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Abstract 

 

 The goal of this project is to employ human design patterns to procedurally generate 

general 2D arcade-style games in the General Video Game AI (GVG-AI) competition 

framework. This is achieved by generalizing specific game levels made by humans and using 

pieces of them as building blocks for new levels of any other game describable in the framework. 

We produced a constructive and search-based generator to use these design patterns and 

compared them to the search-based generator of a prior study in a playtesting survey to evaluate 

their success. 
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1 – Introduction 

 

 Artificial intelligence (AI) is a rapidly growing field of computer science that is being 

used to create automated solutions to human problems. Commonly this technology is used to 

solve a domain-specific problem with no need for it to adapt to radically different problem 

specifications. For example, an autopilot system for an airplane would typically be made for a 

single airplane rather than being able to perform on any airplane. The next large step in the field 

of AI is trying to create a general solution to a problem with a much larger scope, referred to as 

artificial general intelligence (AGI) [1]. AGI systems will become less expensive and able to 

solve more diverse tasks, potentially overtaking the efficiency of a human on their own [1]. This 

gives AGI an enormous potential for practical applications in many areas like computer vision, 

natural language processing, and more. 

The General Video Game Artificial Intelligence competition (GVG-AI) is a research 

competition focused on studying general artificial intelligence methods using game playing 

agents and level generators [2]. Methods of game AI and level generation are already well-

developed in the industry for specific applications, but this competition strives for the 

advancement of general agents and generators that are capable of functioning for any game 

describable in the framework rather than for a single game.  

 Procedural generation is a subset of computing that focuses on creating new content 

algorithmically instead of requiring human work, allowing for faster and more varied results that 

are automated. One of the largest and earliest examples of procedural content generation (PCG) 

is creating video game levels to provide a new experience each time a game is played 

[3].  Instead of a human creating every individual part of a game level, an algorithm is given the 
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components that make up the level, and pieces together these components in varying ways to 

make a completely unique level.  

 However, most video games are still crafted by human developers that design the levels 

from scratch. It is difficult to make a procedural generator that can match the quality of World 1-

1 in Super Mario Bros. (Nintendo, 1985) [4] or Green Hill Zone in Sonic the Hedgehog (Sega, 

1991) [5] because machines struggle to incorporate creative design practices while also creating 

playable levels.  

 The GVG-AI framework is an accessible environment for approaching the problem of 

AGI as it provides many necessary resources (such as a generally applicable game description 

language and a large number of existing games) to set up a testbed for competition participants. 

In this study, we approached the level generation track of the GVG-AI competition by not just 

trying to procedurally generate functional levels, but by using common patterns of pre-existing 

human-made levels of video games as the method for building new levels. Most generators do 

not make use of the wealth of human work available to them and produce levels that are 

unorganized and clearly not human made. We hypothesized that incorporating human design into 

procedural generation would provide a meaningful standing in getting closer to making an AGI 

that outperforms a human. We created a constructive level generator that stores generalized game 

patterns and picks from these patterns to generate a new game level. We then created a search-

based generator that created multiple levels using our constructive generator and evaluated them 

to produce a more refined result.  

 In chapter 2, we discuss the background of PCG in games, the GVG-AI competition 

framework and what resources it provides, detailed descriptions of the two main types of level 

generators, and our inspiration and approach to level generation. Finally, we detail the success of 
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a prior study’s constructive and search generators in their survey as a solid knowledge 

foundation for our project [6].  

 After our background information, we discuss our work process in chapter 3, describing 

our process of defining and storing patterns from human-made levels. We then outline how we 

extrapolate these patterns into a general form so that they can be used for any game in the 

framework and show our process of creating our own constructive and search-based generators. 

 In chapter 4 we then show the results of our playtesting survey comparing our generators 

to the prior study’s generator and provide metrics expressing the range of levels our generators 

could produce [6]. Chapter 5 presents our conclusions and discusses the potential of future work.  
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2 - Background 

2.1 Procedural Content Generation in Video Games 

 

 As technology advances, there is potential for a wider variety of creating media and 

content for consumers. In recent years, procedural content generation (PCG) has been recognized 

as a fast and efficient way of generating new experiences. Although PCG encompasses a large 

scope of applications in computer science, the earliest and still most prominent usage is in video 

games. The games Rogue (Epyx 1980) [7] and Elite (Acornsoft 1984) [8] pioneered the use of 

PCG in video games in the early 1980’s to randomly create new levels and add replayability.  

 From this point, many games began to use PCG as a way of creating algorithmically 

generated layouts of levels using the same basic objects in the game, with the benefit being that a 

player is presented with a new experience each time they play, providing great replayability 

without the cost of having to manually create more content. However, it is difficult for 

procedural generators to ensure that levels are both playable and enjoyable. Level generators in 

the industry are custom built for each game to employ strategies that promote quality. For 

example, a procedurally generated level in Spelunky (Mossmouth 2013) [9] needs to have actual 

paths to every collectible, enemy placements that present a fair challenge, borders, and most 

importantly, the playable character itself in the level. PCG is actively researched in academia as 

it is an approachable medium for solving problems and the value of indefinite amounts of new 

content is being realized with more applications that PCG can apply to [10] [11].  
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2.2 The GVG-AI Competition and Framework 

 

The GVG-AI is a research competition focused on studying general artificial intelligence 

methods using game playing agents and level generators [2].  It can be simple to create a 

procedural level generator or an AI controller for a single game with fixed rules and objects, the 

challenge lies in creating methods that can operate for any game expressible in the GVG-AI 

framework. The GVG-AI framework currently supports over 90 different ports or variations of 

classic 2D arcade games.  

In this case, the domain of video games is limited specifically to 2D arcade-style games, 

to provide a consistent structure and allow for a more limited ruleset, as trying to create AI and 

generators that expand across multiple dimensions and sizes is out of the scope of this 

competition. This study focuses on the recently added General Video Game Level Generation 

track (GVG-LG). 

