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Abstract

In this project we investigate di�erent hardware authentication schemes based on Phys-
ically Unclonable Functions. We start by analyzing the concepts of a fuzzy extractor
and a secure sketch from an information-theoretic perspective. We then present a hard-
ware implementation of a fuzzy extractor which uses the code o�set construction with
BCH codes. Finally, we propose a new cryptographic protocol for PUF authentication
based upon polynomial interpolation using Sudan's list-decoding algorithm. We provide
preliminary results into the feasibility of this protocol, by looking at the practicality of
�nding a polynomial that can be assigned as a cryptographic key to each device.
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Chapter 1

Introduction

In today's world, the concern about piracy and counterfeit products is constantly increas-
ing. The same advances that supply us with new technologies provide counterfeiters with
a way of reverse-engineering and reproducing them. As we move into an era where we rely
on small devices, such as cell-phones, credit cards and RFIDs, to store sensitive personal
information and to grant us access to bank accounts, medical records and private areas,
the importance of �ghting counterfeiting becomes even more evident.

Research for ways of assigning digital �ngerprints to devices, which allow for easy
authentication and the detection of cloned devices has been receiving much attention.
One of the most interesting methods of hardware �ngerprinting, proposed in [14], is
the idea of Physically Unclonable Functions (PUFs). These functions make use of very
sensitive physical properties of a device in order to assign it a unique identi�er, making
the task of producing an identical device much harder.

A great deal of e�ort has been put into developing ways of using these PUFs to
provide reliable authentication of devices. Most of the schemes proposed so far rely on
collecting challenge-response pairs that are unique to each PUF device. However, the
same properties that make PUFs attractive for cryptographic applications make them
hard to deal with. Due to the high sensitivity to physical parameters, the responses of a
PUF are naturally noisy. In this project, we examine some of the ways of handling this
noise and propose a new method which presents a possible improvement in the security
of the authentication protocol.

In chapter 2, we introduce the idea of a physically unclonable function which maps
challenges to responses that depend highly of the physical properties of each device.
Small variations between devices allow for a unique identi�er to be assigned to each
device, which can serve as a cryptographic key. In chapter 3, we introduce the concept
of an error-correcting code which allows for messages sent over a noisy channel to be
correctly received. We describe BCH codes and their special case, Reed Solomon Codes.
In chapter 4, we analyze the known methods of fuzzy extractors and secure sketches as a
way to recover from the noise associated with the responses of a PUF device. In chapter
5, we provide an implementation of a fuzzy extractor in hardware that aims at area
e�ciency. In chapter 6, we introduce a new methodology to assign a key to each PUF
device based upon polynomial interpolation and present Sudan's list decoding algorithm
as a way to extract the key from the noisy outputs of the device. Finally, in chapter 7,
we present a protocol which is based upon this method, and analyze its feasibility.
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Chapter 2

Physically Unclonable Functions

The term Physically Unclonable Function, or PUF, is used by scientists and engineers to
refer to a practical device or process with a measurable output that strongly depends upon
physical parameters. These �functions� are usually embodied in a hardware structure,
such as a chip or a circuit board, and they obtain their �unclonability� from the fact that
their outcomes depend on very sensitive physical properties, such as the length of wires
or silicon doping levels, which cannot be precisely controlled in a manufacturing process.

In this report, we will be mostly concerned with a particular kind of PUFs, the
challenge-response PUFs. These PUFs return a physically-dependent response r when
given a challenge c. An important property of challenge-response PUFs is that when two
devices from the same manufacturing process are given the same input, and are under
the same external in�uences � temperature, pressure, magnetic �elds, etc. � their
outputs may di�er. These di�erences are not intended, but are inherent in the nature of
mass-produced devices. Therefore, if a PUF exploits a physical parameter with enough
variability in such a way that the mapping between challenges and responses is unique
to each device, it can be used to authenticate or uniquely identify that device.

Due to the high level of sensitivity of the physical parameters involved, it is considered
infeasible for a person, when given the distribution on the responses of a speci�c PUF
device, to fabricate another device which will produce identical responses. However, it is
not considered infeasible for someone to model the responses of a speci�c PUF and use
a di�erent device that simply maps inputs to outputs in the same way, possibly using
software.

An assumption that can be made about PUFs is that their internal workings behave
as a �black box� and only their public output can be measured. For example, if a device
were to receive ten challenges it would produce ten responses. If the device were to
respond (output) with a hash of these ten responses, then it is assumed that the actual
response to each of the ten inputs is part of the internal workings of the black box. An
adversary would only have access to the hash of these responses. This assumption is
justi�ed by the fact that if an adversary opens the device to view the responses of the
circuit, the physical parameters of the circuit will be altered and it will consequently
produce di�erent responses. Putting the device back together does not guarantee the
device will produce the same outputs as before.

From the cryptographic perspective, PUF devices are attractive since the di�erent
outputs among these otherwise identical devices can be used to identify and authenticate
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a particular device. Moreover, this can be accomplished without explicitly storing any
authenticating information on the device, such as a cryptographic key. Other authen-
tication schemes such as public-key cryptography require the device's private key to be
explicitly stored somewhere in the memory on the device. An authentication scheme
utilizing PUFs can use the unique physical properties of each device to generate a key
every time the device is prompted with challenges. If an adversary attempted to learn
this key through an active attack, the physical properties of the device would change and
this key would become unusable.

Example 2.1.
We now follow [6] to present the delay-based PUF. A delay-based PUF receives a challenge
c ∈ {0, 1}k and responds with r ∈ {0, 1}. Upon receiving a challenge, a pulse generator
generates a signal which then splits and travels down two wires, which we will refer to
as the top wire and the bottom wire. Each wire passes through k switches serially. The
output of one switch is the input to the next switch. Both wires are then connected to
an arbiter which outputs a 1 if the signal on the top wire arrives �rst, a 0 if the signal
on the bottom wire arrives �rst, or if the di�erence in arrival times is below the arbiter's
sensitivity level, it outputs 0 or 1 uniformly at random. When the kth challenge bit is
a 0, the kth switch allows the two signals to pass through in a straight path and remain
on the same wire. Otherwise, if the kth challenge bit is a 1, the kth switch switches the
signal, and the signal which was on the top wire is now on the bottom wire and the signal
that was on the bottom wire is now on the top wire.

These wires are designed to have equal length. However, the process variations lead to
length variations and to di�erent time delays for each signal. These delays are dependent
upon the challenge received, and upon the speci�c circuit. Two identically produced
circuits will have di�erent length wires and will respond di�erently to certain challenges.
It is these di�erences which can be used to authenticate the device.

2.1 Mathematical Model

We will use two slightly di�erent mathematical models for the PUF function. We will �rst
describe a PUF which will respond from a set of responses which are in some neighborhood
of each other when given the same challenge. Then we consider the case where, for each
challenge, the PUF produces an identical output with high probability.

2.1.1 Same neighborhood with high probability

In order to apply the concept of secure sketches to PUFs (see Section 4.3) we need to
de�ne the concept of proximity, or distance between the possible outputs of the PUF.
A secure sketch can take advantage of a PUF which, when given the same challenge c,
outputs responses which are a small distance away from each other (see [3] and [4]).

We formalize this as follows. Let F be a �nite �eld with q elements and let Y be a
probability space. We assume our co-domain F is a metric space with distance function
dis . We let Rc be a set of responses to challenge a c ∈ F such that dis(ri, rj) ≤ t for all
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ri, rj in Rc. We now de�ne our PUF function as a map

PUF : F× Y → F

such that
PUF (c, y)y←Y ∈ Rc with probability at least 1− ε (2.1)

Property (2.1) formalizes the de�nition of closeness of the outputs to the same input, or
the expected neighborhood.

2.1.2 Same output with high probability

In order to introduce the idea of PUF authentication through polynomial interpolation
(see Section 6.1), we modify the previous de�nition slightly. We let F be a �nite �eld
with q elements and Y be a probability space. Then we assume that there exists a highly
nonlinear function

f : F→ F

We now model our PUF function as

PUF : F× Y → F

where
PUF (c, y)y←Y = f(c) with probability at least 1− ε (2.2)

Property (2.2) states that with y ranging over all of Y , f(c) is the output with prob-
ability at least 1− ε.

We will refer to f(c) as the expected output of the PUF to challenge c. Abusing
notation, we will refer to PUF (c, y)y←Y as PUF (c). We therefore have that for each
c ∈ F, the output of the PUF function to challenge c is PUF (c) with probability at least
1− ε.
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Chapter 3

Error-Correcting Codes

Coding theory primarily addresses the problem of sending information over a channel
which may distort the information. In a communication system, we assume the existence
of two parties, a transmitter and a receiver. In order to assure that the information is
correctly received, the transmitter and the receiver agree beforehand on a set of rules,
called a Code, which, if followed, will make the transmitted message more resilient to
noise. More speci�cally, the two parties agree on a subset of all transmittable messages,
the codewords, which can be sent over the channel.

The theory of error-correcting codes deals with the detection and correction of errors
in the received information and with the design of codes that will increase the chances of
successful information recovery from a noisy channel.

3.1 Terminology

Working over the binary alphabet, we call a 0 or 1 a digit, and we call a sequence of
digits a word. We will only consider consider block codes, in which all words have the
same length. We letM be a metric space with dimension n = log2 |M|, which consists
of all binary words of length n. A code C is simply a collection of words, i.e. a subset of
M. A word that belongs to the code is called a codeword. We denote the dimension of
C by k = log2 |C|, when C is a subspace ofM.

More generally, if the alphabet F has size q, we refer to the dimension of the code as
k = logq |C| and the dimension of the space as n = logq |M|. We de�ne the information

rate of the code to be k
n
.

The space M has a distance function dis : M×M → [0,+∞). We will mostly be
interested in the Hamming distance.

De�nition 3.1. Hamming distance: If w,w′ ∈ M = Fn, then dis (w,w′) is the number
of positions in which w and w′ di�er. Similarly, the Hamming weight of w is the number
of nonzero positions in w, or simply dis (w, 0).

De�nition 3.2. Minimum distance: The minimum distance d of a code is given by:

d = min {dis (w,w′) : w,w′ ∈ C,w 6= w′}
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In general, a k-dimensional code which is de�ned over an n-dimensional metric space
(and therefore has block size n), and with a minimum distance d is referred to as a
(n,M, d)q code, where q is the size of the alphabet F and M = |C|.

Recovering the transmitted codeword

It is assumed that the errors on a transmission channel are somewhat unlikely (with
probability less than 1

2
). Therefore the problem of recovering the transmitted codeword

can be reduced to �nding the codeword closest to the received word. In other words, an
error-correcting scheme is usually concerned with �nding the (preferably unique) code-
word within a speci�ed distance from the received word. The maximum distance (or
number of errors) from the received word within which we are assured to have a unique
codeword is the error-correction bound t of the code.

The maximum likelihood decoding problem, also known as the nearest codeword prob-
lem, is the problem of �nding the nearest codeword to the received word. This is often
used when a large number of errors is considered less likely. This is a generalization of the
t-error correction scheme since a received element s, which is at distance most t from a
codeword, will be decoded into the codeword. However, if s is at a distance greater than
t from a codeword, this scheme will return the nearest codeword, or one of the nearest
codewords.

The p-reconstruction problem also known as the list-decoding problem also generalizes
the t-error correction. In this problem we are given an element s, and we �nd all codewords
which are within a distance p of s. In other words, we �nd all codewords that are in
a moderate-sized n dimensional Hamming sphere around the received element s. The
decoding is considered successful if the transmitted element is a member of the list.

3.2 Linear Codes

In this report, we will mostly deal with linear codes and not all statements hold for non-
linear codes. A linear code is a code which is closed under the addition of codewords,

u, v ∈ C ⇒ (u+ v) ∈ C ,

and scalar multiplication, if q > 2. A linear code must contain the zero word. This is
shown by adding a codeword c to itself |F| − 1 times. When the codewords are from the
binary �eld, a codeword added to itself is the zero codeword. The distance of a linear code
C is the minimum weight of any non-zero codeword in C. This is a standard result which
is shown by letting the minimum weight of a non-zero codeword be ω. Then, assume that
there are two codewords, u, v ∈ C : φ = dis (u, v) < ω. Since C is a linear code, u− v is a
codeword which has weight less than ω. Therefore we must have u− v = 0 which implies
u = v.

To refer to linear codes, it is common to use the form [n, k, d]q, where k is the dimension
of C.

8



Hamming bound [7]

If C is a code of length n and minimum distance d = 2t+ 1 or d = 2t+ 2 then

|C|
((

n

0

)
+

(
n

1

)
+ ...+

(
n

t

))
≤ 2n

A perfect code is a code in which the Hamming bound is met. In other words, for each
element w in our metric space M, there exists a unique codeword c ∈ C such that
dis (w, c) ≤ t, meaning there exists a unique codeword within the error-correcting bound
of the code.

We now introduce the two types of error-correcting codes used throughout this report:
the BCH codes, and their non-binary special case, the famous Reed-Solomon codes.

3.3 BCH Codes

BCH codes are a large class of powerful error-correcting codes, invented in 1959 by Hoc-
quenghem, and independently in 1960 by Bose and Ray-Chaudhuri. The great advantage
of BCH codes is that given a block size n = qm−1, for any integer m, one can successfully
build an [n, k, 2t+ 1]q code for any error-correction bound t ≤ qm−1 − 1, with dimension
k ≥ n−mt (see [15]). In general, even though BCH codes can be de�ned for non-binary
alphabets (q > 2), it is in the binary case that they �nd their largest applicability. Among
the non-binary examples, we have the ubiquitous Reed Solomon codes, analyzed more in
depth in Section 3.4.

Formally, BCH codes are cyclic polynomial codes, constructed as follows. For a given
n = qm − 1 block size, we can build a linear code with minimum distance d = 2t+ 1, by
taking a primitive element α of GF (qm) and de�ning the code generator polynomial as:

g(x) = LCM (φ1(x), φ2(x), φ3(x), ..., φ2t(x)) (3.1)

where φi(x) is the minimal polynomial of αi over GF (q). To show that this generates a
code with minimum distance d = 2t + 1 we refer to Appendix A.3, where we prove this
for the special case of Reed-Solomon codes. The proof for general BCH codes is similar
[13].

3.3.1 Encoding

The encoding process for a BCH code takes a k-tuple with symbols from GF (q) and
adds d− 1 = 2t parity check digits. Let us suppose that we have our k-symbol message,
represented by the following polynomial:

a(x) = a0 + a1x+ ...+ ak−1x
k−1

Then we multiply a(x) by xd−1 and use the division algorithm to write:

xd−1a(x) = g(x)c(x) + b(x)⇒ xd−1a(x)− b(x) = g(x)c(x)

Since xd−1a(x)− b(x) is shown to be a multiple of the generator polynomial it must be a
codeword.

9



3.3.2 Decoding

Our received codeword r(x), an nth-degree polynomial, can be expressed as r(x) = v(x)+
e(x), where v(x) was the transmitted codeword and e(x) is the error vector, caused by
the noise in the channel.
Since v(x) is a codeword, we know that v(αi) = 0 for i = 1, 2, ..., d− 1, and therefore we
have

r(αi) = e(αi) i = 1, 2, ..., d− 1

This allows us to compute the d-1 syndromes of the received message to be:

S1 = r(α) = ej1α
j1 + ej2α

j2 + ...+ ejτα
jτ

S2 = r(α2) = ej1α
2j1 + ej2α

2j2 + ...+ e2jτα
2jτ

...

Sd−1 = r(αd−1) = ej1α
(d−1)j1 + ej2α

(d−1)j2 + ...+ ejτα
(d−1)jτ

where τ is the number of errors that actually occurred.
We then de�ne the error-locator polynomial to be:

σ(x) = (1− αj1x)(1− αj2x)...(1− αjτx) =

= 1 + σ1x+ ...+ στx
τ (3.2)

Clearly, if we have the error-locator polynomial, the error locations can easily be found
by �nding the roots of σ(x). Then, if α−i is a root of σ(x), then there was an error at
the ith position. The coe�cients in (3.2) can be found from the d−1 syndromes by using
the Berlekamp-Massey algorithm (see Section 5.2.4).

Once we have the error-locator polynomial all we have to do is �nd its roots and
calculate their inverses in order to �nd the locations in our received vector r(x) where
errors have occurred. At this point, if we are in the binary case, correcting the errors is
trivial. We simply �ip the bits at the location of the errors.

In the non-binary case, we still need to determine what the actual errors were. In
order to do that we �rst de�ne the error-evaluator polynomial to be

Z(x) = σ(x)S(x) (mod x2t+1) (3.3)

where S(x) is the 2tth-degree polynomial formed by looking at each of the syndromes Si
as the coe�cient of xi. Then we can show that the error eji at the j

th
i location is given

by

eji =
Z(α−ji)

τ∏
a=1,a6=i

(1 + αaα−ji)

. (3.4)

Finally, one can simply subtract each of the errors eji from the jth
i coe�cient of r(x) in

order to obtain v(x).
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3.4 Reed-Solomon Codes

Invented in 1959 by Irving Reed and Gustave Solomon, the Reed-Solomon codes are
probably the most ubiquitous type of error-control codes. The fact that they achieve
the Singleton Bound (see Section 7.3.3, Equation (7.5)) allied to their robustness against
burst errors made them the code of choice in several applications, ranging from compact
discs to the transmission system of the Voyager spacecraft. However, the discovery that
Reed-Solomon codes can be thought of as a special non-binary case of BCH codes is due
to Gorenstein and Zierler, in 1961. Because of that, the same encoding and decoding
steps described in the previous section hold for Reed-Solomon codes.

3.4.1 Code description

Reed-Solomon codes are BCH codes in which m = 1. Therefore, our block size is simply
n = q − 1, where q is a prime power. Also, in order to form our generator polynomial
g(x), we look for the minimal polynomial over GF (q) of αi, for i = 1, 2, ..., 2t, where α is
a primitive element of GF (q) as well. Each minimal polynomial φi(x) from (3.1), is then
given by φi(x) = (x − αi). Therefore we can de�ne Reed-Solomon codes as non-binary
cyclic polynomial codes, constructed as follows. For a given n = q − 1 block size, we can
build a q-ary code with minimum distance d, by �nding a primitive element α of GF (q)
and de�ning the generator polynomial to be:

g(x) = (x− α)(x− α2)...(x− αd−1) (3.5)

This generates a t-error correcting code (see Appendix A.3), where t = bd−1
2
c. Since

our generator polynomial has degree d − 1 we have that the dimension of our code is
k = n− d+ 1 (Singleton Bound).

