: 

𝑉𝐼𝐶𝑀 =  𝑉𝐼𝑅 + 0.75𝑉 Eq. 33 

 
The next step is to solve Eq. 30. Using Eq. 31 we can substitute VOR for 2VIR, and have the following: 

𝑉𝑡 − 0.15 =  𝑉𝐼𝐶𝑀 +
𝑉𝐼𝑅

2
 −   𝑉𝑂𝐶𝑀 −

2∗𝑉𝐼𝑅

2
    

0.45 − 0.15 =  𝑉𝐼𝐶𝑀 +
𝑉𝐼𝑅

2
 −   𝑉𝑂𝐶𝑀 − 𝑉𝐼𝑅    

0.3 = 𝑉𝐼𝐶𝑀 +
3𝑉𝐼𝑅

2
−  𝑉𝑂𝐶𝑀   Eq. 34 

 
The next step is to substitute VICM from Eq. 33: 

0.3 =  0.75 + 𝑉𝐼𝑅 +
3𝑉𝐼𝑅

2
−  𝑉𝑂𝐶𝑀     

Reordering the equation to solve for VOCM as a function VIR we get: 

𝑉𝑂𝐶𝑀 =
5𝑉𝐼𝑅 +0.9

2
  

Eq. 35 

Respectively, we could have solved this equation for VIR: 

𝑉𝐼𝑅 =
2𝑉𝑂𝐶𝑀 −0.9

5
  Eq. 36 

 
Finally, we must find VICM. To do so, we’ll plug Eq. 36 into Eq. 33, obtaining: 

𝑉𝐼𝐶𝑀 =  
2𝑉𝑂𝐶𝑀 −0.9

5
+ 0.75   

Eq. 37 
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With these results, we can plot the equations on the same axes, since all equations are represented 

as a function of VIR, as shown below: 

 

Figure 52 - Voltage Ranges Plot 

We can use the voltages shown on Figure 52 to observe the impact of changing the voltage ranges of 

the circuit. As the figure above shows, we can use the point of intersection between VICM and VIR as 

our choice for voltage ranges: 

     𝑉𝑖𝑟 = 0.34𝑉 

     𝑉𝐼𝐶𝑀 = 1.09𝑉 

     𝑉𝑜𝑟 = 0.64𝑉 

     𝑉𝑂𝐶𝑀 = 1.3𝑉 

 
Once the above voltage levels were found, they were used in the derivations of the resistive load 

values and the differential pair bias current. 
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6.3 DERIVATIONS OF OTHER DIFFERENTIAL AMPLIFIER PARAMETERS 
The topology used for the load of the differential amplifier is the resistive load. The reason for using 

a resistive load is that the maximum gain needed for this application is a gain of two, which is a 

small gain that easily can be achieved by the resistive load configuration. Therefore, the use of a 

resistive load topology meets the constraint being faced (low gain) and minimizes the complexity of 

the circuit.   

For analysis a simpler differential pair schematic is shown below with a load capacitor that will be 

used to derive the resistive load values and the biasing current of the differential amplifier. 

 

Figure 53-Simplified Differential Amplifier Circuit 

6.3.1 DERIVATIONS OF RESISTIVE LOAD VALUES AND BIAS CURRENT 
Proper biasing of the differential amplifier is an essential part in this design. In the differential pair 

circuit the bias current determines factors such as the slew rate of the amplifier, speed and 

acquisition time of the amplifier while keeping all of the internal MOSFETs in their active region. 

For the differential pair bias current there is a tradeoff of power consumption and speed. The faster 

the settling time needed to achieve a small error margin, the more current is needed to bias the 

differential pair.  In this circuit the voltage on the load capacitor needs to be resolved in 14 bits 

accuracy in less than 20ns. 
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In order to acquire a signal and resolve to 14 bits resolution on the load capacitor we must have at 

least 9.7τ (RC time constants) as shown in the equation below: 

ln 2− # 𝑜𝑓  𝑏𝑖𝑡𝑠  𝑡𝑜  𝑟𝑒𝑠𝑜𝑙𝑣𝑒   = # 𝑜𝑓 τ 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑎𝑐𝑖𝑣𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 Eq. 38 

 
ln 2−14 = 9.7τ Eq. 39 

 
To find the resistance needed to achieve at least 9.7τ in the 20ns allotted we must find what τ is in 

the circuit, which is seen in the equations below:  