Custom level generators can be made in the GVG-AI framework by creating a new class 

that inherits from the AbstractLevelGenerator class. This involves implementing a constructor 

that takes in a game description and a timer, a function called generateLevel that takes in a game 

description and a timer and outputs a level as a string, and a getLevelMapping function which 

returns the hashmap of how the level can be decoded with the level mapping. 
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2.3 The Video Game Description Language 

 The Video Game Description Language (VGDL) is a language that allows for concise 

definitions of a game’s objects and rules in a standardized format [12]. A game description is a 

short text file listing out the game’s objects (sprites), level mapping (the way the sprites are 

coded in level files), sprite interaction rules, and termination conditions. The level description is 

stored as a text file composed of equal-length lines with each character representing the contents 

of a coordinate in the level. The VGDL was originally implemented in Python with py-game by 

Tom Schaul, but this project, as well as the GVG-AI Competition, uses a Java port of the VGDL 

[12]. In Figure 2 below, there is an example of a VGDL file describing all the necessary details 

for a specific game, Sokoban. To represent a game in the description language, four pieces of 

information are needed:  

1. Sprite Set - List of all images (i.e. Sprites) used for objects in the game, and where these 

images are stored.  

2. Level Mapping - A list of how to convert a level’s contents to game sprites. 

Figure 1 - The first video game in the GVG-AI framework, Aliens. A port of Space Invaders. 
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3. Interaction Set - Description of how each sprite interacts with one another, giving a 

command for what happens when these conditions are met.  

4. Termination Set - All possible ways of ending the game, whether it is a loss or a win for 

the player.   

  

The standardized format of the VGDL allows for convenient implementation and 

evaluation of general AI systems for both game playing and level generation. Prior game 

description languages were not designed to have as wide of an expressive range as the VGDL. 

Examples of this are the PuzzleScript language which allows developers to easily create puzzle-

style games [14] or the Extensible Graphical Game Generator (EGGG) which focuses on classic 

games involving cards or grids, like tic-tac-toe [15]. Languages like these in the past were 

domain specific to either logic-based games, board games, or text-based adventures. The VGDL 

enables research of general intelligence systems on a much wider domain because it allows for 

efficient description of 2D games and provides general objects and interactions in the language 

Figure 2 - Example of a level description file, and a possible level that can be made with this information. 
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which can then be specified for a wide variety of games. Most simple games that have an avatar 

and play on a fixed grid of tiles can be described by the VGDL, but many common game genres 

like board games (e.g. Chess or Go) and side-scrollers (e.g. Super Mario Bros. or Sonic the 

Hedgehog) are impossible to be represented in the language.  

2.4 Constructive Level Generators 

 

A constructive generator systematically assembles levels, with no evaluation of the 

quality of the level. The constructive generator produced in the original Khalifa et. al GVG-AI 

study classifies the sprites in the game description and uses simple heuristics to place them in the 

level [6]. The generator operates in four main steps: sprite classification, cover percentage 

calculation, construction, and fixing termination conditions. Game sprites are classified into one 

of five categories: avatar (player controllable), solid (immovable, no other interactions), harmful 

(kills avatar or spawns sprites that do), collectable (non-harmful, destroyed upon avatar 

interaction), and other. A priority value is assigned to each sprite based on the amount of rule 

interactions it has in the game description. The overall percentage of the level that is covered at 

the start is proportional to the number of collectible sprites and inversely proportional to the 

number of harmful sprites in the game description. Each category of sprite is then assigned a 

cover percentage based on the sum of the priority values for that category. To build the structure 

of a level, a border is created with a randomly selected solid sprite, then additional solid sprites 

are placed continuously within it while maintaining level continuity. If an avatar can only move 

horizontally, like in Space Invaders, then it is either placed at the top or bottom. Otherwise, an 

avatar is placed in a random open location. Harmful sprites are then added in free locations that 

are distant from the avatar. Collectable and other sprites are then randomly placed to finish the 



12 
 

construction phase. In the final step, extra sprites are added if there needs to be more to 

accomplish a termination condition. 

  

Figure 3 - Step-by-step process the constructive generator takes in building a level [6]. 

 

 

 

The constructive generator in the framework uses a few very simple rules to make the 

levels more likely to be playable, but does nothing to attempt to improve the aesthetic, difficulty, 

or gameplay.  

More domain limited constructive generators have been used to greater success because 

intelligent design decisions can be made much more easily when tailored to a specific type of 

game, such as Minecraft [16] or The Binding of Isaac [17], which both use game seeds to 

construct a level from a random number. The advantage of constructive generators is that the 

programmer can build in strategies for building levels that are known to result in quality levels 

for the domain, it can run in a fixed time and with very small amounts of computing resources 
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and does not require any type of evaluation or iterative generation. However, it is very difficult 

to use a constructive generator that succeeds in wider domains because level design choices vary 

across different types of games. Finally, constructive generators provide no intelligent evaluation 

of how good a level is considered to be for a player. Objects are simply assigned values and 

placed in the level according to their priority, making generating a more refined level much 

harder. 

2.5 Search-based Generator 

 

A search-based generator operates by generating many constructive levels and 

performing an evaluation on those levels to find the best one. A search-based generator contains 

several defined constraints to evaluate the level and compares each level using a fitness function. 

The algorithm continuously produces and evaluates levels until either the constraints are met, 

and the fitness is above a certain percentage, or if the generator runs out of time. The search 

generator from the Khalifa et. al study uses the Feasible Infeasible 2 Population genetic 

algorithm (FI2Pop) [6]. This creates populations of levels and evolves them by performing 

random modifications. This generator mutates levels by swapping, inserting, or deleting 

individual sprites once per generation of the program. Each level in one generation is called a 

chromosome. Chromosomes are stored in either the feasible population, the set of levels that 

meets all constraints, or the infeasible population, the set of levels that fail one or more 

constraints. Constraints are metrics like completability, number of sprites, etc. The feasible 

population tries to increase the fitness evaluation of each chromosome while the infeasible 

population attempts to lower the number of chromosomes that break the constraints. These 
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populations can evolve on their own and chromosomes can go back and forth between the two 

populations throughout generations of the program.  

Below in Figure 4 is a sample of what metrics the generator uses when performing 

evaluations. It records the total time the game took to finish (SolutionLength), the amount of time 

it took for a player that never moves from the starting position to lose (doNothingSteps), the 

percentage of the total level covered by sprites (coverPercentage) and whether or not the best-

performing AI controller beat the level. The fitness function uses these parameters to determine 

the total fitness for each level played, the higher the better.  