3.4.2 Alternative look at Reed-Solomon codes

In order to understand the algorithm proposed by Sudan [17] to decode Reed-Solomon
codes beyond the error-correction bound t (see Section 6.5), we need to look at Reed-
Solomon codes from a di�erent perspective. Instead of looking at a codeword v =
(v0, v1, ..., vn−1) as the coe�cients of the polynomial v(x) = v0 + v1x + ... + vn−1x

n−1,
where n = q − 1, we look at v as the values of a certain polynomial p(x) evaluated at
some speci�c points.

In order to see this we must �rst de�ne the Discrete Fourier Transform:

De�nition 3.3. [2] Let v = (v0, v1, ..., vn−1) be a vector over GF (q) with corresponding
polynomial representation v(x) = v0+v1x+...+vn−1x

n−1, and let α be a primitive element
of GF (q). The Fourier Transform of the vector v is the vector V = (V0, V1, ..., Vn−1),
where:

Vj = v(αj)

Additionally, we consider the polynomial representation of the vector V to be V (x) =
V0 + V1x+ ...+ Vn−1x

n−1.
Now, let us assume that one wants to transmit a message consisting of a polynomial
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v(x) over GF (q). All the information is encoded by the coe�cients v0, v1, ..., vk−1, so we
assume k to be the size of the message. Then, the encoding process is as follows. For
a primitive element α of GF (q) we evaluate v(αi) for i = 1, 2, ..., n − 1. Then we build
the vector containing the results V = (v(α0), v(α), v(α2), ..., v(αn−1)). In other words,
we applied the Discrete Fourier Transform to v and obtained V, or its corresponding
polynomial V(x).
Now, we look at what happens when we compute V(αi):

V(αi) = v(1) + v(α)αi + v(α2)α2i + ...+ v(αn−1)α(n−1)i

= v0 + v1 + v2 + ...+ vk−1

+ αi(v0 + v1α + v2α
2 + ...+ vk−1α

k−1)

+ α2i(v0 + v1α
2 + v2α

4 + ...+ vk−1α
2(k−1))

...

+ α(n−1)i(v0 + v1α
(n−1) + v2α

2(n−1) + ...+ vk−1α
(k−1)(n−1))

=
k−1∑
j=0

vj

n−1∑
m=0

αm(i+j) (3.6)

Any element x of GF (q) is a root of

1− xn = (1− x)(1 + x+ x2 + ...+ xn−1)

Therefore, if αi 6= 1, then
∑n−1

m=0 α
mi = 0. Otherwise, if αi = 1,

∑n−1
m=0 α

mi = n. Looking
at the second sum in (3.6), we see that αi+j = 1 if and only if i + j ≡ 0 (mod n) which
implies j = n− i. Since j varies from 0 to k − 1 we conclude that:

V(αi) =

{
0 if i < n− k + 1 = d
nvn−i if i ≥ n− k + 1 = d

Thus, we see that V(x) is a codeword according to our de�nition of Reed-Solomon
codes. Each of its components can either be seen as coe�cients of the polynomial V(x),
which is a multiple of the generator polynomial de�ned in (3.4.1) or as the value of the
polynomial v(x) when evaluated at the points α0, α1, ..., αn−1. Since we only need k
points to recover the coe�cients of v(x), the other n − k = d − 1 points can be seen as
redundancies.

An example of the application of the Discrete Fourier Transform is shown in Section
6.4.
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Chapter 4

Fuzzy Extractors and PUFs

Physically Unclonable Functions provide a tamper-resilient method to assign a crypto-
graphic key to a hardware device. However, the same dependency upon physical param-
eters that give PUFs their protection against active attacks causes their responses to be
naturally noisy. The basic premise of PUFs is, nonetheless, that the �distance� between
two responses from the same PUF is much smaller than the distance between responses
from di�erent PUFs, so that even in the presence of noise it is possible to distinguish
responses originating from di�erent PUF devices.

However, cryptography in general relies on the existence of precisely reproducible
keys. This means that in order for us to take full advantage of the physical unclonability
of PUFs we must �nd tools that allow us to cope with this noise. Moreover, it is expected
that the distribution of PUF responses across multiple PUF devices will not be uniform,
and this poses a second problem to the use of PUFs in cryptographic applications. In
order to address these two issues, namely the small variations in the responses of the same
PUF and the nonuniform distribution of responses among di�erent PUFs, the concept of
a fuzzy extractor, initially introduced in [4], is brought into play.

4.1 Basic Ideas

A fuzzy extractor is a primitive that allows the extraction of uniformly random strings
from a nonuniform source in a noise-tolerant way. Since there are basically two separate
issues being addressed here, it is natural to think that fuzzy extractors will consist of
two independent steps. This turns out to be the case: �rst we have the information
reconciliation phase, in which a noisy version of the output of a PUF is converted into a
noise-free one. A privacy ampli�cation phase follows, extracting randomness out of the
noiseless version of the PUF output.

Regarding the information reconciliation phase, one might ask what we mean by
a noiseless version of the PUF response, since all possible outputs seem noisy when
compared to others. The idea here is that prior to the deployment of the device, extensive
testing can be performed in order to determine the expected outcome or, even in the
absence of a prevalent response, we can arbitrarily pick one of the responses as in the
neighborhood of the most likely responses as �the noise-free version�. This follows our
�rst mathematical model for a PUF, given in Section 2.1.1.

A second question that one might ask, especially when an expected outcome cannot be
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easily determined from multiple responses, is how a fuzzy extractor can remove the noise
from a particular PUF response if it has nothing to compare it against. In other words,
how can outside information about the noiseless response of the PUF be introduced into
the system? This is done by means of a Helper String.

When a PUF device equipped with a fuzzy extractor system receives a helper string
from whoever is trying to verify the identity of the device, it obtains just enough informa-
tion to eliminate its response variations and output a consistent response. However, the
helper data is assumed to be public, and therefore must not reveal any useful information
about the PUF response to someone other than the PUF device itself. In some sense, the
helper data can be thought of as a hint that only makes sense to the person to which it
is given.

Once a �clean� response is obtained, traditional techniques for randomness extraction,
such as hash functions, can be employed. This allows us to obtain PUF responses that
are almost uniformly distributed across di�erent PUF devices.

In the next sections, we give precise mathematical de�nitions and examples of the
primitives mentioned here.

4.2 Preliminary De�nitions

Before we describe the concepts of secure sketches and fuzzy extractors, we must �rst
introduce a few basic de�nitions, by following [4]. In general,M will denote the metric
space being considered, with a distance function dis :M×M→ R+. We will mostly be
dealing with Hamming distances on the setsM = Fn.

In order to study the security of secure sketches and fuzzy extractors, we must �rst
be able to quantify how secure a given random variable is. For this purpose, we use the
min-entropy:

De�nition 4.1. Min-Entropy: The min-entropy of a random variable A measures its
unpredictability, or how hard it is for someone to guess its output. It is given by:

H∞(A)
def
= − log

(
max
a
P (A = a)

)
(4.1)

For our purposes however, we will be more interested in the cases where we want to
consider how hard it is for an adversary to guess the value of a random variable A, if
he/she �nds out the value of another random variable B.

De�nition 4.2. Average Min-Entropy: The average min-entropy measures the unpre-
dictability of a random variable A, given the value of another random variable B. It is
de�ned as:

H̃∞(A |B)
def
= − log

(
Eb←B

[
max
a
P (A = a |B = b)

])
(4.2)

Because we are looking for secure sketches and fuzzy extractor's outputs that look
uniformly random to an observer, we need a way to measure how close to uniform a
random variable is. This is accomplished with the concept of statistical distance:
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De�nition 4.3. Statistical Distance: The statistical distance measures how statistically
apart are two discrete random variables. It is given by:

SD(A,B) =
1

2

∑
x

|P (A = v)− P (B = v)| (4.3)

In all these expressions, and throughout this report, P (A = a) will refer to the
probability that A = a and log x will refer to the logarithm base 2 of x.

4.3 Secure Sketches

LetM be a metric space with distance function dis .

De�nition 4.4. [4] An (M,m, m̃, t)-secure sketch is a pair of randomized procedures,
�sketch� (SS ) and �recover� (Rec ), with the following properties:

1. The sketching procedure SS on input w ∈M returns a bit string s ∈ {0, 1}∗.

2. The recovery procedure Rec takes an element w′ ∈M and a bit string s ∈ {0, 1}∗.
The correctness property of secure sketches guarantees that if dis (w,w′) ≤ t, then
Rec (w′, SS (w)) = w. If dis (w,w′) > t, no guarantee is provided about the output
of Rec .

3. The security property guarantees that for any distribution W over M with min-
entropy m, the value of W can be recovered by the adversary who observes s with
probability no greater than 2−m̃. That is, H̃∞(W | SS (W )) ≥ m̃.

Example 4.1.
Let's assume M = Z7, shown in Figure 4.1 as the vertices of a heptagon, and de�ne
the distance between two vertices as the least number of edges to go from one vertex to
another one. Our element w is picked fromM according to a distribution W . For each
choice of w, SS (w) may have two equiprobable outcomes, which are shown inside the
rectangles next to each vertex in Figure 4.1.

We notice that if two inputs w1 and w2 may produce the same secure sketch, then the
distance between them is 3. Therefore, if dis (w,w′) ≤ 1, the original w can be recovered
given w′ and SS (w).

To analyze the entropy loss, we �rst look at the best possible case, when the inputs
are uniformly distributed and therefore H∞(W ) = − log

(
1
7

)
= log(7). In this case, for

any given secure sketch, an adversary that knows the sketching procedure can guess w
with a 1

2
probability, resulting in an entropy loss of λ = log(7) − 1. So, we have a

(Z7, log(7), 1, 1)-secure sketch.
For lower values of m, m̃ is smaller. When m = log

(
7
3

)
, we can have a probability

distribution W on the input, such that only 3 inputs have probability greater than 0, in
which case we can consider the worst case where 0, 1 and 2 have probabilities 2

7
, 2

7
and

3
7
respectively. In this scenario, if an adversary sees the secure sketch SS (w), he/she can

guess w with probability 1, and we have m̃ = 0.
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Figure 4.1: Possible outcomes of SS(w)

Claim 4.1. m̃ ≤ m
This is true because the distribution W on M is known to the observer. The secure
sketch can only provide more information to this observer, allowing him/her to make a
better guess as to which input w generated the given secure sketch. Mathematically, we
have:

m̃ ≤ H̃∞(W | SS (W )) = − log
(
Es←SS (W )

[
max
w

P (W = w | SS (W ) = s)
])

= − log

(
Es←SS (W )

[
max
w

P (W = w ∩ SS (W ) = s)

P (SS (W ) = s)

])
= − log

(
Es←SS (W )

[
maxw P (W = w ∩ SS (W ) = s)

P (SS (W ) = s)

])
= − log

(∑
s

[
max
w

P (W = w ∩ SS (W ) = s)
])

≤ − log

(
max
w

∑
s

P (W = w ∩ SS (W ) = s)

)
= − log

(
max
w

P (W = w)
)

= H∞(W ) = m

since (see Appendix A) ∑
x

max
y
f(x, y) ≥ max

y

∑
x

f(x, y) (4.4)

If the secure sketch provides no information about w to the outside observer (ideal),
he/she can still guess w correctly with probability 2−m (by choosing the input with the
highest probability), resulting in m̃ = m.
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4.4 The Code-O�set construction

For practical applications, a good secure sketch construction must have e�cient Rec and
SS procedures and must minimize the entropy loss λ = m− m̃. Example 4.1 illustrates
a case in which the entropy loss is very signi�cant. That same example also suggests the
existence of an underlying code, since we are essentially correcting errors whenever they
are not too numerous. In the same sense, trying to �nd a good secure sketch is a similar
problem to looking for a good code, since we try to maximize the distance between
inputs with the same secure sketch while trying to have as many secure sketches as
possible. This connection between secure sketches and codes becomes even clearer when
we consider a Code-O�set construction, which provides an e�cient and very practical
method for designing secure sketches. It is de�ned as follows (see [4]).

We assume the existence of an [n, k, d] code C with codewords de�ned on the same
space M = Fn from which the inputs are taken. We also de�ne the distance to be the
Hamming distance. For a given input w, the sketching procedure produces SS (w) =
w+C(x), where x is a random element from Fk, so that c = C(x) is a random codeword.
For the recovery procedure Rec , we assume an input w′ such that dis (w,w′) ≤ bd−1

2
c, and

we start by subtracting it from its secure sketch to obtain c′ = w+ c−w′ = c+ (w−w′).
Since the Hamming weight of w − w′ is less than bd−1

2
c, we know that dis (c, c′) ≤ bd−1

2
c

and we can apply a decoding algorithm to obtain the codeword c. Once we have c, we
can simply subtract it from the secure sketch to obtain (w + c) − c = w. So we output
Rec (w′, SS (w)) = w.

This construction also presents the advantage that the secure sketch is just another
element of Fn and therefore does not represent a problem in terms of storage, as opposed
to a secure sketch construction using fuzzy vaults (see [9]) for example. In the remainder
of this section, we will mostly deal with secure sketches based on linear codes de�ned
over binary �elds, in which addition and subtraction are equivalent, slightly simplifying
the operations described above.

Example 4.2.
In this example, we haveM = {0, 1}5. To build the secure sketch, we use the Code-O�set
construction with the code being:

C = rowsp2

[
1 1 1 0 0
0 0 1 1 1

]
The minimum distance is 3 (and t = 1), and this is a [5, 2, 3]2-code. Now let's look at

possible values for the min-entropym of the distributionW overM and their correspond-
ing m̃. One important observation is that we can look atM as an additive group, which
makes C a normal subgroup. C partitions M into 8 cosets. The sketching procedure
chooses a random codeword and adds it to the input. Since there are 4 codewords, each
input may produce 4 di�erent secure sketches, which correspond to one of the cosets.
Also, since w ∈ w+C, we see that SS (w) and w must be in the same coset. This means
that an observer who sees the secure sketch SS (w) has 4 possible choices when guessing
the input w. This bounds the average min-entropy: H̃∞(W | SS (W )) ≤ 2, and this value
can only be attained if we assume a uniform distribution on the inputs.
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Figure 4.2: Code de�ned over {0, 1}5

Therefore, for inputs with min-entropies m = 0, 1, 2, 3, it is possible to have only 8 (or
less) inputs with probability greater than 0. This means that in a worst-case scenario,
one could choose each of the possible inputs to be in di�erent cosets, which allows an
observer to correctly discover the input w, given the secure sketch, with probability 1.

For m = 4, the problem of �nding the worst possible input distribution becomes a
little more di�cult. For that, we state the following known Lemma:

Lemma 4.1. Every distribution W overM with H∞(W ) ≥ m is a convex combination
of distributions that are uniform on subsets of M with exactly 2m elements.

Using this we can write P (W = w) =
∑

i λiP (Wi = w), where
∑

i λi = 1 and each Wi

represents a distribution that is uniform over a subset ofM with 2m elements. Therefore
we have:
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H̃∞(W | SS (W )) = − log
(
Es←SS (W )

[
max
w

P (W = w | SS (W ) = s)
])

= − log

(
Es←SS (W )

[
max
w

∑
i

λiP (Wi = w | SS (W ) = s)

])

≥ − log

(
Es←SS (W )

[∑
i

λi max
w

P (Wi = w | SS (W ) = s)

])

= − log

(∑
i

λiEs←SS (W )

[
max
w

P (Wi = w | SS (W ) = s)
])

≥ − log
(

max
i
Es←SS (W )

[
max
w

P (Wi = w | SS (W ) = s)
])

= − log
(
Es←SS (W )

[
max
w

P (Wk = w | SS (W ) = s)
])

= H̃∞(Wk | SS (W )) (4.5)

where Wk is the uniform distribution over 24 elements that maximizes the quantity on th
5th step. This means that the minimum H̃∞(W | SS (W )), m̃, can be found among the
average min-entropies of distributions Wi that are uniform on 2m -subsets of M .

For our example, we would then be trying to �nd input distributions where 16 of the
inputs have a probability of 2−4 = 1

16
. Since the 16 possible inputs are equiprobable, we

can simplify the average min-entropy as follows:

H̃∞(W | SS (W )) = − log
(
Es←SS (W )

[
max
w

P (W = w | SS (W ) = s)
])

= − log

(∑
s

P (W = ws | SS (W ) = s)P (SS (W ) = s)

)

= − log

(
4
∑̀
i=1

1

ni
· ni

16
· 1

4

)

= − log

(
`

16

)
= 4− log(`) (4.6)

where ` is the number of cosets that have possible inputs in them, ni is the number of
inputs in a given coset (here we assume the cosets to be arbitrarily numbered from 1 to
8), and ws is simply one of the inputs w such that SS (w) = s (they are all equiprobable).

This result basically shows that H̃∞(W | SS (W )), for a given input distribution W
with min-entropy m = 4, is solely dependent on the number of cosets that have elements
in them. It also allows us to calculate the minimum possible H̃∞(W | SS (W )), or m̃, to
be 4− log(8) = 1, since with 16 possible inputs it is possible to select at least one possible
input in each of the 8 cosets.

The expression obtained for H̃∞(W | SS (W )), when m = 4 in the previous example,
can be easily generalized for any secure sketch built with the Code-O�set construction,
if the code used is binary and linear. In order to do that, we start by assuming a linear
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[n, k, d] code C, and again looking at C as a normal subgroup of {0, 1}n. Therefore, we
have 2n−k cosets, with 2k elements in each coset, and we must have m̃ ≤ k.

Clearly, for m = 0, 1, ..., n− k, we can have one or zero possible inputs in each coset,
therefore forcing a secure sketch via code-o�set construction to reveal all the information
about the input, and m̃ = 0. For m > n− k we refer to the result (4.5) to again narrow
our search for m̃ down to the average min-entropies of distributions that are uniform on
subsets of {0, 1}n with 2m elements and 0 otherwise.

