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Abstract 
 The marine propulsion industry is constantly looking for ways to improve propulsion 

efficiency. Since the industry is dominated by propellers, it begs the question of whether 

propellers are the best options for every task. Therefore first-principles analyses of three 

alternative mechanisms were conducted: feathered paddlewheels, caterpillar drives, and jellyfish 

actuators. Equations predicting the thrust and power generated by each mechanism were 

developed and used to compute efficiency. Efficiency comparisons were made to ideal propellers 

attempting similar tasks. The Kramer diagram was used to determine the efficiency of ideal 

propellers. From these results, recommendations were made to theorists and experimentalists 

hoping to build off the theory developed here. Results indicate that caterpillar drives (a) have 

potential due to their ability to maintain efficiency after significant internal friction losses and (b) 

may be more efficient than propellers in non-ideal speeds. 
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Chapter 1: Introduction 

1.1: Project Motivation and Overall Approach 

This project began as a discussion on the marine propulsion industry. Since it is large, 

competitive, and motivated by cost reduction, both academia and industry are invested in 

maximizing the efficiency of marine propulsion systems. If propulsion efficiency can be improved 

by even a small percent, it could reduce fuel costs for entire shipping companies and navies. 

One way to maximize efficiency is to optimize the propulsion mechanism. Since the 

industry is dominated by propellers, it begs the question of whether propellers are the best option 

for every task. Specifically: can other mechanisms compare to propellers for certain tasks? Also, 

given a task, at what point does a mechanism become better than propellers? These are the 

motivating questions behind this project. 

Regarding the first question: one way to compare non-propellers against propellers is to 

compare theoretical models. If a model is developed which can predict the thrust and resistive 

forces of non-propeller system, its efficiency could be calculated and compared against propeller 

efficiency. That is the approach taken here. In this case, three alternative mechanism will be 

analyzed: the feathered paddle wheel, the caterpillar drive, and the jellyfish actuator. The details 

of these mechanisms will be explained in chapters 3, 4, and 5, respectively. Mathematical 

descriptions of these mechanisms will be developed, explored, and compared against propellers. 

Regarding the second question: a mechanism becomes better than a propeller when, for a 

certain task, its ideal efficiency is higher than the ideal propeller efficiency. The ideal efficiency 

of propellers performing a certain task will be determined by the Kramer diagram. 

 



O l i s  | 11 
 

1.2: Information on Kramer Diagram 

The Kramer diagram computes the efficiency of propellers from the torque imparted to the 

fluid by the shaft. In the case of a constant torque and boat speed, energy is imparted to the fluid 

at a constant rate. This information is combined with the power required to move the vessel at a 

constant speed, and that is enough information to compute the efficiency of an ideal propeller. It’s 

worth noting that the Kramer diagram does not include viscous losses and “gives the maximum 

achievable efficiency for a real propeller in uniform inflow.”1 Thus it can be used to provide high-

end propeller efficiency for a given task. 

The Kramer diagram is shown on the next page. To use the diagram, certain quantities must 

be known: 

- Vb, the speed of the boat relative to the water (is VA in the diagram) 

- n, the rotational speed of the propeller in revolutions per second 

- D, the diameter of the propeller 

- CT, the thrust coefficient (or the thrust required to push the bat), defined as 

𝑇𝑇 =  
1
2
𝐶𝐶𝑇𝑇𝜌𝜌𝜌𝜌𝑉𝑉𝑏𝑏2 

 Where T is the thrust and A is the propeller area (πR2). 

- λ, the absolute advance coefficient, defined as 

λ =
𝑉𝑉𝑏𝑏
𝜋𝜋𝑛𝑛𝑛𝑛

 

                                                           
1 Techet 
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Figure 1: Kramer Diagram2 

 

                                                           
2 Techet 
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The algorithm for determining propeller efficiency is: 

1. Using propeller specifications, calculate λ and obtain CT by calculation or measurement 

2. Select the number of blades 

3. Start at the calculated λ value and move up the diagonals until the diagonal intersects 

with the number of blades 

4. From that intersection point, go horizontally up the graph to the thrust coefficient 

5. The efficiency curve going through that point is the ideal efficiency of the propeller 

It’s worth mentioning why the Kramer method was selected over other methods. 

One option was to develop a first-principles approach which could be used to derive 

optimal propeller efficiency curves. This was attempted by the author and did not prove successful. 

Another was to use established vortex theory to calculate the efficiency of propellers 

directly. The dominant analytical approach combines blade element theory with vortex theory. 

Recent work by Moffitt, et al has established this combination as a reliable method of predicting 

the performance of screw propellers.3 In their own words, “The vortex theory of screw propellers 

is based on a lifting line approximation of the blades of the propeller. This implies that the propeller 

is approximated by a lifting surface about which there is bound circulation. The total circulation 

is associated both with vorticity bound to the propeller and with the free vorticity that is 

continuously shed from the propeller in the form of a helical sheet.”4 The circulation in question 

could be quantified for each segment of the blade, and the net effects could be predicted with 

                                                           
3 Moffitt, et al 
4 Ibid 
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computational methods. After developing and testing the theory, the paper concluded that vortex 

theory can accurately predict the performance of screw propellers in a “variety of conditions.”5 

Unfortunately it is not clear how to use this method to determine optimal propellers except 

by guess-and-check. The research was concerned with predicting actual propeller behavior rather 

than optimizing propeller specifications to perform a certain task. Therefore the use of their 

methods proves unnecessarily tedious when it comes to identifying ideal propeller efficiency for a 

task. 

Since the Kramer diagram provides a relatively simple method of going from a task to an 

ideal propeller efficiency, it was selected as the standard against which other mechanisms will be 

compared. Although the efficiencies of the ideal propellers will be high, so will the efficiencies of 

the other idealized mechanisms. Therefore the comparison between them will be meaningful. 

 

 

 

 

 

 

 

 

 

                                                           
5 Ibid 
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Chapter 2: Project Strategy 

 This chapter more clearly defines the project goal and methodology used to achieve it. 

2.1: Original Project Goals 

 It’s worth mentioning that the project goals were changed late in the year. Early in the 

academic year, the caterpillar drive was imagined. It was designed specifically to avoid introducing 

a torque into the water – which screw propellers necessarily do. To put it formally, there are 

efficiency losses intrinsic to the propeller paradigm, and the caterpillar drive was designed to avoid 

these specific losses. This begged two follow-up questions. First, what are propeller-intrinsic 

losses? In other words, what efficiency losses necessarily come with the propeller paradigm? How 

can they be measured? Second, when we design an alternate mechanism to eliminate those losses, 

how do we know that the new mechanism can out-perform propellers? And if it can, by how much? 

 So the original goals involved (a) developing the theory needed to compare caterpillar 

drives against propellers and (b) building and testing a caterpillar prototype. It’s worth mentioning 

that caterpillar drive theory is simpler than propeller theory. In caterpillar drives, the control 

volume giving boundaries to the water flux are well-defined. Using the control volume technique 

to analyze propeller dynamics is avoided except for very simplistic cases, and serious analysis of 

ideal propellers has been done with vortex theory. This is because defining a rigorous control 

volume (around the individual blades) is technically challenging. But the caterpillar drive would 

be analyzed with the control volume technique, so this was attempted for propellers (to compare 

“apples to apples,” mathematically). Because of the technical issues involved with the more 

rigorous control volume approach to propellers, that analysis was never completed. However, that 

process generated an interest in propulsion theory. And since a caterpillar prototype would not 
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give theoretically meaningful data (i.e., more serious experimentalist approaches would be needed 

before the success/ failure of the Caterpillar paradigm would be taken seriously), the goals were 

switched to a completely theoretical project. 

2.2: Defining the Project Goal 

 As mentioned earlier, this project analyzes three mechanisms: the feathered paddle wheel, 

caterpillar drive, and jellyfish actuator. It is desirable to understand the performance of these 

mechanisms and the scales at which they are best suited. Therefore the project goal becomes clear: 

“To devise theoretical models of three alternative, marine propulsion mechanisms, describe their 

utility for a variety of tasks, compare their performance against the traditional screw propeller, 

and make recommendations based on those findings.” 

2.3: Project Strategy 

 To achieve the project goal, the following methodology will be used for each alternative 

mechanism: 

1. Develop equations predicting the thrust and the power required to maintain that thrust for 

each mechanism 

2. Use those equations to generate the efficiency curves for those mechanisms attempting 

different tasks 

3. Compare those efficiencies against ideal screw propellers attempting similar tasks 

4. Based on 1-3, make recommendations. Recommendations will be made for theorists 

hoping to build off this foundation as well as experimentalists hoping to design prototypes. 

Chapter 3 will use this methodology to analyze feathered paddle wheels. Chapter 4 will 

analyze caterpillar drives, and Chapter 5 will analyze the jellyfish actuator. 
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Chapter 3: Feathered Paddlewheel 

 This chapter performs the analysis outlined in Chapter 2 on feathered paddle wheels. 

3.1: Mechanism Description 

 The feathered paddle wheel is a paddle wheel whose blades are angled to remain 

perpendicular to the water when wet: 

 

Figure 2: The Feathered Paddle Wheel6 

 This mechanism was patented in England in 1829 and is considered “the most successful 

attempt to improve the efficiency of the conventional paddlewheel.”7 Feathered paddle wheels 

were prevalent in the marine propulsion industry through the 19th century. They became less 

common as screw propellers gained popularity in the second half of that century, although 

paddlewheels were still used in active service after World War II.8 

                                                           
6 William & Robert Chambers 
7 The Feathering Sidewheel 
8 Ibid 
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3.2: Mathematical Characterization 

 Consider the single blade case: 

 

Figure 3: Feathered Paddlewheel Diagram 

 Here, R0 is the distance from the center of rotation to the middle of the blade, h is the height 

of the blade, hwet (or hw) is the height of blade under water, 𝜔𝜔 is the rotational speed in radians per 

second, 𝜃𝜃 is the angle of R0 relative to the y-axis (defined in the diagram), Vboat (or Vb) is the boat 

speed, and W is the width of the paddle. 

 The force diagram on the blade becomes: 

 

Figure 4: Forces on Single, Feathered Paddlewheel Blade 
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 Here, Fx is the drag force associated with water flowing perpendicular to the blade: 

𝐹𝐹𝑚𝑚 =
1
2
𝐶𝐶𝐷𝐷𝜌𝜌𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟2 𝜌𝜌𝑤𝑤𝑟𝑟𝑤𝑤 

In this case: 

- CD is the drag coefficient associated with perpendicular flow: 

CD = 1.289 

- Vrel is the speed of the water relative to the blade. See Appendix A for the derivation. 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔𝑅𝑅0 − 𝑉𝑉𝑏𝑏 

- Awet is the submerged area of the blade. See Appendix A for derivation. 

𝜌𝜌𝑤𝑤𝑟𝑟𝑤𝑤 = 𝑊𝑊[𝑅𝑅0(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 − 1) + ℎ] 

- Fx is approximated as acting on the point of the blade halfway between the blade tip 

and water surface. 

 From the same figure, Fy is the drag force associated with water flowing parallel to the 

surface of the blade: 

𝐹𝐹𝑦𝑦 =
1
2
𝐶𝐶𝐷𝐷𝜌𝜌𝑉𝑉𝑦𝑦2𝜌𝜌𝑤𝑤𝑟𝑟𝑤𝑤 

 In this case: 

- CD is the skin drag coefficient associated with perpendicular flow and is very small 

(typically less than 0.002 for turbulent flow, 0.005 for laminar flow).10 

- Vy is the speed of the blade in the y direction [see Appendix A for derivation]: 

𝑉𝑉𝑦𝑦 = 𝜔𝜔𝑅𝑅0𝑐𝑐𝑠𝑠𝑛𝑛𝜃𝜃 

- Note that Vy is small for small angles. 

                                                           
9 "Shape Effects on Drag." 
10 Young, table 1 



O l i s  | 20 
 

 Fy is negligible when the blade is submerged, since Vy is small for small 𝜃𝜃 and CD is small. 

Fy is also negligible when the blade is partly submerged because the drag forces are acting on a 

small area. This neglecting of forces in the y-direction was used in an analysis of regular 

paddlewheels and confirmed with CFD.11 Since the effect is even less significant in the feathered 

case, it will be ignored here. 

 The torque required to maintain 𝜔𝜔 through a single stroke is 

𝜏𝜏 = 𝑅𝑅𝑟𝑟𝑒𝑒𝑒𝑒������ × 𝐹𝐹𝑚𝑚� = 𝑅𝑅𝑟𝑟𝑒𝑒𝑒𝑒𝐹𝐹𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

Where Reff is the vector from the point of rotation to the point where Fx is acting on the blade. 

Recall that Fx is acting on the point halfway between the water surface the blade tip. 

 The magnitude of Reff is given by the following expression. See Appendix A for derivation. 