 

 

Figure 4 - Output of the first three chromosomes evaluated in a search-based generator. 

 

 The genetic generator uses several AI controllers to evaluate the level by comparing 

controller performance. Adrienctx, a controller that previously won the GVG-AI competition in 

2014 is used as the BestPlayer test which attempts to beat the level and informs the generator if 

the level can be beaten and the score that it achieved. Adrienctx was modified to reduce its 

superhuman reaction time to a more realistic speed to avoid levels that were impossible for 

humans. If Adrienctx’s performance was not reduced, the evaluation would potentially generate 

levels that needed unreasonable skill or reaction time for a human player to complete. Next, the 

OneStepLookAhead controller greedily searches for the next move from all adjacent tiles and the 

DoNothing controller acts as a way of determining if the level is unfairly difficult, or trivially 
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easy. If the DoNothing controller dies within the first seconds of the game starting, it is 

considered to be unreasonably difficult, and if the controller never dies at any point, there isn’t 

an appropriate challenge for a human player. As long as the DoNothing controller meets 

expectations, then the game score of the Adrienctx and OneStepLookAhead controllers are 

compared. A level that results in a higher score difference between these two controllers is 

deemed to be a better level, as it shows the level rewards more intelligent play. 

2.6 Human Design Patterns in Level Generators 

 

The constructive and search-based generators created for the GVG-AI competition 

implicitly encode design knowledge. Specific steps and algorithms are used to statistically 

determine what a good level is, as opposed to subjective analysis from a human player. The 

automated generation is beneficial because it is fast and can be done by a machine, however it 

does not guarantee good design. One solution to this problem is the use of design patterns in 

level generation. To produce a more coherent level, a study by Dahlskog et. al in 2014 used 

patterns found in the original Super Mario Bros. levels as ‘building blocks’ for procedural level 

generation as a way of producing varied levels that appear human-made [18]. Our study expands 

on this idea of using human design patterns from levels in a general 2D domain for the GVG-LG 

track of the competition. 

Two types of patterns were used in Dahlskog et. al’s study. Micro-patterns are composed 

of a single block vertical slice of a level that occurs many times throughout the game. Meso-

patterns are combinations of these micro-patterns that create continuous sections of levels. An 

evolutionary algorithm then pieces together micro-patterns to build levels and searches 

performing an evaluation on the frequency of meso-patterns found in the generated level.  
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Figure 5 - Visual representation of slicing segments of previous levels to create patterns [18]. 

 

 

 The study found that this process could successfully produce playable Super Mario Bros. 

levels that had a consistent flow and were visually appealing. Our study focuses largely on 

extending this approach to fit the GVG-AI framework and suit general non-platformer 2D 

games. This involves creating generalizable design patterns from specific game levels and 

procedurally applying them to levels for different games. Our study focuses on identifying 

micro-patterns in the GVG-AI levels to ensure that each pattern can work for any different game 

in the framework. 

2.7 Comparing the Success of Generators 

 

Khalifa et. al evaluated the preferences of playtesters to compare the success of the three 

generators produced in their study: Search-based, Constructive, and Random (which places a few 

of each sprite in random empty positions and then fills in the level border) [6]. Their playtesting 

process involved participants playing two levels produced by different generators of the same 

game for a direct comparison and recording a player’s preference of one over the other. Three 



17 
 

generator comparisons were made, Search-Based vs Constructive, Search-Based vs Random, and 

Constructive vs Random.   

 

As shown Table 1 above, the study’s results showed that players substantially preferred 

the Search-Based generator over both the Constructive and Random, and players slightly 

preferred the Random generator over the Constructive. The reasoning for the Constructive 

performing worse than the Random was that the Constructive couldn’t guarantee that at least one 

object of every type in a game could be placed, whereas Random would place at least one of all 

the sprite types available. These results confirm that the search evaluation does find better levels 

than the constructive generator will typically produce on its own. Other methods for surveying 

players exist such as Likert scales, but could be very ambiguous to a player on how to score and 

ranked different levels.  

There are many qualities that level generators can be assessed on, like difficulty, 

aesthetics, length of levels, etc., and a more complex feedback system like individual metric 

ratings would allow for a deeper analysis, but for individual players, these would all be 

considered differently and could lead to inconsistent data. The direct comparison used in the 

survey creates less confusion with a simpler response that still manages to answer the question of 

which generator is better overall. 

Table 1 - Playtesting results of the Khalifa et. al study [6] 
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3 - Methodology 

3.1 Approach to Solution 

 

 The prior study’s generators created levels by inserting calculated amounts of individual 

sprites into the level [6]. We identified that this strategy typically produces an unorganized and 

cluttered level that does not feel intentionally laid out. Our study aims to take a different 

approach for general level generation, focusing on using patterns from human-made levels to use 

as building blocks for new ones.  

 

To use level information from different games, each human-made level was converted 

into a generalized set of information that could be used to convert into any other game. Then 3x3 

segments, which we call design patterns, of these converted levels were stored for use as 

building blocks for new levels. Levels were then built by assembling combinations of these 

patterns for the layout, while ensuring that continuity is maintained, and then translating them 

into the appropriate sprites for a specific game. Once the level was created, it is checked to 

ensure that all termination conditions can be met so that only playable levels are created. 

3.2 Using General Types 

 

Levels are comprised of game-specific information that cannot be directly translated to 

every other game in the GVG-AI framework [2]. To make use of the level designs for different 

Figure 6 - System architecture for our study. 
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games, the game specific information is reclassified into a general type system that can be used 

to translate sprites from one game into the most similar sprites of any other game.  

The GVG-AI framework uses default sprite classifications of: Avatar, Solid, Harmful, 

Collectable, and Other. Avatars are any sprites directly controlled by the player. Solids are 

sprites that cannot be moved through and have no other interactions. Collectables are non-

harmful and are destroyed by the player upon interaction. Harmfuls either destroy the player or 

spawn other sprites that do. Others are any sprite that does not meet all the qualifications for 

another category. These classifications allow for an approximate understanding of the role that 

specific game sprites play and enable the encoding of specific game sprites into a set of 

generalized information that can be decoded into any other game. 