 τ =  
20𝑛𝑠

10
= 2𝑛𝑠 Eq. 40 

 
With the RC time constant known and the capacitance value assumed to a certain value as shown 

below, the resistance necessary for the resistor load for the differential pair can be calculated by 

making a use of the equation below:  

 𝑅 =  
τ

C
 Eq. 41 

 
The capacitor value used in the above equation was chosen to be, C = 4pF. The C value was decided 

while keeping in mind the SNR requirement in this project.  For SNR description refer to section 2.2. 

After putting all values in the resistor equation the resistor value needed for differential amplifier 

load was found to be: 

𝑅 =
2.061𝑛𝑠

4𝑝𝐹
= 515.3Ω ≈ 500Ω   Eq. 42 

 
Knowing the values of the resistors in the resistive load portion of the ADC and the 𝑉𝑜𝑐𝑚 one can 

calculate the bias current needed to operate the differential pair.  The equation below is used to 

determine the current through each branch of the differential amplifier:   

 
𝐼𝐵𝑖𝑎𝑠

2
=

𝑉𝑑𝑑−𝑉𝑜𝑐𝑚

𝑅𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟  𝑙𝑜𝑎𝑑
 Eq. 43 

 
Plugging the values from above the current through one branch of the differential pair results to be: 

𝐼𝐵𝑖𝑎𝑠

2
=

1.8𝑉−1.3𝑉

500Ω
= 1𝑚𝐴  Eq. 44 
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Therefore, the differential pair bias current would be the sum of the currents from both branches 

that results to be:  

    𝐼𝐵𝑖𝑎𝑠  =     
  𝐼𝐵𝑖𝑎𝑠

2
+

𝐼𝐵𝑖𝑎𝑠

2
= 2𝑚𝐴   Eq. 45 

 

6.4  REPLICA BIAS ANALYSIS 
A replica bias circuit schematic is shown below. One of the advantages of such circuitry is that it 

applies a reference voltage to a targeted transistor gate, in this case to the “leg” of the differential 

pair, M9, shown in the figure below. As mentioned before, the replica bias circuit used in this design 

is composed by M3rep, M4rep, M5, and M11. In the schematic below M9 is the “leg” of the 

differential amplifier shown here for supporting the analysis of the replica bias circuit. Transistor 

M10 is shown for the same purpose described for M9.   

6.4.1 PROS AND PURPOSE OF USING REPLICA BIAS 
The use of replica bias minimizes the channel length modulation on the current bias source. Replica 

bias creates the same VDS as the original circuit being replicated, thus minimizing channel length 

modulation.  Designing a replica bias circuit requires a special care in terms of transistor matching. 

As the name of this circuit suggests, it replicates the behavior and functions of the circuit that it 

supports, in this case the differential amplifier. Therefore, the transistors M3rep and M4rep used 

for designing this sub circuit are a factor of 10 smaller compared to M1 and M2 used in 

implementing the differential pair itself.  The reason for downsizing the transistor sizes is that it 

minimizes the current usage, die area, and power consumption by the factor that the size decreases, 

in this a factor of 10.   

6.4.2 DESIGNING REPLICA BIAS 
The first step in designing the replica bias circuit is creating the replicated differential pair through 

M3rep and M4rep with transistor sizes that varied as described above. As mentioned before the 

replica bias circuit is composed by M3rep, M4rep, M5, and M11. The role of M5 in the circuit is that 

it sets the M9 gate voltage by subtracting a constant voltage, 309.5mV, from the common drain 

node of M3rep and M4rep (the constant voltage drop was measured in the actual node of the 

replica bias). In addition, M11 is part of the design of replica bias.  

Beginning with M3rep and M4rep the function of this circuit can be explained as follows. First, 

when VIP and VIM are the equal the common source voltage is in its lowest level, which lowers the 

current through M11 due to the channel length modulation effect. Since the current through M11 



 
 

59 

decreases there is an excessive current supplied by I_in which in turn charges the gate of M5. 