𝑅𝑅𝑟𝑟𝑒𝑒𝑒𝑒 = 𝑅𝑅0[0.25(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 1)2 + 𝑐𝑐𝑠𝑠𝑛𝑛2𝜃𝜃]1/2 

 The power required to push the blade through one stroke at a constant angular speed is 

𝑃𝑃 = 𝜔𝜔𝜏𝜏 = 𝜔𝜔𝑅𝑅𝑟𝑟𝑒𝑒𝑒𝑒𝐹𝐹𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

 Substituting the expressions into the power equation gives 

𝑃𝑃(𝜃𝜃) =
1
2
𝜔𝜔𝑊𝑊𝐶𝐶𝐷𝐷𝜌𝜌𝑅𝑅0(𝜔𝜔𝑅𝑅0 − 𝑉𝑉𝑏𝑏)2[𝑅𝑅0(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 − 1) + ℎ][0.25(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 1)2 + 𝑐𝑐𝑠𝑠𝑛𝑛2𝜃𝜃]1/2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

 Note that CD is the drag coefficient of water flowing perpendicular to a flat surface. 

 This power equation is valid for angles where the paddle is at least partially submerged. In 

mathematical terms, the power equation is valid between 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚, where 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(1 −
ℎ
𝑅𝑅0

) 

And 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = −𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 

                                                           
11 Liu 
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The power is defined as 0 otherwise. See Appendix A for the derivation of these angles. 

 Note that the speed of the boat is assumed to be constant, even though the thrust and power 

are functions of the angle. Vb is assumed constant because there will be more than one blade in the 

water. Therefore the thrust is 

𝑇𝑇 = 𝐹𝐹𝑚𝑚1(𝜃𝜃) + 𝐹𝐹𝑚𝑚2(𝜃𝜃 + 𝜑𝜑) + 𝐹𝐹𝑚𝑚3(𝜃𝜃 + 2𝜑𝜑) + ⋯+ 𝐹𝐹𝑚𝑚𝑥𝑥(𝜃𝜃 + (𝑁𝑁 − 1)𝜑𝜑) 

 Where N is the number of blades and 𝜑𝜑 is the angle between blades. Note that the force 

Fx(𝜃𝜃) is 1
2
𝐶𝐶𝐷𝐷𝜌𝜌𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟2 𝜌𝜌𝑤𝑤𝑟𝑟𝑤𝑤 between 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 and zero otherwise. Written in the system 

parameters, this becomes 

𝐹𝐹𝑚𝑚1(𝜃𝜃) =
1
2
𝐶𝐶𝐷𝐷𝜌𝜌𝑊𝑊(𝜔𝜔𝑅𝑅0 − 𝑉𝑉𝑏𝑏)2[𝑅𝑅0(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 − 1) + ℎ] 

 Likewise, the power required to maintain the angular speed of the mechanism is 

𝑃𝑃 = 𝑃𝑃1(𝜃𝜃) + 𝑃𝑃2(𝜃𝜃 + 𝜑𝜑) + 𝑃𝑃3(𝜃𝜃 + 2𝜑𝜑) + ⋯+ 𝑃𝑃𝑥𝑥(𝜃𝜃 + (𝑁𝑁 − 1)𝜑𝜑) 

 The power required to push each blade through a stroke is given by the formula presented 

earlier: 

𝑃𝑃1(𝜃𝜃) =
1
2
𝜔𝜔𝑊𝑊𝐶𝐶𝐷𝐷𝜌𝜌𝑅𝑅0(𝜔𝜔𝑅𝑅0 − 𝑉𝑉𝑏𝑏)2[𝑅𝑅0(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 − 1) + ℎ][0.25(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 1)2 + 𝑐𝑐𝑠𝑠𝑛𝑛2𝜃𝜃]1/2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

 These expressions are oscillations whose amplitude decreases as N increases. Therefore a 

reasonable approach is to assume a constant Vb for simplicity and use the average T and P values 

to determine efficiency. 

The efficiency of this mechanism is defined as 

η𝑝𝑝 =
𝑉𝑉𝑏𝑏 ∙ 𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇
𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃 + 𝑘𝑘𝑝𝑝
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Note the term 𝑘𝑘𝑝𝑝. Since the paddlewheel has moving components, power will be required 

to maintain its rotation without resistance. In other words, if you were to remove the paddlewheel 

from the water and spin it, the wheel will slow down over time. This term represents the internal 

friction losses of the system, where kp is the internal friction coefficient and has units of power. 

This coefficient will have to be determined experimentally and will vary for each paddlewheel. 

Instead of using calculus to determine average T and P, MATLAB will be used because it 

is easier to change parameters and quickly compare results. These computations will be described 

in the next section. 

3.3: Efficiency for Different Tasks 

 To identify the tasks which feathered paddle wheels are most efficient at, the following 

process will be used: 

1. Identify an ideal cruise speed 

2. Pick a corresponding R0, h, and W 

3. Starting at 𝜔𝜔 = 𝑉𝑉𝑏𝑏
𝑅𝑅0

, calculate the efficiency of the mechanism for that value of 𝜔𝜔. Repeat 

the process for higher 𝜔𝜔 until an ideal 𝜔𝜔 becomes apparent. 

4. Using the ideal 𝜔𝜔 identified from (3), generate the efficiency vs Vb curve 

5. Repeat this process for different size boats and cruising speeds 

Here, three boat sizes will be used: an RC toy boat, a canoe, and a tugboat. 

3.3.1: RC-Size Boat Calculations 

 The following specs are used for RC boats:12 

- Cruise speed = 15 mph = 6.7 m/s 

- R0 = 0.2 meters 

                                                           
12 Specs informed by Preece  
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- h = 0.08 meters 

- W = 0.08 meters 

Note: for this case, 8 blades were selected. This implies that each blade is 45 degrees from 

the next. Therefore five blades will interact with the water in a single stroke, and the blades can be 

labeled: 

 

Figure 5: Feathered Paddle Blade Labels, 8 Blades 

 The stroke (or “rotation”) is defined as Blade 1 going from 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 to 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚: 
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Figure 6: A Single Stroke of the Feathered Paddlewheel 

 Using the equations derived in the previous section, the thrust corresponding to each blade 

segment could be graphed in MATLAB as a function of the angle of B1. The MATLAB code can 

be found in Appendix A. 

 The thrust curves are given below, on the assumption that 𝜔𝜔 = 1 𝐴𝐴𝐴𝐴𝑟𝑟𝑐𝑐/𝑐𝑐𝐴𝐴𝑐𝑐. This value 

was chosen arbitrarily – the graphs merely illustrate that the equations behave in an expected 

manner. Furthermore, the graphs are functions of an index “i.” The angles between 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 

were divided into 186 equally-spaced segments. The indices “i” are integers from 1 to 186 and 

correspond to each segment. Therefore the graphs generated by MATLAB are on a scale from 1 

to 186 instead of angles between 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚. 
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Figure 7: Thrust Generated by Blade 1 

 Recall that blade 1 is the blade which starts at the 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 (which corresponds to index i=1 in 

the graph), the angle where it enters the water. Therefore the wetted area starts off as zero, and the 

thrust generated is also zero. As more of the blade dips into the water, the thrust increases. The 

thrust dips back to zero as the blade exits the water at 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 (corresponding to index i=186). 

 

Figure 8: Thrust Generated by Blade 2 
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 Recall that blade 2 starts off in the water and exits. Therefore it starts off generating thrust, 

then leaves the water and generates zero thrust for the rest of the rotation. 

 

Figure 9: Thrust Generated by Blade 3 

 At the beginning of the stroke, blade 3 is almost out of the water. Therefore it generates a 

small amount of thrust before exiting the water. 

 

Figure 10: Thrust Generated by Blade 4 
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 Recall that blade 4 starts outside of the water and enters after blade 1. Therefore at the 

beginning of the stroke, it does not generate any thrust, then generates thrust after it enters the 

water. 

 

Figure 11: Thrust Generated by Blade 5 

 This is the “inverse” of blade 3 – it starts off outside the water, then at the end of the stroke 

it enters and generates a bit of thrust. 

 These thrust curves are summed to give the thrust generated by system as a function of 

Blade 1’s angle: 
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Figure 12: Total Thrust Generated by Single Paddlewheel Stroke 

 Notice the upper and lower bounds on the thrust: the values stay between 0.09 and 0.1. 

This validates the assumption that the average thrust can be a meaningful characterization of the 

system. 

 The power curves have the same overall shape and pattern, so listing them here is 

redundant. 

 The efficiency of the paddlewheel can now be computed. The efficiency is defined as  

η𝑝𝑝 =
𝑉𝑉𝑏𝑏 ∙ 𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇
𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃 + 𝑘𝑘𝑝𝑝

 

 Where Average T is the average thrust and Average P is the average power generated over 

the course of the stroke. This value is computed at different values of 𝜔𝜔. These calculations made 

on the assumption that kp = 7 ∙ 10−6 𝑊𝑊𝐴𝐴𝑊𝑊𝑊𝑊𝑐𝑐. If that coefficient were zero (the frictionless case), 

the shape of the curves would be different. Therefore a small value was inserted to give the near-
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frictionless results and give more realistic efficiency curves later. Recall the specs used for the RC 

boat: 

- Cruise speed = 15 mph = 6.7 m/s 

- R0 = 0.2 meters 

- h = 0.08 meters 

- W = 0.08 meters 

Again, these numbers were plugged into the equations for thrust and power outlined in the 

last section and the angular speed was varied. The results are: 

 

Table 1: Efficiency vs Angular Speed, Small Paddlewheel 

 These results can be illustrated graphically: 

 

Figure 13: Efficiency vs Angular Speed, Small Paddlewheel 
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 Notice that the efficiency never goes above 1: it just comes very close. From this graph, 

assume an angular speed of 35.5 s-1 as the optimal speed. 

 To generate the efficiency curve, maintain the paddlewheel angular speed and change the 

boat speed. Using the equation without the 𝑘𝑘𝑃𝑃 component, the results are: 

 

Table 2: Boat Speed vs Efficiency, Small Paddlewheel 

 These results can be illustrated graphically: 

 

Figure 14: Efficiency vs Speed Graph, Small Paddlewheel 

 The same MATLAB code was used to generate these graphs, but different values were 

used and written in an excel sheet to generate these curves. See Appendix A for the code. 
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3.3.2: Canoe-Size Boat Calculations 

 The following specs are used for canoe-sized boats:13 

- Cruise speed = 3 mph = 1.34 m/s 

- R0 = 4 feet = 1.22 meters 

- h = 1.6 feet = 0.488 meters 

- W = 0.488 meters 

Again, 8 blades were selected. To maintain the geometry, the h/R0 and h/W ratios were 

kept constant. The graphs have similar shapes, so there is no need to put them here. The internal 

friction coefficient used was kc = 0.15 Watts and the starting angular speed was 1.098 s-1. 

The angular speed vs efficiency curves were generated in a similar fashion: 

 

Table 3: Efficiency vs Angular Speed, Canoe Paddlewheel 

 These results can be displayed graphically: 

                                                           
13 Specs informed by BCWA 
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Figure 15: Efficiency vs Angular Speed, Canoe-Sized Paddlewheel 

 From this data, the optimal angular speed is 1.2 s-1. The efficiency vs boat speed curve can 

be generated like before: 

 

Table 4: Boat Speed vs Efficiency, Canoe-Sized Paddlewheel 
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Figure 16: Boat Speed vs Efficiency, Canoe-Sized Paddlewheel 

3.3.3: Tugboat-Size Paddlewheel Calculations 

 The following specs are used for Tugboat-size paddlewheels:14 

- Cruise speed = 12 knots = 6 m/s 

- R0 = 4.5 meters 

- h = 1.8 meters 

- W = 1.8 meters 

As before, 8 blades were chosen and the R0:h:W ratios were maintained to preserve 

geometry. The starting angular speed is Vb/R0 = 1.33 s-1. The internal friction coefficient selected 

is kc = 125 𝑊𝑊𝐴𝐴𝑊𝑊𝑊𝑊𝑐𝑐. The angular speed vs efficiency curves at cruise speed were generated as before: 

 

                                                           
14 Specs informed by Hoffman 
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Table 5: Efficiency vs Angular Speed, Tugboat-Size Paddlewheel at Cruise Speed 

These results were visualized: 

 

Figure 17: Efficiency vs Angular Speed, Tugboat-Size Paddlewheel at Cruise Speed 

 From this graph, the optimal angular speed is 1.45 s-1. Keeping this speed constant and 

changing the boat speed can be used to generate the efficiency vs boat speed curves as before: 
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Table 6: Efficiency vs Boat Speed, Tugboat-Sized Paddlewheel, 𝜔𝜔 = 1.74 

Graphically: 

 