 

                            

Figure 7 - Process of taking an existing Aliens level and encoding each game-specific object into a generalized mapping. 

 

 The encoding process is straightforward because of the direct classification from the type 

rules in the framework. However, the translation from specific to general results in information 
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loss. If a game has two sprites that are classified as the same type, like the pellets and fruit of 

Pacman, then the encoded level will lose the distinction between the two and record them both 

as one type.  

 

  

Figure 8 - Original Pacman level (left) encoded into a general form, and then decoded back (right). 

 

 Figure 8 shows how a Pacman level maintains sprite placement of solids and avatars but 

loses the distinction of other and harmful types after being encoded and decoded. The loss of 

information results in ambiguity and uncertain outputs. For example, a general harmful sprite can 

be reclassified as any one of the four ghosts in Pacman when converted to that game. Overall, 

the translation process is effective for selecting single sprites to match single generalized types, 

but games in the GVG-AI framework store levels as matrices of mappings, which can include 

one or more sprites. This means that to fit a game’s intended level format, the process of 

encoding and decoding needs to be able to operate on translating groups of sprites in the form of 
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level mappings. In Table 2, Pacman is used to show how sprites of that game get classified from 

our general type mapping. Every space in a game contains at least one ‘background’ sprite which 

is purely visual, and any number of foreground sprites, which are the game objects.  

  

Different games have different combinations of sprite types in their level mappings, thus 

games will not have a direct translation for every general mapping. To accommodate this for 

level construction, available patterns to select from could be specifically restricted to only ones 

with direct translations, but this would reduce the amount and variety of usable patterns. Instead, 

the most similar level mappings in the game description are chosen when a non-direct mapping 

translation is needed.  

Table 2 - Translation table from general mappings to Pacman mappings 
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3.3 Creating Patterns 

 

 To generate the library of patterns that would be used as the building blocks for 

construction, the human-made levels from the framework were converted into general mappings 

and every 3x3 matrix of the converted levels were stored in a text file. In the context of our 

study, a pattern is any 3x3 segment that can be taken from the existing human-made levels in the 

GVG-AI framework.  

 

Figure 9 - Process of storing every pattern in a generalized game level. This process repeats until all 3x3 matrices have been 

written to a text file. 

 

97 games were included for pattern generation, 6 games in the framework were removed 

(eggomania, eighthpassenger, jaws, painter, realsokoban and thecitadel) because of errors 

reading the game description or levels. Every game in the framework has 5 levels and the 97 

games total resulted in 485 levels broken down into 114,362 patterns for construction. Most of 

these patterns were duplicates of the 12,941 unique patterns found.  
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Figure 10 - Examples of a valid bottom-left corner pattern and top wall pattern respectively, in the general code mapping format. 

‘S’ represents solid sprites that players can’t move past, and an ‘X’ represents any other sprite in the game. 

 

 

These patterns were then separated into groups based on whether they contained an 

avatar or had solids around the side and could be used as a wall or edge piece for building the 

border of a level. Figure 10 above shows examples of border patterns. Patters were grouped into 

border types so that a level could not be created that an avatar could walk out of. All patterns that 

contained an avatar were grouped together as well because every level generated in the 

framework needs exactly one avatar. Due to the larger number of sprites classified as others, 

most of our patterns contained a majority of ‘other’ type sprites, as shown below in Table 3.  

Five Most Frequent Patterns 

Pattern Number of Occurrences 

OOO 

OOO 

OOO 

27508 

 

OOO 

OOO 

SSS 

3155 

SSS 

OOO 

OOO 

2466 

SSS 

SSS 

SSS 

2230 

 

OOO 

SSS 

OOO 

1449 

 

Table 3 - Most frequently occuring general patterns in the human-made games 
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3.4 Constructive Generator 

 

 Our constructive generator combines patterns from our pre-made library to create the 

layout of the level and then converts the general types from the patterns into game specific level 

mappings. The generator uses the game description to make informed decisions about avatar 

placement, borders, and goal sprites (sprites that play a role in termination conditions). Due to 

the 3x3 shape of the patterns, levels must have lengths and widths that are divisible by 3. The 

generator randomly selects widths and heights of 12 or 15 to accommodate this. When building a 

level, patterns are randomly chosen from their index in our overall pattern file, meaning that the 

more frequently a pattern occurs, the more likely it is to be chosen.  

 

 

Figure 11 - Pseudo code for our constructive generator’s process of making a level. 
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If there is no solid sprite, random patterns are selected for the entire level, otherwise a 

border is created along the edges of the level; a similar process is followed in the Khalifa et. al 

study [6]. Edge and corner pieces are randomly selected to build the border from the pre-

generated lists of patterns. Every time a pattern is selected it is checked to see if it contains an 

avatar, if so, then no other avatar-containing pattern is chosen for the rest of the construction. In 

some specific cases, avatars are only allowed to move horizontally, like in Space Invaders [19]. 

For these games, patterns are chosen to ensure the bottom row has open spaces for the avatar to 

move through. Then, the center of the level is filled with random patterns.  

As patterns are selected, they are checked to see if they break the continuity of the level.  

A simulated level is maintained containing all the selected patterns up until the current point 

while every unfilled pattern is filled with an empty placeholder. The continuity check finds every 

non-solid space in the level, real or simulated, and traverses across every connecting non-solid 

space. In Figure 12 below is pseudo-code for our method of checking the connectivity of a level. 
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Figure 12 - Pseudo code for checking the connectivity of a game level, ensuring a player can reach all points. 

  

 If a non-solid space could not be reached, then the level is not continuous, and a new 

pattern is selected. This process helps to prevent levels from having unreachable areas, while 

allowing for areas that have not been filled with a pattern yet to connect divided areas during 

construction. If all the patterns in the level have been selected and there is no avatar, a pattern in 

the center of the level is replaced with one that contains one. The level is then converted from the 

general mappings of the patterns to the specific game’s level mappings. The last step is for the 

generator to check if the game can be successfully completed. As shown in Figure 1, every game 

has a set of termination conditions, defining how the level can be won or lost. If a termination 

condition is unachievable (i.e. the game cannot finish) or already met (i.e. the game ends 
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immediately), then the appropriate goal sprites are randomly added to the level to ensure that the 

game is playable. 

