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Abstract  

This project was conducted with Microsoft in Cambridge, Massachusetts.  The purpose was to 

design and implement a tool that would allow users to easily identify which parts of a software project 

had high levels of code churn.  The tool we developed interfaces with Microsoft’s internal source control 

systems, calculates churn measures for each file, and makes the churn data available through a web 

interface.  By analyzing this churn data, software developers can identify areas of code likely to contain 

defects. 



-iii- 
 

Acknowledgements 

We’d like to thank Microsoft for providing us with the opportunity and resources to complete 

this project.  Special thanks go to Vinay Kumar and Sandy Gotlib for their valuable guidance and for 

making our project possible. We’d also like to thank Ben Fersenheim for providing us with help and 

assistance with some of Microsoft’s internal tools.  Finally, we’d like to thank Professor David Finkel for 

his assistance throughout the course of this project. 



-iv- 
 

Table of Contents 

 
Abstract ............................................................................................................................................ ii 

Acknowledgements ......................................................................................................................... iii 

Table of Contents ............................................................................................................................ iv 

1 Introduction .............................................................................................................................. 1 

2 Background ............................................................................................................................... 2 

2.1 Code Churn........................................................................................................................ 2 

2.2 Microsoft Internal Tools .................................................................................................... 3 

2.2.1 Source Depot ............................................................................................................... 3 

2.2.2 Product Studio ............................................................................................................. 5 

2.2.3 BuildTracker ................................................................................................................. 6 

2.2.4 CodeFlow ..................................................................................................................... 7 

2.2.5 Srctool API .................................................................................................................... 8 

3 Design ...................................................................................................................................... 10 

3.1 Database ......................................................................................................................... 10 

3.2 Populate Job .................................................................................................................... 12 

3.3 Dashboard ....................................................................................................................... 14 

3.3.1 Settings View .............................................................................................................. 14 

3.3.2 Analyze View .............................................................................................................. 16 

4 Data Acquisition ...................................................................................................................... 20 

4.1 Desired Data .................................................................................................................... 20 

4.2 Collecting Branch Data .................................................................................................... 20 

4.3 Collecting Source Code Churn Data ................................................................................ 22 

4.4 Collecting Binary Churn Data .......................................................................................... 23 

5 Analytics .................................................................................................................................. 25 

6 Future Work ............................................................................................................................ 27 

6.1 Code Delta ....................................................................................................................... 27 

6.2 Product Studio Integration and Risk Analysis .................................................................. 28 

6.3 Additional Code Churn Metrics ....................................................................................... 28 

6.4 Additional Dashboard Views ........................................................................................... 29 



-v- 
 

6.5 Dynamic Drop Folder ...................................................................................................... 29 

6.6 User-Friendly Directory/Files Selection .......................................................................... 30 

6.7 Integrate Test Data .......................................................................................................... 31 

6.8 More Filters ..................................................................................................................... 31 

6.9 Seamless Transition between File Types ......................................................................... 32 

6.10 Applying Churn Coefficients to Specific Files and Folders ........................................... 32 

7 Conclusion ............................................................................................................................... 34 

8 Works Cited ............................................................................................................................. 35 



-1- 
 

1 Introduction 

The software development process is an iterative one, with each iteration reaching a milestone 

(also called sprints in the Agile methodology) before moving on to the next. Each milestone consists of 

the following series of repeated steps: designing the specification for the new feature, writing code to 

implement the feature, building the binary, testing and identifying bugs, and fixing bugs. These steps are 

repeated until a known quality bar is reached and the code is ready to be shipped to customers. The 

implementation and bug-fixing stages both involve modifying code, introducing code churn. Code churn 

measures the changes made to a codebase over a period of time and is a way to quantify the extent of 

these changes. 

Code churn is important to a software development team as it can be used to predict defect 

density. A study by Nagappan et al. showed that certain code churn metrics correlate highly with flaws in 

the code. These metrics have a role in driving the development and test process, as highly churned code 

is more prone to defects and should be tested more carefully and more thoroughly. 

Our ultimate goal is to answer the following questions: 

 What is the best way to measure code churn? 

 Which raw data measures and metrics should be used to express the degree to which a file is 

churned? 

 How can we present this data in a useful fashion? 

By answering these questions, we hope to analyze the available data for a project and provide a 

useful report to project managers that they can use to direct their teams. 
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2 Background 

2.1 Code Churn 

In order to find code churn metrics that we could trust, we looked to the literature for any 

research that had demonstrated metrics with a significant correlation to fault rate.  This is very 

important, as studies have shown that using lines of code churned or simple size metrics alone is a poor 

way to measure defect density (Fenton, N. E., Ohlsson, N., 805).  Fortunately, we found a technique that 

drastically improved the predictive power of these code churn metrics.  The problem with many churn 

metrics is that and increase in that metric, or absolute measure, can be caused by one of many things. By 

computing the ratios of certain pairs of metrics, one can obtain much stronger indicators of defect 

density (Nagappan and Ball).  These derived ratios of absolute measures are referred to as relative 

measures.  There are also further indicators of defect density such as code complexity and organizational 

structure (Nagappan, Basilli, and Murphy), but obtaining this information temporally would prove too 

difficult and appears out of the scope of this project.  We chose to use the relative measures described 

by Nagappan and Ball, which also determined which absolute measures we had to collect (see Figure 

2-1). 

Once a file’s relative churn measures are calculated, they can be added together with different 

weights to predict the number of defects the file contains.  Nagappan and Ball determined which 

measures have the strongest correlation to defect density, and assigned a set of coefficients to each 

measure that provided the best predictive model. However, their model was made specifically for a 

single software product (Windows Server 2003), and so the general applicability of their coefficients is 

unknown. It is possible that a different set of coefficients would be the best predictor for each different 

project one wishes to analyze. The researchers did not conjecture how much each coefficient might 
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differ, so it would probably be wise to re-run their analysis on whatever codebase one wishes to find 

defects in for best results. 