Charging the gate of M5 leads to a decrease in VDS of M5 which in turn increases the gate voltage of 

M11. Increasing the gate of M11 leads to an increase of the current through M11, therefore 

reestablishing the current in the whole circuit. Since the gate of M11 is the connected to M9, the 

bias of the differential amplifier, the differential amplifier biasing current in maintained to a 

constant value.    

 

Figure 54-Schematic Representation of Replica Bias   
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6.4.3 SIMULATION OF THE REPLICA BIAS CIRCUIT 
Shown below is the result of a simulation performed to verify the proper functionality of the replica 

bias circuit. Notice, for VIM = VIP the gate voltage of M9 is at its highest level. Indeed, notice the 

behavior of the differential pair bias current; it behaves as expected. In other words, the bias 

current increase/decreases accordingly to the change of M9 gate voltage. 

 

Figure 55-Replica Bias Simulation 

Al l the above derivations contribute to the design of the differential amplifier.  

6.4.4 DIFFERENTIAL PAIR SYMBOL REPRESENTATION 
The figure that follows is a symbol representation of the of the differential amplifier schematic 

shown above.  Once the differential amplifier was designed a symbol representation was created. 

Notice all the input and output pins attached to the differential amplifier.   

 

Figure 56-Symbol Representation of Differential Amplifier  
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7 THE LOGIC BLOCK  
Our circuitry is highly dependent on logic to operate. Many functions like, the control and timing of 

switching, the digital decision making, and others are performed by this block. In this section we 

will outline the various components created to perform the necessary logic functions for the cyclic 

ADC. 

 

Figure 57 - Logic Block and its Interaction with other Blocks 

7.1 DRIVING TRANSISTOR GATES THROUGH OPTIMIZATION 
Certain transistor gates play the role of switches in given sub circuits throughout the design. The 

gates of such transistors vary in terms of their dimensions, thus requiring a higher level of gate 

voltage for turning them on and off. The ability of a given gate to turn on and off within a short 

required time is critical in certain parts of the circuit. For instance, in the sample-and-hold circuit, 

the transistor gates that form the switch, which allow the initiation and termination of both 

functions (sampling and holding), should respond to a signal request for switching between 

functions in a relative short time. In order to achieve the necessary gate behavior discrete buffer 

components available in Jazz library were used. Indeed, since the gate dimensions vary buffers of 

different sizes were designed. For this application a “tapered” buffer topology was used. 
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7.1.1 TAPERED BUFFER 
The specific topology of a tapered buffer refers to a series of stages of buffers connected together 

where a stage that follows increases by a factor of (X) compared to the previous stage. The 

advantage of using the following configuration is that a relative small signal coming from, say, a 

digital block can drive a large gate of a CMOS switch. The function of tapered buffer can explained 

as follows. The small signal coming from the digital block drives (turns on) the gate of the first 

buffer stage, which in turn optimizes the signal in order to drive the gate of the next buffer stage, 

therefore as the stages cascade the signal is optimized to drive a given switch transistor gate. 

7.1.1.1 Pro’s and Con’s of Using Tapered Buffers 

The use of buffers allows avoiding loading the output stage of the driving block, in this case the 

digital driving block. The disadvantage of not using buffers would be that the time required to reach 

the voltage level needed to drive certain gates may increase leading to less time available for the 

rest of the circuit to perform all of it functions. Indeed, if a gate is not turned on or off within a given 

window of time there may be leakage at the output side of the block or charge injection occurrences 

due to discharges at open gates. The worst case may be that the driving block will face a load 

(capacitance of the gate to be driven) which it cannot drive due to its low output specifications.  
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7.1.1.2 Buffer Schematics and Symbol 

Below are displayed the minimum buffer size used in designing all necessary buffers for driving the 

sample and hold circuit gates and a tapered buffer schematic in transistor level.  

 

Figure 58 - Discrete Buffer Component 

Notice that the minimum buffer size used has a length of factor 16 of the processes being used for 

designing these buffers available in Jazz library.  

The following figure represents the tapered buffer schematic in transistor level. Notice the width of 

the second stage increases by an “n” factor compared to the first stage. 