By following the steps on (4.6) we can then �nd an expression for H̃∞(W | SS (W )):

H̃∞(W | SS (W )) = − log

(∑
s

P (W = ws | SS (W ) = s)P (SS (W ) = s)

)

= − log

(
2k
∑̀
i=1

1

ni

ni
2m+k

)

= − log

(
`

2m

)
= m− log(`)

Since m̃ assumes a worst-case input distribution of entropy m, we simply have that

m̃ = min
`

(m− log `)

and considering we only have 2n−k cosets and enough inputs to have at least one input
in each of them, we can state the following theorem:

Theorem 4.1. For a secure sketch using a code-o�set construction with an (n, k, d) code,
if the input follows a distribution W of min-entropy m, where m is an integer, the average
min-entropy is given by

H̃∞(W | SS (W )) =

{
m− n+ k if m > n− k
0 otherwise

(4.7)

This result suggests that we should look for denser codes (k is closer to n) in order to
obtain better secure sketching procedures. For example, we could consider the case where
M = Z32, and our code is simply C = 〈4〉. Just like in the previous case we have 32
possible inputs, but this time we have only 4 cosets of size 8. In the best-case distribution
overM, i.e. m = 5, we can now construct a (M, 5, 3, 1)-secure sketch, as compared to a
(M, 5, 2, 1)-secure sketch in the previous example.

The reason why we cannot simply reduce the number of cosets (or increase their size)
arbitrarily, trying to obtain a better secure sketch, is the fact that the number of cosets
bounds the minimum distance of the code. This, of course, is only true for �nice� metrics.
For the remainder of this chapter, we will formalize this requirement by only considering
metric spaces that can be seen as connected undirected graphs, in which the distance is
simply de�ned as the shortest path between two vertices with the weight of each edge
being one. We can then have the following claim:

Claim 4.2. For an [n, k, d] linear code C, we must have d ≤ |M : C|.
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Table 4.1: Entropy loss
Ex. 4.2 C = 〈4〉

m m̃ λ m̃ λ

0 0 0 0 0
1 0 1 0 1
2 0 2 0 2
3 0 3 1 2
4 1 3 2 2
5 2 3 3 2

Proof. If the minimum distance of the code is d = 2t+1, then for some pair of codewords
wa and wb, dis (wa, wb) = d. By following the path connecting wa and wb, we can �nd
words w1, w2, ...w2t ∈ M such that dis (wa, wi) = i and dis (wb, wi) = d − i for i =
1, 2, ..., 2t, and dis (wj, wk) = |j − k| for 1 ≤ j, k ≤ 2t. We prove the claim by showing
that each of these 2t elements must belong to a di�erent non-identity coset, resulting in
a total of at least 2t+ 1 = d cosets.

Assume by contradiction that wj and wk, for 1 ≤ j < k ≤ 2t, are in the same coset
de�ned by wj + C = wk + C. By subtracting wj, we obtain C = (wk − wj) + C, which
implies that wk−wj is a codeword. Since C is a linear code, the Hamming weight of any
nonzero codeword should be at least d, which means that dis (wj, wk) ≥ d. But we have
that dis (wj, wk) = k − j, so we must have k − j ≥ d. However, k − j ≤ 2t − j < d for
any j, which is a contradiction.

Since the number of cosets must also divide the size of M, we conclude that when
M = {0, 1}5, by choosing C = 〈4〉 we obtain the best possible code-o�set secure sketch.
In general, we will have that the best average min-entropy provided by a secure sketch
using code-o�set with a linear code would be m̃ = m − n + maxd≤2n−k k. However, in
order to achieve this bound we need metric spaces that maximize the distance between
words. Since we require these metric spaces to be connected graphs, we see that this
bound can only be achieved if we consider cyclic graphs. However, it is usually unfeasible
to work with codes de�ned on the vertices of a polygon. More realistically, our codes
will be de�ned over a metric space M = {0, 1}i and the distance function will be the
Hamming distance. Therefore, a much stricter bound on the best secure sketch that we
can achieve can be formulated. We �rst notice that the Singleton Bound states that
for a linear code using the Hamming distance we have that:

n− k ≥ d− 1 (4.8)

With Equation (7.5), we can have the following corollary of Theorem 4.1:

Corollary 4.1. For an input distribution W of min-entropy m, from a metric space
of dimension n with the Hamming distance, the best average min-entropy provided by a
secure sketch using a code-o�set construction with minimum distance d is:

m̃ = m− d+ 1 (4.9)
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This result con�rms our intuition that there is a trade-o� between the error-correcting
capability of a Rec procedure of a secure sketch and how much information leaks by the
publishing of the secure sketch. By noticing that for a code to achieve the Singleton
bound, we must have d = 2t + 1, where t is the error-correcting bound of the code, we
�nd that

m̃ = m− 2t

which means that to increase the noise-tolerance by one bit, we must in fact lose two
bits of entropy. This creates an inherent limitation to the noise-tolerance levels of secure
sketches and also to fuzzy extractors (see next section) built on top of secure sketches,
especially in a setting where a large amount of noise is expected at the output of a PUF.

4.5 Fuzzy Extractors

De�nition 4.5. [4] An (M,m,`,t,ε)-fuzzy extractor is a pair of randomized procedures,
Gen and Rep, with the following properties:

1. The generation procedure Gen on input w ∈ M outputs an extracted string R ∈
{0 , 1}` and a helper string P ∈ {0 , 1}∗.

2. The reproduction procedure Rep takes an element w′ ∈ M and a bit string P ∈
{0 , 1}∗ as inputs. The correctness property of fuzzy extractors guarantees that if
dis (w,w′) ≤ t and R, P were generated by (R,P)← Gen (w), then Rep (w′,P) = R.
If dis (w,w′) > t, then no guarantee is provided about the output of Rep .

3. The security property guarantees that for any distributionW onM of min-entropy
m, the string R is nearly uniform even for those who observe P : if (R,P)← Gen (w),
then SD((R,P), (U`,P)) ≤ ε.

Example 4.3.
Let M = Z16, pictured as the vertices of a 16-gon, and let the distance be naturally
de�ned as the distance between two vertices. We will de�ne our generation procedure as
follows:

Gen (w) = (R,P), where:

R = bw/4c
P = R (mod 2)

Our reproduction procedure is de�ned as follows:

Rep (w′, P ) =

{
bw′/4c if bw′/4c (mod 2) = P
bw′/4c − (−1)bw

′/2c otherwise
(4.10)

This fuzzy extractor can be understood through the following picture.
Our extracted string R tells us in which of the four sectors drawn in the Figure 4.5 w

was. The helper string that is stored is simply the parity of R. Therefore, if an adversary
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knows P , they still have two possible values of R to guess from. Therefore, ifM follows
a distribution W of min-entropy 4, an adversary has a 1

2
chance of guessing R if given P ,

and we have m̃ = 1
Given an input w′ that is at a distance at most 2 of w, the parity of R is enough for

us to recover the same key R that w would generate, and we have that t = 2. Notice
that, in this case, w itself is never recovered.

With m = 4, we have a statistical distance SD = 1
2
(2×|1

2
− 1

4
|+2×|0− 1

4
|) = 1

2
. This

is a very simple example and doesn't extract randomness from a non-uniform distribution
(it assumes a uniform one).

Even though schemes like the one described in Example 4.3 can be devised, for any real
application we need a more general and more �exible approach to design Fuzzy Extractors.
Recall that a Fuzzy Extractor can also be understood as a two-step process. In the �rst
step, the information reconciliation phase, a noisy version of an element w of our metric
space is converted into a noiseless version. Then, in the privacy ampli�cation phase,
the fuzzy extractor �xes the non-uniformity of the distribution overM. Clearly, secure
sketches are good candidates for the information reconciliation phase. By providing this
�hint� to the system, we can recover our original information. Moreover, the code-o�set
construction provides a straightforward method to construct secure sketches satisfying a
given set of parameters, and thus we can use this method for the information reconciliation
portion of fuzzy extractors.

Once we have our noiseless information w, we can then resort to known methods to
extract nearly uniform random bits from a nonuniform source. Next we present a very
well-studied mechanism to do this: the hash functions.
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4.6 Hash Functions

A hash function is used when we have a non-uniform distribution on some source and we
wish to extract a uniform distribution with roughly the same entropy. For example, if
we have a space of binary 10-tuples with all elements having the �rst four digits being 0,
we in fact only have six bits of information. A hash function in essence reduces the size
of our space to re�ect the actual amount of information in it.

Formally, a hash function is a mapping from {0, 1}i, the keys, to {0, 1}j, the values.
Following [20], there are three properties of a cryptographic hash function:

1. A hash function h is a one way hash function if, for a random x ∈ {0, 1}i, given
h(x), it is hard to compute y ∈ {0, 1}i such that h(y) = h(x).

2. The hash of a key should be computed in polynomial time, and is sometimes per-
formed in linear time in the length of the input.

3. A hash function is called strongly collision free if it is computationally infeasible to
�nd two keys x1, x2 such that h(x1) = h(x2). A hash function is weakly collision
free if, given a key x, it is computationally infeasible to �nd an x′ 6= x such that
h(x) = h(x′).

A hash family consists of a set K of keys, a set V of values, and a set H of hash
functions which map keys to values.

Example 4.4.
Let our �eld beH := {0, 1, α, β} with α2 = β and αβ = 1. For addition and multiplication
of this �eld, see Tables 4.2 and 4.3 respectively. The set of keys will be 2 tuples (a, b) ∈ H2

written as ab. The set of values V will be our �eld H. Our hash family will consist of
hash functions which use the keys to construct a linear polynomial which is evaluated at
a particular �eld element depending on the speci�c hash function.

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

Table 4.2: Addition table

× 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

Table 4.3: Multiplication table
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Creating a linear polynomial over H

We now create a hash function, which will be a polynomial of degree at most 1 with
coe�cients from H. This polynomial will be created by the key which is hashed. If ab
is the key to be hashed, we write this polynomial as in 4.11. We have ζ ∈ H, and hence
ζ determines the hash function. Our set H is {h0, h1, hα, hβ}, where the ordering of the
hash functions corresponds to which element they evaluate the linear polynomial 4.11.

L(ζ) := aζ + b (4.11)

Our hash function is exhibited by the following mapping hi with i ∈ H. Now we create
our polynomial using this function.

hi : H2 → H

hi(a, b) 7→ a(i) + b (4.12)

We use the key (the hashed value), (a, b) to tell us which row of the hash function to
return values from. In 4.4 we show the complete table of possible return values. The �rst
column corresponds to (a, b), the value to be hashed. The second, third, forth and �fth
columns correspond to the output of the speci�c hash function.

ab 0 1 α β
00 0 0 0 0
01 1 1 1 1
0α α α α α
0β β β β β
10 0 1 α β
11 1 0 β α
1α α β 0 1
1β β α 1 0
α0 0 α β 1
α1 1 β α 0
αα α 0 1 β
αβ β 1 0 α
β0 0 β 1 α
β1 1 α 0 β
βα α 1 β 0
ββ β 0 α 1

Table 4.4: Hash functions

De�nition 4.6. [4] [Strongly 2-Universal Family of Hash Functions] We say that H is a
2-universal family of hash functions if, for x 6= y, we have

P [h(x) = h(y)]h∈H ≤
1

|V |
We say that H is a strongly 2-universal family of hash functions if

P [h(x) = x′, h(y) = y′]h∈H =
1

|V |
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Claim 4.3. Our example is a 2 universal family of hash functions.

Proof. We need to show that P [h(x) = h(y)] ≤ 1
|V |

Since h ∈ H is �xed, we only look at one column of 4.4 chosen uniformly at random.
Since each column has the same number of occurrences of each value, we will look at just
one column. For x ∈ H2 there are exactly 3 other keys which hash to the same value as
x. Since there are 15 values that y can take, we conclude

P [h(x) = h(y)]h∈H =
3

16
≤ 1

4

We conclude that our example is a 2 universal family of hash functions.

4.7 Overall design of fuzzy extractors

Hash functions are the necessary tools to implement the privacy ampli�cation phase
of fuzzy extractors. Allied with the code-o�set construction for secure sketches, they
allow for a straightforward construction of fuzzy extractors with �exibility in terms of
the error-correcting capability. In general, during the enrollment phase, our generation
procedure will use a noiseless version of the PUF output w and use it as an input to
both the sketching procedure of a secure sketch and a hash function. This generates
a secure sketch which can be seen as the helper data P and a hashed value R. In the
authentication phase, the noisy version of the PUF output w′ can be used with the helper
string P in order to recover w, the same hash function can be used to generate R again.
This basic scheme can be seen in Figure 4.3.

Figure 4.3: Basic scheme for generation and reproduction procedures of a fuzzy extractor

This simple scheme does not assume randomized procedures and requires the hash
functions to be completely deterministic. However, this randomness is necessary for
practical applications to reduce the entropy loss caused by the publication of the helper
data. In order to allow randomized procedures, we need to modify the above scheme
slightly. During the Gen procedure, we must be able to store the seed x which determines
which hash function is chosen for a given key. This seed would then have to be stored with
the secure sketch as another piece of the helper data. Later on, in the Rep procedure,
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this seed can be provided to the hash function in order to assure that the right string R
is generated. This new scheme can be summarized in the diagram in Figure 4.4.

Figure 4.4: Randomized generation and reproduction procedures of a fuzzy extractor

27



Chapter 5

Hardware implementation of Fuzzy

Extractors

One of the most appealing qualities of a PUF-based authentication system is the fact that
PUFs can � and in fact have to � be implemented in hardware. This provides a security
scheme for lightweight and low-cost hardware devices, such as RFIDs and smartcards [6].
However, in order to use fuzzy extractors as a way to obtain reliable cryptographic keys
from PUFs, while still keeping PUFs attractive for these lightweight hardware devices, a
fuzzy extractor must be implemented in hardware as well. Moreover, its implementation
should be fairly area-e�cient, or it will defeat the purpose of using PUFs in small hardware
devices.

The code-o�set/hash-function construction depicted in Figure 4.4 has the advantage
of giving �exibility in terms of error-correction and security parameters. The most com-
plex component of this scheme is the decoder that must be implemented for the recovery
procedure of the secure sketch. Therefore, in this section we present a compact imple-
mentation for a decoder, which still provides good error-correcting capabilities.

5.1 BCH codes and Fuzzy Extractors

BCH codes are very powerful error-correcting codes. Even though they cannot be imple-
mented as easily as other codes, such as Reed-Muller codes, an area-e�cient hardware
implementation is still feasible. This makes them very good candidates for being used
in the context of fuzzy extractors. Linear codes are very important pieces in Fuzzy Ex-
tractors, in particular for the information reconciliation phase. We perform this task by
using a secure sketch with a code-o�set construction. Therefore, we need to be able to
generate a random codeword, i.e. encode a random message, for the sketching procedure
and to do decoding for the recovery procedure.

During the enrollment phase the device can be characterized more accurately by taking
multiple samples and averaging to minimize noise. This is followed by the application of
the sketching procedure which can be performed o�ine via software. Since this occurs
prior to the deployment of the device and does not need to be done by the device itself,
a hardware implementation is only needed for the recovery procedure. Therefore, we will
mainly focus on the hardware implementation of a BCH decoder.
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Since most PUFs output binary responses, and since there is no reason to be concerned
about burst errors, binary codes satisfy our needs and we will be dealing with binary BCH
codes only.

5.2 Hardware architecture for a BCH decoder

For security applications, and more speci�cally for hardware authentication, speed is not
a major concern. In other words, it is not fundamental that a device can be correctly
authenticated in microseconds. However, when we consider applications such as FPGA
intellectual property (IP) protection (see [3]), it becomes clear that our main goal is area
e�ciency. After all, the authentication circuitry is typically part of a much larger and
complex circuit, whose IP we want to protect. Therefore, our design focuses on serializing
operations as much as possible, in order to reduce the overall gate count.

5.2.1 Basic steps in BCH decoding

The task of decoding an (n, k, d) BCH code in the communications setting can be sum-
marized as follows: given a received polynomial r(x) = v(x) + e(x), we want to �nd the
original transmitted polynomial v(x). Equivalently, we can also �nd the error polynomial
e(x). While designing the decoder for a binary BCH code, there are mainly four steps we
have to consider.

1. Syndrome computation:
We start by computing the 2t syndromes of the received message r(x). That is
done by simply plugging in the 2t roots of the generator polynomial, namely αi for
i = 1, 2, ..., 2t, to r(x). Since v(αi) = 0 for i = 1, 2, ..., 2t if v(x) is a codeword, this
is equivalent to computing the syndromes of the error polynomial e(x).

2. Finding the Error-Locator polynomial σ(x):
The Error-Locator polynomial σ(x) = 1 + σ1x+ ...+ στx

τ , has τ roots of the form
α−ij for j = 1, 2, ..., τ . If α−ik is a root of σ(x) for some k, then the error polynomial
has a coe�cient of 1 in front of its ik

th term. In other words, there was a bit error
at the ik

th position.
There are a few di�erent known algorithms for computing the Error-Locator poly-
nomial, given the 2t syndromes, such as the Peterson algorithm and the Berlekamp-
Massey algorithm.

3. Finding the roots of the Error-Locator polynomial:
In the binary case, �nding the roots of σ(x) is enough for us to determine the error
polynomial e(x), since the only possible coe�cients are 0 (no error at that location)
and 1 (error at that location).

4. Finding the transmitted polynomial v(x):
In the binary case, this simply means adding the error polynomial to the received
polynomial in order to obtain v(x).
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5.2.2 Syndrome Computation

Syndrome computation in the case of BCH codes basically consists in plugging each of
the 2t roots of the generator polynomial into the received polynomial. Since these roots
are found in an extension �eld GF (2m), the calculated syndromes are also elements from
GF (2m), and can, therefore, be represented by m bits.
The basic approach to computing these syndromes consists in noticing the fact that we
can rewrite the expression for r(αi) (the ith syndrome) as follows

r(αi) = r0 + r1α
i + r2α

2i + ...+ rn−1α
(n−1)i =

(...(((rn−1α
i) + rn−2)α

i) + rn−3)...+ r1)α
i + r0 . (5.1)

Equation (5.1) tells us that we can compute the ith syndrome by taking each of
the binary coe�cients of r(x) starting with the one with the highest degree, adding it
to the previous result and then multiplying the result by αi. This recursive recursive
computation can be e�ciently realized using a Linear Feedback Shift Register (LFSR).