 

 

 

Figure 2-1. The absolute and relative measures used by the Code Churn Dashboard 
Note: “Lines Worked On” is the sum of Churned LOC and Deleted LOC 

2.2 Microsoft Internal Tools 

2.2.1 Source Depot 

In order to facilitate collaboration on shared code among team members, many teams use a tool 

called a “version control” or “source control” system.  Many popular source control systems exist, such 

as Subversion (also known as SVN), Git, and Microsoft Team Foundation Server.  Although each system 

Absolute 
Measure 

Description 

Total LOC The total number of lines of code in the 
file 

Churned LOC The number of lines added or modified 
since a previous revision 

Deleted LOC The number of lines deleted since a 
previous revision 

File Count The total number of source files that 
contribute to a binary (for a source file 
this is always 1) 

Weeks of Churn The amount of time a file is open for 
editing 

Churn Count The number of intermediate revisions 
between two versions of a file 

Files Churned The number of contributing files that 
have been churned (for a source file this 
is always 1) 
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has its differences in features and limitations, they all have the common functionality of storing current 

revisions of files, historical revisions, and some metadata about each revision. 

Internally, many teams within Microsoft use a source control system called Source Depot.  The 

Source Depot system is only used within Microsoft, and is not sold or licensed for use by other 

companies or individuals.  As a result, all documentation about the Source Depot system, related tools 

used to access it, and the SD API are all stored on internal Microsoft sites. 

Source Depot stores all data about files in the form of changelists.  Each changelist has a 

numerical identifier, and although they are not sequential they are well-ordered chronologically.  This 

means that a submitted changelist will always have a higher changelist number than changelists 

submitted earlier, but there may be gaps in the numbering.  This is because before a changelist is 

submitted and synchronized with the rest of the source code, it is sent to Source Depot by the developer 

as a ‘pending’ changelist.  This allows other developers to be able to refer to code that hasn’t been 

submitted yet for code reviews and other tasks.  When the status of a changelist is changed from 

‘pending’ to ‘submitted,’ it may be given a new changelist number to ensure that its identifier is higher 

than those of the changelists that were submitted while it was in the pending state. 

In addition to its numerical identifier, each changelist contains a description, the username of 

the developer who submitted it, a list of the files affected, a tag indicating what type of change it was 

(‘add’, ‘edit’, ‘delete’, ‘branch’, and ‘integrate’), and a diff between the old and new versions for each file.  

The affected files are listed in the form of a network path on the Source Depot server, such as 

//depot/dev/branch/file.txt.  With this collection of changelists, the entire history of a 

product’s development can be stored. 

In order for a development team to work on a large change without affecting other teams, 

Source Depot also implements the concept of branches.  Branches are made using the ‘branch’ 

operation, which copies files from one location to another.  An entire source code directory tree can be 
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cloned to a separate branch, and when development is finished all of the changes can then be merged 

back into the main tree at the same time using the ‘integrate’ operation.  These branches simply take the 

form of another directory on the Source Depot server such as 

//depot/se/softgrid/4.6/SE_46_Mainline/ for the branch called SE_46_Mainline. 

Source Depot also provides an API, implemented through the Microsoft Component Object 

Model (COM), which allows a developer to access the data stored by Source Depot for use in other 

programs.  This API is simply a wrapper for the Source Depot commands normally available to users via 

the sd.exe program, and for programmatic access to all of the data available in Source Depot such as 

changelist descriptions and affected files, the differences between revisions of files, etc.  In standard 

mode, data is returned from Source Depot as either strings or arrays of ASCII bytes, depending on the 

information requested.  The data is not divided up in any way based on its content and has to be parsed.  

The Source Depot API also has a structured mode.  While the data is still returned as strings, the data is 

at least somewhat organized.  For example, when requesting all of the changelists from a given branch, 

each changelist is given as just "234530" as opposed to "Change 234530 on 2012/10/25 

10:05:06 by <user> '<description>'", making it easier to parse.  As a result, we used the 

structured mode with all commands for which it was supported.  This API allowed us to analyze 

Microsoft source code and identify source files with high levels of churn. 

2.2.2 Product Studio 

Another crucial part of maintaining large software projects is bug tracking.   Bug tracking systems 

typically distinguish true bugs from orders for new work, allow for work to be assigned to certain people, 

and keep track of the current stage in the repair process for any given bug.  Microsoft uses a proprietary 

bug tracking system called Product Studio, which does all of the above and more. 

Each bug in Product Studio (PS) is assigned a severity and a priority, which respectively refer to 

how costly the bug is and how important it is to fix.  Bugs can also be given a short description; assigned 
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a project area, which indicates which part of the codebase is affected; an assignee, who is charged with 

fixing the bug; and a reviewer, who inspects the proposed fix for quality. Bugs have other fields, too, but 

they aren’t often set by less diligent developers. One such field with significance to us is the regression 

flag, which indicates whether this is a bug that was thought to be fixed but was broken again.  Also 

valuable to us is the field that holds the changelist numbers of all changes made in the process of fixing 

the bug.  When both the regression and changelist fields are set properly, they could hypothetically be 

used to identify segments of code that are especially risky to change.  

2.2.3 BuildTracker 

Microsoft tracks all of its product and branch information using a system called BuildTracker.  

When an employee wishes to enlist the code from a specific branch to his computer, he visits the 

BuildTracker website and chooses from a list of branches that the administrators have granted him 

access to.  These branches are all associated with specific products, such as Office, AppV, or Application 

Virtualization.  For example, our Code Churn Dashboard project was made part of the 

se_46_mainline branch, which is part of the Application Virtualization product.  To enlist this branch 

to our computers, we had to select “Application Virtualization” from the list of products, and then select 

se_46_mainline from the list of branches.    

Additionally, BuildTracker enables the management of build jobs.  Build jobs instruct dedicated 

machines to synchronize to the latest version of the source code and compile it.  Build jobs can be 

queued up and automatically run when the system is free to do so.  After a build completes, all of the 

users who were specified during the creation of the build request are notified via email about the results 

of the build. 