Figure 18: Efficiency vs Boat Speed, Tugboat-Sized Paddlewheel, 𝜔𝜔 = 1.74 

3.4: Comparison to Ideal Propellers 

 The graphs in the previous section suggest that the efficiency of ideal feathered 

paddlewheels consistently reach 90% at ideal cruise speeds. However, this was based on arbitrary 

assumptions about what the internal loss coefficients kc are for different mechanisms. Therefore 

to provide a more meaningful comparison with ideal propellers, the following process will be used: 
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1. Determine the thrust generated by the paddlewheel to perform the task 

2. Assume the propeller has to generate that thrust, and use propeller specs which are standard 

for that task 

3. Use the Kramer diagram to determine the efficiency of ideal propellers performing that 

task 

4. Going back to the MATLAB code used to generate the efficiency vs angular speed curves, 

determine the coefficient kc required to match the efficiency of ideal propellers determined 

from (3) 

3.4.1: Comparison with ideal RC Propellers 

 The RC-sized boat was generating a thrust of about 130 N at a boat speed of 6.7 m/s and 

angular speed of 35.5 s-1. This thrust force might seem high, but realize that the RC boat is traveling 

almost 7 m/s and the specs were based off boats which were 0.5 meters long. The thrust can be 

easily calculated by using the thrust equation developed in section 3.2 and the specs from section 

3.3.1: 

𝑇𝑇 = 𝐹𝐹𝑚𝑚1(𝜃𝜃) + 𝐹𝐹𝑚𝑚2(𝜃𝜃 + 𝜑𝜑) + 𝐹𝐹𝑚𝑚3(𝜃𝜃 + 2𝜑𝜑) + ⋯+ 𝐹𝐹𝑚𝑚𝑥𝑥(𝜃𝜃 + (𝑁𝑁 − 1)𝜑𝜑) 

𝐹𝐹𝑚𝑚1(𝜃𝜃) =
1
2
𝐶𝐶𝐷𝐷𝜌𝜌𝑊𝑊(𝜔𝜔𝑅𝑅0 − 𝑉𝑉𝑏𝑏)2[𝑅𝑅0(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 − 1) + ℎ] 

The forces Fxi are averaged over the course of the stroke, defined as Blade 1 going 

from 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 to 𝜃𝜃𝑀𝑀𝑀𝑀𝑥𝑥, where  

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(1 −
ℎ
𝑅𝑅0

) 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = −𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 
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 For a 3-blade, 4-inch diameter propeller rotating at 9000 RPM15, the Kramer diagram 

efficiency comes out to about 70% efficient. 

 So at what point does the feathered paddlewheel beat the propeller for this RC example? 

 Recall that the term 𝑘𝑘𝑃𝑃 was arbitrarily selected to give more realistic curves than the 

frictionless case, and the efficiency was close to 90% at cruise speed. Cruise speed efficiencies of 

70% are generated when kP is 29 W. This can easily be determined by changing the value of kc in 

the MATLAB code until the curve generates a maximum efficiency of 70%. Therefore to beat the 

ideal propeller, a caterpillar drive with the design specs from section 4.3.1 and a kc of 29 W or less 

should perform better than any propeller attempting the same task. 

3.4.2: Comparison with ideal Canoe Propellers 

 The canoe-sized feathered paddlewheel was generating a thrust of 53 N according to the 

thrust equation. The boat speed used was 1.34 m/s and the angular speed was 1.2 s-1. For a 3-blade, 

0.36 m diameter propeller spinning at 4000 RPM16 the efficiency of ideal propellers is about 90%. 

 As in the previous section, the term 𝑘𝑘𝑃𝑃 was arbitrarily selected. Cruise speed efficiencies 

of 90% are generated when kc is about 0.38 W. This can be determined in a similar manner. 

Therefore to beat the ideal propeller, a feathered paddlewheel with the design specs from section 

3.3.2 and a kc of 0.38 W or less should perform better than propellers attempting a similar task. 

 

 

 

 

                                                           
15 Informed by Preece and RC Boat Calculator 
16 Specs informed by Marine Engine RPM Chart 
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3.4.3: Comparison with ideal Tugboat Propellers 

 The tugboat-sized caterpillar drive was generating a thrust of 138,000 N according to the 

thrust equation. The boat speed used was 6 m/s and the angular speed was 1.45 s-1. Typical tugboat 

specs are 2.4 m diameter, 4-blade propellers rotating at 24 radians per second.17 From the Kramer 

diagram, propellers with these specs providing a thrust of 140,000 N are about 80% efficient. 

 As in the previous sections, the 𝑘𝑘𝑃𝑃 term was arbitrarily selected, and the efficiency was 

close to 1 at cruise speed. Cruise speed efficiencies of 80% are generated when kc is about 2028 

W. This can be determined in a similar manner. Therefore to beat the ideal propeller, a caterpillar 

drive with the design specs from section 3.3.3 and a kc of 2028 W or less should perform better 

than propellers attempting a similar task. 

3.5: Feathered Paddlewheel Discussion and Recommendations 

 First, a statement on what was accomplished in this section. A first-principles approach to 

feathered paddlewheels was developed and several graphs were generated to give an intuition for 

how paddlewheels behave. Then friction coefficients were assumed to give a sense of paddlewheel 

performance. The graphs suggest that feathered paddlewheels only perform well near optimal 

cruise speeds. Comparing these graphs against propellers suggest that screw propellers can 

perform more efficiently at non-optimal cruise speeds. That being said, feathered paddlewheels 

move through the water more intuitively – pushing straight back instead of slicing through. 

Because of that, feathered paddlewheels can out-perform screw propellers in some cases, provided 

their internal friction losses are not too significant. A methodology for determining the maximum 

friction losses to beat ideal propellers was outlined. 

                                                           
17 Informed by Hoffman and Argyriadis 

http://www.popularmechanics.com/technology/infrastructure/a5358/4346840/
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 An important omission was alternating geometries. The number of blades was standardized 

at 8 and the R0:h:W ratios were maintained throughout. Regarding the number of propellers: 

according to the framework developed here, the thrust and power will increase at the same rate, 

and no difference will be noticed for larger numbers of propellers. A full CFD or Naiver-Stokes 

analysis is not necessary here, since this paper is focused on developing a first-principles 

framework which can be easily modified for future researchers. Regarding the ratios: since the 

focus here was developing the framework, research into the effect of different ratios is left to the 

reader. The framework has been developed and recommendations are listed below. The MATLAB 

code is attached in Appendix A and can be easily modified for different ratios. 

 The following are recommendations for future researchers using this framework: 

1. Experimentalists should measure the 𝑘𝑘 term for different designs in order to make more 

accurate predictions. 

2. The 𝑘𝑘 term will be more significant for larger, faster paddlewheels. Therefore the results 

of this paper suggest using paddlewheels for slower, smaller and/or medium sized vessels. 

3. Theorists should take different geometries into account. Here reasonable geometries were 

assumed to focus on analyzing the effects of 𝜔𝜔 at constant Vb. However it cannot be 

assumed that these were the optimal geometries. Researchers interested in the effect of 

R0:h:W ratios on paddlewheel design should keep 𝜔𝜔 constant and vary the geometry. This 

should be repeated for different 𝜔𝜔 and different scales. 

4. Theorists should also use CFD to examine the effects of different numbers of blades on 

efficiency. The results can be used to modify this first-principles analysis and incorporate 

better assumptions. 
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Chapter 4: Caterpillar Drive 

4.1: Mechanism Description 

 The modified caterpillar drive analyzed here was conceptualized by the author. It is based 

on the classic caterpillar drive, which is similar to a paddlewheel. But instead of rotating around a 

cylinder, the blades are rotated with a belt: 

 

Figure 19: Classic Caterpillar Drive18 

 The Classic Caterpillar Drive (or “Water Caterpillar”) was developed in 1782 in France 

and received a US patent in 1839.19 It operated under the same principles as the feathered 

paddlewheel: the drag forces against the blades as they pass through the water provide the thrust 

which moves the boat. Unlike the paddlewheel, the water caterpillar required a belt. This was less 

efficient than its paddlewheel contemporaries and lost popularity. 

 Explored in this chapter is a modification of the water caterpillar. In this case, the blades 

are surrounded by a moat which prevents the water from passing around them. This means that the 

traditional drag coefficient method of calculating thrust is not useful here, since the drag coefficient 

                                                           
18 Figure from "Marine Propulsion," Wikipedia 
19 Information from Ibid 
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assumes the water’s freedom to move around objects. Rather, the resistive forces in play here will 

be the skin friction of the water moving past the walls of the moat. The modified caterpillar drive 

(or “caterpillar drive”) is pictured below: 

 

Figure 20: Caterpillar Drive 

 Assume the length of the moat is L, the width of the blades is W, and the height of each 

blade is H. Therefore the dimensions of the moat are approximately: 

 

Figure 21: Caterpillar Drive Dimensions 

 In reality, there will be some clearance between the blades and the moat. However, this 

clearance will be small relative to the moat dimensions and can be ignored for purposes here. It 
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will be made clear which dimensions are being used in the calculations so future calculations on 

prototypes/ designs can be made with more precise dimensions. 

4.2: Mathematical Characterization 

 When deriving expressions for the power and thrust corresponding with the caterpillar 

drive, two factors will be taken into account. 

The first is the momentum change of the water as it passes through the mechanism. There 

is a force required to maintain that momentum change in the steady state case, and that force will 

correspond to the thrust. The water molecules also experience a change of kinetic energy. To 

maintain that energy change for the constant influx of water, power is required. This is part of the 

power required by the mechanism. 

The second is the resistive forces intrinsic to this mechanism. Inside the moat, skin friction 

drag will come into play as water is pushed through the moat. Outside the moat, skin friction drag 

will detract from the thrust. Lastly, the mechanism itself is a belt. Therefore power will be required 

to maintain a constant angular speed unless the belt is frictionless. 

From this, expressions for thrust and power become apparent: 

𝑇𝑇ℎ𝐴𝐴𝑟𝑟𝑐𝑐𝑊𝑊 = [𝑓𝑓𝑐𝑐𝐴𝐴𝑐𝑐𝐴𝐴 𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟𝑠𝑠𝑛𝑛𝐴𝐴 𝑊𝑊𝑐𝑐 𝑚𝑚𝑐𝑐𝑚𝑚𝐴𝐴𝑛𝑛𝑊𝑊𝑟𝑟𝑚𝑚 𝑐𝑐ℎ𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴 𝑐𝑐𝑓𝑓 𝑤𝑤𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴]

− [𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑐𝑐𝐴𝐴𝑐𝑐𝐴𝐴 𝑐𝑐𝑛𝑛 𝐴𝐴𝑒𝑒𝑊𝑊𝐴𝐴𝐴𝐴𝑠𝑠𝑐𝑐𝐴𝐴 𝑓𝑓𝐴𝐴𝑐𝑐𝐴𝐴 𝑐𝑐𝑓𝑓 𝑚𝑚𝑐𝑐𝐴𝐴𝑊𝑊] 

𝑃𝑃𝑐𝑐𝑤𝑤𝐴𝐴𝐴𝐴 = [𝑐𝑐𝑐𝑐𝑤𝑤𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟𝑠𝑠𝑛𝑛𝐴𝐴 𝑊𝑊𝑐𝑐 𝑐𝑐ℎ𝐴𝐴𝑛𝑛𝐴𝐴𝑠𝑠𝑛𝑛𝐴𝐴 𝑘𝑘𝑠𝑠𝑛𝑛𝐴𝐴𝑊𝑊𝑠𝑠𝑐𝑐 𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒 𝑐𝑐𝑓𝑓 𝑤𝑤𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴]

+ [𝑐𝑐𝑐𝑐𝑤𝑤𝐴𝐴𝐴𝐴 𝑊𝑊𝑐𝑐 𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑚𝑚𝐴𝐴 𝑐𝑐𝑘𝑘𝑠𝑠𝑛𝑛 𝑓𝑓𝐴𝐴𝑠𝑠𝑐𝑐𝑊𝑊𝑠𝑠𝑐𝑐𝑛𝑛 𝑐𝑐𝑛𝑛 𝑠𝑠𝑛𝑛𝑊𝑊𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝑖𝑖 𝑓𝑓𝐴𝐴𝑐𝑐𝐴𝐴 𝑐𝑐𝑓𝑓 𝑚𝑚𝑐𝑐𝐴𝐴𝑊𝑊]

+ [𝑐𝑐𝑐𝑐𝑤𝑤𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑠𝑠𝐴𝐴𝐴𝐴𝑟𝑟 𝑊𝑊𝑐𝑐 𝑚𝑚𝐴𝐴𝑠𝑠𝑛𝑛𝑊𝑊𝐴𝐴𝑠𝑠𝑛𝑛 𝑐𝑐𝑒𝑒𝑐𝑐𝑊𝑊𝐴𝐴𝑚𝑚′𝑐𝑐 𝐴𝐴𝑐𝑐𝑊𝑊𝐴𝐴𝑊𝑊𝑠𝑠𝑐𝑐𝑛𝑛 𝐴𝐴𝑊𝑊 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑊𝑊𝐴𝐴𝑛𝑛𝑊𝑊 𝜔𝜔] 

 The expressions for each of these components are presented below. Further explanation 

can be found in Appendix B. 