Example 5.1.
If n = 24 − 1 = 15, then α must be chosen as a primitive element of GF (24), say one of
the roots of the irreducible polynomial X4 +X + 1, and we have the following LFSR to
compute the �rst syndrome r(α) ([12]).

- - - -�
�� �
��
- -+ +

? ?ri

Figure 5.1: LFSR to calculate S1

At every clock cycle, the contents of the shift-register, which can be viewed as an
element of GF (24), are multiplied by α. In addition, the introduction of the coe�cient
ri into the lowest signi�cant bit (in decreasing order of i's) adds ri to the previous result.
After exactly 15 clock cycles, the contents of the shift-register represent S1 = r(α).
To compute Si we need to modify this circuit, so that at every clock cycle, the contents
of the shift-register are multiplied by αi. For instance, to multiply an element of GF (24),
say b(α) = b0 + b1α + b2α

2 + b3α
3, by α3, we evaluate

b(α)α3 = (b0 + b1α + b2α
2 + b3α

3)α3 =

= b0α
3 + b1α

4 + b2α
5 + b3α

6 =

= b0α
3 + b1(1 + α) + b2(α + α2) + b3(α

2 + α3) =

= b1 + (b1 + b2)α + (b2 + b3)α
2 + (b0 + b3)α

3

and thus we can calculate the third syndrome S3 with the following circuit ([12]):
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Figure 5.2: LFSR to calculate S3

Following this procedure, we would need one circuit like the one above, with about
the same level of complexity, for each syndrome. However, it is possible to reduce the
number of such circuits if we notice that

(r(αi))2 = (r0 + r1α
i + r2α

2i + ...+ rn−1α
(n−1)i)

= r0 + r1α
2i + r2α

4i + ...+ rn−1α
2(n−1)i = r(α2i)

Thus we conclude that S2
i = S2i. Therefore, we can use this fact to reduce the number

of LFSR circuits by at least half if we recombine the coe�cients of Si to form S2
i . To do

that, we just need to notice that if we square an arbitrary element of GF (24) we obtain

b(α)2 = (b0 + b1α + b2α
2 + b3α

3)2

= b0 + b1α
2 + b2α

4 + b3α
6

= b0 + b1α
2 + b2(1 + α) + b3(α

2 + α3)

= (b0 + b2) + b2α + (b1 + b3)α
2 + b3α

3

Similarly, we see that b(x)4 = (b0 + b1 + b2 + b3) + (b1 + b3)α+ (b2 + b3)α
2 + b3α

3. This
allows us to extract S1, S2 and S4 from the circuit in Figure 5.1, as shown below

For a (15, 5, 7) BCH code, besides the circuit above, we also need a circuit to compute
S3 and S6, and another one just to compute S5. Overall, we would need 3× 4 �ip-�ops,
approximately 3 × 4 XORs for the multiplication circuits and 2 extra XORs for each of
the 3 even syndromes. This gives us a total of 12 �ip-�ops and 18 XORs.

In a general case it is easy to see that we need tm �ip-�ops. The number of XORs is
more di�cult to estimate. For the LFSR circuit, we can assume that m XORs are used
for each of the t circuits, and for the recombination of the LFSR outputs (forming the
individual syndromes) we estimate tm2

2
XORs for all t circuits. These assumptions can be

made especially if we consider a slightly di�erent method for computing the syndromes,
explained in Appendix B.2.

5.2.3 Finding the Error-Locator polynomial

The most complicated step in decoding a BCH code is �nding the Error-Locator poly-
nomial σ(x). We �nd the Error-Locator polynomial by relating the coe�cients of σ(x)
with the 2t syndromes we computed in the last step. Since the Error-Locator polynomial
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Figure 5.3: LFSR to calculate S1, S2 and S4

has a root of the form α−j if there was an error at the jth position of the transmitted
polynomial, we can rewrite it as follows

σ(x) = 1 + σ1x+ ...+ στx
τ = (1− αj1x)(1− αj2x)...(1− αjτx) . (5.2)

If we expand it out using Girard relations we obtain

(1− αj1x)(1− αj2x)...(1− αjτx)

= 1− xξ1(αj1 , αj2 , ..., αjτ ) + x2ξ2(α
j1 , αj2 , ..., αjτ )− ...+ (−x)τξτ (α

j1 , αj2 , ..., αjτ ) .

where ξk(x1, x2, ..., xk) is the k
th elementary symmetric polynomial on τ variables

ξk(α
j1 , αj2 , ..., αjτ ) =

∑
1≤i1<i2<...<ik≤τ

αji1+ji2+...+jik = σk .

Swapping the sides and rewriting the expressions (see [19]) we obtain

τ∑
k=0

ξk(α
j1 , αj2 , ..., αjτ )(−x)k =

τ∏
i=1

(1− αjix) . (5.3)

To obtain a relationship between the syndromes and coe�cients of the Error-Locator
polynomial we start by di�erentiating both sides in (5.3) and multiplying them by x

τ∑
k=0

kξk(α
j1 , αj2 , ..., αjτ )(−x)k =

τ∑
n=1

(
−αjnx

∏τ
i=1 (1− αjix)

(1− αjnx)

)
= −

(
τ∑

n=1

αjnx

1− αjnx

)(
τ∏
i=1

(1− αjix)

)
.
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By re-using expression (5.3) and developing the formal power series

= −

(
τ∑

n=1

∞∑
m=0

(αjnx)m

)(
τ∑
t=0

ξt(α
j1 , αj2 , ..., αjτ )(−x)t

)

= −

(
∞∑
m=0

τ∑
n=1

(αjnx)m

)(
τ∑
t=0

ξt(α
j1 , ..., αjτ )(−x)t

)

=

(
∞∑
m=0

xm
τ∑

n=1

αmjn

)(
τ∑
t=0

(−1)t+1ξt(α
j1 , ..., αjτ )xt

) .

Now we can plug in the syndromes Sm and the coe�cients of the Error-Locator
polynomial σk

τ∑
k=0

(−1)k+1kσkx
k =

(
∞∑
m=0

xmSm

)(
τ∑
t=0

(−1)t+1σtx
t

)
. (5.4)

Finally, by comparing the coe�cient of xk on both sides of (5.4), we obtain the kth

Newton's identity as followss

(−1)k+1kσk =
k∑
t=1

(−1)k−t+1Stσk−t . (5.5)

where we assume that σi = 0 for i > τ . Since we are dealing with binary BCH codes, we
can disregard the signs and re-write the expression as follows

k∑
t=1

Stσk−t + kσk = 0 . (5.6)

which yields the following list of relations

S1 + σ1 = 0

S2 + σ1S1 + 2σ2 = 0
...

Sτ + σ1Sτ−1 + ...+ στ−1S1 + τστ = 0

Sτ+1 + σ1Sτ + ...+ στ−1S2 + στS1 = 0 (5.7)

Sτ+2 + σ1Sτ+1 + ...+ στ−1S3 + στS2 = 0

...

S2t + σ1S2t−1 + ...+ στ−1S2t+1−τ + στS2t−τ = 0 .

By looking at the last 2t − τ equations we see that �nding the coe�cients of the error-
locating polynomial σ(x) is equivalent to looking for a linear recursion on the Si.

Sk =
τ∑
i=1

σiSk−i for k > τ (5.8)

For τ ≤ t there should be only one such linear recursion. It can be found via the
Berlekamp-Massey algorithm.
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5.2.4 The Berlekamp-Massey Algorithm

The Berlekamp-Massey Algorithm provides a polynomial-time algorithm to �nd the short-
est linear recursion that generates a given stream. In other words, it allows us to �nd
the minimal polynomial (in our case, the Error-Locator polynomial) that generates a
recurrent sequence. It is an iterative method, in which one checks if a trial polynomial
σ(x) will generate the next output in the stream and, if not, applies a correction to it.
The procedure is as follows:

We start with a polynomial σ(1)(x) that satis�es the �rst identity from (5.7). This
polynomial can also be seen as just a list of coe�cients, since it will not be used as
a polynomial in its proper sense during the steps of the algorithm. So we start with
σ(1)(x) = S1x and σi = 0 for i > 1. Now we check to see if these coe�cients satisfy the
second identity from (5.7). If they do, we set σ(2)(x) := σ(1)(x) and we move on to the
next identity. If not, we need to add a correction term to σ(1)(x) so that it satis�es the
second identity. In general, at each iteration r, a new polynomial σ(r)(x) is produced. If
the coe�cients σ(r)(x) do not satisfy the r+ 1th identity, we �rst calculate how much the
rth discrepancy ∆r is

∆r = Sr+1 + σ1Sr + ...+ σr−1S2 + σrS1 + rσr (5.9)

In order to eliminate this discrepancy, we look at the previous iterations and �nd a
σ(b)(x), for b < r whose discrepancy from the bth identity was also di�erent than 0. Then
we normalize the polynomial with respect to its discrepancy ∆b, multiply it by our new
discrepancy ∆r and shift its coe�cients up (or simply multiply it by a power of x) so
that its coe�cients, when added (or subtracted) to those of σ(r)(x), will eliminate the
discrepancy. In [1], Berlekamp proved that if we choose the most recent previous iteration
in 2 deg(σ(r)(x)) < r (and ∆r 6= 0), this process yields the smallest-degree polynomial
whose coe�cients satisfy the r + 1th identity. Therefore, after 2t iterations, we obtain
the smallest-degree polynomial that satis�es all identities in (5.7), and thus we have our
Error-Locator polynomial.

This iterative process can be systematically summarized in the following steps:

1. Set σ(1)(x) = 1 + S1x. This satis�es the �rst identity.

2. Then loop through the following steps until r = 2t.

3. Compute the discrepancy ∆r (from Equation (5.9))

• If ∆r = 0 set σ(r+1)(x) = σ(r)(x)

• If ∆r 6= 0 set σ(r+1)(x) := σ(r)(x) + xr−b∆r∆
−1
b σ(b)(x) where σ(b)(x), the

solution at iteration b, is the most recent solution such that ∆b 6= 0 and
2 deg(σ(b)(x)) < b

Hardware implementation of Berlekamp-Massey's algorithm

The basic idea behind the hardware implementation for this iterative process is to notice
that, from one identity in (5.7) to the next one, the syndromes get shifted to the right
on the coe�cients of σ(r)(x)). Therefore, we store the coe�cients of σ(r)(x)) in a register
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R0 and we shift the syndromes into a serial-in parallel-out shift register SR0, and the
contents of the two registers are respectively multiplied at each iteration and added. This
gives us the discrepancy ∆r. The circuit is shown in Figure 5.4.

Figure 5.4: Two registers containing the polynomial σ(r)(x) and a subset of the syndromes

It is important to notice that each coe�cient of σ(r)(x) and each syndrome Si is
actually an element of GF (2m) and therefore can be represented by m bits. This means
that each storage unit of the registers can actually storem bits, and whenever we mention
a serial operation (like in the case of the serial-in register) we are actually referring to a
parallel operation of m bits.

Once we obtain our discrepancy, we can use it to decide whether a new σ(r+1)(x) should
be loaded into R0 or if the previous σ(r)(x) should remain in R0, i.e. σ(r+1)(x) := σ(r)(x).

Multiplication in GF (2m)

Since we are seeking area e�ciency we opt for a serial hardware implementation which
takes m cycles to be completed, but uses considerably less combinational logic. We notice
that in order to multiply two elements of GF (2m), say β = b0 +b1α+b2α

2 + ...+bm−1α
m−1

and γ = c0 + c1α+ c2α
2 + ...+ cm−1α

m−1, we can re-parenthesize the multiplication using
Horner's rule as

βγ = β(c0 + c1α+ c2α
2 + ...+ cm−1α

m−1) = (...((βcm−1α+βcm−2)α+βcm−3)α+ ...) +βc0

Therefore, at each clock cycle we multiply β by a coe�cient of γ, starting from
the most signi�cant one, add it to the previous result, and multiply the expression by
α. Therefore, we store the coe�cients of β and use the LFSR from Figure 5.1 for the
multiplication by α.
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Example 5.2.
In GF (24), we can implement the serial multiplication algorithm with the following cir-
cuit. The coe�cients of c(x) are shifted in one-by-one in each cycle, while the coe�cients
of the operand b(x) are fed in parallel to the circuit and kept stable until the circuit
�nishes the computation after 4 cycles.

Figure 5.5: Multiplication of two elements in GF (24)

In order for us to use the above circuit to multiply the coe�cients of σ(r)(x) by
the syndromes, we must choose which of the two factors will represent the serial input
γ. Since these factors are stored in registers, and in order to avoid the need for extra
parallel-to-serial shift registers, we choose to change the design of the σ register, so that
each of its coe�cients σ

(r)
i has each of its m bits cyclically shifted. By doing that, we can

simply take the most signi�cant bit out of each σ
(r)
i and use it as the serial input to the

multiplier.
Notice that this modi�cation requires the clock that triggers the cyclic shift CLK1 of

the bits to be at least m times faster than the clock CLK0 that shifts in the syndromes
Si. The multiplication will also be triggered by the faster clock (CLK1), allowing the
multiplication to at least m cycles before a new syndrome is shifted in. In reality we
make CLK1 4m times faster to allow enough time for the �rst set of multiplications, for
the inversion and for a second set of multiplications (see Figure 5.10).

The modi�ed σ-register R0 is represented in Figure 5.6.

Storing a previous σ(b)(x)

A big hindrance in designing a hardware architecture for the Berlekamp-Massey algorithm
is that searching for the most recent previous iteration of σ(r)(x) whose discrepancy ∆r

was di�erent than 0, and for which 2 deg(σ(r)(x)) < r, would require storing all previous
polynomials σ(r)(x). This can be easily done in software but would require several registers
in hardware and a mechanism to search for the right previous iteration. Instead, we use
only one register R1 which will store a previous iteration of σ(r)(x), which we will call
σ(b)(x), and which will be replaced by σ(r)(x) whenever ∆r 6= 0 and 2 deg(σ(r)(x)) < r.

The degree of σ(r)(x), which we will refer to as Lr for short, can be computed by using
some combinational logic on the coe�cients of σ(r)(x). By OR-ing together the m bits of
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Figure 5.6: Modi�ed register for storing σ(r)(x)

each coe�cient, we �nd which coe�cients σ
(r)
i are nonzero. Therefore, we can use that

information to �nd the binary form of Lr.

Example 5.3.
For a (15, 5, 7) BCH code, σ(x) can be at most a third degree polynomial, and therefore
we compute its degree or length with the following circuit.

Figure 5.7: How to compute the degree of σ
(r)
i

Multiplying Lr by 2 is trivial and r can be obtained from a simple binary counter,
triggered by CLK0. Comparing two binary numbers can again be done using some simple
combinational logic, to generate a signal that indicates whether 2Lr < r.
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Example 5.4.
For a (15, 5, 7) BCH code, assuming we have the value of Lr (from Example 5.3), we can
perform the comparison 2Lr < r with the following circuit:

Figure 5.8: Circuit to compare 2Lr and r

With a circuit like the one above and the discrepancy ∆r we can obtain the control
signal that will indicate whether σ

(r)
i should replace the value of σ

(b)
i in R1, as shown

below.

Figure 5.9: Generating the control signal for R1 (register for σ(b)(x))

By storing a previous σ(b)(x) ahead of time, we can easily use it later on to add the
correction term to the current a previous σ(r)(x), whenever ∆r 6= 0.
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Updating σ(r)(x)

Whenever we �nd that σ(r)(x) does not satisfy the (r + 1)th (or simply ∆r 6= 0) we must
add the correction term as follows:

σ(r+1)(x) := σ(r)(x) + xr−b∆r∆
−1
b σ(b)(x)

This requires us to also store ∆−1
b and b with σ(b)(x). The problem of multiplying

by xr−b is approached in the following way. We notice that from the iteration where we
store σ(b)(x) until the iteration where we use it as a correction term, there are exactly
r−b−1 iterations. Therefore, at every iteration we multiply the contents of R1 by x, and
when we update σ(r)(x) with σ(r+1)(x), we multiply the correction term once more by x.
This can easily be done, since multiplication by x is simply a shift in the coe�cients of
σ(b)(x). This means that R1 will basically work as a shift-register, until its contents are
overwritten (because ∆r 6= 0 and 2Lr < r). We actually do not need to worry about the
polynomial stored in R1 becoming larger than what R1 can store because the algorithm
assures us that if τ ≤ t all iterations will yield polynomials of degree at most τ . Therefore,
the degree of the correction term will also be at most τ .

Also instead of storing ∆−1
b (with whose computation we will deal later) what we do

is we use R1 to store ∆−1
b σ(b)(x), since the multiplication by x at every iteration will

not be a�ected by this change. Notice that the internal cyclic rotation of the bits of the
coe�cients in R0 will again be useful, since the σ

(r)
i s will also multiply ∆−1

r (prior to its
storage), and again we will need one of the factors to be a serial input to the multipliers.

In order to simplify the algorithm for a hardware implementation, we slightly modify
the 3rd step by de�ning σ(r+1)(x) := σ(r)(x) + xr−b∆r∆

−1
b σ(b)(x) no matter what ∆r is.

This will not interfere with the algorithm since, whenever ∆r = 0, the correction term will
be canceled, and we will be left with σ(r+1)(x) := σ(r)(x) as described in the algorithm.
By doing this, we can simply update σ(r)(x) at every cycle of CLK0.

Example 5.5.
For a (15, 5, 7) BCH code, the overall block diagram for the Berlekamp-Massey algorithm
would be like in Figure 5.10.

A few remarks must be made regarding the multipliers on Figure 5.10. Square mul-
tipliers were used to identify the "multiplication" between an element of GF (24) and a
single bit, which is equivalent to ANDing the 4 bits of the element of GF (24) and the
extra bit. Likewise, whenever three arrows point to the same multiplier, one of the signals
is a single bit, and is basically ANDed with the product between the two elements from
GF (24).