In addition to official builds which compile the code and produce the resulting binary files, a user 

can also perform test builds called “buddy builds”.  After a buddy build completes, the current build 

number of the branch does not change.  The two purposes of running a buddy build are to make sure 
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that there are no pre-existing errors in the codebase and to make sure that no new errors would arise as 

a result of the introduction of the code to be committed.  We frequently had to run buddy builds prior to 

committing code in order to ensure that our committed code would not interfere with the existing code 

(since our Code Churn Dashboard project was being stored in one of the Application Virtualization 

development branches). 

There is an API for BuildTracker which includes many useful features.  Among the most useful 

features to us were the ability to query BuildTracker for existing products and the related branches, and 

also the ability to retrieve the Source Depot source code locations for each of those branches.  

2.2.4 CodeFlow 

For the code review process, Microsoft uses an internal tool called CodeFlow.  Before a 

developer commits any changes to Source Depot, those changes must first be reviewed by others.  This 

is where CodeFlow comes into play.  CodeFlow takes the changes that are contained within a pending 

changelist and visualizes them so that they can be reviewed before a final commit is made.  This way, 

fellow developers and testers have a chance to suggest changes to the structure of the proposed code, 

as well as to catch any errors or unintended results that the original developer may have overlooked.  As 

the developer makes the suggested changes to their code, they can introduce new iterations of the 

proposed changelist which address the suggestions made.  CodeFlow keeps track of all these iterations 

and allows the users of CodeFlow to look at each successive iteration, thereby capturing the 

transformation of the developer’s original code proposal as it has changed due to the suggestions of the 

reviewers.   

Once a reviewer approves of everything in the most recent iteration of the changelist, the 

reviewer then “signs off” on the content of the changelist.  Every team is different, but most teams 

require that a certain number of reviewers have signed off on the code review before the final changes 

can be submitted to Source Depot.  Nothing actually restricts a developer from submitting code to 
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Source Depot immediately, but it is considered bad practice to do so before it has been reviewed in 

CodeFlow. 

In order to use CodeFlow, a developer must first run “mkreview <CL#>,” where CL# is the 

changelist number of the proposed changes.  This creates an sdpack on a file share, which tracks all of 

the changes for the developer’s changelist.  Next, the developer must run “cfreview <CL#>.”  This 

takes the sdpack that was created in the previous step and uses it to generate a session in CodeFlow.  At 

this point, CodeFlow can display a visual of all of the files that have been modified, added, or deleted in 

comparison to the current version of the codebase that currently resides in the Source Depot repository.  

After running cfreview, the developer can specify the list of reviewers who will be required to review 

the changes.  After doing so, all the intended reviewers will receive emails that a new review has been 

submitted.  In the email there will be a link to “Open in CodeFlow.”  Clicking on the link allows a reviewer 

to open the corresponding CodeFlow session and begin reviewing. 

The use of CodeFlow was invaluable to us in the completion of our MQP.  Our code review 

process was such that the reviewers for a CodeFlow session were the two remaining members of our 

three person team, in addition to our Microsoft mentor.  Before committing code to Source Depot, we 

had to make sure that two out of the three reviewers had signed-off on the changelist.  This ensured that 

our code was well-critiqued and as efficient as possible. 

2.2.5 Srctool API 

Srctool is a utility available within Microsoft that parses a binary’s program debugging symbols 

(pdb’s) to find out which source files were needed to build that binary.  Srctool is accessible from the 

command line using Srctool.exe, and a subset of its functionality is exposed in the Srctool API.  

When running srctool.exe, there are a number of command-line arguments that one can specify: 

 -u:  displays only source files that are not indexed 

 -r:  dumps raw source data from the pdb 
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 -l <mask>:  limits to only source files that match the regular expression <mask> 

 -x:  extracts the files instead of simply listing them 

 -f:  extracts the files to a flat directory 

 -n:  shows version control commands and output while extracting 

 -d <dir>: specifies which directory to extract to 

 -c:  displays only the count of indexed files – the names are not given 

Srctool API, on the other hand, exposes a single method that is used to list raw source data.  Its 

output is equivalent to running srctool.exe with the ‘-r’ flag.  The advantage to using Srctool API is that 

it doesn’t require the starting of a new process to execute srctool.exe.  The Srctool API is thus the means 

we chose to obtain information about which source files contribute to a given binary. 
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3 Design 

The Code Churn Dashboard is divided into three functional parts.  The first is the database, 

which stores all of the data mined from Source Depot. The second is the task which does the data mining 

through SDAPI and stores its results in the database. Lastly is the user-facing segment, which queries the 

database in order to present visualizations of the churn data in a customizable fashion to the user. 

3.1 Database  

One of the first decisions we made when designing the Code Churn Dashboard was to use a 

database to store raw data that had been mined from Source Depot.  We chose to do so because we 

didn’t want to flood the Source Depot server with connections whenever the dashboard was used, as 

this would likely be during working hours when other users would be trying to sync with or submit code 

to the Source Depot branches.  By using a database, we could limit interaction with the Source Depot 

server to non-peak hours.  In addition, we wanted to do calculations as early as possible (while the 

database was being populated) so that visualizing and presenting the data on the dashboard would 

require less computation and would therefore be more responsive.  This became significant after 

working with the Source Depot API (see Section 2.2.1), as it prevented the long wait times involved with 

getting results from a Source Depot command from impacting the user experience. 

For the database, we tried to split up our data into separate tables as much as possible and link 

those tables using foreign key constraints.  This allowed us to avoid the wasted space that is caused by 

the same row being duplicated many times with only a small number of the columns changed.  For 

example, with each change of a file, the churn data changes but the file path and associated branch do 

not.  With the abstraction provided by LINQ to SQL, these foreign key links between tables made 

accessing necessary data much easier because data in linked tables was always available as a member in 

the LINQ object. 
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Figure 3-1 shows the tables in our database and the foreign keys that link them together.  For 

example, our planning led us to have tables called AllProducts and AllBranches, with the 

AllBranches ProductID column being a foreign key to the AllProducts ID and linking the two 

together. These hold all of the product and branch data pulled from BuildTracker so it would be available 

for the user interface.  When a branch is enlisted, a row is added to the EnlistedBranches table 

using data given at enlistment combined with the associated data in AllBranches.  When the 

Populate Job described in Section 3.2 is run, the SrcPath and BinPath tables are populated to hold 

the paths of all source files and binaries, and the Src and Bin tables are then populated with the churn 

metrics of those files for each interval of time.  Finally, the MapChanges table contains data on how 

binaries can be mapped to their component source files, which can be used to determine binary churn 

data (see Section 4.4).  