- The force corresponding to momentum change of water: 
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𝐹𝐹𝑤𝑤 = �̇�𝑚(𝑉𝑉𝑜𝑜𝑜𝑜𝑤𝑤 − 𝑉𝑉𝑚𝑚𝑚𝑚) 

  Re-written in terms of the caterpillar drive parameters, 

𝐹𝐹𝑊𝑊 = 𝜌𝜌R𝜔𝜔𝜔𝜔𝜔𝜔(R𝜔𝜔 − 𝑉𝑉𝑏𝑏) 

- The drag force on the moat exterior: 

𝐹𝐹𝑑𝑑 =  
1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝑉𝑉𝑏𝑏2𝜌𝜌𝑚𝑚𝑜𝑜𝑚𝑚𝑤𝑤 

  Re-written in terms of the caterpillar drive parameters, 

𝐹𝐹𝑑𝑑 =  
1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝑉𝑉𝑏𝑏2(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔) 

- Power due to changing kinetic energy of the water: 

𝑃𝑃 =  
1
2
�̇�𝑚(𝑉𝑉𝑜𝑜𝑜𝑜𝑤𝑤2 − 𝑉𝑉𝑚𝑚𝑚𝑚2 ) 

  Re-written in terms of the caterpillar drive parameters, 

𝑃𝑃𝑤𝑤 =
1
2

R𝜔𝜔𝜔𝜔𝜔𝜔((R𝜔𝜔)2 − 𝑉𝑉𝑏𝑏2) 

- Power to overcome skin friction drag on internal face of the moat: 

The same formula for skin friction drag is used, multiplied by the relative speed: 

𝑃𝑃𝑑𝑑 = (
1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑤𝑤𝑚𝑚𝑟𝑟𝑟𝑟2 𝜌𝜌𝑚𝑚𝑜𝑜𝑚𝑚𝑤𝑤)𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑤𝑤𝑚𝑚𝑟𝑟𝑟𝑟 

Here, Amoat is the interior area of the moat walls. It is assumed to be the same as the 

outer wall area. The relative speed of the water is not Vb but 𝜔𝜔𝑅𝑅, which give the 

relative speed of the blades to the interior walls. The water is assumed to be 

traveling at the same speed as the blades. The equation becomes 

𝑃𝑃𝑑𝑑 =
1
2
𝜌𝜌𝐶𝐶𝑑𝑑(𝜔𝜔𝑅𝑅)3(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔) 
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- Power required to maintain system’s angular rotation: 

𝑃𝑃𝜔𝜔 = 𝑘𝑘𝑐𝑐 

Where kc must be experimentally determined and are different for each mechanism. 

 When expanded, the equations for thrust and the power required to maintain 𝜔𝜔 are: 

𝑇𝑇 = 𝜌𝜌R𝜔𝜔𝜔𝜔𝜔𝜔(R𝜔𝜔 − 𝑉𝑉𝑏𝑏) −
1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝑉𝑉𝑏𝑏2(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔) 

𝑃𝑃 =
1
2

R𝜔𝜔𝜔𝜔𝜔𝜔((R𝜔𝜔)2 − 𝑉𝑉𝑏𝑏2) +
1
2
𝜌𝜌𝐶𝐶𝑑𝑑(𝜔𝜔𝑅𝑅)3(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔) + 𝑘𝑘𝑐𝑐 

 The efficiency of the mechanism is the thrust power divided by input power: 

𝜂𝜂𝑐𝑐 =
𝑉𝑉𝑏𝑏𝑇𝑇
𝑃𝑃

 

 Since the term 𝑘𝑘𝑐𝑐 must be experimentally determined, calculations presented here will 

assume that the mechanism is near frictionless for the same reasons as before: to give a sense of 

how high the efficiencies can be in theory while maintaining realistic efficiency curve shapes. 

4.3: Efficiency for Different Tasks 

 To identify the tasks for which caterpillar drives are best suited, the following process will 

be used: 

1. Identify a boat size and ideal cruise speed 

2. Identify Reynold’s Number for the system 

3. Based (1) and (2), select values for R, L, H, W, and Cd 

4. Calculate the efficiency for varying values of 𝜔𝜔, beginning at 𝜔𝜔 = 𝑉𝑉𝑏𝑏/𝑅𝑅 and increasing 

the value from there. 

5. When an ideal 𝜔𝜔 is identified, generate the efficiency vs boat speed curves using that value 

of 𝜔𝜔 

As before, this process will be repeated for three different boats: RC, canoe, and tugboat. 
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For simplicity, the same boats and cruise speeds as before will be used. 

4.3.1: RC-Sized Caterpillar Drive 

 For an RC-sized boat, a cruise speed of 6.7 m/s is assumed. 

 The Reynold’s number for a system is given by 

𝑅𝑅𝐴𝐴 =
𝜌𝜌𝑉𝑉𝜔𝜔
𝜇𝜇

 

 For water, the dynamic viscosity is 8.9 × 10−4𝑃𝑃𝐴𝐴 ∙ 𝑐𝑐. Therefore Re for water is 

𝑅𝑅𝐴𝐴 = 1.124 ∙ 106 ∙ 𝑉𝑉𝜔𝜔 

 For the RC boat, V is around 7 m/s and L is about 0.5 m. Therefore for RC boats, 

𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 = 4 ∙ 106 

 This implies turbulent flow about the moat. For turbulent flow, the skin friction drag 

coefficient is given by 

𝐶𝐶𝑑𝑑𝑇𝑇 =
0.0594
𝑅𝑅𝐴𝐴0.2  

 In this case, the following values will be used: 

- CdT = 0.003 

- R = 0.05 m 

- H = 0.1 m 

- W = 0.15 m 

- L = 0.16 m 

- Starting 𝜔𝜔 = 137 s-1 

From this data, the relationship between efficiency and angular speed is determined by the 

formula 
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𝜂𝜂𝑐𝑐 =
𝑉𝑉𝑏𝑏[𝜌𝜌R𝜔𝜔𝜔𝜔𝜔𝜔(R𝜔𝜔 − 𝑉𝑉𝑏𝑏) − 1

2𝜌𝜌𝐶𝐶𝑑𝑑𝑉𝑉𝑏𝑏
2(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔)]

1
2 R𝜔𝜔𝜔𝜔𝜔𝜔((R𝜔𝜔)2 − 𝑉𝑉𝑏𝑏2) + 1

2𝜌𝜌𝐶𝐶𝑑𝑑(𝜔𝜔𝑅𝑅)3(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔) + 𝑘𝑘𝑐𝑐
 

As described in the previous section. The assumption kc=0.005 𝑊𝑊 was made. The resulting 

relationship between efficiency and angular speed becomes: 

 

Figure 21: Efficiency vs Angular Speed, RC-Sized Caterpillar Drive 

 From this curve, the optimal efficiency is found at an angular speed of 254 s-1. For the rest 

of the calculations, assume that the angular speed is 254 s-1. The efficiency vs boat speed curve 

can be generated using the same formula but by changing the boat speed: 
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Figure 22: Efficiency vs Boat Speed, RC-Sized Caterpillar Drive 

 The MATLAB code used to generate these figures can be found in Appendix B. 

4.3.2: Canoe-Sized Caterpillar Drive 

For a canoe-sized boat, a cruise speed of 1.34 m/s is assumed. 

For the canoe, L is about 4.5 m. Therefore for canoe-sized boats, 

𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 = 6.8 ∙ 106 

 This implies turbulent flow about the moat. For turbulent flow, the skin friction drag 

coefficient is given by 

𝐶𝐶𝑑𝑑𝑇𝑇 =
0.0594
𝑅𝑅𝐴𝐴0.2 = 0.0026 

 In this case, the following values will be used: 

- CdT = 0.0026 

- R = 0.15 m 

- H = 0.3 m 

- W = 0.45 m 

- L = 1.5 m 
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- Starting 𝜔𝜔 = 9  s-1 

Recall the same efficiency formula as used previously: 

𝜂𝜂𝑐𝑐 =
𝑉𝑉𝑏𝑏[𝜌𝜌R𝜔𝜔𝜔𝜔𝜔𝜔(R𝜔𝜔 − 𝑉𝑉𝑏𝑏) − 1

2𝜌𝜌𝐶𝐶𝑑𝑑𝑉𝑉𝑏𝑏
2(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔)]

1
2 R𝜔𝜔𝜔𝜔𝜔𝜔((R𝜔𝜔)2 − 𝑉𝑉𝑏𝑏2) + 1

2𝜌𝜌𝐶𝐶𝑑𝑑(𝜔𝜔𝑅𝑅)3(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔) + 𝑘𝑘𝑐𝑐
 

 In this case, 𝑘𝑘𝑐𝑐 was assumed to be 0.4 𝑊𝑊. The relationship between angular speed and 

efficiency at cruise speed is: 

 

Figure 23: Efficiency vs Angular Speed, Canoe-Sized Caterpillar Drive 

From this curve, the optimal angular speed is 10 s-1. Assuming that the caterpillar drive 

rotates at this speed for different boat speeds, the efficiency vs boat speed graph can be generated: 
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Figure 24: Efficiency vs Boat Speed, Canoe-Sized Caterpillar Drive 

 The code used to generate these figures can be found in Appendix B. 

4.3.3: Tugboat-Sized Caterpillar Drive 

For a tugboat-sized boat, a cruise speed of 6 m/s is assumed. 

For the tugboat, L is about 10 m. Therefore for tugboats, 

𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 = 6.7 ∙ 107 

 This implies turbulent flow about the moat. For turbulent flow, the skin friction drag 

coefficient is given by 

𝐶𝐶𝑑𝑑𝑇𝑇 =
0.0594
𝑅𝑅𝐴𝐴0.2 = 0.0016 

 In this case, the following values will be used: 

- CdT = 0.0016 

- R = 1 m 
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- H = 2 m 

- W = 3 m 

- L = 10 m 

- Starting 𝜔𝜔 = 6  s-1 

Recall the same efficiency formula as used previously: 

𝜂𝜂𝑐𝑐 =
𝑉𝑉𝑏𝑏[𝜌𝜌R𝜔𝜔𝜔𝜔𝜔𝜔(R𝜔𝜔 − 𝑉𝑉𝑏𝑏) − 1

2𝜌𝜌𝐶𝐶𝑑𝑑𝑉𝑉𝑏𝑏
2(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔)]

1
2 R𝜔𝜔𝜔𝜔𝜔𝜔((R𝜔𝜔)2 − 𝑉𝑉𝑏𝑏2) + 1

2𝜌𝜌𝐶𝐶𝑑𝑑(𝜔𝜔𝑅𝑅)3(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔) + 𝑘𝑘𝑐𝑐
 

 In this case, 𝑘𝑘𝑐𝑐 was assumed to be 5000 W. The relationship between angular speed and 

efficiency at cruise speed is: 

 

Figure 25: Efficiency vs Angular Speed, Tugboat-Sized Paddlewheel 

 From this curve, the optimal angular speed for this system is 7 s-1. Assuming that the 

caterpillar drive rotates at this speed for different boat speeds, the efficiency vs boat speed graph 

can be generated as before: 
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Figure 26: Efficiency vs Boat Speed, Tugboat-Sized Caterpillar Drive 

The code used to generate these figures can be found in Appendix B. Note that the curve 

here does not actually go below zero. 

4.4: Comparison to Ideal Propellers 

 The graphs in the previous section suggest that the efficiency of ideal caterpillar drives is 

approximately 1 at ideal cruise speeds. However, this was based on arbitrary assumptions about 

what the internal loss coefficients kc are for different mechanisms. Therefore to provide a more 

meaningful comparison with ideal propellers, the following process will be used: 

5. Determine the thrust generated by the caterpillar drive to perform the task 

6. Assume the propeller has to generate that thrust, and use propeller specs which are standard 

for that task 

7. Use the Kramer diagram to determine the efficiency of ideal propellers performing that 

task 
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8. Going back to the MATLAB code used to generate the efficiency vs angular speed curves, 

determine the coefficient kc required to match the efficiency of ideal propellers determined 

from (3) 

4.4.1: Comparison with ideal RC Propellers 

 The RC-sized boat was generating a thrust of about 120 N at a boat speed of 6.7 m/s and 

angular speed of 254 s-1. This thrust force might seem high, but realize that the RC boat is traveling 

almost 7 m/s and the specs were based off boats which were 0.5 meters long. The thrust can be 

easily calculated by using the thrust equation generated in section 4.2 and the specs from section 

4.3.1: 

𝑇𝑇 = 𝜌𝜌R𝜔𝜔𝜔𝜔𝜔𝜔(R𝜔𝜔 − 𝑉𝑉𝑏𝑏) −
1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝑉𝑉𝑏𝑏2(2𝜔𝜔𝜔𝜔 + 𝑊𝑊𝜔𝜔) 

 For a 3-blade, 4-inch diameter propeller rotating at 9000 RPM20, the Kramer diagram 

efficiency comes out to about 70% efficient. 