At every iteration, the polynomial σ(r)(x) is multiplied by ∆−1
r . However, this result

is only stored in R1 if ∆r 6= 0 and 2Lr < r. Also, notice that we do not need to store the
4th coe�cient of σ(r)(x) in R1, since this coe�cient is always 0 (unless right before the
algorithm ends, in which case it is useless).
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Figure 5.10: Berlekamp-Massey block diagram

Observations about timing

An interesting feature of this hardware design is that it exploits the ability to perform
parallel operations to go around problems that may arise when the Berlekamp-Massey
algorithm is being coded in software. The main issue is that whenever a correction term
is added to σ(r)(x) to compute σ(r+1)(x), the contents of σ(r)(x) must be overwritten.
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However, ∆r 6= 0 (otherwise it would not need to be overwritten), which means that
σ(r)(x) was itself a candidate for being used as a correction term in future iterations
and therefore, if 2Lr < r, it should be stored in R1. So this basically means that the
contents of R0 must be written to R1 while the contents of R1 must be written to R0.
We solve this issue very naturally by using the set of multipliers at the output of each
of these registers as bu�ers. They perform the multiplications during one clock cycle
of CLK0 (the slowest clock) and whenever CLK0 rises again, they have already �nished
their computations and therefore can write onto each other with no problem.

Inversion in GF (2m)

Inversion is a critical component in the hardware implementation of the Berlekamp-
Massey algorithm. It requires a signi�cant amount of area, and even when optimized
representations are used, it grows with O(m2 log(m) (see [8]). Pure look-up table based
implementations, or combinational implementations are not area-e�cient and do not scale
at all with operand sizes. Therefore, we resort to an iterative method which uses the fact
that, in GF (2m) as follows.

β−1 = β2m−2 = β2β4...β2m−1

(5.10)

Therefore, the main idea is to have a register B containing an element of GF (2m)
and whose contents are squared at every clock cycle. After each squaring operation, they
multiply the contents of a register A, and the result is stored in A. So A accumulates the
results of the repeated multiplications by the content of B. In Figure 5.11, we can see the
schematics for a GF (24) inverter.

Circuit complexity

The Berlekamp-Massey implementation is by far the component which takes up the most
area, and therefore, for longer BCH codes, its complexity will determine the complexity
of the decoder.

To estimate the number of gates, we start by noticing that each serial multiplier,
implemented as in Figure 5.5, will use m �ip-�ops, m AND gates (2m NANDs) and
approximately 3

2
m XOR gates. In our implementation for GF (24), shown in Figure 5.10,

we have 8 such multipliers, and in general we expect to have 3t− 1.
Our most complex block, the inverter, uses two registers (2m �ip-�ops) and has an

array of m2 AND gates. Surprisingly, the most expensive operation ends up being the
additions shown on the bottom of Figure 5.11. We estimate the number of XOR gates
to be m3

4
− m2

4
(see Appendix B.3).

For the registers, we need tm �ip-�ops and 3tm NANDs for each of our two registers
R0 and R1, and we need (t+ 1)m �ip-�ops for the shift-register SR0. Moreover, we need
(2t − 1)m extra ANDs and (2t − 1)m + t extra XORs, for the bit multiplications and
additions, respectively. The other gates in the circuit (such as the ones used to determine
whether 2Lr < r) are not counted here, since they do not contribute signi�cantly to the
overall complexity.
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Figure 5.11: Circuit to perform inversion in GF (24)

5.2.5 Correcting errors

Now that we have the Error-Locator polynomial, it should be relatively simple to correct
the errors in our received message, especially in the binary case, where all we have to
do is �ip the wrong bits. However, the roots of σ(x) are the inverses of the elements of
GF (2m) corresponding to the positions where errors occurred. In order to correct these
errors in both a time and area e�cient way, we use Chien's search algorithm.
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The Chien search is based on the simple fact that, since αn = 1, α−i = αn−i, where
n, the block size, is given by n = 2m − 1. Therefore, if αi is a root of our Error-Locating
polynomial σ(x), it means that there was an error at the (n − i)th position of r(x), and
therefore, in the binary case, the (n − i)th bit should be �ipped. Therefore, this gives
us a systematic way of testing roots and modifying the received polynomial at the same
time: we check whether α0, α1, α2, ..., αn are roots in this order, and at the same time,
we modify the bits at the nth, (n− 1)th, (n− 2)th, ..., 1st positions, in this order.

A circuit that does this operation may simply consist of LFSRs that perform multi-
plication by α1, α2, ..., ατ , initially loaded with σ1, σ2, ...στ respectively. If, after the ith

multiplication, the contents of each of these LFSRs are added, we obtain the value of
σ(αi) − 1. Therefore, if σ(αi) = 0 we can change the (n − i)th position of r(x). This is
actually quite convenient, since our received vector r(x) is shifted into the system starting
from the most signi�cant bit (highest degree coe�cient) to the least signi�cant bit. The
operation of the Chien search block can be shown in the following �gure.

Figure 5.12: Circuit to perform Chien's search algorithm

Each of the blocks in Figure 5.12 is actually an LFSR that performs multiplication by
αi, assuming that they can be initially loaded with σi. For instance, the circuit in Figure
5.13 can be used as the α3 multiplier. It is constructed based on the fact that

b(x)α2 = (b0 + b1α + b2α
2 + b3α

3)α2 =

= b0α
2 + b1α

3 + b2α
4 + b3α

5 =

= b0α
2 + b1α

3 + b2(1 + α) + b3(α + α2) =

= b2 + (b2 + b3)α + (b0 + b3)α
2 + b1α

3

The number of �ip-�ops is m for each of the 2t multipliers. However, as we increase
i, the number of additions needed to perform consecutive multiplications by αi also
increases. In Appendix B.4, we estimate the number of XOR gates needed to bemt2+mt

2
.

For the summation block we needm(t−1) XORs and about 2m NANDs. Also, we assume
that there exists a shift-register of length n for the received vector components ri, so that
it can be synchronized with the output of the Chien's Search circuit. This means that
we have n = 2m − 1 extra �ip-�ops.
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Figure 5.13: Circuit to perform consecutive multiplications by α2

5.3 BCH Decoder Implementation Results

The main result sought by this implementation is compactness. In this sense the overall
circuit complexity must be computed in order for us to be able to assess its implementabil-
ity on ASIC and on an FPGA. By summing the estimates for the gate counts for the
most signi�cant blocks, we can then calculate the hardware complexity. If HC refers to
the hardware complexity, we have:

HC(decoder) = HC(Syndrome Computation)+HC(Berlekamp-Massey)+HC(Chien's Search)

The individual hardware complexities per block are shown in the following table:

Table 5.1: Hardware Complexity by block

FF XOR NAND

Syndrome Computation tm tm2

2
-

Berlekamp-Massey

Multiplier (3t− 1) m 3m
2

2m

Inverter (1) 2m m3−m2

4
2m2

Register (2) tm - 3tm

Shift-Register (1) (t+ 1)m - -

Addition (3t− 1) - m -

Bit-Multiplication (2t− 1) - - 2m

Chien's Search 2m − 1 t2m+ tm
2

2m

The 2m − 1 �ip-�ops attributed to the Chien's Search may seem a little out of place.
However, it is necessary that we store the received vector r(x) somewhere, so that after
�nding the error positions we can correct the errors. This is based on the general scheme
for a Code-O�set construction for a secure sketch proposed in [4] (see Section 4.4).

According to this scheme, the veri�er provides a helper string to the system containing
a secure sketch and a seed for the strong extractor (hash function). Since we will not
be dealing with the implementation of the Hash function, we will assume, for simplicity,
that the helper string is only the secure sketch. Compared to the BCH decoder the
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implementation of a hash function is simple. We refer to [10] for a hardware construction
of universal hash functions.

A secure sketch constructed via a code-o�set method basically consists of w + C,
where w is the noiseless version of the output of the PUF for a given challenge x and C
is a random codeword from a code de�ned on the same metric space as the output of the
PUF. The PUF block receives the challenge x and computes w′ = PUF (x), where w′ is a
noisy version of w. Both w′ and the secure sketch w+C are fed into the Fuzzy Extractor
block, as shown in Figure 5.14.

Figure 5.14: Fuzzy Extractor (Reproduction procedure) overall system

Inside the Fuzzy Extractor block, w′ is added to the secure sketch w + C, yielding
C ′ = C + (w + w′), a noisy version of C. C ′ can therefore be run through a decoder (in
our case, a BCH decoder) which outputs C, which can, in turn, be added to the secure
sketch, allowing the recovery of w. Once the noiseless w is obtained, a hash function can
then extract randomness from it, assuring that the �nal output of the Fuzzy Extractor
block, H(w) looks uniformly random to an observer.

The only assumption made about the PUF is that, given a challenge vector x, it can
output the PUF response w′ = PUF (x) serially. If we assume that PUF (x) is parallel
instead, then we need to serialize it in order to be able to use the design presented. This
requires an extra 2m− 1-bit register, which takes up a considerable area. However, when
we carefully analyze the actual implementation of the BCH decoder, we see that there is
a possibility of avoiding this extra storage. This can be done if we notice that the output
of the Chien's Search, before being XORed with the input to the system C + (w + w′),
simply consists of w + w′. This means that an alternative way for obtaining w would be
to simply XOR the Chien's Search output to w′. Therefore, we use the fact that w′ was
already stored, and we �nd w by computing w+ (w+w′). This is helpful because, in this
case, we do not need to store the secure sketch w+C, and the overall circuit complexity
remains unchanged. This modi�ed scheme can be seen in Figure 5.15.

Therefore, we can assume that the gate counts on Table 5.1 holds for both a serial
and a parallel PUF output. Based on the values of the table, we can see that the overall
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Figure 5.15: Modi�ed Fuzzy Extractor

gate count estimate of this circuit is given by:

[2m + (7t+ 2)m− 1] FF +

[
m3

4
+m2

(
2t− 1

4

)
+m

(
8t− 5

2

)]
XOR +

+
[
2m2 +m(3t+ 6)

]
NAND (5.11)

which allows us to estimate the hardware complexity of the decoder to be:

HC(decoder) = (2m + 7tm)FF +

(
m3

4
+
tm2

2

)
XOR + (2m2 + 3tm)NAND (5.12)

For the speci�c case of a [15, 5, 7] binary BCH code (t = 3), subject of most of the
examples here presented, with Equation (5.11), we obtain a gate count of 107 FF, 122
XOR and 80 NAND.

The time complexity of the circuit can be easily estimated if we notice that it takes
us m − 1 cycles to compute the inverse, and since this happens simultaneously with
the multiplications, which take m cycles, the multiplications will determine the time
complexity of the overall circuit. Therefore, since we have 2t iterations of the Berlekamp-
Massey algorithm, with 3 sets of multiplication in each iteration, we need 6tm clock cycles
to �nd σ(x). The syndrome computations, which happen before Berlekamp-Massey can
start, contribute with n = 2m clock cycles, and the Chien's search at the end contributes
with another 2m clock cycles. Therefore the overall time complexity is given by:

2m+1 + 6tm

The steps of the design here presented were implemented in VHDL and simulated
using Mentor Graphics ModelSimTM tool for correctness. The BCH decoder for a [15, 5, 7]
code was synthesized into two di�erent FPGAs, with the following resource utilizations:

• Spartan 3: 118 out of 1920 slices (6%)

• Virtex 2Pro: 118 out of 13696 slices (0.8%)
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These results show that this implementation is fairly reasonable in terms of FPGA
usage. However, in order for this implementation to be useful, we must consider block
sizes of at least 100 bits (m ≥ 7). Considering the dominant term of our hardware
complexity to be m3 (which is reasonable for m < 10), this change would increase the
FPGA usage by a factor of at most 8. This means that we should still be able to �t the
design on a simple Spartan 3 board, although it would become impractical to use it in
an FPGA IP protection setting.
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Chapter 6

A new approach to PUF-based

hardware authentication

The authentication scheme provided by the integration of fuzzy extractors and PUFs is
e�cient and allows for the development of secure protocols. However, a considerable
amount of information entropy leaks with the publication of the helper string. For prac-
tical applications, this information leakage can be made negligible by using a code-o�set
construction over a large metric space with a very dense code (which nearly achieves the
Singleton bound).

In this part of the report, we propose a new scheme for hardware authentication using
PUFs that does not require the publication of a hint in the form of a helper string.

6.1 Polynomial as the secret

By following the model for a PUF described in Section 2.1.2, we start by pointing out the
fact that the strong non-linearity of the function f makes it very di�cult to characterize
the input-output pairs of a function. In other words, there is no simple function whose
behavior mimics the behavior of the PUF function for most values.

If we were to plot the points generated by the PUF function, due to its non-linearity,
we might see something like Figure 6.1a. Our idea is to assign a low degree polynomial
as an authentication key (secret) to each device. We will �rst assume the existence of a
low degree polynomial which passes through a number of expected outputs of the PUF
which is larger than its degree, as exempli�ed by Figure 6.1b. We then will restrict
the domain of the PUF function to only those challenges whose expected output of the
PUF function lies on this low degree curve (Figure 6.1c). Using (2.2) we can say that
for each challenge in this restricted domain, the response from the PUF will lie on this
low degree polynomial with probability at least 1 − ε. We will then be able to analyze
methods for recovering this polynomial when given noisy responses from the PUF. Later,
we will return to our assumptions on the existence of this polynomial, and look for the
probability of �nding such a polynomial.
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Figure 6.1: Three steps to assign a polynomial to a device

6.2 Polynomial Interpolation

Our proposed authentication scheme is as follows. A veri�er provides challenges x from
the restricted domain of the PUF function to the PUF device which computes each
PUF (x). Now the device has a set of points (x,PUF (x)). Techniques for polynomial
interpolation can then be used in order for the device to �nd the coe�cients of the
interpolating polynomial, which can be used to claim its identity. This illustrates the
fact that the secret, in this case the coe�cients of the interpolating polynomial, does not
need to be stored in the device. Instead it is generated at every authentication session.

For this protocol to make sense, the device must be able to �nd the interpolating
polynomial. Therefore, in this section, we will be concerned with the problem of �nding
the polynomial of lowest degree which passes through a set of k points. We are guaranteed
to �nd a unique polynomial of degree at most k−1, and if we do not bound the degree of
the polynomials, an in�nite number of polynomials of higher degrees which pass through
these k points can be found.

We remark that this problem is di�erent from the problem of searching for a polyno-
mial which approximates a given function to a certain level of accuracy. In this case, the
function is known and information about its derivatives can be used to �nd an approxi-
mating polynomial. In our application, we attempt to model the PUF function but have
no information on its derivatives. We therefore use polynomial interpolation instead of
polynomial approximation.

We de�ne the degree of the polynomial to be the highest power of x with a non-zero
coe�cient. We may view p(x) as a map, F→ F via x→ p(x) where x ∈ F. We remark
that the range of p(x) may be less than the co-domain (all of F), which can be seen by
setting p(x) = 0,∀x ∈ F.

We call two polynomials p(x), p′(x) equivalent over F if for all elements of F, the two
polynomials evaluate to the same �eld element.

Lemma 6.1. Over a �nite �eld of size q, a polynomial of degree greater than or equal to
q is equivalent to a polynomial of degree at most q − 1.

Proof. Let p(x) denote the polynomials with deg(p(x)) ≥ q. We then evaluate p(x) at
each element g ∈ F. We thus get q points of the form (g, p(g)). These q points de�ne a
unique polynomial of degree at most q − 1, call it p′(x). Since p(x) = p′(x),∀x ∈ F, we
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say these polynomials are equivalent over F. We can �nd this equivalent polynomial by
taking congruency class mod

∏q−1
i=0 (x− xi) where xi ranges over the �eld elements.

6.3 Lagrange Interpolation

We now examine the interpolation method due to Lagrange. This is the simplest and
most common technique for polynomial interpolation and it will allow us to �nd the
lowest-degree polynomial through a given set of points. This technique assumes unique x
values, which matches our PUF application. We start by setting up a Lagrange coe�cient
for each point. We let

Lj(x) :=

∏
i 6=j(x− xi)∏
i 6=j(xj − xi)

(6.1)

We see that Lj(x) is 0 if x = xi and i 6= j, which can be seen since the term (x−xi) of
the numerator will be 0. If x = xj then this value equates to 1. Therefore, if we multiply
Lj by yj, when x = xj this product will be yj. By repeating this procedure for all j, we
have an interpolating polynomial

Pm(x) :=
m∑
j=0

yjLj(x) (6.2)

Equation (6.2) is a Lagrange Polynomial for the set of m points. We immediately see
the di�culty in using this construct. We now provide a small example of this method.

Example 6.1.
Consider the problem of �nding a polynomial of smallest possible order which passes
through the three points, {(1, 2), (3, 2), (4, 1)} over Z5, the integers mod 5.

L1(x) :=
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
=

(x− 3)(x− 4)

(1− 3)(1− 4)
=
x2 − 7x+ 12

6
=
x2 + 3x+ 2

1

To write L1(x) as an element of Z5[x], we multiply L1(x) by the inverse of 1 which is
1 since 1 ∗ 1 = 1 ≡ 1( (mod 5)). Therefore

L1(x) =
1

1
L1(x) = x2 + 3x+ 2

We now perform a the same procedure to determine L2(x) and L3(x).

L2(x) :=
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
=

(x− 1)(x− 4)

(3− 1)(3− 4)
=
x2 − 5x+ 4

−2
=
x2 + 4

3

Multiplying L2(x) by 2, which is the inverse of 3, we have that

L2(x) =
2

2
L2(x) = 2x2 + 3

We now do the same for L3(x) which corresponds to the point (4, 1).

L3(x) :=
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
=

(x− 1)(x− 3)

(4− 1)(4− 3)
=
x2 − 4x+ 3

3
=
x2 + x+ 3

3
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Therefore

L3(x) =
2

2
L3(x) = 2x2 + 2x+ 1

We now create our interpolating polynomial as shown in Equation (6.2)

P3(x) :=
3∑
j=0

yjLj(x) = 2L1(x) + 2L2(x) + 1L3(x)

P3(x) = (2x2 + x+ 4) + (4x2 + 1) + (2x2 + 2x+ 1) = 3x2 + 3x+ 1

P3(1) = (3 + 3 + 1) = 2 (mod 5)

P3(3) = (27 + 9 + 1) = 2 (mod 5)

P3(4) = (48 + 12 + 1) = 1 (mod 5)

We have that the three points match and hence this P3(x) interpolates the points.
During the construction, we could make sure we were construction the Lj(x) correctly. For
example, we could check L2(x) and make sure L2(1) = 2(1)+3 = 0 , L2(4) = 2(16)+3 = 0
and L2(3) = 2(9) + 3 = 1. This shows the term L2(x) is the only term that contributes
to P3(x) when x = 3, which corresponds to our second point.