 

Figure 59-Schematic of a Buffer in Transistor Level 

The figure below shows a two stage tapered buffer of size 32. As it can be seen the second stage is a 

factor of two bigger compared to the first stage. 

 

Figure 60 - Tapered Buffer of Size 32 
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The representation of the buffer above is in schematic form. After the schematics were designed 

symbol representations were created and stored.  

Figure below is a representation of a tapered buffer (size 32) symbol that can be imported into a 

given schematic in order to optimize a specific signal.  

 

Figure 61 - Tapered Buffer Symbol (size 32) 

A number of buffers that ranged from 16 to 1024 were designed and stored in working libraries for 

later use. Indeed, for greater flexibility the designed buffers increased by a factor two. In other 

words, the designed buffers ranged from 16, 32, 64… 512, 1024. A graphical representation of the 

buffer series is shown below.  

 

Figure 62-Representaion of the Tapered Buffer Topology 

An example where the buffers were used to optimize the output signal of a digital block in order to 

drive the transistor gates was the sample-and-hold circuit. 

7.2 SAMPLE AND HOLD CIRCUIT SIMULATIONS 
Initially all the tapered buffers describe above were designed to drive the gates involved in the 

sample and hold circuit at the front end of the design. In the figure below Vin represents the analog 

input signal to be sampled; M1 and M2 represent the signals coming from a digital block in order to 

drive the gates of the CMOS switch constructed by nfet_4 and pfet_4 in Cadence. At the output side 

M3 is another signal that drives the output gate which in turn loads the value stored in capacitor C1 

into the residue amplifier (not shown here).  
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Figure 63-Schematic Representation of the Sample and Hold Circuit  

After designing a number of tapered buffers a series of simulations were conducted in order to 

analyze the signal response based on the applied buffer size and determine the appropriate buffer 

size needed to be used to drive a given gate. 

7.2.1.1 Rise Time and Fall Time Measurements 

The table below shows the combinations of components used for a series of simulations where the 

rise time, fall time, and the delay time with respect to the original signals were studied. For 

measuring the rise time a voltage level of 0V to 1.0V was used, whereas for measuring the fall time 

the range from 1.8V to 1.0V was substituted instead. Also, notice that in order to get more data 

points the buffer size was incremented by a factor of two. 

Table 12 - Rise Time and Fall Time Measurements for Sample and Hold Circuit Simulations 

NMOS 
Switch 

(910µm)S2 

----------------- 
Buffer Sizes 

Rise 
Time 
(psec) 

Fall 
Time 
(psec) 

PMOS Switch 
(3705µm)S3 

-------------------- 
Buffer Sizes 

Rise 
Time 
(psec) 

Fall 
Time 
(psec) 

NMOS 
(460µm)S1 
---------------

- 
Buffer Size 

Rise 
Time 
(psec) 

Fall 
Time 
(psec) 

16 270 145 16 1750 1021 16 162 90 
32 140 86 32 940 528 32 90 59 
64 84 53 64 450 460 64 60 40 

128 53 41 128 230 120 128 40 32 
256 46 41 256 100 69 256 31 30 
512 33 27 512 81 47 512 28 24 

1024 30 25 1024 53 35 1024 28 22 
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7.2.1.2 Rise Time and Rise-Time Delay Response Analysis Though Simulations 

The following figure shows all signals grouped together for the NMOS gate at the output stage of the 

sample-and-hold circuit; the original signal is represented by S1. The following simulations are 

used for measuring rise time, and time delay for each output signal. Signal S1 refers to the original 

signal coming from the digital block and the rest of the signals are the outputs for each applied 

buffer. Starting from left to right it can be seen that buff16 does not optimize the original signal due 

to the fact that the rise time is similar to S1 and time delay is longer compare to buff64 output 

signal.  Buff64 has a shorter rise time compare to buff16 and buff32 and relatively the same rise 

time compare to buff128, buff256, buff512, and buff1024. Also, buff 64 has a shorter time delay 

compare to the rest of the signals leading to the conclusion that for driving this gate this buffer size 

is the one that gives the best gate behavior.   