 So at what point does the caterpillar drive beat the propeller for this RC example? 

 Recall that the term 𝑘𝑘𝑐𝑐 was arbitrarily selected, and the efficiency was close to 1 at cruise 

speed. Cruise speed efficiencies of 70% are generated when kc is 1.1∙ 104 W. This number seems 

very large – it is big because the angular speed of the mechanism is very high. It may be that the 

numbers selected here were not realistic. Nonetheless, the process for determining it still holds; 

the value for kc can easily be determined by changing the value of kc in the MATLAB code until 

the curve generates a maximum efficiency of 70%. Therefore to beat the ideal propeller, a 

caterpillar drive with the design specs from section 4.3.1 and a kc of 1.1∙ 104 W or less should 

perform better than any propeller attempting the same task. 

                                                           
20 Specs informed by Preece and RC Boat Calculator  
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4.4.2: Comparison with Ideal Canoe Propellers 

 The canoe-sized caterpillar drive was generating a thrust of 84 N according to the thrust 

equation. The boat speed used was 1.34 m/s and the angular speed was 10 s-1. Using the medium-

size boat from section 3.4, the efficiency of ideal propellers is about 90%. 

 As in the previous section, the term 𝑘𝑘𝑐𝑐 was arbitrarily selected, and the efficiency was close 

to 1 at cruise speed. Cruise speed efficiencies of 90% are generated when kc is about 420 W. This 

can be determined in a similar manner. Therefore to beat the ideal propeller, a caterpillar drive 

with the design specs from section 4.3.2 and a kc of 420 W or less should perform better than 

propellers attempting a similar task. 

4.4.3: Comparison with Ideal Tugboat Propellers 

 The tugboat-sized caterpillar drive was generating a thrust of 140,000 N according to the 

thrust equation. The boat speed used was 6 m/s and the angular speed was 7 s-1. Typical tugboat 

specs are 2.4 m diameter, 4-blade propellers rotating at 24 radians per second.21 From the Kramer 

diagram, propellers with these specs providing a thrust of 140,000 N are about 80% efficient. 

 As in the previous sections, the 𝑘𝑘𝑐𝑐 term was arbitrarily selected, and the efficiency was 

close to 1 at cruise speed. Cruise speed efficiencies of 80% are generated when kc is about             

2.1∙ 106 W. This can be determined in a similar manner. Therefore to beat the ideal propeller, a 

caterpillar drive with the design specs from section 4.3.3 and a kc of 2.1∙ 106 W or less should 

perform better than propellers attempting a similar task. As in section 4.4.1, this number is large 

because of the high angular speed of the mechanism. It may be that the dimensions selected here 

are not realistic. 

 

                                                           
21 Informed by Hoffman and Argyriadis  

http://www.popularmechanics.com/technology/infrastructure/a5358/4346840/
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4.5: Caterpillar Drive Discussion and Recommendations 

 In this chapter, a first-principles approach to modified caterpillar drives was developed. 

Expressions for the thrust generated and power required to maintain some constant angular rotation 

were developed. These equations were used to determine optimal angular speed for different tasks. 

From those optimal angular speeds, efficiency vs boat speed curves were generated. For different-

sized boats, the values for internal friction loss coefficients were determined to beat the ideal 

propeller. The comparison of these coefficients against the feathered paddlewheel will be 

discussed in Chapter 6. 

 From these results, the following recommendations can be made: 

- For theorists: 

o Use CFD to predict the thrust required to maintain a boat’s cruise speed. This 

can be used to more precisely predict the performance of ideal propellers and 

therefore allow more precise calculations of the kc required by caterpillar drives 

to out-perform ideal propellers 

o Since water is incompressible, the water rushing into the system will come from 

a larger area than HW (since A1V1 = A2V2). The effects of water rushing in 

from a larger area are not taken into account here. CFD may be able to inform 

theorists of the effects this “rushing in” has on the system’s efficiency. 

- For experimentalists and engineers: 

o Determine the internal friction coefficient kc for different caterpillar drive 

designs in order to make more accurate predictions of the system’s performance 

o The internal friction coefficient will be larger for bigger and faster systems, so 

the recommendation of the author is to use caterpillar drives for slower systems. 
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Chapter 5: Jellyfish Actuator 

5.1: Mechanism Description 

 The jellyfish actuator was inspired by the marine animal, which moves with a two-stage 

cycle: 

 

Figure 27: Jellyfish Propulsion22 

 The intake cycle involves the expansion of the jellyfish cavity. A volume of water rushes 

in, and in the thrust cycle the cavity contracts, shooting a water jet out of the cavity. This pushes 

the animal forward in a very efficient manner.23Because of its success, an actuator mechanism can 

be proposed which represents a variant of the jellyfish mechanism. 

 The alternate mechanism consists of an actuator pushing two flaps. The flaps begin close 

to the body in an open position. They are thrust in the opposite direction of locomotion. At the end 

of the thrust, the flaps collapse and return to the starting point. The following graphic illustrates 

the process: 

                                                           
22 Image from Margaret 
23 Fischman 

http://bp1.blogger.com/_BzyK7Oyq-xE/R9QuudiemNI/AAAAAAAAARY/885pdVL-Ft8/s1600-h/jellyfish-propulsion.jpg
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Figure 28: The Jellyfish Actuator 

 The width of the flaps is W, and the height is H: 

 

Figure 29: Jellyfish Actuator Flap Dimensions 
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 Assume that the entire mechanism is moving at Vb, to keep the notation that was used for 

the other mechanisms. 

 The flaps are thrust at a speed VE relative to the mechanism and are retracted at speed VC 

relative to the mechanism: 

 

Figure 30: Expanding and Contracting Phases of Jellyfish Actuator 

 For simplicity, no mechanisms by which (a) the flaps are expanded and contracted and (b) 

the flaps are opened and closed are not specified. It is assumed that the flaps are opened at t=0, are 

thrust at a constant speed VE until time t = L/VE. The flaps are then closed instantly and are 

contracted at constant speed VC. The flaps reach their original point at time t = L/VE + L/VC and 

open instantly, repeating the cycle. These assumptions are being made to develop a baseline 

mathematics that can be used to analyze the mechanism. Specific designs can build off the 

mathematical framework outlined in the next section. 

5.2: Mathematical Characterization 

 The drag force acting on an object is given by the same equation used in previous sections: 

𝐹𝐹𝑑𝑑 =
1
2
𝜌𝜌𝑉𝑉2𝐶𝐶𝑑𝑑𝜌𝜌𝑐𝑐 

 Where V is the speed of the object relative to the surrounding fluid, Cd is the drag 

coefficient of the object, and Ac is the characteristic area of the object. 
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 For the expanding phase of the jellyfish actuator, the drag force acting on the flaps is 

𝐹𝐹𝐸𝐸 =
1
2
𝜌𝜌(𝑉𝑉𝐸𝐸 − 𝑉𝑉𝑏𝑏)2𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔 

 In this case, CE is the drag coefficient associated with flow moving normal to a flat surface. 

As used in previous sections, this coefficient is CE = 1.28. Again, W and H are the width and height 

of the flaps, respectively. This drag force will provide the thrust which pushes against the 

mechanism. 

 The power required to maintain this force is 

𝑃𝑃𝐸𝐸 = 𝐹𝐹𝐸𝐸𝑉𝑉𝐸𝐸 

 By the same logic, the force acting on the flaps during the contracting phase is 

𝐹𝐹𝑅𝑅 =
1
2
𝜌𝜌(𝑉𝑉𝑅𝑅 + 𝑉𝑉𝑏𝑏)2𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔 

 Here, CC is the drag coefficient associated with flow parallel to a flat surface. For low 

Reynold’s numbers, this is approximately 0.00124 (the reason for assuming low Reynold’s 

numbers will be discussed in the next section). The characteristic area WH is used instead of 1
2
WH 

because water is flowing over both sides of the half-flaps. 

 Notice that both FE and FC are dependent on Vb. Unlike the previous mechanisms, there is 

only one effective “blade” providing periodic thrust. In the other mechanisms, when one blade 

finished providing its thrust for the cycle, another blade or two were already providing thrust 

behind it. That is not the case here, and Vb will oscillate in a more pronounced manner than in the 

paddlewheel case. Therefore Vb cannot be assumed constant throughout the course of the cycle. 

 To accommodate the shifting Vb, a force balance must be made on the entire system: 

                                                           
24 "Drag Coefficient,” The Engineering ToolBox 
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Figure 31: Forces on Jellyfish Actuator System 

 Again, FE and FC are the drag forces associated with moving the flaps through the water in 

the expanding and contracting phases, respectively. FJ is the drag force on the jellyfish body, and 

is given by 

𝐹𝐹𝐽𝐽 =
1
2
𝜌𝜌𝑉𝑉𝑏𝑏2𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽 

 Here, CJ is the drag coefficient of the jellyfish mechanism and AJ is its characteristic area. 

This equation holds for both the expanding and contracting phases. 

 Assuming the mass of the jellyfish mechanism is mJ, the force balance can be written 

mathematically as: 

 Expanding Phase: 

𝑚𝑚𝐽𝐽𝑉𝑉�̇�𝑏 =  𝐹𝐹𝐸𝐸 − 𝐹𝐹𝐽𝐽 

 Contracting Phase: 

𝑚𝑚𝐽𝐽𝑉𝑉�̇�𝑏 =  −𝐹𝐹𝑅𝑅 − 𝐹𝐹𝐽𝐽 

 Using the expressions obtained earlier in the section and substituting them into the 

expressions above, they reduce to 
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Expanding Phase: 

𝑉𝑉�̇�𝑏 = 𝑉𝑉𝑏𝑏2 �
1

2𝑚𝑚𝐽𝐽
𝜌𝜌�𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔 − 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽�� − 𝑉𝑉𝑏𝑏 �

𝜌𝜌𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔𝑉𝑉𝐸𝐸
𝑚𝑚𝐽𝐽

� +
𝜌𝜌𝑉𝑉𝐸𝐸2𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔

2𝑚𝑚𝐽𝐽
 

 Contracting Phase: 

𝑉𝑉�̇�𝑏 = 𝑉𝑉𝑏𝑏2 �
1

2𝑚𝑚𝐽𝐽
𝜌𝜌�𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔 + 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽�� + 𝑉𝑉𝑏𝑏 �

𝜌𝜌𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔𝑉𝑉𝑅𝑅
𝑚𝑚𝐽𝐽

� +
𝜌𝜌𝑉𝑉𝑅𝑅2𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔

2𝑚𝑚𝐽𝐽
 

 The derivations of these expressions can be found in Appendix C. 

 Notice that these are nonlinear differential equations of the form 

𝑉𝑉�̇�𝑏 = 𝜌𝜌𝑉𝑉𝑏𝑏2 − 𝐵𝐵𝑉𝑉𝑏𝑏 + 𝐶𝐶 

and 

𝑉𝑉�̇�𝑏 = −𝑛𝑛𝑉𝑉𝑏𝑏2 − 𝐸𝐸𝑉𝑉𝑏𝑏 − 𝐹𝐹 

 For the expanding and retracting phases, respectively, where 

𝜌𝜌 =
1

2𝑚𝑚𝐽𝐽
𝜌𝜌�𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔 − 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽�  

𝐵𝐵 =  
𝜌𝜌𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔𝑉𝑉𝐸𝐸

𝑚𝑚𝐽𝐽
 

𝐶𝐶 =  
𝜌𝜌𝑉𝑉𝐸𝐸2𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔

2𝑚𝑚𝐽𝐽
 

𝑛𝑛 =
1

2𝑚𝑚𝐽𝐽
𝜌𝜌�𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔 + 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽�  

𝐸𝐸 =
𝜌𝜌𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔𝑉𝑉𝑅𝑅

𝑚𝑚𝐽𝐽
  

𝐹𝐹 =
𝜌𝜌𝑉𝑉𝑅𝑅2𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔

2𝑚𝑚𝐽𝐽
  

 The next step is to use this information to calculate efficiency. The first step is to select 

parameters which give the values of A through F. The differential equations can then be solved. 
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As time goes on, an average boat speed (VbA) becomes apparent. The efficiency is the thrust power 

required to maintain that speed divided by the power provided by the average power in a stroke: 

𝜂𝜂𝐽𝐽 =
𝑉𝑉𝑏𝑏𝑀𝑀𝐹𝐹𝐽𝐽𝑀𝑀
𝐹𝐹𝐸𝐸𝑉𝑉𝐸𝐸

 

 Where FJA is the drag force FJ required to pull the mechanism through the water, using the 

average boat speed VbA instead of Vb. Substituting the formulas from above, this equation 

becomes: 

𝜂𝜂𝐽𝐽 =
𝑉𝑉𝑏𝑏𝑀𝑀[1

2𝜌𝜌𝑉𝑉𝑏𝑏𝑀𝑀
2 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽]

[1
2𝜌𝜌(𝑉𝑉𝐸𝐸 − 𝑉𝑉𝑏𝑏)2𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔]𝑉𝑉𝐸𝐸

 

 It simplifies to 

𝜂𝜂𝐽𝐽 =
𝑉𝑉𝑏𝑏𝑀𝑀3 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽

(𝑉𝑉𝐸𝐸 − 𝑉𝑉𝑏𝑏𝑀𝑀)2𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔𝑉𝑉𝐸𝐸
 

5.3: Efficiency for Different Tasks 

 It is clear that this mechanism will not be practical for large boats. Imagine a single jellyfish 

actuator powering a large boat. Its flaps will have to be large. Therefore opening and closing them 

will displace lots of water and require significant amounts of power, affecting the calculations. If 

the flaps are to be opened and closed passively, then large flaps will require large displacements 

to open – they will not be fully open (if at all) until the end of the stroke. It’s conceivable that 

many small jellyfish actuators can be used to power larger boats, but that would not change the 

calculations of the individual, small ones. Since the only practical jellyfish actuators are small 

ones, only small ones will be analyzed here. This is why the Reynold’s numbers used to calculate 

drag coefficients, since the speed and size of the system will always be relatively low. 
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 In this chapter, three jellyfish actuators of the same size but different speeds will be 

analyzed. This could give a sense of whether they are more efficient for faster or slower 

mechanisms. 