 

Figure 3-1. The organizational structure of the Code Churn Dashboard Database 
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3.2 Populate Job 

Once the database design was in place, we needed a plan for collecting data and populating the 

database with it.  We decided that the best method was to write a program that would run as a 

scheduled task to fetch data and store it into the database.  That way, the data would be immediately 

available when requested, and the job could also be scheduled when the data sources weren’t being 

used to avoid exhausting those servers’ resources.  The data we use draws from three different data 

sources, so he most logical approach we considered was to split the tables up based on which source 

they obtain their data from.  The three sources are Build Tracker API, Source Depot API, and Srctool API, 

which were each discussed in Section 2.2. 

The first source of data, the Build Tracker API, provides product and branch information.  This is 

required to create the Settings View discussed in Section 3.3.1, and provides necessary information to 

enlist branches.  As a result, it was separated to its own DLL library so that it could also be run on 

demand in the settings view if someone wishes to enlist a branch that is not yet in the database, in 

addition to being run with the rest of the Populate Job.  This DLL has a single class, 

PopulateProductBranchData, which performs all of these tasks. 

In order to populate the source churn data, there are two logical steps; the first is to request the 

necessary data about each file from Source Depot, and the second is to insert that data into the 

database.  As a result, we decided to divide this section of the Populate Job into two classes based on 

this logical division.  The first class, called SrcChurnDataPopulator, provided the overall flow and 

performed the insertions into the database.  Before it starts, it pulls data from the 

EnlistedBranches and IgnoredPatterns tables to know which branches to collect data from 

and which source files should be excluded.  The second, SourceDepotExtractor, handles all of the 

communication with Source Depot.  To make our program more extensible, 

SrcChurnDataPopulator requests information from an ISrcMetricExtractor interface, 
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which the SourceDepotExtractor implements.  As a result, if a development team wished to use 

the Code Churn Dashboard with another version control system, they would merely have to implement 

the methods from that interface. 

Populating and updating the binary churn data requires several things to be done. We must 

aggregate any data that was just collected by the SrcChurnDataPopulator where the source files 

contribute to the binaries the dashboard is tracking. However, there is also the possibility that a binary 

has just been added to the dashboard, in which case we need to review the source data from the entire 

history of the branch to calculate that binary’s churn retroactively.  For this reason, we added a bit flag to 

the BinPath table called HasBeenRun that indicates whether a binary’s churn has been calculated up 

to the current churn interval. There is also a flag called DeleteOnNextRun that indicates whether a 

binary is to be removed from the tracking next time the job runs. By checking these flags, the job is able 

to determine how to treat each of the tracked binary files. The next step of our design is to determine in 

what order we handle each class of binaries.   

Choosing which category to process first seemed like a natural choice. It would be a waste of 

resources to collect data for a binary and then immediately delete it, so we perform all deletions first. 

The next choice we made regarding deletions was to use the DeleteOnNextRun flag in the first place.  

It would be possible for us to enable a dashboard user to delete a BinPath row directly from the 

dashboard and SQL Server would automatically delete the Bin rows associated with it, but replacing the 

data if the user changed their mind would be much more difficult. By controlling deletion through a flag 

in the database, we offer the rest of the day as a grace period in which users can change their mind 

without creating avoidable work for the dashboard’s back end. 

After purging the data that we no longer want, we can split the remaining tracked binaries into 

two groups – those that the job has already been tracking, and those which were added through the 

dashboard web UI. We choose to bring the already tracked binaries up to date before we begin enrolling 
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the new ones.  This way, when we enroll the new ones, we only have to look up the list of sources that 

contributed to them once. We also get to set the HasBeenRun flag for each new binary only once that 

binary has been brought completely up to date. If we reversed the order, we would have to either only 

run the new binaries up to the same state as the old binaries (missing the most recent week), and then 

collect the newest week for all binaries at the same time, or run the new binaries all the way through, 

but hold off on setting the flag in order to distinguish them from the old binaries before we update the 

old binaries’ churn data.  In the first case, we look up the binary-source mapping for each of the new 

binaries twice when we could only do it once.  In the second case, we increase the risk of leaving the 

database in an inconsistent state if the populate job is ever interrupted because we wait a longer-than-

necessary time to set the flag after the new binaries have been partially run.  Weighing these facts, we 

believe our ordering of the three steps to be the best one. 

3.3 Dashboard 

After the data was collected and the database was populated, the next step was to present it in a 

useful fashion so that actions could be taken on the data.  To this end, we developed a dashboard 

frontend using HTML5 and Javascript that would both allow administrators to set up the dashboard and 

enlist branches as well as allow users to see aggregate churn data for a given branch of a period of time.  

The dashboard was developed using ASP.NET, C#, HTML5, and Javascript. 

3.3.1 Settings View 

In order to facilitate enrollment of new branches and simple modification of existing enlistments, 

we developed an administrative view of the dashboard that would allow these changes to be made (see 

Figure 3-2).  When this view is loaded, a list of products is shown to the user.  When clicked on, each 

product expands to show all of its available branches.  If no branches are in the database, a link is 

provided which will force the collection of the most current data from Build Tracker (see Section 4.2). 
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Figure 3-2. The Code Churn Dashboard Settings View 

When branches are shown, they are color-coded to show their current state with respect to the 

Code Churn Dashboard; black indicates that a branch is not enlisted, green means that a branch has 

been enrolled but no data is available yet, blue indicates that a branch is currently being tracked, and red 

informs the user that the branch is pending removal.  This pending state was added because populating 

a newly-enrolled branch takes a long time, so this allows one to undo an accidental removal. 

Next to each branch, various options are given depending on the branch’s current state.  

Branches that are currently pending removal or enrollment have the option to return them to enlisted or 

not enrolled, respectively.  Branches that are not enlisted have the option to enroll them, and finally 

branches that are enrolled have options to either modify or remove them. 