3.5 Search-Based Generator 

 

The prior study found that playtesters strongly preferred levels from their searched-based 

generator over those from their constructive generator [6]. This indicates that the search-based 

approach should produce better levels overall. We adapted the prior search-based generator to 

use our constructive generator to create initial populations and modified the mutation function to 

operate on patterns instead of individual sprites and used the same fitness evaluation. The prior 

search generator had three possible mutations: insert a sprite, remove a sprite, and swap two 

sprites. Whether or not a mutation would occur was determined by a probability value, outside of 

the mutate function itself. Pseudo code for our mutate function is provided in Figure 13. 

Figure 13 - Pseudo code for the mutation function of our search-based generator 
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To work at a pattern level, our search-based generator has two possible mutations: swap 

two patterns and replace a pattern. Our study used the default parameters of the search-based 

generator to compare how our pattern-based approach would affect it [6]. An initial population 

size of 50 was created, with a crossbreed probability of 70% and a mutation probability of 10%. 

The generator would keep running until a specified time limit was reached (1 hour by default), 

where it would then return the level with the highest fitness value.  

3.6 Making the Generators 

 

 Before winning conditions were accounted for, levels were created to test the basic 

functionality of creating a new level from piecing together 3x3 matrices. Below is a level purely 

made from using our pattern logic, with no account for continuity or achievement of goals in the 

game.  

Figure 14 - Later iteration of our constructive generator, testing the use of 3x3 matrix patterns to generate a level. Each matrix 

was chosen purely at random and inserted in as a solid sprite classification. 
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Earlier in the process when assuring level mappings, we encountered interesting outputs 

when some levels were mapped all to one sprite type. Figure 15 is another Zelda level before 

border patterns were introduced, which happened to select no patterns with solids in them.  

 

 

Figure 15 - A constructive generator output that did not yet account for any solid borders, and solid type sprites were mixed with 

other type sprites, resulting in an interesting layout of keys. 

  

Once our generators had been created, they showed a distinct visual difference from the 

previous generators, consistently using more of the blank space available in each level.   
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 The previous constructive and search-based generators consistently created levels with a 

largely minimal environment, including just enough sprites to make the level playable, but 

lacking structure and flow within the level. Our generators tended produced more objects on 

average, resulting in more variation per level. 

Figure 17 - Comparison of the previous constructive generator vs our constructive generator for Bomberman 

Figure 16 - Comparison of the previous search-based generator vs our search-based generator for Bomberman 
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4 - Testing and Results 

4.1 Level Preparation 

 

Khalifa et. al’s study chose to collect data by having survey participants play three 

popular games: Frogs, Pacman, and Zelda [6]. All these games are familiar, short and have easy 

rules to pick up on. Because of errors with the updated version of Pacman, which would break if 

there was not exactly one ghost of each color generated in any level, we replaced Pacman with 

Bomberman, an equally popular game with mechanics varied enough from Zelda and Frogs to 

provide our generators with a distinct set of rules to account for to further express generality in 

our work. Below is a brief description of the gameplay and objectives of each of the games our 

study used for surveying:  

 

1. Bomberman - Port of original Bomberman. Move around the level and place 

bombs that explode in a cross shaped pattern (+) to either destroy dark blocks or 

kill enemies. The goal is to find all doors which are hidden beneath destroyable 

blocks.  

2. Frogs - Port of Frogger.  The objective is to reach the end goal(s) while avoiding 

vehicles and water which will kill you on contact. The character can only move 

across water if they are on a log, otherwise they will fall in the water and drown.  

3. Zelda - Port of the original Legend of Zelda game. The player must first collect a 

key to then be able to unlock the exit door. The character can attack in the 

direction they are facing to kill an enemy.  
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Figure 18 - A human-designed level for Bomberman 

Figure 19 - A human-designed level for Frogs 
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4.2 Survey 

After the three games to survey were decided, 5 levels were generated for each game on 

our study’s constructive and search-based generator, as well as the prior study’s search-based 

generator. A total of 45 levels (15 per generator) were created and stored for surveying. No 

biased selection was made in deciding which levels to test on, to most accurately express the 

generators. 

The survey involved having participants play two levels of the same game but from 

different generators, repeated for each game to account for all generator comparisons, resulting 

in each person playing a total of six levels. Each person would play three comparisons:  

1. Old Search-based vs New Search-based 

2. Old Search-based vs New Constructive 

3. New Constructive vs New Search-based.  

Figure 20 - A human-designed level for Zelda 
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Khalifa et. al’s old constructive generator was not included in our comparison, as it was 

proven to be inferior to their search-based generator in their results and including another 

generator would have needed to include several new comparisons, extending the time needed for 

each participant beyond a reasonable duration. Their random level generator was also not 

included in our study, as it had no intelligent approach to building a level, only placing the 

necessary number of sprites for completion of a level in random places [6]. 

A short program was created to let participants easily play the six levels while 

randomizing the order of comparisons to ensure stochastic and unbiased results. This program 

was based off Ahmed Khalifa’s survey program used in his initial generator comparison, to 

which we are grateful for him providing to us [6]. The order of each game was randomized, as 

well as which comparison and which level out of the five made per generator.  
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 For each survey taken, a member of our team clearly explained the rules for each game 

and reassured no personal identifying information would be stored. A player was asked to simply 

say which level they preferred as well as their gender, age and experience with video games.  

4.3 Testing Results 

 

Our hypotheses for each of the three direct generator comparisons would be that our 

constructive generator would be preferred over the prior search generator and that our search 

generator would be preferred over both our constructive generator and the prior search generator. 

Table 6 shows the results of our studies in which our search generator was greatly preferred over 

our constructive (significant results, p < 0.05) and both of our generators were marginally 

Figure 21 - Folder hierarchy for the game levels chosen for testing. The newSearch and oldSearch folders also contain 5 levels 

per game, made with that generator 
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preferred over the prior search generator. A total of 30 surveys were performed with 20 male and 

10 female participants of varying experience with video games.  