6.3.1 Restrictions on Lagrange Interpolation

A major drawback to Lagrange Interpolation is its inability to handle noise. In the
construction, we create polynomials Li which correspond to a speci�c x value. If these
x values are known, as will be the case with our protocol, the errors, or the noise, may
only be present in the y values. There is no built in error-correcting mechanism that will
allow for the detection of an incorrect y value. If there was additional information, such
as the degree of the lowest-degree polynomial that passes through k points, then there is
an obvious procedure that can be used to �nd such a polynomial. For example, suppose
we are looking for an interpolating polynomial for all k points with degree at most k− 2
(extra information). We proceed by selecting all k subsets of size k − 1, and looking for
the lowest degree polynomial that goes through them. Then for each polynomial one can
check how many points it goes through. This procedure becomes tedious and expensive as
the di�erence between the number of points and the degree of the polynomial increases.
This however, motivates the search for algorithms which �nd such a polynomial quickly
given points which may have incorrect y values. We will now present two approaches to
this problem, which we will refer to as polynomial interpolation �with lies�.

6.4 Polynomial interpolation �with lies�

The method provided by Lagrange Interpolation is a straightforward way of obtaining the
lowest degree polynomial that goes through a set of points. However, when we consider
the setting where some of those points are misplaced or, in other words, there is noise in
the data, it can do very little for us.
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When we consider the fact that for one to perform Lagrange Interpolation and �nd
a polynomial of degree at most d, all we need are d+ 1 points of the actual polynomial,
it is intuitive to think that the introduction of some redundancy in the data points could
possibly help us �nd the original polynomial, even in the presence of noise. For example,
if instead of only d + 1 points we have d + 1 + r points, then, even if there are up to
r misplaced data points, we should still be able to �nd a subset of d + 1 correct points
that allow us to recover the original polynomial via Lagrange Interpolation. Nonetheless,
this method requires us to check at most

(
d+1+r
d+1

)
possible sets of d + 1 points. Other

methods must be introduced in order to allow for a more e�cient way to �nd the actual
polynomial.

Interpolating with the aid of the Discrete Fourier Transform

From the comparison between the problem of recovering a polynomial when the data
points have some noise and the problem of transmitting information over a noisy channel
comes the idea of applying solutions from the �eld of communications to polynomial
recovery.

In a communication system, a common way to �prepare� the information for trans-
mission and for the addition of noise is to prede�ne a transmission bandwidth. This way,
the receiver �knows� where to look for the information. Similarly, for the polynomial
recovery problem, we will only send nonzero information for a �nite set of frequencies, or
a bandwidth.

More speci�cally, if we have a polynomial p(x) of degree k < q − 1 over GF (q), we
will evaluate this polynomial at n = q− 1 �consecutive� points of GF (q), α0, α1, ..., αn−1,
where α is any primitive element of GF (q). Once each Vi = αi is transmitted, with some
noise added to it, the receiver may regard it as the coe�cients of another polynomial
V (x), of degree n − 1. This is equivalent to the Discrete Fourier Transform on a �nite
�eld (see Section 3.4.2).

The Discrete Fourier Transform when applied to �nite �elds demonstrates the duality
between the points on a polynomial and its coe�cients. Simply put, the coe�cients of our
initial polynomial p(x), when multiplied by n will yield the values of V (αi), except that in
reverse order. Since k < q− 1, the last few coe�cients of p(x), namely vk+1, vk+2, ..., vn−1

can all be regarded as 0. This yields an important result: if p(x) has degree at most
k, then V (αi) = 0 if i ≤ n − k. This can be interpreted as having a �nite bandwidth
containing information. If we have nonzero data at those points, we must be dealing with
noise. This can be better understood with the following example.
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Example 6.2.
Consider the polynomial p(x) = 3 + 2x + x2 over Z7. By picking α = 3 (since |3| = 6),
we calculate the each Vi = p(αi), as shown below in Table 6.4.

αi 30 = 1 31 = 3 32 = 2 33 = 6 34 = 4 35 = 5

Vi = p(αi) 6 4 4 2 6 3

This allows us to form the polynomial V (x) = 6 + 4x + 4x2 + 2x3 + 6x4 + 3x5. We
now evaluate it at αi, for α = 1, 2, ..., n:

αi 31 = 3 32 = 2 33 = 6 34 = 4 35 = 2 36 = 1

V (αi) 0 0 0 6 5 4

Notice that 6 · p(x) = 4 + 5x + 6x2 + 0x3 + 0x4 + 0x5, which exempli�es the duality
between values of the polynomial when evaluated at certain points and its coe�cients.

In general, if a polynomial p(x) of degree at most k is evaluated at αi, for i =
0, 1, 2, ..., n−1, and this information is transmitted via a noisy channel, one can build the
polynomial V (x) and evaluate it at αi, for i = 1, 2, ..., n, and check whether V (αi) = 0 for
i = 1, 2, ..., n− k. In this case, there are two possibilities: either the values of p(x) were
correctly transmitted or enough points were incorrectly transmitted to make it look like
another polynomials of degree k was transmitted. One can easily show that the latter
case is only possible if n − k or more of the points were incorrectly transmitted, and in
general, we will assume the former case.

If V (αi) 6= 0 for some i, 1 ≤ i ≤ n− k, it is guaranteed that some of the points were
incorrectly transmitted. In this case, we simply assume that the received vector was:

V ′(x) = V (x) + e(x) (6.3)

where e(x) = e0 + e1x + ... + en−1x
n−1 is the error vector. Now, if we evaluate this

received polynomial at each αi, 1 ≤ i ≤ n− k, we use the fact that V (αi) = 0 to obtain
the following equations:

V ′(α) = e0 + e1α + ...+ en−1α
n−1

V ′(α2) = e0 + e1α
2 + ...+ en−1α

2(n−1)

...

V ′(αn−k) = e0 + e1α
3 + ...+ en−1α

3(n−1)

And we need to solve the following system:


1 α α2 α3 · · · αn−1

1 α2 α4 α6 · · · α2(n−1)

1 α3 α6 α9 · · · α3(n−1)

...
. . .

...
1 αn−k α2(n−k) α3(n−k) · · · α(n−k)(n−1)




e0
e1
...

en−1

 =


V (α)
V (α2)

...
V (αn−k)

 (6.4)
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This systems has a large number of solutions, and therefore is not helpful. By assuming
that we only had up to n−k errors, we can then simplify the matrix in Equation (6.4) to
a (n− k)× (n− k) matrix, which would yield a unique solution. However, for any choice
of n − k positions for the errors we would obtain a (possibly) di�erent solution, giving
us a total of

(
n

n− k

)
=
(
n
k

)
solutions. If we assume that we had exactly t errors, there will

be
(

n− t
n− k − t

)
=
(
n− t
k

)
possible combinations of n − k error positions that will give us the

right solution. In [16], it is shown that a �wrong� solution to this system can be given by
at most

(
t+k−1
k

)
choices of the n− k error positions. Therefore, in order for a �majority�

argument to work here, we must have
(
t+k−1
k

)
<
(
n−t
k

)
which implies that we must have

t+ k − 1 < n− t⇒ t <
n− k + 1

2
.

Therefore, we can recover our original polynomial if we have up to bn−k
2
c wrong data

points. In the next section, we consider another method for performing polynomial inter-
polation with lies: Sudan's list-decoding algorithm. This new method has the advantage
that it does not require the number of errors to be at most bn−k

2
c.

6.5 Sudan's algorithm

In this section we consider Sudan's randomized algorithm for constructing a list of all
univariate polynomials in the variable x of degree at most δ over F which agree with a
set of n points from F2 in at least τ places. Moreover, if certain constraints are met, this
algorithm runs in polynomial time in n. We �rst de�ne and describe the necessary input
to the algorithm. We then provide the algorithm, followed by more detailed analysis. We
follow the approach in [17] closely.

Weighted degree of a polynomial [17]

For weights wx, wy ∈ Z+, the (wx, wy) weighted degree of a monomial qijx
iyj is iwx+jwy.

The (wx, wy) weighted degree of a polynomial Q(x, y) =
∑

ij qijx
iyj is the maximum,

over the monomials with non, zero coe�cients, of the (wx, wy) weighted degree of the
monomial.

Example 6.3.
Consider the monomial

M(x, y) := 3x2y4

The (1, 3) weighted degree of this monomial is 2 · 1 + 3 · 4 = 14.
If we knew y corresponded to the polynomial x2 +4x+1 then we would most likely be

interested in the (1, 2) weighted degree ofM(x, y) since y is a degree 2 function of x. If we
knew or were searching for a degree at most ζ polynomial, then we would be interested
in the (1, ζ) weighted degree. The (1, 2) weighted degree of M(x, y) is 2 · 1 + 4 · 2 = 10.
The (1, 2) weighted degree of the polynomial

p(x, y) := xy2 + x6 + 3
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is equal to

max{
(
1 · 1 + 2 · 2

)
,
(
6 · 1 + 0 · 2

)
,
(
0 · 1 + 0 · 2

)
} = max

{
5, 6, 0

}
= 6

Input points

The algorithm takes as inputs n points from F2. De�ne the set of these points as

A :=
{

(x1, y1), (x2, y2), ..., (xn, yn)
}

The algorithm �nds all degree δ or less polynomials which agree with A in at least τ
places. In other words, it �nds all polynomials p(x) such that∣∣∣∣∣{(xi, yi) : f(xi) = yi and (xi, yi) ∈ A

}∣∣∣∣∣ ≥ τ

For the particular purpose of our algorithm, we do not allow repeated xi. We remark
that this restriction is also the case if this algorithm is used for Reed Solomon decoding.

Example 6.4.
Let F := Z7 be equal to the integers mod 7. Let n = 3 and let A := {(1, 3), (3, 2), (4, 5)}.
Since there are no repeated x values, A is a valid point set. We do not allow A :=
{(1, 2), (1, 3), (4, 5)} since there are two points {(1, 2), (1, 3)} with the same x value.

6.5.1 Sudan's algorithm procedure [17]

Inputs:

n, δ, τ,
{

(x1, y1), ..., (xn, yn)
}

Parameters:

Parameters l, m to be set later

Find Q(x, y):

Find any function Q : F2 → F satisfying:

Q(x, y) has (1, δ) weighted degree at most m+ lδ
∀i ∈ [n],Q(xi, yi) = 0
Q is not identically zero.

}
(6.5)

Factor Q(x, y):

Factor the polynomial Q(x, y) into irreducible factors.
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Output polynomials:

Output all the polynomials f such that (y − f(x)) is a factor of Q and f(xi) = yi for at
least τ values of i from [n]

We remark that Sudan's algorithm does not work on any general code, as the necessary
conditions will not be met. We have the asymptotic condition τ ≥

√
2nd, which generally

means this algorithm works better for low rate codes. In general this means that if the
algorithm is to return a low degree polynomial, it will have to agree with the initial points
for a large number of x values. We now proceed to analyze the algorithm, and later we
will analyze our implementation in maple.

6.5.2 The polynomial Q(x, y)

Q(x, y) is composed of terms of the form qkjx
kyj. More speci�cally

Q(x, y) :=
l∑

j=0

m+(l−j)d∑
k=0

qkjx
kyj (6.6)

We remark that l is the maximum power of y, and that m+ lδ is the maximum power of
x.

Number of coe�cients

In [17], it is claimed that the number of coe�cients of Q(x, y) is (m+ 1)(l + 1) + δ
(
l+1
2

)
Proof.

l∑
j=0

m+(l−j)d∑
k=0

qkjx
kyj =

l∑
j=0

m∑
k=0

qkjx
kyj +

l∑
j=0

m+(l−j)d∑
k=m+1

qkjx
kyj (6.7)

The �rst summation on the right hand side contributes (m + 1)(δ + 1) to the number
of coe�cients. For the second summation on the right hand side, we use a change of
variables letting r = k−m. When k = m+ 1 we have that r = 1. When k = m+ (l− j)δ
we have that r = (l − j)δ. Therefore we can right the second summation as

l∑
j=0

(l−j)d∑
k=1

q(r+m)jx
r+myj

We can pull out the δ from the bound on the inner summation and then multiply the
resulting number of coe�cients by δ. We are only interested in the number of coe�cients,
and not the subscripts of q. When looking at the number of coe�cients we have l + (l−
1)+(l−2)+ ...+(l− (l−1)+1)+(l− l+1) which is the sum of the �rst l numbers, which
is
(
l+1
2

)
. We multiply this number by δ to get the total contribution from the second

summation of the left hand side of (6.7). By summing the contributions from the �rst
and second summations of the right hand side of (6.7), we have the claimed number of
coe�cients, (m+ 1)(l + 1) + δ

(
l+1
2

)
.
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Claim 6.1. If a function Q : F2 → F satisfying (6.5) exists, the one can be found in
time poly(n).

Proof. [17] Consider the coe�cient matrix with columns corresponding to the terms of Q
de�ned above, and the rows corresponding to the input points from F2. We wish to �nd
the coe�cients qkj which satisfyQ(x, y) = 0 ∀i ∈ [n]. This is solving a linear homogeneous
equation which can be done in polynomial time with row reducing the coe�cient matrix.
We remark that we are not interested in the trivial solution, all qkj = 0 since then Q(x, y)
would be identically zero.

Claim 6.2. If Q(x, y) is a function satisfying (6.5) and f(x) is a polynomial which
agrees with A in at least τ places and τ > m+ lδ then (y − f(x)) divides Q(x, y).

Proof. As given in [17], we argue Q(x, y) has weighted degree at most m + lδ. This is
guaranteed through the de�nition of Q(x, y). We then consider Q(x, y) to be Q(x, f(x)).
Since t > m + δ, Q(x, f(x)) has more zeros (t) than its degree, and must be identically
zero. We then consider Q(x, y) to be a polynomial in y with coe�cients from F [x]. By
the polynomial remainder theorem, we have that if Qx(ξ) = 0 then (y−ξ)) divides Qx(y).
We then replace ξ with f(x).

Theorem 6.1. [17] The algorithm given will run in time polynomial in n given that

τ ≥ δ

⌈√
2(n+ 1)

δ

⌉
−
⌊
δ

2

⌋
Proof. See [17].

Setting m and l

To ful�ll the algorithm requirements, the following parameters m and l can be set to (6.8)
and (6.9) respectively (see [17]). (6.10) is used in the proof of showing Q(x, y) has more
zeros than its degree and must be identically zero. (6.11) is used to guarantee polyno-
mial implementation. Recall that with the algorithm Berlekamp and Welch, polynomial
implementation is guaranteed if τ ≥ n+δ

2
, which is the error correction bound of the Reed

Solomon codes. This algorithm only returns at most one result. The asymptotic behavior
of (6.11) is

√
2δn but has since been improved to

√
δn (see [18]).

m :=

⌈
δ

2

⌉
− 1 (6.8)

l :=

⌈√
2(n+ 1)

δ

⌉
− 1 (6.9)

τ > m+ lδ (6.10)

τ ≥ δ

⌈√
2(n+ 1)

δ

⌉
−
⌊
δ

2

⌋
(6.11)
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Example 6.5.
For example, if we are looking for a degree at most 10 polynomial, we have δ := 10. Let
us assume that we have 30 := n points. Then

l :=

⌈√
2(30 + 1)

10

⌉
− 1 = 2

m :=

⌈
10

2

⌉
− 1 = 4

For restriction (6.10) we need τ > 4 + 2 · 10 which means we need at least 25 points out
of 30 to match. For (6.11) we also need τ ≥ 25. This provides a brief example in the
strict requirements upon the inputs, which limits its practicability. The algorithm is best
suited for when δ

n
is small.

We now slightly modify the parameters and compare the amount of errors which
these new parameters can tolerate. We let 19 := n points, and we are searching for
a degree at most 10 := δ polynomial, we have l = 1 and m = 4 and hence we need
t ≥ max(4 + 1 · 10, 10 · 2 − 5) = 15. Therefore, in order to be guaranteed a solution
in polynomial time from Sudan's Algorithm, there needs to exists a degree at most 10
polynomial that agrees with the 19 points in at least 15 places.

6.5.3 Polynomially many solutions

In order for Sudan's algorithm to be implemented in polynomial time, the number of solu-

tions which it outputs needs to be polynomially bounded. In [17], if τ
n
≥
(√

2 + δ
4n

√
δ
n

)
−

δ
2n

then the number of polynomial returned by Sudan's algorithm is at most b τ
δ

+ 1
2
−√

( τ
δ

+ 1
2
)2 − 2n

δ
c ≤ 2n

τ+ δ
2

We now quickly look at the more general problem of the number of polynomials which
are within a certain distance of an element in the metric space. We will follow [18]. For
every c, we let ec(n, k, d, q) be a function such that for every (n, k)q code C of distance
dis (C) = d, and for every received word r, there are at most (qn)c codewords in the
Hamming ball of radius e around r.

The case c = 0 corresponds to only having one codeword in the Hamming ball of some
radius e around any element. For c = 0 this is just the error correcting radius of the code
and we let e = d−1

c
.

We now examine the case when c = 2.

Theorem 6.2. [18] Let n, k, d, q, e satisfy d ≤ n′ and e < (1 −
√

1− d
n′

)n′ where n′ =

(1 − 1
q
)n. Then for every (n, k)q code C with dis (C) ≥ d and for every received word

r, there are at most qn2 codewords within a Hamming distance e from r. This is a
generalization of the Johnson bound.

6.5.4 Factoring Polynomials

In this section we will present the �rst few steps of Lenstra's algorithm (see [11]) to factor
bivariate polynomials over �nite �elds. We will look at (x+2y)(x+3) over Z5. We de�ne
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f = x2 + 2xy + 3x + 6y ∈ F[x, y], and notice that it is square free. We let δXf and δY f
denote the maximum degree of f in X and Y respectively. We have that δXf = 2 and
δY f = 1.