When a branch is selected to either be enrolled or modified, a modal dialog pops up providing 

additional options to the user (see Figure 3-3) – some options are given default values, or in the case of 

branch modification the current settings are shown.  The ‘update interval’ determines the granularity of 

data for a given branch.  The binary net path is the network location where binaries for a given branch 

are stored, which when provided allows the dashboard to calculate aggregate churn for those binaries 
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based on the churn data for their component source files.  The included binaries list indicates which 

binaries should be tracked, and finally the ‘ignore table’ allows administrators to instruct the population 

job to completely ignore files matching a given pattern. 

 

Figure 3-3. The Modify Branch modal dialog 

When the settings are saved, the changes are stored in the database and will take effect the next 

time population job is run, allowing unwanted changes to be easily reversed.  When the status of a 

branch changes, the page is refreshed to show each branch’s current state. 

3.3.2 Analyze View 

The primary function of the Code Churn Dashboard is to view aggregate churn data for a 

selected branch.  This data is accessible through the “Analyze” page of the dashboard.  Along the top of 

the Analyze page, there is a panel where the user can specify the options for the desired churn data (see 

Figure 3-4).  The user selects which one of the enlisted branches they wish to analyze, as well as other 

settings, like start date and end date.  This top panel also gives the user the choice between viewing 

analytics for source files or binary files.  The last option in the top panel is a checkbox which allows the 

user to specify whether they would like to include files that were newly added to Source Depot in the 

analysis.  This can be useful because oftentimes added files will skew the results due to the fact that they 
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result in a very high churn count, despite the fact that there wasn’t any pre-existing code that had 

changed. 

 

Figure 3-4. The Code Churn Dashboard Analyze View 

On the right-hand side of the Analyze page there is a collapsible side panel that contains even 

more settings that the user can modify in order to further dictate how the data is processed (see Figure 

3-5).  The first section of the collapsible side panel allows the user to create filters that limit the data that 

is analyzed.  An example of a filter that can be created here is one that excludes certain date ranges 

within the overall date range that was selected in the top panel of the Analyze page, as discussed in the 

preceding paragraph.  Another example filter is a “path contains” filter.  In this filter, the user specifies 

part of the relative path within the branch’s binary or source code folder, and as a result, any file whose 

relative path does not contain the specified string will be excluded from the analytics. 
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Figure 3-5. The Analyze View filters and measurement adjustments side panel 

Below the filters is the Measurement Adjustments section. Here, the user can modify the default 

coefficients that are used when calculating the churn indices for the files within the search criteria.  

Churn index (as discussed in Section 5), is the sum of the six obtained relative measures, each multiplied 

by a coefficient, since the fine-tunings of the importance of each relative measure can vary from project 

to project.  The default coefficients for the churn index calculations are all 1.0, but the user can change 

any of them to be non-negative floats in the Measurement Adjustments section. 

Once all of the aforementioned settings have been specified, the user can then view the 

analytics results of their query in the main content area of the page.  At the top of the main content 

area, there will be a Summary section where the churned measures for each of the selected files will be 

summed and displayed as totals for each of the absolute churn measures.  Below this, there will be a 

“Top N” view, where the user can specify how many files they wish to see the absolute churn measures 

for.  By default, N is 10, but can be changed to any positive integer.  The “N” files with the highest churn 

indices will be displayed, including the paths to the files, their absolute churn measures, and their 

calculated churn indices.  Due to the fact that the paths to a given file may be very long, we truncate it in 
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order to fit in the table cell that it is displayed in.  The full path can be viewed by hovering over the 

shortened path to the file, at which point a tooltip will show up with the full path displayed in it.   

When viewing the Top N source files, there will be an expandable dropdown beneath each file 

path which, when expanded, will show all of the binaries that the given source file contributes to.  We 

made the decision not to implement this same functionality when viewing binary files due to the fact 

that the number of source files that make up a given binary will likely be very high and it wouldn’t be 

feasible to have an expandable drop down with possibly hundreds of source files.  Visually, this wouldn’t 

look very appealing, and practically, this would take too long for the page to load. 
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4 Data Acquisition 

4.1 Desired Data 

In deciding what data we needed to collect, we began with the end in mind. Our eventual goal is 

to present code churn data for a given binary file to predict defect density in that file.  Thus, we must be 

sure that the set of metrics we collect can be used to predict defect density effectively. We should also 

be able to display this data over a nearly arbitrary time period.  The solution is to measure the churn 

over small date ranges, and construct a data model that allows us to obtain the code churn metrics for 

any given file and atomic date range pair.  There is a conflict, however, between how fine-grained we 

want our data collection to be and how much data we can feasibly store.  We would like to use smaller 

date ranges, if possible, but it turns out that making date ranges smaller is actually detrimental at a 

certain point. Measuring churn from day to day or from hour to hour would actually not provide better 

information than measuring from week to week, due to variations in working hours such as long 

meetings or days off, which both reduce the amount of actual coding that an employee is able to do.  We 

leave it up to the project managers who enlist their projects in the code churn dashboard to specify this 

date range for the branches they own. 

4.2 Collecting Branch Data  

For our Code Churn Dashboard, we wished to show the user the same lists of products and 

branches that were available in BuildTracker.  The user could then select from these lists and register the 

desired branches in our dashboard for code churn tracking.  All of this branch and product data 

collection could have been done in real-time when a user of our Code Churn Dashboard was requesting 

the information, but we found that there was too much of a delay when waiting for the BuildTracker API 

to return the requested information.  Therefore, we decided to run a daily job in order to populate the 
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branch and product information in our database, and then pull the data from there when a user 

requested that information.  We had to choose whether we wanted to have faster page loads with 

potentially outdated data, or slower page loads with data that was pulled in real-time.  We decided that 

we preferred to have faster load times.  In the worst case, a user would have to wait 24 hours until the 

daily job ran again in order to see a new branch that had just been created in Source Depot, at which 

time they could choose to begin tracking it in our dashboard.  The potential wait time didn’t seem too 

problematic, especially since new branches aren’t created very often (and old branches aren’t deleted 

very often).   