 

Figure 64-Rising Edge of Signal for Different Buffer Sizes 

 

7.2.1.3 Fall Time and Fall-Time Delay Response Analysis Though Simulations 

Another simulation was performed for analyzing the falling time and falling-time delay response. In 

this case the NMOS transistor gate at the CMOS switch was observed. Signal S2 refers to the original 

signal coming from the digital block and the rest of the signals are the outputs of the applied 

buffers. For analyzing the following simulation the same procedure used for analyzing the rise time 

case was applied leading to the conclusion that for driving this transistor gate in the given 

dimensions buff64 is the best fit. 
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Figure 65-Falling Edge of a Signal for Different Buffer Sizes 

7.2.1.4 Rise-Time Delay and Fall-Time Delay Measurements 

Shown below is a table with the recoded data for time delay analysis for all gates. In order to have a 

better understanding of the results the time delay was plotted versus the buffer sizes used. 

Table 1-Rise-Time Delay and Fall-Time Delay for the Optimized Signal 

 S1 
Time in (pSec) 

S2 
Time in (pSec) 

S3 
Time in (pSec) 

Buffer_Sizes Rise_Delay Fall_Delay Rise_Delay Fall_Delay Rise_Delay Fall_Delay 

16 210 264 316 225 1817 1370 

32 200 210 262 230 1040 750 

64 180 193 212 211 590 450 
128 223 253 242 263 430 342 

256 227 256 238 262 329 300 

512 283 322 290 326 336 345 

1024 293 330 298 332 320 342 

 

7.2.1.5 Choosing Buffer Sizes through Graphical Approach 

Figures that follow show the graphs of time delays versus buffer sizes. As it can be seen time delay 

decreases as the buffer size increases up to a certain buffer size thereafter the time delay increases 

rapidly. Thus, we can see the tradeoff between increasing the buffer size and decreasing the time 

delay for a given gate and decide which buffer to use. 
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Figure 66-Plot of Rise Time Delays vs. Buffer Sizes for the Gate at the Sampling Capacitor 

In the graph above it can be seen that rise-time delay for NMOS gate at the output decreases to its 

minimum for buff64 (log10 = 181) and rise-time delay (log10 = -9.74), which is the same result 

observed in the simulations approach.  

 

Figure 67-Plot of Fall Time Delays vs. Buffer Sizes for the Gate at the Sampling Capacitor 

The fall-time delay for the same gate decreases to a lower value for buff 64 and fall-time delay (log10 

= -9.71), again it is the same result observed in the simulation presented above.  
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Figure 68-Plot of Rise Time Delays vs. Buffer Sizes for the NMOS Gate at the Sampling Switch 

The figure above displays the plot of rise-time delay vs. buffer size for NMOS gate at the CMOS 

switch. In this case time delay reaches its minimum value for buff64 and rise-time delay (log10 = -

9.68).  

 

Figure 69-Plot of Fall Time Delays vs. Buffer Sizes for the NMOS Gate at the Sampling Switch 

The fall-time delay for the NMOS gate at the CMOS switch decreases to a lower value for buff 64 and 

fall-time delay (log10 = -9.68), leading to a conclusion similar to the one presented above for the 

particular gate.  
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Figure 70-Plot of Rise Time Delays vs. Buffer Sizes for the PMOS Gate at the Sampling Switch 

 
The graph above displays the plot of rise-time delay vs. buffer size for PMOS gate at the CMOS 

switch. This case results to a minimum time delay for buff256 (log10 = 2.41) and rise-time delay 

(log10 = -9.48). It is an expected result since the gate size for a PMOS transistor is larger compare to 

an NMOS transistor gate. 

 

Figure 71-Plot of Fall Time Delays vs. Buffer Sizes for the PMOS Gate at the Sampling Switch 

The last graph above displays the plot of fall-time delay vs. buffer size for the same gate at the CMOS 

switch. For this case the time delay for buff256 (log10 = 2.41) and rise-time delay (log10 = -9.52) is 

the shortest time delay. Yet, considering that the decrease in time delay from buff128 to buff256 is 
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only 0.42E-10 (from the table), it seems that buff128 is a better tradeoff since its physical size of 

buff128 is twice smaller.  