Finding (Y − s)

We now need to �nd a suitable s ∈ Fq such that f mod (Y − s) = f(X, s) ∈ Fq[x]
remains square-free. We write f as (2x+ 6)y+ (x2 + 3x), which can be done by collecting
the coe�cients of the varying degrees of y. We now wish to �nd an s ∈ Fq such that
when (Y − s) divides f it remains square-free.

We now take s = 1 and divide (Y − 1) into f . The result is x2 + x + 4. We see that
the gcd(x2 + x+ 4, 2x+ 1) 6= 1 and it turns out that we can write x2 + x+ 4 = (x+ 3)2,
meaning the remainder is not square-free. We now take s = 2 and divide (Y − 2) into f .
The remainder is x2 + 4x + 3, with derivative 2x + 4. Since their gcd is 1, we have that
for s = 2 the remainder f mod (Y − 2) remains square free.

Next we would use the Berlekamp-Hensel algorithm to determine an irreducible factor
h mod (Y − 2)k of f mod (Y − s)k in Fq [X,Y ]

(Y−2)k
, for k su�ciently large.

We then let m be an integer with δXh ≤ m < δXf which in our case is δXh ≤ m < 2.
The lattice L ⊂ Fq[Y ]m spanned by the linearly independent vectors b1, b2, ..., bm over
Fq[Y ] is de�ned as

L =
m∑
i=1

Fq[Y ]bi = {
3∑
i=1

ribi : ri ∈ Fq[Y ]}

We then need to permute the rows of B in such a way that

|b′i| ≤ |b′j| for 1 ≤ i < j ≤ m (6.12)

|b′ii| ≥ |b′ij| for 1 ≤ i < j ≤ m (6.13)

|b′ii| > |b′ij| for 1 ≤ j < i ≤ m (6.14)

(6.12) states that in the matrix B, as the rows increase, the maximum degree of Y can
not decrease. (6.13) states that the diagonal elements have a higher degree of Y than all
elements in their respective rows which are in columns i+ 1 to m. (6.14) states that the
diagonal elements have a strictly higher degree than any other terms in their respective
rows from columns 1 up to i− 1.

In our case the original quotient 2x+ 1 divides f since (2x+ 1)(y + 3x) = 2xy + y +
6x2 + 3x = x2 + 2xy + 3x+ y.

Using this algorithm, Q(x, y) can be factored over a �nite �eld with pm elements in
O(δ6l2 + (δ3 + l3)pm) arithmetic operations.

6.5.5 Implementing Sudan's Algorithm

We decided to implement Sudan's Algorithm in maple (see Appendix C) to take ad-
vantage of its rich libraries. We will now describe the steps used in implementing the
algorithm. The Appendix contains the completed code.

Generating Q(x, y) was done by creating a double summation with m, l, δ speci�ed.
We then solved for the coe�cients of the terms of Q(x, y) by generating a coe�cient
matrix whose rows corresponded to the n points, and whose columns corresponded to
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the terms of Q(x, y). This matrix was then reduced over F with the inert form of Gauss
Jordan reduction. A solution was then generated using linsolve.

This solution was either the trivial solution (if n < m + lδ), a non-trivial solution,
or a non-trivial solution involving free variables. The implementation would generate a
basis for the solution space by iteratively setting each free variable to 1 and all others to
0. The resulting Q(x, y) was factored corresponding to the solution found for each free
variable, and all polynomials found were reported. This process was not needed, but was
originally implemented as assurance that the choice of assigning values to free variables
with the restriction that at least one was non zero, was irrelevant. We note that the
algorithm only requires one non zero solution.

Factoring of Q(x, y) was completed using the built in command Factors(P ), which
returns a list of all the factors of P . Since the coe�cient matrix was reduced over F,
the return of Factors was always in F [x, y]. For each factor, we searched for the form
(cy + g(x)). If such an g(x) was found, we would �nd the corresponding f(x) such that
y − f(x) = cy + g(x). Since c is assumed to be non-zero, it has a multiplicative inverse
in F.

Then, for each such f(x), we evaluate f(x) at each xi from the set of n points, and
compare f(xi) to yi. If the number of matches was at least τ , f(x) would be a valid
polynomial and it would be returned. In practice, we found that if such a polynomial
was found, it would generally agree with the n points in a large number of values.

Generating Random Points

To generate the points, we �rst created a procedure to generate a list A of unique x values
from the integers mod a number. We then passed these points into a second procedure
with a polynomial m(x) and a probability p. For each x ∈ A, the second procedure set
yi = m(xi) with probability p, and sets yi to a random �eld element with probability
1− p. The result of this random assignment may be equivalent to m(xi). The procedure
displays the number of points generated which agree with m(x). This is used as a check
to verify that the algorithm returns m(x) if the number of agreed upon points meets the
requirements of the algorithm. In other words, if setting τ to the number of points which
agree with m(xi) satis�es the restriction of Sudan's algorithm, then we can easily check
to see the algorithm found m(x).

Example 6.6.
In this example we will be describing an execution of our maple implementation of
Sudan's algorithm. We will be working over Z11. The x values of the points corresponded
to the eleven �eld elements in Z11. We set our polynomialm(x) = x2+2x+4 and assigned
points to this polynomial with probability 0.70. There were two points generated which
did not fall onto m(x). They were {(5, 1), (8, 1)} which should have been {(5, 6), (8, 7)}.
We call this set of 11 points A.

We let δ = 6 which means we are searching for all polynomials whose degree is at

most six. We set l = d
√

2(12)
6
e − 1 = 1 and we set m = d6

2
e − 1 = 2. Our requirement on

τ is that is must be greater than 2 + 1 · 6 = 8 by (6.9) and that it be at least 6 · 2− 6
2

= 9
by (6.10). This means that for Sudan's algorithm to �nd a polynomial for any nontrivial
Q(x, y) there needs to exist a polynomial who agrees with our set of 11 points in at least
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9 places. Since there were only two points not lying on m(x), we expect to �nd m(x).
We �nd one solution to Q(x, y) by reducing the coe�cient matrix and setting the �rst

free variable to 1 and the rest to 0. We have

Q(x, y) = 10x6 + 2x5 + x4y + 4x4 + 10x3y + 5x3 + 6x2y + 8xy2 + xy (6.15)

We now factor Q(x, y) and we are returned three factors;

x, (x2 + 2x+ 10y + 4), (x3 + 7x2 + 8y)

The �rst factor (x) is not linear in y and so we only look at the other two factors.
(x2 + 2x+ 10y+ 4) can be written as 10y− (x2 + 2x+ 4). We now take −x2− 2x− 4 and
multiply it by the inverse of 10 mod 11 which is 10. We therefore have f1(x) = −10x2−
20x−40 = x2 +2x+4. One can verify that in fact (x2 +2x+10y+4) = y− (x2 +2x+4).
We repeat the same procedure for the third factor and multiply −x3 − 7x2 by 7 which is
the inverse of 8 mod 11. We therefore have f2(x) = −7x3 − 49x2 = 4x3 + 6x2.

We now evaluate f1(x) at the eleven elements of Z11 and see that it matches the
original points, A in 9 positions. The two which did not match are the two points which
did not lie on m(x). We return f1(x) since we have that τ = 9. We evaluate f2(x) at the
eleven elements of Z11 and see that it matches A in 4 positions and so we do not return
f2(x).

We note that in fact we were returned our original polynomial m(x). The algorithm
would have returned more than one polynomial if there was another polynomial of degree
at most 6 which agreed with A in at least 9 places. To verify this claim, we ran a brute
force search of all polynomials over Z11 of degree at most 6 who agreed with A in at least
9 places.
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Chapter 7

Protocol

In order to analyze and improve the security of this new approach to hardware authen-
tication, we describe here the iterative steps in the design of a hardware authentication
protocol using PUFs. For each iteration, we will describe a protocol, explain a possible
attack and then proceed to the next iteration trying to prevent it.

7.1 Protocol Assumptions

The purpose of our protocol is to authenticate a device. To accomplish this, we need
the device to contain a secret, whether stored or generated, which can be veri�ed by a
trusted authority as being the secret belonging to that particular device. One way is to
store this secret either in hardware or software, and then when requested, read the value
of this secret. Another way, and the one which we will be using, is to use the physical
properties of the device to create a secret which is device-speci�c. This secret should be
protected against active attacks, meaning that if an adversary attempts to look inside of
the device where the secret is generated, the physical properties of the device will change
and the secret will become unrecoverable.

The entropy for our protocol is to come from the physical device, the PUF func-
tion, instead of from software or from prede�ned storage. The inherent problem with
this source of entropy is that it is a�ected by noise and other factors such as tempera-
ture, pressure, and electromagnetic interference. This causes errors to propagate when
compared with the expected value of PUF (x) for a particular challenge x. Also, the
distribution of the PUF responses is not assumed to be uniform, and hence a particular
outcome to a particular challenge is more likely than other outcomes. This becomes a
problem as the key that is generated through the PUF responses is assumed to come
from a uniform distribution when it is to be used as a key in a cryptographic algorithm
or scheme. Therefore, we seek a way to take a noisy entropy source, correct the noise
and map it to a uniform distribution. In [4], this is accomplished with fuzzy extractors.
We notice that the use of fuzzy extractors does not increase the amount of entropy that
is gained from the PUF, but allows for a more uniform distribution.

We will make the assumption concerning challenge-response schemes that the proba-
bility of a replay attack is minimal. This means that if the response is di�erent depending
upon the particular challenge, we do not consider it to be a successful attack if an outside
party knows the value of the response for a speci�c set of challenges. We assume the set
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of possible challenges to be very large, and thus, the probability that an adversary can
successfully respond to several challenges chosen at random can be made exponentially
small. Our protocol will not guarantee that an honest device (prover) will be able to
prove their identity when given a particular set of challenge vectors. This is due to the
inherent nature of the PUF which is a�ected by the environment. We will however be able
to bound the probability that an honest prover will be able to authenticate themselves.
For example, we may assume the PUF function has an error rate of p when compared
with the expected value of the PUF. We can then �nd the probability that the device
will get at least m correct responses out of n challenge vectors.

The protocol involves two parties, a user or veri�er (V ) and a device or prover (D).
An honest user knows the secret of the device and asks the device to authenticate itself,
to prove the device is the particular device it claims to be. The device does not assume
an honest veri�er.

7.2 Protocol design iterations

We now proceed iteratively through creating a protocol based on our mathematical as-
sumptions of a PUF function. Each iterative step will aim to solve a possible attack in
the previous protocol.

7.2.1 Initial Protocol

A �rst naive implementation of an authentication protocol built upon a PUF is the
following. The veri�er sends a set of challenges to the device. The device calculates the
output of the PUF function on each of these challenges, and returns these results to the
veri�er. The veri�er then checks if the number of incorrect responses is below some error
threshold set for the particular application. If it is, then the device is authenticated. If
it is not, the device is not authenticated.

One advantage to this scheme is that it is e�cient. The device simply runs its PUF
function on the set of challenges and returns the output of the PUF function. If the
challenges are sent one at a time over the channel, the veri�er can stop sending challenges
once the device answers incorrectly to a threshold number of questions.

An inherent problem is that an adversary can model the behavior of the PUF. By
sending each challenge multiple times, an adversary can obtain the expected output for
several challenges. If we assume that the adversary knows what kind of PUF is used
in the device, and how to mathematically model it, it is possible to obtain a general
expression for the PUF function based on a certain number of challenge-response pairs
(for an example, see [6]).

7.2.2 Hashed output

To �x the problem of an adversary modeling the behavior of the PUF, we will use a
one-way hash function (see [20]). Assume the challenges are sent k at a time, and the
responses are returned together. We apply the hash function to the responses to the
challenges. When an adversary views the hashed returned value, it is assumed to be
computationally infeasible to �nd the value and hence the secret which was hashed.
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An advantage to this protocol is that the response from the device cannot be used to
model the PUF function as this response is a hashed value.

This protocol does not tolerate noise in the PUF responses. The hashed value of the
expected PUF response and the hashed value of the response with a single noisy response
may be far away from one another. To account for these errors, the user would need to
check the hashed value of all responses that have up to the error tolerance number of
errors. In the Hamming metric, if the response is of length ν, and the error tolerance
level is β, then we need to check

∑β
i=0

(
ν
i

)
possible hash values.

7.2.3 Sudan's algorithm for recovering from noise

To correct the noise in the PUF responses, we will use Sudan's list decoding algorithm to
�nd all polynomials of a certain bounded degree which pass through a suitable number
of the PUF responses. Prior to the deployment of the device, the device will be assigned
a low degree polynomial which passes through a large number of the device's expected
outputs relative to the polynomials degree (see Section 6.1). The set of possible challenges
will be restricted to those whose expected output lies on this low degree polynomial. The
authenticating key of the device will be the coe�cients of its polynomial. These will be
found by running Sudan's algorithm on the challenge-response pairs {(ci, ri)} of the PUF
function. For each polynomial that is found, its coe�cients will be hashed and the set of
hashed coe�cients will be returned. The device is authenticated if at least one of these
hashed values is equal to the hash of the devices polynomial. If there is not a match, the
device is not authenticated. Depending upon the speci�c parameters of this protocol, i.e.
number of challenges, maximum degree of the polynomial, a bound can be put on the
number of possible hashed responses returned by the device.

One of the advantages of this protocol is that it corrects the noise that is inherent
in the responses. Sudan's algorithm allows for the polynomial to be found even if a
large number of responses from the device do not lie on the polynomial. By hashing the
coe�cients, an adversary is not able to see the polynomial.

Although the coe�cients of all the polynomials Sudan's algorithm returns are hashed,
if a device is authenticated on a particular set of challenges then an adversary who
views the communication between the veri�er and the device knows the hash of the
key polynomial is one of the returned hashed values. The adversary can simply return
the same set of hashed values for any challenge and be authenticated, even though this
adversary cannot generate the polynomial given only the challenges.

7.2.4 Challenge-dependent hashed coe�cients

We now slightly modify the previous protocol. Each of the hashed values which are
returned from the device now correspond to hashing the coe�cients of the polynomial
found by Sudan's algorithm appended with the value of some function fc evaluated on
the set of received challenges ξ.

We assume a large range of values for fc. Therefore, even if an adversary knows the
hash of the coe�cients appended with fc(ξ1) for some set of challenges ξ1, the probability
that another set of challenges ξ2, is such that fc(ξ1) = fc(ξ2) is considered negligible. This
can be formalized using the assumption on replay attacks. We do not investigate such
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a function fc but provide evidence towards its existence. If the challenges are elements
in {0, 1}`, then fc can be the sum of each position mod 2. For example, if ` = 3, given
the challenges {(0, 1, 1), (1, 1, 1), (0, 1, 0), (1, 0, 0)}, fc = (010). We see that the range of
fc has size 2` if we do not assume we are working in a restricted domain.

We now look at the case where an adversary knows the set of challenges ξ1 and the
correct hashed value of the coe�cients appended with fc(ξ1). We assume that only one
output is returned for each set of challenges sent to the device. Assuming the challenges
are selected uniformly at random, an adversary would be guaranteed to return the correct
hashed value with probability 1

8
, exactly when fc on a new set of challenges ξ2 is the same

as fc(ξ1). If fc(ξ1) 6= fc(ξ2), the adversary will have the probability of being authenticated
depending upon the size of the range of the hash function.

This is our �nal protocol for hardware authentication based on PUFs. We will now
proceed to analyze its feasibility.

7.3 Existence of low-degree polynomial

Our cryptographic protocol for PUFs, described in Section 6.1, relies on the fact that
we can �nd a set of points of the form (xi,PUF (xi)), which all fall on a low degree
polynomial. This polynomial will then be used as a cryptographic key, or an ID for the
device.

In this sense, the question of whether a low degree curve can be found on a set of
(xi,PUF (xi)) points becomes fundamental for the plausibility of our method. Clearly,
given n of those points, we can �nd a polynomial of degree at most n− 1 going through
all of them. However, for degree d polynomials, where d < n− 1 nothing assures us that
we can �nd one that goes through more than d+1 points. Therefore, we will now analyze
how likely it is that such polynomial in fact exist.

In order to make the problem approachable, we will assume a uniform distribution of
the outputs of the PUF over F. In this section, we are mainly interested in solving the
following problem:

Question 1. Given a set of n random points in F2, with what probability can we �nd
a polynomial p(x) : F → F of degree at most d that goes through k of these points, for
k > d?

We approach this question by �rst considering a much simpler case.

7.3.1 The particular case of a zero-degree polynomial

We start by considering the case when the degree of the polynomial p(x) is 0. In other
words, we consider the case where we try to �nd a horizontal line that goes through at
least k of our n points. Therefore, we look for the probability of having, among our n
points, at least k with the same y-coordinate.

Question 2. Given a set of n random points in F2, what is the probability that we can
�nd at least k of those points with the same y-coordinate?
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If we consider a speci�c yi = b, then the probability of having at least k of our
randomly chosen points of the form (xi, b) is simply given by the binomial probability
below, where q = |F|:

n∑
i=k

(
n
i

)(
1

q

)i(
q − 1

q

)n−i
(7.1)

Now, in order to �nd this probability when a single yi is not speci�ed, we cannot just
multiply the above expression by the �eld size q, because we would be re-counting cases
in which there is more than one set of at least k elements with the same y-coordinates.
However, this only occurs when k < n

2
. To eliminate the overcounting we apply an

inclusion-exclusion principle, removing the cases where at least 2 sets are found, and
then adding the cases where at least 3 sets are found, and so on. For example, the
probability of having one subset with at least k points of the form (xi, b) and another
subset of at least k points of the form (xi, c), where b 6= c, is given by:

n−k∑
i=k

n−i∑
j=k

(
n
i

)(
n− i
j

)(
1

q

)i+j (
q − 1

q

)n−i−j

Since there are

(
q
2

)
possible choices for b and c we still need to multiply this quantity

by

(
q
2

)
. By generalizing this idea, we can apply the inclusion-exclusion principle and

obtain the answer to question 2:

P =

(
q
1

) n∑
i=k

(
n
i

)(
1

q

)i(
q − 1

q

)n−i
−
(
q
2

) n−k∑
i=k

(
n
i

) n−i∑
j=k

(
n− i
j

)(
1

q

)i+j (
q − 2

q

)n−i−j
+ ...