 The methodology used here for determining the efficiency of jellyfish actuators is: 

1. Select values for mJ, AJ, W, H, L, VE, and VC 

2. Solve the differential equations to determine the speed of the mechanism as a function of 

time 

3. As time goes on, the speed will oscillate about some average speed. Use that average speed 

as VbA in the efficiency formula for 𝜂𝜂𝐽𝐽 presented in the previous section 

4. Repeat this process for different values of VE and VC to get a sense of how the mechanism 

performs at different speeds. 

5.3.1: Slow Jellyfish Actuator 

 In all three cases, the mechanism will be approximately the size of a box jellyfish. The 

mass mJ is 2 kg and its characteristic area AJ is 0.1 m2.25 The “boat” here is assumed to be a half-

sphere, which has a drag coefficient CJ of 0.42.26 

 For a slow jellyfish actuator will have a cycle time of 2 seconds. Assuming L is 0.25 m and 

VE=VC, both VE and VC are 0.25 m/s. Assume W = H = 0.3 m. 

 Recall the differential equations describing the system: 

  Expanding: 

𝑟𝑟𝑉𝑉𝑏𝑏
𝑟𝑟𝑊𝑊

= 𝜌𝜌𝑉𝑉𝑏𝑏2 − 𝐵𝐵𝑒𝑒 + 𝐶𝐶 

   

                                                           
25 Specs taken from "Box Jellyfish." Wikipedia  
26 "Drag Coefficient,” The Engineering ToolBox 
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Contracting: 

𝑟𝑟𝑉𝑉𝑏𝑏
𝑟𝑟𝑊𝑊

= −𝑛𝑛𝑉𝑉𝑏𝑏2 − 𝐸𝐸𝑒𝑒 − 𝐹𝐹 

 Where 

𝜌𝜌 = 1
2𝑚𝑚𝐽𝐽

𝜌𝜌�𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔 − 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽�     𝑛𝑛 = 1
2𝑚𝑚𝐽𝐽

𝜌𝜌�𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔 + 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽� 

𝐵𝐵 =  𝜌𝜌𝑅𝑅𝐸𝐸𝑊𝑊𝑊𝑊𝑉𝑉𝐸𝐸
𝑚𝑚𝐽𝐽

      𝐸𝐸 = 𝜌𝜌𝑅𝑅𝐶𝐶𝑊𝑊𝑊𝑊𝑉𝑉𝐶𝐶
𝑚𝑚𝐽𝐽

  

𝐶𝐶 =  𝜌𝜌𝑉𝑉𝐸𝐸
2𝑅𝑅𝐸𝐸𝑊𝑊𝑊𝑊
2𝑚𝑚𝐽𝐽

      𝐹𝐹 = 𝜌𝜌𝑉𝑉𝐶𝐶
2𝑅𝑅𝐶𝐶𝑊𝑊𝑊𝑊
2𝑚𝑚𝐽𝐽

  

 Using the values listed above, the equations become 

Expanding (from time 0 < t < 1, 2 < t < 3, 4 < t < 5, etc.)  

𝑟𝑟𝑉𝑉𝑏𝑏
𝑟𝑟𝑊𝑊

= 18.3𝑉𝑉𝑏𝑏2 − 14.4𝑒𝑒 + 1.8 

  Contracting (from time 1 < t < 2, 3 < t < 4, etc.) 

𝑟𝑟𝑉𝑉𝑏𝑏
𝑟𝑟𝑊𝑊

= −10.5525𝑉𝑉𝑏𝑏2 − 0.1125𝑒𝑒 − 0.00140625 

 The exact values for the coefficients were used to obtain an exact numerical solution. 

 These differential equations were solved using SIMULINK. The block diagram can be 

found in Appendix C. The results are graphed below: 
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Figure 32: Slow Jellyfish Vb vs time graph, 0-10 Seconds, Vb(0) = 0 

 Interestingly, the jellyfish reaches its peak speed (about 0.16 m/s) at the end of the first 

stroke. The signal statistics were generated from SIMULINK: 

 

 From the statistics, the mean VbA was 0.1124 m/s. Therefore the efficiency of the 

mechanism is 

𝜂𝜂𝐽𝐽 = 𝑉𝑉𝑏𝑏𝑏𝑏
3 𝑅𝑅𝐽𝐽𝑀𝑀𝐽𝐽

(𝑉𝑉𝐸𝐸−𝑉𝑉𝑏𝑏𝑏𝑏)2𝑅𝑅𝐸𝐸𝑊𝑊𝑊𝑊𝑉𝑉𝐸𝐸
 = 10.9% 

 This is not very efficient. Although that is to be expected: for half the cycle, power is 

expended to retract the flaps. This is significant power which is not providing thrust. 
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5.3.2: Medium-Speed Jellyfish Actuator 

 For the medium-speed actuator, the entire expansion/ contraction cycle takes 1 second 

instead of 2. Therefore VE and VC are 0.5 m/s instead of 0.25 m/s. All of the other parameters stay 

the same. Using the same formulas, the equations become 

Expanding (from time 0 < t < .5, 1 < t < 1.5, 2 < t < 2.5, etc.)  

𝑟𝑟𝑉𝑉𝑏𝑏
𝑟𝑟𝑊𝑊

= 18.3𝑉𝑉𝑏𝑏2 − 28.8𝑒𝑒 + 7.2 

  Contracting (from time 0.5 < t < 1, 1.5 < t < 2, etc.) 

𝑟𝑟𝑉𝑉𝑏𝑏
𝑟𝑟𝑊𝑊

= −10.5525𝑉𝑉𝑏𝑏2 − 0.0225𝑒𝑒 − 0.0056 

 These differential equations were solved using SIMULINK. The results are graphed below: 

 

Figure 33: Medium-Speed Jellyfish Vb vs time graph, 0-10 Seconds, Vb(0) = 0 

 Once again, the jellyfish reaches its peak speed on the first thrust. This time the peak 

speed is about 0.3 m/s. The graph’s statistics are: 
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 Therefore VbA for this system is 0.2374 m/s. Using the same formula to calculate 

efficiency: 

𝜂𝜂𝐽𝐽 = 𝑉𝑉𝑏𝑏𝑏𝑏
3 𝑅𝑅𝐽𝐽𝑀𝑀𝐽𝐽

(𝑉𝑉𝐸𝐸−𝑉𝑉𝑏𝑏𝑏𝑏)2𝑅𝑅𝐸𝐸𝑊𝑊𝑊𝑊𝑉𝑉𝐸𝐸
 = 14.2% 

 This is better than the slower case but is still bad. 

5.3.3: Fast Jellyfish Actuator 

 For the high-speed actuator, the entire expansion/ contraction cycle takes 0.5 seconds. 

Therefore VE and VC are 1 m/s. All of the other parameters stay the same. Using the same formulas, 

the equations become 

Expanding (from time 0 < t < .25, 0.5 < t < 0.75, etc.)  

𝑟𝑟𝑉𝑉𝑏𝑏
𝑟𝑟𝑊𝑊

= 18.3𝑉𝑉𝑏𝑏2 − 57.6𝑒𝑒 + 28.8 

  Contracting (from time 0.25 < t < 0.5, 0.75 < t < 1, etc.) 

𝑟𝑟𝑉𝑉𝑏𝑏
𝑟𝑟𝑊𝑊

= −10.5525𝑉𝑉𝑏𝑏2 − 0.045𝑒𝑒 − 0.0225 

 These differential equations were solved using SIMULINK. The results are graphed below: 
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Figure 34: Fast-Speed Jellyfish Vb vs time graph, 0-10 Seconds, Vb(0) = 0 

 Once again, the jellyfish reaches its peak speed on the first thrust. This time, the peak 

speed is 0.6 m/s. The graph’s statistics are: 

 

 Therefore VbA for this system is 0.4834 m/s. Using the same formula to calculate 

efficiency: 

𝜂𝜂𝐽𝐽 = 𝑉𝑉𝑏𝑏𝑏𝑏
3 𝑅𝑅𝐽𝐽𝑀𝑀𝐽𝐽

(𝑉𝑉𝐸𝐸−𝑉𝑉𝑏𝑏𝑏𝑏)2𝑅𝑅𝐸𝐸𝑊𝑊𝑊𝑊𝑉𝑉𝐸𝐸
 = 9.7% 

 This is worse than either of the two previous cases. 
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5.3.4: Medium Speed Jellyfish Actuator, Fast Contraction Speed 

 In the previous cases, half of the cycle was spent retracting the flaps. What if less time was 

spent on retracting the flaps? Therefore most of the cycle is spent providing thrust. 

 Assume that the total cycle takes 0.67 seconds, the expanding speed VE = 0.5 m/s and the 

contracting speed VC = 1.5 m/s. Using the same formulas as before, the equations of motion 

become 

 Expanding: 

𝑟𝑟𝑉𝑉𝑏𝑏
𝑟𝑟𝑊𝑊

= 18.3𝑉𝑉𝑏𝑏2 − 28.8𝑒𝑒 + 7.2 

 Contracting: 

𝑟𝑟𝑉𝑉𝑏𝑏
𝑟𝑟𝑊𝑊

= −10.5525𝑉𝑉𝑏𝑏2 − 0.0675𝑒𝑒 − 0.0506 

 In the SIMULINK pulse generator, set the period to 0.6667 seconds and the pulse width to 

75% of the period. The results are: 

 

Figure 34: Fast-Contraction Jellyfish Vb vs time graph, 0-10 Seconds, Vb(0) = 0 

 The graph statistics are 
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 Here the mean speed is 0.273 m/s. Therefore the efficiency becomes 

𝜂𝜂𝐽𝐽 =
𝑉𝑉𝑏𝑏𝑀𝑀3 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽

(𝑉𝑉𝐸𝐸 − 𝑉𝑉𝑏𝑏𝑀𝑀)2𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔𝑉𝑉𝐸𝐸
= 28.8% 

 This is still low, but much more efficient than the other scenarios. 

5.4: Comparison to Ideal Propellers 

 There is a lot of available data on propeller performances for RC boats, canoe-sized boats, 

and tugboats. Unfortunately, there is not a lot of data on propellers used to move box jellyfish. 

Therefore the propeller specs will be determined by an educated guess and a range of efficiencies 

will be given. 

 For a slow box jellyfish, the average speed VbA was 0.1124 m/s. The drag coefficient was 

0.42, and since its diameter was about 0.35 m, assume a propeller diameter of 0.18 m (propeller 

area 0.25 m2). If the propeller is spinning between 10 and 50 radians per second, the Kramer 

diagram gives ideal propeller efficiencies between 96% and 94%. 

 For a medium-speed box jellyfish, the average speed VbA was 0.2374 m/s. Using the same 

propeller specs except the propeller is rotating between 50 and 100 s-1, the Kramer efficiency is 

also between 94% and 96%. 



O l i s  | 70 
 

 The fast box jellyfish has an average speed of 0.4384 m/s. Using the same propeller specs 

except the propeller is rotating between 50 and 100 s-1, the Kramer efficiency is also between 94% 

and 96%. 

 In all cases, ideal propellers used by jellyfish-sized mechanisms are very efficient. The data 

from earlier in the chapter does not indicate that jellyfish actuators are capable of matching 

propellers. More computational work should be done to identify the upper performance limits of 

jellyfish actuators. 

5.5: Jellyfish Actuator Discussion and Recommendations 

 There are two major differences in the analysis of this mechanism. First, the mechanical 

design of the system was not laid out in detail. Therefore no internal friction terms were considered. 