 

 A B Total Percent 

Success 

Binomial P-

Value 

New Constructive (A) vs  

Old Search (B) 

16 14 30 53.33% 0.4278 

New Search (A) vs  

Old Search (B) 

17 13 30 56.67% 0.2923 

New Search (A) vs  

New Constructive (B) 

20 10 30 66.67% 0.0494 

 

Table 4 - Playtesting results for our generators and the search generator from the prior study 

 

Similarly to the Khalifa et. al study, the likely main reason for our search generator being 

preferred over our constructive was that the simulation-based evaluation and constraints were 

effective at producing more playable levels [6].  Particularly that the modified Adreinctx agent 

was able to prevent levels that were too difficult from being outputted. Despite the preference of 

our search generator over our constructive, both performed similarly when compared against the 

prior search generator. This could indicate that when levels of the prior search generator were 

compared against ours, players would evaluate them with slightly different criteria than when 

they compared the levels of the two pattern-based generators. Table 7 displays how often 

participants confirmed or contradicted our hypotheses for all three generators, divided by game 

experience. 
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 Confirm Contradict Percent Success Binomial P-

Value 

None 2 1 66.67% 0.5 

Limited 6 12 33.33% 0.9519 

Moderate 24 12 66.67% 0.0326 

Substantial 21 12 63.64% 0.08138 

 

Table 5 - Participant preferences divided by experience with video games 

 

Players with moderate or substantial experience tended to align with our hypotheses 

about two thirds of the time, while players with low experience did so just one third of the time. 

This indicates that prior game-playing experience influenced how the players compared levels. 

Low experience players tend to have a higher learning curve and value a more approachable 

level that is less difficult and complex, while more adept players can focus more on the level 

itself rather than the basic mechanics of the game. This makes more experienced players more 

efficient judges as they require little time to learn the rules and controls of a new game, while 

newer players are too focused on the game’s dynamics to effectively evaluate how the level 

impacts their experience.   
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 A B Total Percent 

Success 

(Adjusted) 

Percent 

Success 

(Original) 

Binomial P-

Value  

(Adjusted) 

Binomial 

P-Value 

(Original) 

New Constructive 

(A) vs 

 Old Search (B) 

13 10 23 56.52% 53.33% 0.3382 0.4278 

New Search (A) vs  

Old Search (B) 

15 8 23 65.22% 56.67% 0.1050 0.2923 

New Search (A) vs  

New Constructive 

(B) 

17 6 23 73.91% 66.67% 0.01734 0.0494 

 

Table 6 - Playtesting results for our generators and the search generator from the prior study, with players of low or no 

experience removed 

 

Table 8 displays the results of our study for just players with moderate or substantial 

experience with video games. These results are similar, but with higher confidence values, for 

the comparison between our constructive generator and the prior search (small preference for our 

constructive but not statistically significant), as well between our two generators (large, 

statistically significant preference for our search generator over the constructive). However, for 

the comparison between our search generator and the prior search generator shows a much 

greater preference towards ours that approaches statistical significance, with a confidence of 

about 90%.  

4.4 Insights while Testing 

 

 In our survey, we only asked for each participant to select which level they preferred 

overall, yet many people gave interesting reasons for their choices.  Reasons for selecting one 

level over another varied drastically by person, and we found that players who considered 
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themselves to be less experienced with video games usually chose the old search-based generator 

over our generators. Often their reasoning was that the levels made using the old search-based 

generator seemed far easier because it was more open and had less total sprites on screen, 

making the level seem more approachable. Other people gave unique reasons for their level 

preference. One participant said that they preferred a level simply because it was much larger 

and said that contents had no influence for them. 

4.5 Level Metrics and Expressive Range 

 

The amount of possible combinations of patterns plays a significant role in both the 

quantity and quality of possible outputs. For the constructive generator, 4.5 x 10^98 

combinations of patterns are possible for non-bordered games like Space Invaders [19], for 

bordered games like Zelda, 9 x 10^76 combinations are possible. The number of levels that a 

generator can produce is only important when it comes to providing unique outputs, a very small 

amount of levels will result in duplicates or small variations between levels, but a very large 

amount can result in levels of inconsistent quality.  

The expressive range of our generative process is only limited by the continuity of levels 

and the border, if one exists. This means that the range of possible outputs is not restricted by 

more sophisticated evaluations of quality, like difficulty or aesthetics.  Significant portions of the 

expressive range are comprised of levels that have extremely high or low difficulty or contain 

too many or too few objects to be enjoyable. The effect of this was observed in the reactions 

from study participants. For some levels they would be shocked at large masses of enemies that 

made it almost impossible to play or confused by a trivially easy level. While still some other 

levels presented a more moderate challenge that provided an enjoyable experience for players. 
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These reactions paired with the massive, relatively unrestricted expressive range of our generator 

indicates that the pattern-based approach can yield successful results but needs to be improved 

for the consistency of levels. 

A simple method of assessing the expressive range of a generator is to count how many 

of each type of sprite gets placed in levels on average. The raw amount of each object in a level 

can give a rough estimate of the level’s density, difficulty, and length depending on the game. 

For the games used in our playtest survey, harmful and collectable objects increased the 

difficulty of the level by adding adversaries or additional goals which must all be reached. The 

proportion of the level that was filled with solids can also be used as a metric for how much open 

space exists for the player to traverse. Objects that are classified as other are less informative 

because they are predominantly background tiles that don’t impact gameplay. The number of 

standard deviations away from the mean for each object count can be used to tell how far a level 

is from the typical level that the generator will produce.  

    

 Solids Collectables Harmfuls Other 

Average 98.876 5.793 7.037 194.797 

STD 13.585 3.992 5.726 31.828 

Max 135 28 33 266 

Min 64 2 0 144 

 

Table 7  - Object count metrics for 1,000 levels of Frogs from our constructive generator 

 

Table 4 displays the expressive range for each of the object counts for our constructive 

generator for Frogs across 1,000 levels. The amount of harmful and collectable objects has quite 

a large range that is a primary cause for the inconsistency of level difficulty. Of the 1,000 levels 
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generated, they ranged from having no harmful sprites to as much as 33. This type of possible 

variation makes it very important to assess just how representative the levels used in our 

playtesting study are of the typical levels produced by our generator.  