7.3 DRIVING TRANSISTOR GATES AT CAPACITOR ARRAY 
Another section of the digital design involved designing a digital circuit for driving transistor gates 

at the capacitor array based on the comparators’ outcome, a capacitor select signal, and a residue 

mode signal. Signals that represent the comparators’ outcome and the capacitor select are on-chip 

signals, whereas residue mode signal is an off-chip signal coming from an external source such as 

an FPGA device.  As shown below at Figure 72 each comparator’s outcome is assigned a grey code 

value that represents one of the four outcomes to be considered, whereas the rest of the 

combinations are ignored. Also, four possible logic combinations for the capacitor select signal and 

residue mode signal are shown in the truth table, Table 13 that follows below. In other words, 

based on the combination of the input signals, comparators’ outcome and capacitor-select/residue-

mode, output signals are generated that drive eight assigned transistor gates at the capacitor array 

for forming one of the five output decisions  of the residue amplifier.   

7.3.1 IMPLEMENTING RESIDUE AMPLIFIER DECISIONS 
Below is shown the matching of the comparators’ outcome to the residue amplifier decisions based 

on the input signals described above. Notice that the solid arrow represents the residue -mode 

signal that selects decisions -2, 0, and +2, whereas the dashed arrow represents the residue-mode 

signal that selects decisions -1 and +1. 

 

Figure 72- Matching of Comparators’ Outcome to Residue Amplifier Decisions 

Shown below is shown the whole truth table used to implement the functionalities described above. 

The truth table was derived by considering all possible combinations of the variables described 

above.   
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Table 13-Truth Table for Gate Driver Digital Block 

CAPACITOR-SELECT/RESIDUE-MODE COMBIANTIONS 

Comparators’ 
Outcome 

00 01 10 11 

000 10101010 10101010 11111111 11111100 

001 10101010 10101010 11110000 11111100 

011 10101010 10101010 11110000 11000000 

111 10101010 10101010 00000000 11000000 

ELSE 10101010    

 Outputs, Transistor Gates 

 

7.3.2 EXAMPLE OF A DECISION IMPLEMENTATION 
In order to further understand the complex operation of the gate digital driver it may be helpful to 

consider an example of a decision implementation. For instance, let’s derive the implementation of 

a “+2” decision. Shown below is the capacitor array whose gates are to be driven by the digital 

driver.  

 

Figure 73-Capacitor Array Block 
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In order to realize a “+2” decision the comparators output should be “111” and the capacitor-

select/residue-mode combination must be “10”, which means that capacitor-select signal allows the 

capacitor array to perform its functions and residue-mode selects the “+2” decision. From the truth 

table it can be seen that for the given comparators’ output, “111” and capacitor-select/residue-

mode combination “10” the signals to be sent to eight transistor gates are “00000000” with the far 

left being the signal sent to the first gate, gate<0>. Going back to the capacitor array circuit and 

assigning to each gate from gate<0> to gate<7> the corresponding bit, it can be seen that all PMOS 

transistors will be “on” and all NMOS transistors will be “off”. This configuration connects all the 

capacitors to the positive reference values, vrefp, thus giving rise to the “+2” decision. In addition, 

by applying all combinations in the truth table to the capacitor array block one can realize all five 

residue amplifier decisions. 

7.3.3 FINAL STEP IN DESIGNING THE GATE DIGITAL DRIVER 
Once the truth table was created a hard ware description language (HDL) script was written in 

VHDL using a digital designing graphical user interface (GUI), Xilinx 10.1i. Moreover, once the code 

was written a test bench wave form (tbwf) was performed to verify the functions above. In this 

project, as mentioned above, Cadence is used as an IC designing tool. Yet, Cadence’s digital 

environment does not support VHDL code; it supports Verilog instead. In order to use the written 

VHDL code an intermediate path is followed. Cadence has the capability of converting a VHDL code 

to Verilog code, which in turn is then synthesized using the available digital complier. For all the 

steps from writing a VHDL code in Xilinx to completing the digital design in Cadence a tutorial was 

written.  After the designing process was completed the necessary power supply pins (VDD, VSS) 

were attached to the digital component and a symbol was created for a simpler representation. The 

newly digital driver was stored in a library for later use in circuit; its symbol representation is 

shown below. 