Second, the drag of the boat played a role in the efficiency of the mechanism itself. The other 

mechanisms were considered in isolation: “assume the boat is going at this speed, what will be the 

thrust produced and the power required to maintain that thrust?” Since the speed of this jellyfish 

“boat” is not close to constant, that approach was not meaningful here. That distinction gives rise 

to methodological differences. 

 For the other mechanisms, it was easy to find the optimal performance given a design. That 

was because a task could be assumed, and it could be asked “what rotational speed optimizes this 

paddlewheel or caterpillar drive at that boat speed?” 

 That is not the case here because a task cannot be assumed. Since the speed of the boat 

oscillates significantly at different stages of the actuator’s cycle, one cannot ask “what speeds VC 

and VE work best for this Vb?” because Vb depends on VE and VC. That would have to be 

determined by guess-and-check. This conundrum was avoided in the other mechanisms because 
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the relationship between efficiency and boat speed was not buried in a pair of nonlinear differential 

equations. 

 From this chapter, the following recommendations are made: 

- For theorists: attempt to determine the upper performance limits of jellyfish actuators 

by examining the relationship between VE, VC, and Vb for constant geometries. Once a 

relationship becomes apparent, repeat that process for different flap sizes to determine 

optimal geometries. 

- For theorists: propose mechanisms by which flaps are extended/ contracted and opened/ 

closed. From those assumptions, analytical and computational methods should give a 

better sense of actual jellyfish actuator performance. 

- For experimentalists: if jellyfish actuators will be useful, they will only be useful in 

small, slow mechanisms. This is because the flaps will have to open and close, and 

doing that for larger flaps will prove difficult. 

- For experimentalists: the results here show that the best jellyfish mechanism contract 

at a higher rate than they expand. 

- For experimentalists: the initial results here give low efficiencies. It is possible that this 

is not the optimal design, and that this design does not mimic actual jellyfish. Jellyfish 

fill a cavity which they contract and shoot out a water jet. This mechanism merely 

pushed a flap through the water. It may be worth experimenting with designs that better 

mimic actual jellyfish, since their method of propulsion has proven successful. 
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Chapter 6: Conclusion 

This paper accomplished the following: 

1. A first-principles analysis of feathered paddlewheels, caterpillar drives, and jellyfish 

actuators. Equations determining the thrust generated by the mechanism and the power 

required to maintain that thrust were derived, and those equations were used to determine 

efficiency. 

2. The efficiency of these mechanisms were determined for several boat speeds and thrust 

outputs. This information gave a sense of which tasks the mechanisms are best suited. In 

the case of jellyfish actuators, the actuator could be performing the same task in a variety 

of ways (by adjusting expansion and contraction rates). This added a level of complexity 

to the problem, so instead of identifying ideal tasks, ideal ways of performing the task were 

identified. The numerical values for best performance behaviors were not determined. This 

is because the question “what is the best jellyfish actuator” is not a reasonable question – 

a more reasonable question is “what is the best jellyfish actuator for this task.” The same 

can be said for caterpillar drives and paddlewheels. Therefore the emphasis was placed on 

methodology – on using the equations from (1) to determine best performances for a task. 

3. For the variety of tasks analyzed, the idealized mechanisms were compared against ideal 

propellers. In the case of the caterpillar drive and feathered paddlewheel, a methodology 

for determining the minimum intrinsic losses required to beat propellers for a given task 

was outlined. Again, since the question “at what point do paddlewheels and caterpillar 

drives beat propellers?” is not reasonable because it varies with the task. Therefore a 

methodology of answering that question was proposed, so it could be answered for tasks 

deemed relevant to the reader. 
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4. Based on the results from (1) – (3), recommendations were made for theorists and 

experimentalists hoping to pursue further research which builds off first-principles 

analyses of these mechanisms. 

Notable findings: 

1. The shape of caterpillar drive efficiency curves indicates that it may out-perform propellers 

in non-ideal speeds. More precisely, given the same maximum efficiency, the efficiency 

vs boat speed curve is more elongated for caterpillar drives than propellers, indicating that 

caterpillar drives may be more efficient for boats which need bursts of high speed (above 

cruise speed). 

2. The internal loss coefficient required to beat propellers was significantly higher for 

caterpillar drives than feathered paddlewheels in all cases. This indicates a higher potential 

for caterpillar drives, since it can afford to have higher amounts of internal loss to maintain 

the same efficiency. 

3. The jellyfish actuator was highly inefficient for the cases analyzed. This could be due to a 

poor design choice, and efforts to better mimic actual jellyfish can improve efficiency. 

Computational work should be done to identify the upper performance of the jellyfish 

mechanism for a variety of tasks 
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Appendix A: Feathered Paddlewheel Supplements 

Derivation of Vrel and Vy: 

 

 Since Vrel is the speed of water in the x-direction relative to the speed of the paddle, 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔𝑅𝑅0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 − 𝑉𝑉𝑏𝑏  

In the previously mentioned analysis of normal paddlewheels, Vrel was approximated as 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔𝑅𝑅0 − 𝑉𝑉𝑏𝑏. This small angle approximation neglects the slightly negative thrusts generated 

when 𝜔𝜔𝑅𝑅0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 < 𝑉𝑉𝑏𝑏. Since Vrel will be squared when calculating the force Fx, being able to ignore 

these negative thrust contributions is useful when performing computations, since it avoids the 

extra bookkeeping required to identify when the thrust goes from slightly negative to slightly 

positive (since it will not appear as such). Since this is only relevant in cases where 𝜔𝜔𝑅𝑅0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 ≈

𝑉𝑉𝑏𝑏 and therefore only in cases where the thrust is small, ignoring these contributions is reasonable. 
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Derivation of Awet: 

 

From this diagram, three relationships are apparent: 

 𝑅𝑅0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 𝑒𝑒 = 𝜔𝜔 

 𝜔𝜔 = 𝑅𝑅0 −
ℎ
2
 (think of the case where 𝜃𝜃 = 0) 

 ℎ
2

= 𝑒𝑒 + ℎ𝑤𝑤𝑟𝑟𝑤𝑤 

 After using the first two equations to eliminate H, that expression can be combined 

with the third to eliminate y. This gives a relationship between the remaining variables, which 

reduces to 

𝜌𝜌𝑤𝑤𝑟𝑟𝑤𝑤 = 𝑊𝑊[𝑅𝑅0(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 − 1) + ℎ] 
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Derivation of Reff: 

 

 From the Pythagorean theorem, 

𝑅𝑅𝑟𝑟𝑒𝑒𝑒𝑒 = [(𝑅𝑅0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 𝑒𝑒 + 0.5ℎ𝑤𝑤𝑟𝑟𝑤𝑤)2 + (𝑅𝑅0𝑐𝑐𝑠𝑠𝑛𝑛𝜃𝜃)2]1/2 

 Using the three equations from the previous derivation, y and hwet can be re-written in terms 

of R0 and 𝜃𝜃. After substituting, the expression reduces to: 

𝑅𝑅𝑟𝑟𝑒𝑒𝑒𝑒 = 𝑅𝑅0[0.25(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + 1)2 + 𝑐𝑐𝑠𝑠𝑛𝑛2𝜃𝜃]1/2 

 

 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 Derivation: 

 The angles are the minimum and maximum values when y = h/2. There the equations from 

the derivation of Awet give 

𝑅𝑅0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 +
ℎ
2

= 𝜔𝜔 = 𝑅𝑅0 −
ℎ
2

 

 Solving for the angle gives 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(1 −
ℎ
𝑅𝑅0

) 
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Feathered Paddlewheel MATLAB Code (specs used for RC-Size Paddlewheels): 

clear all; 
clc; 
close all; 

Cd = 1.28;    % Drag coefficient of water perpendicular to blade 
Rho = 1000;   % Density of water 
Vb = 6.7;    % Boat Speed 
Ro= .1;    % Radius of paddlewheel R_0 
h = .4*Ro;    % Height of blade 
W = h*3/2;    % Width of blade 
MAX = acos(1-h/Ro);  % Minimum angle where blade first contacts water 
MIN = -acos(1-h/Ro);  % Max angle where blade leaves water 
t = MIN:.01:MAX;   % Angles where blade 1 is contacting water 
w = Vb/Ro+.1;   % Angular speed of mechanism 
kp = 11000;   % Internal Drag Coefficient 
 
 
for i = 1:length(t) 
 

% Create T1, thrust curve for blade 1 
T1(1,i) = 0.5*Cd*Rho*((w*Ro-Vb)^2)*W*(Ro*(cos(t(i))-1)+h); 

 
if 0.5*Cd*Rho*((w*Ro-Vb)^2)*W*(Ro*(cos(t(i))-1)+h) < 0; 

T1(1,i) = 0; 
end 

 
% Create T2 thrust curve, offset 45 degrees, starts in the water 
T2(1,i) = 0.5*Cd*Rho*((w*Ro-Vb)^2)*W*(Ro*(cos(t(i)+pi/4)-1)+h); 

 
if 0.5*Cd*Rho*((w*Ro-Vb)^2)*W*(Ro*(cos(t(i)+pi/4)+h)) < 0; 

T2(1,i) = 0; 
end 
 
if i > 107; %corrects for the curve going back above zero when it 
should be defined as zero here 

T2(1,i) = 0; 
end 
 

% Create T3 curve, offset 90 degrees, starts in the water 
T3(1,i) = 0.5*Cd*Rho*((w*Ro-Vb)^2)*W*(Ro*(cos(t(i)+pi/2)-1)+h); 

 
if 0.5*Cd*Rho*((w*Ro-Vb)^2)*W*(Ro*(cos(t(i)+pi/2)+h)) < 0; 

T3(1,i) = 0; 
end 
 
if i > 29; %corrects for the curve going back above zero when it 
should be defined as zero here 

T3(1,i) = 0; 
end 
 

% Create T4 curve, offset 45 degrees, starts outside the water 
T4(1,i) = 0.5*Cd*Rho*((w*Ro-Vb)^2)*W*(Ro*(cos(t(i)-pi/4)-1)+h); 
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if 0.5*Cd*Rho*((w*Ro-Vb)^2)*W*(Ro*(cos(t(i)-pi/4)+h)) < 0; 
T4(1,i) = 0; 

end 
 
if i < 80; %corrects for the curve going back above zero when it 
should be defined as zero here 

T4(1,i) = 0; 
end 
 

% Create T5, offset 90 degrees, starts outside the water 
T5(1,i) = 0.5*Cd*Rho*((w*Ro-Vb)^2)*W*(Ro*(cos(t(i)-pi/2)-1)+h); 

 
if 0.5*Cd*Rho*((w*Ro-Vb)^2)*W*(Ro*(cos(t(i)-pi/2)+h)) < 0; 

T5(1,i) = 0; 
end 
 
if i < 159; %corrects for the curve going back above zero when it 
should be defined as zero here 

T5(1,i) = 0; 
end 
 

% Create P1, the power curve for blade 1 
P1(1,i) = w*0.5*Cd*Rho*((w*Ro-Vb)^2)*(Ro*(cos(t(i))-
1)+h)*W*Ro*((0.25*((cos(t(i))+1)^2)+(sin(t(i))^2))^(.5))*cos(t(i)); 

 
if w*0.5*Cd*Rho*((w*Ro-Vb)^2)*(Ro*(cos(t(i))-
1)+h)*W*Ro*((0.25*((cos(t(i))+1)^2)+(sin(t(i))^2))^(.5))*cos(t(i)
) < 0; 

P1(1,i)=0; 
end 
 

% Create P2 curve, offset 45 degrees, starts in the water 
P2(1,i)= w*0.5*Cd*Rho*((w*Ro-Vb)^2)*(Ro*(cos(t(i)+pi/4)-
1)+h)*W*Ro*((0.25*((cos(t(i)+pi/4)+1)^2)+(sin(t(i)+pi/4)^2))^(.5))*cos(
t(i)+pi/4); 

 
if w*0.5*Cd*Rho*((w*Ro-Vb)^2)*(Ro*(cos(t(i)+pi/4)-
1)+h)*W*Ro*((0.25*((cos(t(i)+pi/4)+1)^2)+(sin(t(i)+pi/4)^2))^(.5)
)*cos(t(i)+pi/4) < 0; 

P2(1,i)=0; 
end 
 
if i > 160; %corrects for the curve going back above zero when it 
should be defined as zero here 

P2(1,i)=0; 
end 

 
% Create P3 curve, offset 90 degrees, starts in the water 
P3(1,i)= w*0.5*Cd*Rho*((w*Ro-Vb)^2)*(Ro*(cos(t(i)+pi/2)-
1)+h)*W*Ro*((0.25*((cos(t(i)+pi/2)+1)^2)+(sin(t(i)+pi/2)^2))^(.5))*cos(
t(i)+pi/2); 

 
if w*0.5*Cd*Rho*((w*Ro-Vb)^2)*(Ro*(cos(t(i)+pi/2)-
1)+h)*W*Ro*((0.25*((cos(t(i)+pi/2)+1)^2)+(sin(t(i)+pi/2)^2))^(.5)
)*cos(t(i)+pi/2) < 0; 