To achieve the necessary functionality, we pulled the product and branch information using the 

BuildTracker API.  With the API, we were able to query BuildTracker for a list of all products, and then for 

each of these products, we were able to ask BuildTracker for a list of branches that belonged to each 

respective product.  Then by traversing through each of these returned branch objects, we were able to 

analyze the enlistment specifications for each branch.  If the branch object contained enlistment 

specification data pertaining to Source Depot, then this meant that the branch in question was being 

tracked in Source Depot.  In this case, we pulled the necessary data pertaining to that branch from 

BuildTracker and stored it in our database.  On the other hand, if the enlistment specification data didn’t 

contain any Source Depot information, then we chose to ignore those branches because they were not 

being tracked in Source Depot, and therefore the code churn data related to those branches would not 

be obtainable by the Source Depot API.   

For each product in BuildTracker, we stored the name of the product in our database.  For each 

branch, we stored the name of the branch, the product to which it belonged, and the location of the 

branch within Source Depot (for example, //depot/se/softgrid/4.6/SE_46_Mainline/).  

The retrieval of the network path from the BuildTracker system required us to parse a string and 

separate the path from some other data that was included with it. 
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4.3 Collecting Source Code Churn Data 

In order to collect the raw churn data needed to predict defect density, we needed to mine it 

from the Source Depot system described in Section 2.2.1.  We used the Source Depot API to connect to 

the Source Depot server and collect data about the submitted changelists and their associated affected 

files. 

In order to collect the raw churn data, the first step was to get a list of all changelists for each 

branch that was being tracked by the dashboard.  Initially we collected all changelists for every branch, 

but this was changed when we discovered that Source Depot could filter its own results as we would no 

longer have to check if the changelist was for an enlisted branch.  For each changelist, we then retrieved 

the time of the change and the list of affected files. 

With the specific changes for each revision of every file, we could analyze those changes to 

calculate churn.  Source Depot has the ability to provide ‘diff summaries’ between two revisions of a file, 

which gives the number of lines added, changed, and deleted.  While it doesn’t have a built-in way to 

calculate total lines of code, simply retrieving the number of lines added between the current revision 

and revision 0 (before the file existed) provided this metric.  However, if the source depot operation was 

either an ‘add’ (a brand new file being added) or a ‘branch’ (a copy of a file from a different branch), we 

make a note of it in the database.  This would allow us to implement the ‘Include Adds’ option on the 

dashboard discussed in Section 3.3.2. Finally, the Source Depot ‘integrate’ option could potentially result 

in many changes being applied at once.  This can occur because the integrate operation indicates that 

changes from one branch are being merged to another.  However, we opted to simply use Source 

Depot’s aggregate of all these changes as it would otherwise skew the churn results to rank these 

operations much higher than others.  We decided that if the individual churn for the files in the 

originating branch was desired, that branch could simply be enlisted as well.  At this point, we had all of 

the data needed to analyze and calculate the relative churn metrics. 
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Finally, when a branch is enlisted the Dashboard administrator is allowed to select the interval 

that data should be collected.  We stored the churn data by aggregating all data in periods of this 

interval.  For example, with the default interval of one week each row would store the aggregate churn 

data for the preceding week.  This allowed us to calculate the information a user desires when they 

access the dashboard page by analyzing the historical code churn data that had been stored in our 

database. 

4.4 Collecting Binary Churn Data 

To collect churn data on binary files, we need to determine which sources contribute to which 

binaries.  This is done using the Srctool API (see Section 2.2.5).  It is pretty trivial to check each line of 

API’s output against the table containing all the source files we are tracking, and then insert a row to the 

MapChanges table with foreign keys to each of the binary and source files.  It is also pretty 

straightforward to check where there was once a row in MapChanges but the mapped source file is no 

longer referenced in the pdb.  In both cases we use LINQ statements to compare the SrcPath table to 

the srctool output and return the id’s from the rows in SrcPath that had a match.  However, many of 

the pdb’s listed source files are not even human-written source code that gets checked into Source 

Depot. Since we know that none of those files will ever have a match in the SrcPath table, we would 

like to filter out such irrelevant file paths before we check them against every row of the SrcPath 

table.  It turns out we can predict whether a file exists on source depot based on where it was in the 

build machine’s directory tree.  Anything from source depot goes into the C:\ drive, while other libraries 

are stored in separate locations.  Each machine maps the root of the branch it is building to 

C:\[aa]\[####]\, where [aa] is two letters and [####] is a four-digit number.  We use the 

regular expression c:\\[A-Za-z]+\\\d+\\ in order to match, because the letter and number 

combinations could presumably move up to a greater number of characters as more and more branches 

are added. In some cases, we can ignore about half of the output of the .pdb by determining which files 
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can’t be in source depot. Reducing the number of source files we have to look for in our SrcPath table 

gives a big performance bonus – especially as the SrcPath table gets larger and larger.  

 Once we have the map from binaries to sources established, we can compute the absolute 

churn measures for the binaries.  We chose to measure binary and source churn data over exactly the 

same time intervals in order to make this step easier.  Because the time segments always coincide, we 

can just do addition of all the source churn fields and arrive at the correct counts for the binary file.  

Even when a source maps to multiple binaries, we avoid having any conflicts between the source file’s 

designated update interval and that of either binary file because the update interval is enforced across 

the entire branch.   
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5  Analytics 

Once churn data is collected, we need a way to decide which files have been churned the most. 

We assign coefficients to each relative measure to compute a code churn index which indicates how 

much the file has been churned.  Letting M1 through M6 be each of our 6 relative measures (see Figure 

5-1) -- and C1 through C6 be their coefficients (see Section 2.1) -- we use the expression C1M1 + C2M2 + 

C3M3 + C4M4 + C5M5 + C6M6 as the indicator of how much a file has been churned (i.e. the churn index of 

the file). We leave the coefficients to be user-defined parameters in the dashboard, and a user must 

determine their coefficients based on how much interest they have in each type of churn.  It should be 

noted that due to limitations of Source Depot, we were only able to calculate six out of the original eight 

relative code churn measures. 