   

 Solids Collectables Harmfuls Other 

Average 94.8 5 9 187.2 

STD 3.493 3.742 5.244 4.324 

Max 98 11 16 192 

Min 91 2 4 182 

 

Table 8  - Object count metrics for 5 Frogs levels from our constructive generator used in the playtest survey 

 

Table 5 displays the range of object counts represented by the 5 constructive levels used 

in our playtesting study for Frogs. The average amounts of each object type are very close to the 

averages for the overall generator, except for harmful types being slightly more frequent in the 

survey levels. The standard deviations of the solid and other types are much lower in the survey 

levels indicating that they cover only a small portion of the generator’s expressive range. The 

standard deviations for the collectables and harmfuls are very close however. As these have a 

more direct impact on the player, and the averages for all 4 types are relatively consistent with 

the expected values, we determined that the constructive levels used for Frogs in our survey are 

fair representations of our generators expressive range and that none of the levels used are 

outliers. Similar conclusions were found for the constructive levels in the survey for Bomberman 

and Zelda. The tables for these can be found in Appendix C. Due to time constraints this analysis 

could not be performed for the search-based generator. The search process takes about half an 
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hour or more to create a level and was infeasible to generate enough levels to perform a 

meaningful analysis. 
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5 - Conclusions and Future Work 

 

Our study sought to explore the potential of procedurally generating game levels that felt 

more human-made than ones from more basic generators. Overall, we have shown that a pattern-

based approach is a viable method of level generation for 2D arcade-style games. The levels 

produced by our generators had a more organic and flowing structure that created a positive 

gameplay experience. Our generators produced levels that were far more varied in style and 

gameplay compared to the previous generators, and the majority of survey participants expressed 

that the levels were considered to be fun and a challenging experience.  

 The major weakness of our generators was the inconsistency of level difficulty. Some 

levels would place the player directly next to an enemy at the start or would require the player to 

path through a region filled with a massive number of enemies. Meanwhile, other levels could 

have no enemies or place them in such a way the player was unlikely to need to interact with 

any. The prior study’s constructive generator partially addresses this by using a relatively 

consistent amount of each object in a game and placing harmful objects distant to the avatar, 

however this does not work well universally across different games [6]. For example, a water tile 

in Frogs is not nearly so dangerous as the alien spawner in Space Invaders and a quality level 

generator would treat them differently. The more promising approach is to examine how the 

level can be played out using an AI player, because the evaluation can be performed regardless 

of what type of game it is. The search algorithm developed by Khalifa et. al partially addresses 

this by evaluating the performance of the modified Arienctx AI compared to a greedy AI, but this 

does not directly assess how difficult the level is, only if more intelligent play will lead to a 

better score [6]. If given the opportunity to continue our work, we would have developed a 

method of evaluating difficulty with AI play. Numerous approaches could be taken for this 



44 
 

including an AI which attempts to lose the game as fast as possible to evaluate if the level could 

end too abruptly or a decision tree analysis that estimates how many lines of play result in 

victory vs the amount that result in a loss. The game specific information in the game description 

is very difficult to use directly to understand what effect objects will have on the difficulty of a 

level.  

The pattern-based approach was fairly successful at creating flowing levels with multiple 

varied sections. However, these sections were not always combined in optimal or natural ways 

because the patterns were grouped and selected randomly. The Dahlskog et. al study working on 

pattern-based approaches for Super Mario Bros. addressed this issue in their search generator 

that scores levels by how many meso-patterns, or combinations of patterns, that appear in the 

original levels that the patterns were generated from [18]. If given the opportunity to continue 

our work, we would have combined this strategy with the search evaluation we used. This would 

involve abstracting the process used by Dahlskog et. al out to a 2D general domain to incorporate 

both vertical and horizontal combinations of patterns that occur in many different games. 

The survey process we used to evaluate the different generators was effective, but could 

be expanded in future work to include direct comparisons for more specific metrics like 

difficulty, playtime, or aesthetics. The player’s overall level preference is important and effective 

for providing a holistic understanding of which generator is more successful, but similar 

questions about more specific traits would allow for a more detailed analysis of the strengths and 

weaknesses of a generator. 

This project took the pattern-based approach for a single linear game and expanded it to 

work on a much wider domain of 2D games. The success that our work has had so far indicates 

that pattern-based approaches could be expanded to even wider domains of 2D games or even 
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3D games. The VGDL is very effective for working on a subset of 2D arcade-style games, but if 

our approach were to be used on a different type of game it would require a description language 

capable of standardizing game definitions for the new domain. Side scrolling games like Super 

Mario Bros. and games that don’t have an avatar like board games are common types that cannot 

be expressed in the VGDL, but if given a strong description language, generalized human design 

patterns should be a valid approach for level generation.  

Generalizable object types are the key to this approach working for a non-specific 

domain. A domain that spans widely different games would require a type system that can 

effectively classify all objects and could pose a problem if design patterns from extremely 

different games cannot be used effectively. This issue did not arise working with the VGDL but 

could be addressed with an evaluation of what design patterns could be most pertinent to a game, 

or with a search process that involves AI player evaluations like the one used in this study. 

 The GVG-AI framework and VGDL provided an effective environment to research PCG 

once the nuances of how they work were understood. Some games descriptions have errors in 

them that break the game and result in malformed levels. Additionally, the framework is 

continuously being updated which can impact work made on previous versions. The prior study’s 

generator suffered from this because backgrounds had not been introduced yet, so combinations 

of objects in a single space of the game were not common, leading to the use of a less 

sophisticated level mapping system that did not handle backgrounds properly in the outputted 

levels.  

 The GVG-AI framework remains an active base of research for general AI principles, and 

our study provided a distinct approach towards the level generation track.  By employing the 

extensive body of work from human developers, implicit design information can be combined 
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with the efficiency of PCG to produce consistently fun and unique content over many different 

games.  

  

 

 

 

 

  



47 
 

Bibliography 

 

[1] - B. Goertzel and C. Pennachin, Artificial General Intelligence. Berlin: Springer, 2007. 

[2] - The GVG-AI Competition. [Online]. Available: http://www.gvgai.net/. [Accessed: April 23, 

2018]. 

[3] - N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation in Games: A  

Textbook and an Overview of Current Research. Springer, 2016. 