P3(1,i)=0; 
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end 
 
if i > 80; %corrects for the curve going back above zero when it 
should be defined as zero here 

P3(1,i)=0; 
end 

 
% Create P4 curve, offset 45 degrees, starts outside the water 
P4(1,i)= w*0.5*Cd*Rho*((w*Ro-Vb)^2)*(Ro*(cos(t(i)-pi/4)-
1)+h)*W*Ro*((0.25*((cos(t(i)-pi/4)+1)^2)+(sin(t(i)-
pi/4)^2))^(.5))*cos(t(i)-pi/4); 

 
if w*0.5*Cd*Rho*((w*Ro-Vb)^2)*(Ro*(cos(t(i)-pi/4)-
1)+h)*W*Ro*((0.25*((cos(t(i)-pi/4)+1)^2)+(sin(t(i)-
pi/4)^2))^(.5))*cos(t(i)-pi/4) < 0; 

P4(1,i)=0; 
end 
 
if i < 60; %corrects for the curve going back above zero when it 
should be defined as zero here 

P4(1,i)=0; 
end 

 
% Create P5 curve, offset 90 degrees, starts outside the water 
P5(1,i)= w*0.5*Cd*Rho*((w*Ro-Vb)^2)*(Ro*(cos(t(i)-pi/2)-
1)+h)*W*Ro*((0.25*((cos(t(i)-pi/2)+1)^2)+(sin(t(i)-
pi/2)^2))^(.5))*cos(t(i)-pi/2); 

 
if w*0.5*Cd*Rho*((w*Ro-Vb)^2)*(Ro*(cos(t(i)-pi/2)-
1)+h)*W*Ro*((0.25*((cos(t(i)-pi/2)+1)^2)+(sin(t(i)-
pi/2)^2))^(.5))*cos(t(i)-pi/2) < 0; 

P5(1,i)=0; 
end 
 
if i < 140; %corrects for the curve going back above zero when it 
should be defined as zero here 

P5(1,i)=0; 
end 

end 
 

Efficiency = Vb*mean(T1+T2+T3+T4+T5)/(mean(P1+P2+P3+P4+P5)+kp) 
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Appendix B: Caterpillar Drive Supplements 

Force corresponding to momentum change of water: 

 Reynold’s Transport Theorem gives the force corresponding to momentum flux across a 

control volume: 

 

 

 For the case when U is perpendicular to the surface, the integral reduces to 

𝐹𝐹𝑤𝑤 = �̇�𝑚(𝑉𝑉𝑜𝑜𝑜𝑜𝑤𝑤 − 𝑉𝑉𝑚𝑚𝑚𝑚) 

 Where Fw is the force required to maintain the velocity gradient in the steady state. This 

corresponds to the thrust generated by the “black box” mechanism. 

 In the case where the box dimensions are 𝜔𝜔 × 𝜔𝜔 × 𝑊𝑊, the mass flow rate is 

�̇�𝑚 = 𝜌𝜌𝑉𝑉𝑜𝑜𝑜𝑜𝑤𝑤𝜌𝜌𝑜𝑜𝑝𝑝𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜 

 In the caterpillar drive case, Aopening = LH and Vout = R𝜔𝜔. Using these values, 

𝐹𝐹𝑊𝑊 = 𝜌𝜌R𝜔𝜔𝜔𝜔𝜔𝜔(R𝜔𝜔 − 𝑉𝑉𝑏𝑏) 

Power due to changing kinetic energy: 

 The kinetic energy going into the control volume is 

𝐾𝐾𝐸𝐸𝑚𝑚𝑚𝑚 =
1
2
𝑚𝑚𝑉𝑉𝑚𝑚𝑚𝑚2  

 The kinetic energy going out of the control volume is 

𝐾𝐾𝐸𝐸𝑜𝑜𝑜𝑜𝑤𝑤 =
1
2
𝑚𝑚𝑉𝑉𝑜𝑜𝑜𝑜𝑤𝑤2  
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 The power is the first time derivative of kinetic energy, ∆𝐾𝐾𝐸𝐸
∆𝑤𝑤

. This reduces to 

𝑃𝑃𝑤𝑤 =
1
2
�̇�𝑚(𝑉𝑉𝑐𝑐𝑟𝑟𝑊𝑊2 − 𝑉𝑉𝑠𝑠𝑛𝑛2 ) 

 Therefore using the caterpillar drive parameters, 

𝑃𝑃𝑤𝑤 =
1
2

R𝜔𝜔𝜔𝜔𝜔𝜔((R𝜔𝜔)2 − 𝑉𝑉𝑏𝑏2) 

RC-Sized Caterpillar Drive MATLAB Code: 

% Finding optimal angular speed at cruise speed 
 

Cd = 0.003; R = 0.05; H = 0.1; W = 0.15; L = .16; Vb = 6.7; w = 137:500; 
 
T = 1000*R*L*H*w.*(w.*R-Vb)-0.5*1000*Cd*(Vb^2)*(2*H*L+W*L); 
 
P = 0.5*R*L*H*w.*(((R*w).^2) -Vb^2)+0.5*1000*Cd*((w*R).^3) *(2*H*L+W*L) 
+ 29; 
 
Efficiency = Vb*T.*P.^(-1); 
 
plot(Efficiency) 
xlabel(‘Angular Speed’) 
ylabel(‘Efficiency’) 
 

% Generating efficiency vs boat speed curve 
 
Cd = 0.003; R = 0.05; H = 0.1; W = 0.15; L = .16;  w = 254; Vb = 0:.5:12; 
 
T = 1000*R*L*H*w*(w*R-Vb)-0.5*1000*Cd*(Vb.^2)*(2*H*L+W*L); 
 
P = 0.5*R*L*H*w*(((R*w)^2)-Vb.^2)+0.5*1000*Cd*((w*R)^3)*(2*H*L+W*L)+29; 
 
Efficiency = Vb.*T.*P.^(-1); 
 
plot(Efficiency) 
xlabel(‘Boat Speed’) 
ylabel(‘Efficiency’) 

 
 
Canoe-Sized Caterpillar Drive MATLAB Code: 
 
% Finding optimal angular speed at cruise speed 
 

Cd = 0.0026; R = 0.15; H = 0.3; W = 0.45; L = 1.5; Vb = 1.37; w = 9:25; 
 
T = 1000*R*L*H*w.*(w.*R-Vb)-0.5*1000*Cd*(Vb^2)*(2*H*L+W*L); 
 
P = 0.5*R*L*H*w.*(((R*w).^2)-
Vb^2)+0.5*1000*Cd*((w*R).^3)*(2*H*L+W*L)+420; 
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Efficiency = Vb*T.*P.^(-1); 
 

plot(Efficiency) 
xlabel(‘Angular Speed’) 
ylabel(‘Efficiency’) 

 
% Generating efficiency vs boat speed curve 
 

Cd = 0.0026; R = 0.15; H = 0.3; W = 0.45; L = 1.5; w = 10; Vb = 0:.01:1.4; 
 
T = 1000*R*L*H*w*(w*R-Vb)-0.5*1000*Cd*(Vb.^2)*(2*H*L+W*L); 
 
P = 0.5*R*L*H*w*(((R*w)^2)-Vb.^2)+0.5*1000*Cd*((w*R)^3)*(2*H*L+W*L)+420; 
 
Efficiency = Vb.*T.*P.^(-1); 
 
plot(Efficiency) 
xlabel(‘Boat Speed’) 
ylabel(‘Efficiency’) 

 
 
Tugboat-Sized Caterpillar Drive MATLAB Code: 
 
% Finding optimal angular speed at cruise speed 

Cd = 0.0016; R = 1; H = 2; W = 3; L = 10; Vb = 6; w = 6:25; 

T = 1000*R*L*H*w.*(w.*R-Vb)-0.5*1000*Cd*(Vb^2)*(2*H*L+W*L); 

P = 0.5*R*L*H*w.*(((R*w).^2)-
Vb^2)+0.5*1000*Cd*((w*R).^3)*(2*H*L+W*L)+2100000; 

Efficiency = Vb*T.*P.^(-1); 

plot(Efficiency) 
xlabel(‘Angular Speed’) 
ylabel(‘Efficiency’) 

 

% Generating efficiency vs boat speed curve 
 

Cd = 0.0016; R = 1; H = 2; W = 3; L = 10; w = 7; Vb = 0:.01:7; 
 
T = 1000*R*L*H*w*(w*R-Vb)-0.5*1000*Cd*(Vb.^2)*(2*H*L+W*L); 
 
P = 0.5*R*L*H*w*(((R*w)^2)-Vb.^2)+0.5*1000*Cd*((w*R)^3)*(2*H*L+W*L)+ 
2100000; 
 
Efficiency = Vb.*T.*P.^(-1); 

 
plot(Efficiency) 
xlabel(‘Boat Speed’) 
ylabel(‘Efficiency’) 
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Appendix C: Jellyfish Actuator Supplements 

Expanding Phase Equation Derivation: 

 Start with the expression given in section 5.2: 

𝑚𝑚𝐽𝐽𝑉𝑉�̇�𝑏 =  𝐹𝐹𝐸𝐸 − 𝐹𝐹𝐽𝐽 

 Substitute in the expressions for FE and FJ: 

𝐹𝐹𝐸𝐸 =
1
2
𝜌𝜌(𝑉𝑉𝐸𝐸 − 𝑉𝑉𝑏𝑏)2𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔 

𝐹𝐹𝐽𝐽 =
1
2
𝜌𝜌𝑉𝑉𝑏𝑏2𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽 

 This becomes 

𝑚𝑚𝐽𝐽𝑉𝑉�̇�𝑏 =
1
2
𝜌𝜌(𝑉𝑉𝐸𝐸 − 𝑉𝑉𝑏𝑏)2𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔 −

1
2
𝜌𝜌𝑉𝑉𝑏𝑏2𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽 

 This can be simplified: 

𝑚𝑚𝐽𝐽𝑉𝑉�̇�𝑏 =
1
2
𝜌𝜌𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔(𝑉𝑉𝐸𝐸2 + 𝑉𝑉𝑏𝑏2 − 2𝑉𝑉𝐸𝐸𝑉𝑉𝑏𝑏) −

1
2
𝜌𝜌𝑉𝑉𝑏𝑏2𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽 

 Combining like terms and dividing both sides by mJ, the expression given in section 5.2 is 

obtained: 

𝑉𝑉�̇�𝑏 = 𝑉𝑉𝑏𝑏2 �
1

2𝑚𝑚𝐽𝐽
𝜌𝜌�𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔 − 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽�� − 𝑉𝑉𝑏𝑏 �

𝜌𝜌𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔𝑉𝑉𝐸𝐸
𝑚𝑚𝐽𝐽

� +
𝜌𝜌𝑉𝑉𝐸𝐸2𝐶𝐶𝐸𝐸𝑊𝑊𝜔𝜔

2𝑚𝑚𝐽𝐽
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Contracting Phase Equation Derivation: 

Start with the expression given in section 5.2: 

𝑚𝑚𝐽𝐽𝑉𝑉�̇�𝑏 =  −𝐹𝐹𝑅𝑅 − 𝐹𝐹𝐽𝐽 

 

Substitute in the expressions for FC and FJ: 

𝐹𝐹𝑅𝑅 =
1
2
𝜌𝜌(𝑉𝑉𝑅𝑅 + 𝑉𝑉𝑏𝑏)2𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔 

𝐹𝐹𝐽𝐽 =
1
2
𝜌𝜌𝑉𝑉𝑏𝑏2𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽 

This becomes 

𝑚𝑚𝐽𝐽𝑉𝑉�̇�𝑏 = −
1
2
𝜌𝜌(𝑉𝑉𝑅𝑅 + 𝑉𝑉𝑏𝑏)2𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔 −

1
2
𝜌𝜌𝑉𝑉𝑏𝑏2𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽 

 After expanding the (𝑉𝑉𝑅𝑅 + 𝑉𝑉𝑏𝑏)2 term, combining like terms, and dividing both sides by mJ, 

the equation given in section 5.2 is obtained: 

𝑉𝑉�̇�𝑏 = 𝑉𝑉𝑏𝑏2 �
1

2𝑚𝑚𝐽𝐽
𝜌𝜌�𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔 + 𝐶𝐶𝐽𝐽𝜌𝜌𝐽𝐽�� + 𝑉𝑉𝑏𝑏 �

𝜌𝜌𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔𝑉𝑉𝑅𝑅
𝑚𝑚𝐽𝐽

� +
𝜌𝜌𝑉𝑉𝑅𝑅2𝐶𝐶𝑅𝑅𝑊𝑊𝜔𝜔

2𝑚𝑚𝐽𝐽
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SIMULINK Block Diagram: 

Note: the values of A-F are used for the slow jellyfish actuator 
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