 
Figure 74-Digital Transistor Gate Driver  
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7.4 DRIVING TRANSISTOR GATES OF INPUT-OUTPUT CAPACITORS OF RESIDUE AMPLIFIER 
This section concerns a digital block that drives the gates of switches that allow connecting 

capacitors to the residue amplifier. The graphical behavior of the block is represented below 

through the timing diagram. In this block the only external input controlling signal is the capSelect 

signal, whereas the vresoutBuf signal is an output delayed signal that is feed back as an input to the 

digital block. Delays between signals vresout and vresoutBuf, and vresin and vresinBuf are realized 

through buffers as shown in circuit schematic representation below the timing diagram.  The 

functionalities of the digital block in discussion are as follows. When capSelect signal goes high 

vresout switches to low in order to turn on the gate of the PMOS transistor leading to the connection 

of Cout to the residue amplifier. Then, vresin goes high which in turn turns on the NMOS transistor 

leading to the connection of Cin to the amplifier. On the other side, when capSelect goes low the 

reverse operations take place. First, the capacitor Cout is disconnected followed by the disconnection 

of Cin.  

 

 

Figure 75-Behavior of “vresin-vresout switch” Digital Block 

Below is shown an artistic circuit schematic representation together with the pins that connect to 

the digital block described above.  
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Figure 76-Representation of Gates to Drive With “vresin-vresout switch” Digital Block 

7.4.1 REALIZING THE DIGITAL BLOCK 
For designing “vresin-vresout switch” digital block the same procedure was followed. First, a VHDL 

code was written in Xilinx and its functionality was verified through a tbwf before imported to 

Cadence.  Once imported to Cadence the code was synthesized using cadence digital designing tools, 

completed by attaching power supply pins and the newly designed digital block was ready for use. 

Below is displayed a symbol representation of “vresin-vresout switch” digital block. 

 

Figure 77-“vresin-vresout switch” Digital Block 
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7.5 DESIGNING “GENERICDEMUX” 
A demultiplexer (in this design called genericDemux) was another digital sub circuit designed with 

the purpose of driving specific transistor gates based on certain input signal combinations.  The 

inputs of this digital block driver are the input to be send to a selected output pin, and the output 

pin select signal.  For each case two variables are considered, which give rise to four possible input 

combinations. Yet, for this application only two combinations are needed for each case; the rest are 

used to set the output values to zero “low” values.  In the tables below the left columns represent 

the input signal combinations and the right columns show the output results. On the left column the 

bit on the far left corresponds to the input signal, whereas the bit on the right represents the select 

output pin signal. 

Table below shows the relationship between the input-select signal and output1 pin.   

Table 14- input/output1 Relationship for “genericDemux” 

input-select output1 

00 0 

10 1 

ELSE 0 

 

The following table represents the relationship between the input-select signal and output2 pin. 

Table 15- input/output2 Relationship for “genericDemux” 

input-select Output2 

01 0 

11 1 

ELSE 0 

 

7.5.1  “GENERICDEMUX” SYMBOL REPRESENTATION  
After the logic behavior of the demux was established a VHDL script was written in Xilinx and 

synthesized in Cadence’s digital designing tools. A symbol representation of the demultiplexer 

circuit was created and the newly designed digital driver was tested to verify its proper 

functionalities. Below is shown the symbol representation of this digital block. 
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Figure 78- “genericDemux” Symbol Representation 

 

In order to verify the demultiplexer’s proper functionality a simulation test was performed.  For 

instance, let’s consider an input combination from the truth table that represents the relationship 

between input/output2, and observe the output. Shown in the graph is a doted arrow that shows 

the input combination of input-select as “11”. For this input combination the expected outputs 

(from the truth table) are output1 “0” and output2 “1”.  Moreover, by following the same procedure 

one can verify that the designed demux implements all logic combinations described in the truth 

tables above.    