 

Figure 5-1. The absolute and relative measures used by the Code Churn Dashboard. 
* indicates metrics that could not be obtained due to limitations of Source Depot 

Absolute 
Measure 

Description 

Total LOC The total number of lines of code in the 
file 

Churned LOC The number of lines added or modified 
since a previous revision 

Deleted LOC The number of lines deleted since a 
previous revision 

File Count The total number of source files that 
contribute to a binary (for a source file 
this is always 1) 

Weeks of Churn* The amount of time a file is open for 
editing 

Churn Count The number of intermediate revisions 
between two versions of a file 

Files Churned The number of contributing files that 
have been churned (for a source file this 
is always 1) 

Relative Measure 

Churned LOC

Total LOC
 

Deleted LOC

Total LOC
 

Files Churned

File Count
 

Churn Count

Files Churned
 

Weeks of Churn*

File Count
 

Lines Worked On

Weeks of Churn*
 

Churned LOC

Deleted LOC
 

Lines Worked On

Churn Count
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We leave the coefficients up to the user, but a user’s choice of coefficients should be guided by 

what they are looking for in the data rather than made arbitrarily.  For example, a tester looking to see 

where new features have been added might prioritize lines churned over lines deleted because deleted 

lines usually indicate that a change is actually a bug fix.  A different set of coefficients might be used in 

order to predict which files are most likely to have had defects introduced into them.  In theory, there 

should be an optimal list of coefficients for each interest a user could have.  The researchers Nagappan 

and Ball derived a set to predict defect density in their research on relative code churn measures, but 

they warned that their data set was not very representative of code in general because they only 

analyzed data from a single software product. Therefore, we leave the churn index parameters up to user 

definition and leave the discovery of optimal sets of coefficients as a future task. 



-27- 
 

6 Future Work 

The majority of the work done over the course of this project was devoted to retrieving and 

calculating code churn metrics.  While the information displayed by the Dashboard’s Analyze view 

discussed in Section 3.3.2 is extremely useful, there are many more ways one could use the data we 

found to gain insight about the code in a given project.  In particular, risk analysis, integration with 

Product Studio, additional metrics, and addition analysis views are all areas where this product could be 

extended. 

6.1 Code Delta 

In order to increase the comprehensiveness of the analysis provided by the dashboard, it might 

be worth considering Hall and Munson’s concept of code delta in “Software evolution: code delta and 

code churn.” Whereas code churn is just a measure of how the code has physically changed over time, 

code delta measures how much the complexity of the code has changed over time. By including the 

measure of code delta, our system would be more perceptive of a small but very important change that 

would fly under the radar when only using raw churn metrics. The case when code delta can be a more 

accurate predictor of defect density than code churn is when very small but complicated code 

modifications are made to the code. For example, adding a call to a complex method (or changing a line 

within a widely used method) would appear as a single line of code added, but it could have larger 

effects throughout the entire code base. Because of the contrast between code churn and code delta, a 

much better picture of where potential defects may lie is given by analyzing the two measures in 

conjunction with each other. Therefore, it could be beneficial to explore this idea for further 

improvements to our Code Churn Dashboard system. 
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6.2 Product Studio Integration and Risk Analysis 

In addition to Source Depot, the dashboard could also tap into data from Product Studio, 

Microsoft’s bug-tracking system. Product Studio’s database associates identified bugs with the 

changelist(s) that fixed them. Product Studio also keeps additional data about these bugs, such as their 

severity and priority. The severity and priority of these bugs can be used as an indicator of how fragile an 

individual code file is; a file that is associated with a lot of bugs -- or a few severe bugs – will pose a 

certain risk any time it is changed. Between this data and the code churn data we have already collected, 

the dashboard could expose a view that allows the user to enter a pending changelist and get an idea of 

how risky that change is. For example, if one of the proposed changes affects a file that causes frequent 

bugs or passes a certain threshold of code churn, it could be flagged to indicate that the change could be 

problematic and that additional testing is suggested. Depending on the diligence of the developer who 

entered the bug fix into Product Studio, the dashboard may even have further information, like what 

other areas of the codebase could be affected indirectly by the change.  

6.3 Additional Code Churn Metrics 

One of the absolute churn measures from Section 2.1 could not be obtained from Source Depot. 

This measure was “weeks of churn” (the total time a file was open for editing during a given time 

period), and was unobtainable because Source Depot does not keep track of this quantity. However, it 

would be possible for the dashboard to measure this quantity without requiring Source Depot to 

measure or store it.  Currently, Source Depot keeps track of which files are currently checked out and by 

whom. The only problem is that once the file is checked back in, Source Depot keeps no record of the 

checkout. If the dashboard were to expose an API call that told it when a file was checked in or checked 

out, the dashboard’s backend could be extended to keep track of weeks of churn and Source Depot 

would only have to be tweaked to call the API when a file is checked out.  If this feature were to be 
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included in the future, the dashboard would gain two additional relative measures by which it could 

analyze churn. 

6.4 Additional Dashboard Views 

In Section 3.3.2, we discussed how we presented our churn data by showing the user the ‘Top N 

most highly churned files.’  Although this provides one way to view the data, the dashboard was 

developed in such a way as to allow alternative views to be added.  For example, one possible view for 

source code would be a heat map of all source files, which shows all of the source files visually organized 

by their location in the branch, and would color-code them based on churn.  This would allow a user to 

easily identify larger areas of a project that had high levels of churn, as opposed to only seeing data for 

one file at a time.  In addition, this would allow the user to explore the available data more easily.  For 

binaries, possible views that could allow a user to glean interesting information would be to show the 

relationships between binaries based on their component source files, and how churn in one affects 

others. 

6.5 Dynamic Drop Folder 

When pulling all of the branch data from BuildTracker (the name of the branch, the product which 

the branch belongs to, and the network path to the branch’s source files), we were unable to retrieve 

the network path to each branch’s most recent build drop location.  Since the build drops are where the 

.pdb’s are located, it would be very useful for the PopulateJob to automatically update each branch’s 

BinNetPath to point to the most current build drop location.  This way, the branch’s administrator in 

the Code Churn Dashboard wouldn’t have to manually change the BinNetPath every time there was a 

new build drop.   