 [4] - Nintendo. 1985. Super Mario Bros. Nintendo Entertainment System. Shigeru Miyamoto, 

 Takashi Tezuka. 

[5] - Sega. 1991. Sonic the Hedgehog. Sega Genesis. Hirokazu Yasuhara (designer). 

[6] - A. Khalifa, D. Perez-Liebana, S. M. Lucas, and J. Togelius, 

“General Video Game Level Genration”, 2016. [Online]. Available:  

http://julian.togelius.com/Khalifa2016General.pdf. [Accessed: April 23, 2018] 

[7] - Michael Toy, Glenn Wichman. 1980. Rogue (video game). Atari 8-bit.  

[8] - Acornsoft. 1984. Elite. BBC Micro.  David Braben, Ian Bell. 

[9] - Mossmouth, LLC. 2008. Spelunky. Microsoft Windows. Derek Yu. 

[10] - J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based procedural  

content generation,” in Proceedings of EvoApplications, ser. Lecture Notes in Computer  

Science. Berlin, Germany: Springer-Verlag, 2010. 

[11] - G. Smith. “Understanding Procedural Content Generation: A Design-Centric Analysis  

of the Role of PCG in Games.” In Proceedings of the 2014 ACM Conference on  

Computer-Human Interaction. Toronto, Canada. Apr, 2014.  

[12] - T. Schaul. “An extensible description language for video games”. Computational  

Intelligence and AI in Games, IEEE Transactions, 2014. 



48 
 

 

[13] - J. Togelius and G. N. Yannakakis, “General general game AI,” in Proceedings of the  

Computational Intelligence and Games Conference. IEEE, 2016. 

[14] - S. Lavelle. PuzzleScript. [Online]. Available: http://www.puzzlescript.net/.  [Accessed:  

April 23, 2018]. 

 [15] - J. Orwant, "EGGG: Automated programming for game generation," IBM Systems  

Journal, 2000.  

[16] - Mojang. 2011. Minecraft. Microsoft Windows. Markus Persson, Jens Bergensten. 

[17] - Edmund McMillen. 2011. The Binding of Isaac. Microsoft Windows. Edmund McMillen,  

Florian Mimsl 

[18] - S. Dahlskog and J. Togelius, "Procedural Content Generation Using Patterns as  

Objectives," in Proceedings of EvoGames, part of EvoStar., A. I. Esparcia-Alcazar, Ed., 

2014.  

[19] - Taito. 1978. Space Invaders. Arcade. Taito. 

  



49 
 

Appendix A - General Code Mappings Table 

 

General Code Mapping Spreadsheet 

Character(s) Present Sprite(s) Represented Code Mapped 

A Avatar A 

C Collectable C 

H Harmful H 

O Other O 

S Solid S 

O, O Other, Other 1 

O, A Other, Avatar 2 

O, H Other, Harmful 3 

O, C Other, Collectable 4 

O, S Other, Solid 5 

O, A, H Other, Avatar, Harmful 6 

O, H, H Other, Harmful, Harmful 7 

A, S Avatar, Solid 8 

S, H Solid, Harmful 9 

 

Table 9 - Process of mapping characters to general types. In the first column, every combination of general character types is 

accounted for within the current framework. Secondly, a description of what classified sprites are represented  
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Appendix B - Pattern Frequency Table 

 

Pattern Frequency 

 

Number of Unique Patterns with That Frequency 

 

20,000+ 1 

10,000 - 19,999 0 

1,000 - 9,999 6 

500 - 999 18 

250 - 499 14 

100 - 249 86 

50 - 99 101 

25 - 49 200 

10 - 24 583 

2 - 9 4821 

1 7111 

 

Table 10 - Frequency chart for unique patterns 
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Appendix C - Expressive Range Metrics 

 

 Solids Collectables Harmfuls Other 

Average 93.047 4.814 6.909 101.714 

STD 12.822 3.742 5.244 22.880 

Max 141 22 30 170 

Min 62 1 0 52 

 

Table 11 - Object count metrics for 1,000 levels of Bomberman from our constructive generator 

 

 Solids Collectables Harmfuls Other 

Average 89.6 4.6 10.2 98.4 

STD 21.090 3.847 8.319 9.044 

Max 121 11 12 112 

Min 65 1 3 87 

 

Table 12 - Object count metrics for 5 Bomberman levels from our constructive generator used in the playtest survey 

 

 Solids Collectables Harmfuls Other 

Average 94.603 4.917 6.915 99.136 

STD 13.709 4.001 5.578 22.674 

Max 134 23 30 173 

Min 59 1 0 52 

 

Table 13 - Object count metrics for 1,000 levels of Zelda from our constructive generator 
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 Solids Collectables Harmfuls Other 

Average 106.2 3.6 5 109.8 

STD 17.852 2.966 4.528 24.222 

Max 133 8 11 147 

Min 88 1 0 84 

 

Table 14 - Object count metrics for 5 Zelda levels from our constructive generator used in the playtest survey 

 

 

 Solids Collectables Harmfuls Other 

Average 98.876 5.793 7.037 194.797 

STD 13.585 3.992 5.726 31.828 

Max 135 28 33 266 

Min 64 2 0 144 

 
Table 15 - Object count metrics for 1,000 levels of Frogs from our constructive generator 

 

 

 Solids Collectables Harmfuls Other 

Average 94.8 5 9 187.2 

STD 3.493 3.742 5.244 4.324 

Max 98 11 16 192 

Min 91 2 4 182 

 

Table 16 - Object count metrics for 5 Frogs levels from our constructive generator used in the playtest survey 
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Appendix D - Survey Levels 

Bomberman New Constructive Levels: 
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Bomberman New Search Levels: 
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Bomberman Prior Search Levels: 
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Frogs New Constructive Levels:  
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Frogs New Search Levels: 
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Frogs Prior Search Levels:  
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Zelda New Constructive Levels:  
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Zelda New Search Levels:  
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Zelda Prior Search Levels: 

 

 

 


	Worcester Polytechnic Institute
	Digital WPI
	April 2018

	General Video Game Level Generation
	Spencer M. Beaupre
	Thomas Grosvenor Wiles
	Repository Citation


	tmp.1535548689.pdf.2T1r2