 

Figure 79-Results “genericDemux” Simulation  
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8 THE OUTPUT BLOCK 

One of the issues we had originally discussed extensively in the project’s preliminary design was 

the concept of driving the outputs, instead of simply outputting low voltage CMOS signal levels. To 

do this, as we represented in the background section, we researched a common method known as 

Low Voltage Differential Signaling (LVDS). This block would follow our Logic block, as the diagram 

below indicates. 

 

Figure 80- Block Interaction between Logic and Output Drivers 

 

8.1 CREATING LVDS DRIVERS 
After performing research, we have seen that there is a common industry standard for LVDS design. 

The specifications of the standard are shown below: 

Table 16 - LVDS Standards 

 Standard Min Max 

Voltage Across Resistor 350mV 247mV 454mV 

Common Mode Voltage 1.2V 1.125V 1.375V 

Current 3.5mA   

Output Resistor 100Ω   

 
Shown below is a copy of Figure 18. In our case, the receiver would be an FPGA that is capable of 

taking LVDS outputs, which usually requires some signal translation.  
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Figure 81 - LVDS Revisited: Theoretical Schematic 

We had to make our design comply with the requirements dictated by the standards mentioned 

above. To bias the LVDS, we used an N-MOS current mirror, with values designed to match our 

desired 3.5mA. Also, the values on the transistors are set to allow for the 1.2V common mode.  Our 

schematic is shown below: 

 

Figure 82 - LVDS Schematic: Actual Circuit Implementation 

As we can see above, there is a transmission gate (M8, M23) at the input, which is fed by an input 

voltage. This value is then obtained by the 4 transistors (M0, M1, M3, M4) forming the LVDS driver. 

The biasing for the transistors is done by a simple current mirror (M17, M18). R3 is the output 

resistor, with a parasitic capacitor next to it. To confirm that our circuit was running we performed 

a transient analysis in Cadence. The results of that analysis are shown below: 
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Figure 83 – Simulated LVDS Outputs 

From the top: (1) As we can see the current stays constant at 3.5mA. (2) The input voltage is shown 

as a piecewise linear function. (3) Differential counterpart to input. (4) Differential voltage seen by 

the receiver. 

By looking at Figure 83, we can observe that standards outlined in Table 16 have all been met. 

Therefore the LVDS is ready for use. 
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8.2 MAKING THE CHOICE BETWEEN LVDS AND LVCMOS 
Although we created a working version of an LVDS driver, it was necessary to analyze if creating 

these drivers would be a worthwhile effort for this project. Therefore, the chart below was created: 

Table 17 - LVDS and LVCMOS Comparison 

Specification LVDS LVCMOS Preference 

Number of 
Wires 

12 6 LVCMOS 

Complexity 
The design of a driver that can adhere 
to LVDS standards is necessary, which 
adds high complexity, comparatively. 

Simple MOSFET drivers 
with common voltage 
references within the 
circuit 

LVCMOS 

Noise 
Reduces noise in long wire distances 
by being differential, especially in 
higher frequencies. 

More prone to noise in 
longer distances, due to 
jitter and interference in 
system 

LVDS 

Power Lower Power, in general Low Power LVDS 
Transmission Serial or Parallel Parallel LVCMOS 

Speed Accommodates very high frequencies. 
Less used for high 
frequencies 

LVDS 

Signal 
Processing 

Serialization Translation LVCMOS 

 

The table above shows a contrast between our two most feasible options: LVDS, being a great 

technology in high-speed applications that require low noise levels, and LVCOMS, being the simpler, 

more trivial option. 

Due to the complexity of this project, we feel it may be more convenient and efficient to use the 

LVCMOS standard, because it will encompass all of our needs without intense extra circuitry on the 

analog and digital sides. For example, to make LVDS a more convincing choice, we would have to 

add circuitry to serialize the data and transmit our 3 simultaneous bits. Also, since it is differential, 

LVDS will require twice the amount of pins as LVCMOS would demand for output. Therefore, our 

final choice was to discontinue the LVDS approach and maintain a simple LVCMOS output. 

8.3 OUTPUT PROCESS 
Since we have decided on simply using the output of our logic block to be sent to the FPGA, some 

the following characteristics apply to this block: 

 Output will be a thermometer code 

 Output code will be given per cycle, not per conversion. 
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