We were unable to conclude whether the BuildTracker API exposes the necessary functionality to 

achieve this.  Each Branch object in BuildTracker can have BuildShareGroups attached to it, which 
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then contain BuildDropCollections.  In this case, it is easy to conclude that each of the 

BuildDrops in the BuildDropCollections belong to the given Branch, and then the 

DroppedTime of the BuildDrop can be looked at in order to determine which one is the most 

recent drop. 

The uncertainty arises due to the fact that each Product object in BuildTracker can also have 

BuildShareGroups attached to them, each with BuildDropCollections belonging to those 

BuildShareGroups.  We were unable to determine whether there is a link that goes from each of 

these BuildDrops back to a specific Branch object.  For many Branches, all of the associated 

BuildDrops are associated with the Products, rather than the Branch itself, so this missing link 

from the Products’ BuildDrops to the Branches they pertain to was what prevented us from being 

able to dynamically change the most recent build drop folder in the Code Churn Dashboard.   

The BuildTracker website does successfully map the BuildDrops in question back to their 

individual Branches, so either we overlooked how it can be done with the BuildTracker API, or the 

necessary functionality was never exposed to the API.  If it is not possible with the API, another 

possibility could be to look at the .log files that are generated in each build drop and parse them to find 

the names of the branches that they belong to.  However, this would not be the most ideal scenario due 

to the time it would take to parse all of the files and the fact that not all .log files follow the same 

conventions. 

6.6 User-Friendly Directory/Files Selection 

From a user’s perspective, it would be a lot easier to make file or folder selections via a clickable 

hierarchical display.  This would make it a simpler experience for the user because it would no longer 

require them to type out full paths in order to get to the file or folder that they intended to input.  This 

would also be beneficial because it would eliminate potential user errors where they incorrectly typed 
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the path that they were trying to target.  Ideally, when implemented, this would be a popup that 

functioned similar to Windows Explorer. 

 

6.7 Integrate Test Data 

The dashboard would benefit from having access to data about testing. If the dashboard had a 

way to map code files to the test cases that cover them, then the dashboard could suggest a set of test 

cases to be run after a certain batch of changes.  It would also be possible, once the map is created, for 

the dashboard to notify the user whenever it encounters a file which has no associated test cases. 

Untested code is a big vulnerability for the introduction of defects, and so reducing the amount of 

untested code would be a valuable service that the code churn dashboard could provide.  Beyond 

alerting users when a file has no test cases, it could potentially be a research project to determine some 

heuristics by which the dashboard could determine when an already-tested file might need new test 

cases.  Our research already suggests that certain relative measures will increase disproportionately 

when new features are being added versus when bug fixes are being applied.  The dashboard might keep 

a counter of how many times each source file was churned in a way that indicates new features, and 

then alert the user after a certain number of such periods of churn in which no new test cases were 

added. 

6.8 More Filters 

As discussed in Section 3.3.2, the Analyze view of the dashboard allows a user to filter the results.  

Currently we have implemented one filter, which was the “Path Starts With” filter.  (We also 

implemented the “No Adds” filter, but in our User Interface, this was presented as an option rather than 

a filter).  Ideally, the Code Churn Dashboard should have a whole range of filters that can be set by the 

user.  Some filter ideas that we discussed during the brainstorming phase were filters to “Exclude Date 
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Range,” “Exclude Folder,” and “Name Contains.”  These filters (along with any additional ones that might 

be necessary) would be very helpful to users as they tried to pinpoint the exact files that they were 

looking for.  Furthermore, it would be useful if the user could add an arbitrary number of filters (rather 

than setting just the hard-coded ones that we have exposed to them).  Ideally, this arbitrary number of 

filters could then be chained via the operations AND and OR, and negated via the NOT operator.  In such 

a way, the user would be able to create a customized query that would help them select the exact files 

that they were interested in seeing churn data for. 

6.9 Seamless Transition between File Types 

Currently, the experience of viewing data for source files is fairly disjoint from the experience of 

viewing data for binary files.  A very helpful improvement to the Code Churn Dashboard would be to 

come up with functionality so that the user could see more information about the binaries that a given 

source file contributes to (and vice versa).  Currently, the only link between the two file types provided is 

the expandable drop down lists that are visible when a source file contributes to one or more of the 

binaries being tracked by the dashboard.  However this link only displays the names of the binaries and 

does not any other associated information.  Instead, churn metrics for those binaries could be displayed 

along with any other useful information that is known.  In the same vein, when the user is looking at 

binary churn, all of the contributing source files could be displayed along with the metrics pertaining to 

them. 

6.10 Applying Churn Coefficients to Specific Files and Folders 

The Code Churn Dashboard implements the coefficients mentioned in Section 2.1, but currently 

it does so in a global manner.  That is, the coefficient for a given metric is applied to all files equally.  One 

area for future investigation would be the ability to weight different files or directories differently.  This 

would allow a development team to put increased significance on changes made to a critical file that is 
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referenced in many places throughout the project over changes made to a less-important file.  This 

would increase the churn index for those files, and in turn focusing effort and attention to them if many 

changes are made. 
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7 Conclusion 

The goal of this project was to investigate code churn, define exactly what it is, and develop an 

application that would allow software development teams to easily see code churn measurements and 

take action on this data.  If a piece of software ships with many noticeable defects, the software will not 

perform as expected which will result in a negative user experience.  As a result, many software 

engineering teams shift focus toward finding and correcting bugs in their program, especially as the 

software nears release.  The defect density prediction provided by the Code Churn Dashboard allows 

teams to target their testing on code likely to have flaws, and encourages developers to be careful when 

making changes that have a high probability of introducing errors. 

From our research, we learned how to measure code churn, and what appropriate metrics 

would be.  We then used these measures to implement the dashboard through a population program, a 

web-based user interface, and a SQL Server database.  The dashboard we produced not only allows users 

to see the raw churn data, but was also written in an extensible manner and could have additional 

functionality implemented to make it even more useful to development teams.  It will allow testing and 

sustained engineering teams to locate defects quickly and easily, resulting in a product that has fewer 

bugs and meets the team’s goals. 
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