=

bn
k
c∑

r=0

(−1)r
(

q
r + 1

)n−rk∑
i1=k

(
n
i

)n−i1−(r−1)k∑
i2=k

(
n− i1
i2

)
...

n−
r−1∑
j=1

ij∑
ir+1=k

n− r−1∑
j=1

ij

ir+1

(q − (r + 1))
n−

r−1∑
j=1

ij

qn

(7.2)

7.3.2 Back to the original problem

Trying to approach the original problem, we observe the fact that a set of d+ 1 di�erent
points (with no common x coordinate) uniquely de�ne a polynomial of degree at most
d. Since we are looking for a polynomial of degree at most d going through a set of k
or more of our n points, we know that, if it exists, it will be the polynomial uniquely
determined by all subsets of d+ 1 points that are in the set of k or more points through
which the polynomial passes.
Now let's consider a single set of d + 1 points. The unique polynomial p(x) of degree at
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most d that it determines has at least d+ 1 matches with our set of n points. So we look
for the probability that it has at least another k − (d + 1) matches with our remaining
n− (d+ 1) points. In order to calculate this probability, we observe that for each of our
remaining points (xji , yji) for i = 1, 2, ..., n − (d + 1), we can evaluate p(xji) and check
whether yji = p(xji). Since yji was selected at random, this happens with probability 1

p
.

Therefore, the probability that p(x) passes through at least k of our points is given by:

P =

n−(d+1)∑
i=k−(d+1)

(
n− (d+ 1)

i

)(
1

q

)i(
q − 1

q

)n−(d+1)−i

The next logical step in trying to compute the actual probability of Question 1 would
be to consider all possible subsets of d + 1 points out of our n points. However, the
probability when calculated for each new set of d + 1 points is strongly dependent on
previous ones, and therefore it becomes very di�cult to estimate the probability this
way.

7.3.3 Coding-theory techniques to estimate probability

We now consider an alternative approach to the problem of �nding the probability of
Question 1. In order to do that, we de�ne a metric space P containing all the polynomials
in F[x] with degree less than q. This is not trivial, since de�ning a metric for polynomials
is not very natural. We start by noticing the following fact, stated as a lemma:

Lemma 7.1. There is a one-to-one relationship between the polynomials in F[x] of degree
less than q and all possible combinations of q points of the form (x, y) ∈ F2 with unique
x-coordinates, where q = |F|.

Proof. All polynomials over F with degree less than q have exactly q coe�cients, if we
consider 0 a coe�cient. Since each coe�cient can assume q values, we have qq such poly-
nomials. By counting the number of possible sets of q points with unique x-coordinates,
we also �nd qq, since for each of the q possible x-coordinates there are q possible y-
coordinates.

Since every set of q points with di�erent x-coordinates uniquely determines a polyno-
mial of degree at most q−1 (q coe�cients) we conclude that we must have a bijection.

This one-to-one relationship allows us to represent each element p of the metric space
P by the q-tuple formed by evaluating p(x) at each of the q possible values of x. This
conversion is basically a Discrete Fourier transform, described in Section 3.4.2.

Now, we can have our metric naturally de�ned as the Hamming metric, where the
distance between two polynomials p and s is de�ned as dis (p, s) := |{x ∈ F | p(x) 6= s(x)}|.

We now consider D, the subspace of P that contains all polynomials of degree at most
d. Clearly, there are qd+1 such polynomials, and we have the following claim:

Claim 7.1. The minimum distance of D is q − d.
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Proof. We simply refer to Lemma A.2 to state the fact that two polynomials of degree d
can agree on at most d points. Therefore, ∀p, s ∈ P , we must have

dis (p, s) = |{x ∈ F | p(x) 6= s(x)}| = q − |{x ∈ F | p(x) = s(x)}| ≥ q − d

The probability from Question 1

To understand the probability we are looking for in question 1 in this metric space
we slightly change the problem to the case where n = q. In the context of PUFs,
this is a reasonable assumption, since prior to the deployment of the device, one can
experimentally compute PUF (x), for all x ∈ F. We notice that we are basically looking
for the probability that a random set of q points with unique x-coordinates (an element
of P) will agree with at least k of the points of a polynomial of degree d. This is the
same as looking for the probability that a random element of P will be within a distance
of q − k of an element of D.

Therefore, if we can calculate the percentage of the space P that falls into balls of
radius q − k around each element of D, we obtain the exact answer to Question 1.

The �rst case we consider is when q − k ≤ b q−d−1
2
c. In this situation, there is no

overlap between the balls of radius q − k, since this is less than half of the minimum
distance. We can then state the following:

Theorem 7.1. If k > d and q − k ≤ b q−d−1
2
c, then the probability that, for q random

points with unique x-coordinates, there is a subset of these points of size k lying on a
polynomial of degree at most d is given by

P = qd−q+1

q−k∑
i=0

(
q
i

)
(q − 1)i (7.3)

Proof. The �volume� of each ball is the number of q-tuples within a distance of q−k from
an element of D. This can be easily calculated by adding all possible combinations of at

most q − k �errors�. For example, there are

(
q
i

)
(q − 1)i elements in P at a distance i of

a given polynomial. Therefore, we �nd that the volume V of each ball is given by:

V =

(
q
0

)
(q − 1)0 +

(
q
1

)
(q − 1)1 + ...+

(
q

q − k

)
(q − 1)q−k

=

q−k∑
i=0

(
q
i

)
(q − 1)i (7.4)

Since q − k ≤ b q−d−1
2
c, there is no overlap between these balls, so for qd+1 such balls, we

obtain a probability of:

P =
qd+1

qq

q−k∑
i=0

(
q
i

)
(q − 1)i = qd−q+1

q−k∑
i=0

(
q
i

)
(q − 1)i
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Notice that when d = 0, if we have that q − k ≤ b q−1
2
c, then k ≥ q − b q−1

2
c ≥ q+1

2
,

which means that b q
k
c = 1. Therefore from Equation (7.2), we obtain:

P = q

q∑
i=k

(
q
i

)(
1

q

)i(
q − 1

q

)q−i
= q

q∑
i=k

(
q

q − i

)(
1

q

)i(
q − 1

q

)q−i
= q

q−k∑
j=0

(
q
j

)(
1

q

)q−j (
q − 1

q

)j
= q−q+1

q−k∑
j=0

(
q
j

)
(q − 1)j

which agrees with the result from Equation (7.3).

Example 7.1.
If F = Z13, we can use Equation (7.3) to �nd the probability that there exists a polynomial
of degree d = 6 going through k = 10 of q = 13 random points with unique x-coordinates,
since 13− 10 = 3 ≤ b16−6−1

2
c = 4. This probability turns out to be P = 0.1047 = 10.5%.

The constraint q−k ≤ b q−d−1
2
c severely limits the cases in which we can calculate the

probability precisely. For smaller values of k which do not satisfy this conditions what
happens is that the radius n−k becomes larger than the half of the minimum distance of
D, and some of the balls will overlap. Our subspace D can also be seen as a code, where
all polynomials of degree at most d are codewords. It is, in fact, a maximum distance
code, and the number of codewords achieves the Singleton bound:

|D| = qd+1 = qn−δ+1 (7.5)

where n = q and δ is the minimum distance of the code n − d. The fact that for
q − k > b q−d−1

2
c we are basically recounting the overlap between the balls several times

means that the expression in (7.3) can still be considered as an upper bound for the
probability, but since this overlap becomes quite signi�cant and increases very fast as we
decrease k, this upper bound will often be greater than 1.

In order to analyze cases where q − k > b q−d−1
2
c, we must therefore try to calculate

the overlap between the balls. We start by analyzing the overlap between two balls whose
centers are at distance δ = n− d, the minimum distance of the code δ = n− d. We are
assured that there exist two codewords that are at a distance n − d of each other, by
simply noticing that given one polynomial of degree d, one can pick any d points out of
it and a (d + 1)th point not in the original polynomial, and form a new polynomial of
degree at most d (thus another codeword) which must be di�erent than the original. So
we formulate the following question:

Question 3. Given two codewords A and B, such that dis (A,B) = δ, how many elements
p ∈ P are there, such that dis (A, p) ≤ r and dis (B, p) ≤ r?

The answer for r ≤ b δ−1
2
c is clearly 0, since there is no overlap between the balls of

radius r around A and B. For higher values of r > b δ−1
2
c, we analyze the problem in the

following way. Assume, without loss of generality, that:

A = (a1, a2, ..., aδ, cδ+1, cδ+2, ..., cq)

B = (b1, b2, ..., bδ, cδ+1, cδ+2, ..., cq)
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where ai, bi, ci ∈ F and ai 6= bi for all the indexes considered. Now we attempt to count
the number of polynomials p that satisfy dis (p,A) = ρA and dis (p,B) = ρB. To do that,
we start with the codeword polynomial B and build p by changing ρB entries. Assume
that α of the changes are made on the bi entries, and ρB − α changes are made on the
ci's. The changes on the ci's bring p farther away from A and the changes on the bi's can
either bring p closer to A or farther away from it. So we assume x changes of the form
bi → ai and y changes of the form bi → βi 6= ai, totaling x+ y = α. Therefore we have:

dis (p,A) = δ + (ρB − α)− x+ y

= δ + (ρB − α)− x+ (α− x)

= δ + ρB − 2x (7.6)

By setting dis (p,A) = ρA, we conclude that:

x =
δ + ρB − ρA

2
(7.7)

Clearly, we see that ρB − ρA must have the same parity as δ in order for such p to
exist. Assuming it does, we can then count the number of possible ways of obtaining
such p, for a �xed α, to be:(

δ
x

)(
δ − x
y

)
· (q − 2)α−x ·

(
q − δ
ρB − α

)
(q − 1)ρB−α

and summing over α we obtain

SρA,ρB =

ρB∑
α=x

(
δ
x

)(
δ − x
y

)
· (q − 2)α−x ·

(
q − δ
ρB − α

)
(q − 1)ρB−α (7.8)

where SρA,ρB
def
= |{p ∈ P | dis (p,A) = ρA and dis (p,B) = ρB}|.

For a given ρA, we can �nd all values of ρB that will make SρA,ρB 6= 0 by �rst invoking
the triangle inequality, as follows:

|δ − ρA| ≤ ρB ≤ δ + ρA (7.9)

So, we now restrict the problem in Question 3 to the case where ρA, ρB < δ. This
assumption allows us to answer the problem, provided that r < δ. In this case we have
that the number of elements p ∈ P such that dis (A, p) ≤ r and dis (B, p) ≤ r is given by:

Oq(r, d) =
r∑

ρA=δ−r

(
r∑

ρB=δ−ρA

λρA,ρB SρA,ρB

)
(7.10)

where λρA,ρB =

{
1 if (δ + ρB − ρA) (mod 2) = 0
0 otherwise

Example 7.2.
If we look at polynomials of degree d = 5 over Z11, we can use Equations (7.10) and
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(7.8) to calculate the number of polynomials of degree less than 11, which agree with two
polynomials of degree 5 in at least 7 points, by setting δ = 11−5 = 6 and r = 11−7 = 4.
We �nd that O11(4, 5) ≤ 1590. Equality is achieved when the two polynomials of degree
5 are exactly at a distance 6 away from each other (and agree in 5 points).

Although we can precisely calculate the overlap between two Hamming balls of a given
radius and separated by a given distance, it is di�cult to proceed from here. Technically,
by summing over the elements in each Hamming ball centered at a codeword for any radius
q − k, and subtracting the number of elements in each pairwise intersection, we �nd a
lower bound for the probability of Question 1. However, there can be many polynomials
belonging to the intersection of more than two balls. In general this approach will yield
a signi�cant underestimate to this probability, which in some cases is less than 0.
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Chapter 8

Conclusion

In this project we studied hardware authentication methods which utilize physical anoma-
lies that naturally occur in manufacturing processes. The idea of physically unclonable
functions was developed as a way to use these anomalies between identically produced
devices to assign a unique measurable identi�er to each device. Moreover, this idea solves
the problem of key distribution since each device �receives� its key from its own physical
parameters. However, these PUFs rely on very sensitive physical measurements which are
in�uenced by temperature, pressure, etc. which cause for noisy readings. In this report
we analyzed the existing techniques to deal with this noise, and then proposed a new
method.

A fuzzy extractor allows a reliable cryptographic key to be extracted from PUFs.
They can be implemented in hardware, which makes them an attractive accessory for a
PUF device. The combination of a fuzzy extractor and a PUF facilitate the design of
hardware authentication protocols. In this report, we present a hardware implementation
for the fuzzy extractor block, which uses a compact architecture for a BCH decoder. This
is especially important for the protection of intellectual property and the prevention of
counterfeiting of lightweight and low-cost hardware devices.

The only signi�cant drawback of fuzzy extractors is the publication of a helper string
to aid in the recovery of the device's key. We analyzed this scheme from an information-
theoretic perspective and concluded that by trying to make it more noise-tolerant, more
information is leaked by the helper string. Speci�cally, in a code o�set construction, we
linked the entropy which remains in the system after the publication of the helper string
to the minimum distance of the code used. This clearly showed the trade-o� between
noise tolerance and security and motivated us to look for a new scheme.

The main contribution of this project is the proposal of an authentication scheme
which is based upon Sudan's list decoding algorithm. This scheme allows for a larger
noise-tolerance while not requiring helper information to be published. A disadvantage
of this protocol is the increased complexity of the algorithm when compared with other
error-correcting procedures. Furthermore, a low degree polynomial needs to be found
when the device is in the enrollment phase, and it is not clear if this is always possible or
if there is an e�cient way to do it. This has severe practical implications to this scheme,
since the probability of the existence of this curve determines the expected number of
devices from a manufacturing line that can actually be deployed.
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8.1 Future Work

The advantages of the scheme proposed in this paper are clear, although its feasibility
has to be throughly analyzed. Clearly, the complexity of the implementation (especially
in hardware) would be compromised, and it is important to analyze how much is gained
in terms of security.

We now informally compare our protocol to one which utilizes a fuzzy extractor with
an underlying secure sketch. The analysis provides motivation towards the possible im-
provements which can be made to our protocol in both security and noise tolerance. Our
protocol allows the recovery of the cryptographic key of a device when the device is given
challenges whose expected outputs lie on a low degree polynomial speci�c to the device.
We assume an adversary does not increase their probability of guessing this polynomial
when seeing which challenges are sent to the device. We chose to use a list decoding
procedure in our protocol to allow for a large amount of noise in the responses of the
PUF device to be corrected. Asymptotically, we can use Sudan's algorithm to allow up
to n−

√
nδ responses to not fall on the device's low degree polynomial [17].

From Corollary 4.1, we have that the average min entropy of a secure sketch using
the code o�set construction is bounded by m− d+ 1. Assuming that d = 2t+ 1, we can
write this expression as m− 2t. Furthermore, if we assume a uniform input distribution
on our metric space, we have that m = n. For this comparison to make sense we use log
base q in our entropy measurements.

The key of each device in our protocol is a degree at most δ polynomial, which
is assigned to each device depending upon the responses of that device. To allow for
a comparison to a fuzzy extractor, we view Sudan's algorithm as a decoder for Reed-
Solomon codes, and in more familiar notation, we have that δ = k − 1. Asymptotically,
this algorithm allows for up to t = n −

√
nk noisy measurements, and solving for k, we

obtain k = (n−t)2
n

. We now wish to compare the informational entropy associated to the
cryptographic keys generated in each scheme.

In the code-o�set construction, an adversary's probability of correctly guessing the
element which corresponds to the helper string is(

1

q

)n−2t

.

In our protocol, the probability of correctly guessing the polynomial is

(
1

q

)k
=

(
1

q

) (n−t)2
n

.

Comparing these exponents, we want to know the relationship between n− 2t and (n−t)2
n

.

We see however that we can write n − 2t as (n−t)2
n
− t2

n
. This means that the entropy

that remains in the system with fuzzy extractors is always less than the entropy in our
proposed system. Therefore, our informal analysis leads to the probability of an adversary

guessing the polynomial of the device in our protocol to be 1
q

t2

n times the probability an
adversary guessing on a secure sketch. This provides motivation to analyze whether our
algorithm provides more security with the same number of challenges.
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Since our protocol allows for multiple responses to be returned from the device, as
Sudan's algorithm is a list-decoding algorithm, we must look at the number of polynomials
which can be returned in conjunction with the decreased probability. Future analysis can
be done on this trade-o� between a larger error tolerance, which is highly desirable for
PUF devices which are particularly noisy, and the increased probability that an adversary
can guess the correct value by being allowed to return multiple polynomials. Again, we
reiterate the need for future work on the existence and practicality of �nding the initial
low-degree polynomial from the expected outputs of the PUF device, which is critical for
the implementation of this protocol.
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Appendix A

Selected proofs

Lemma A.1. maxy
∑

x f(x, y) ≤
∑

x maxy f(x, y)

Proof.

max
y

∑
x

f(x, y) = f(x1, yk) + f(x2, yk) + ...+ f(xn, yk)

≤ max
y
f(x1, y) + max

y
f(x2, y) + ...+ max

y
f(xn, y)

=
∑
x

max
y
f(x, y)

Lemma A.2. Two di�erent polynomials of degree at most d over F can agree on at most
d points.

Proof. Let p(x) and q(x) be two polynomials of degree at most d over F. We prove the
lemma by showing that if they agree on more than d points, than p(x) ≡ q(x).

Let us assume that p(xi) = q(xi) for i = 1, 2, ...,m, where m > d. Then, if we form
the polynomial r(x) = p(x)− q(x) = r0 + r1x+ r2x

2 + ...+ rdx
d, we have that r(xi) = 0

for i = 1, 2, ...,m. Since this polynomial has more roots than its degree, we conclude that
we must have r(x) ≡ 0, which in turn means that p(x) ≡ q(x).

Lemma A.3. An [n, k, d] Reed-Solomon code has minimum distance d = n− k + 1, and
thus achieves the Singleton Bound.

Proof. For a [n = q− 1, k = n− d+ 1, d]-RS code, every codeword ω, represented by the
polynomial

ω(x) = a0 + a1x
2 + ...+ an−1x

n−1,

has αi, for i = 1, 2, ..., d − 1, as roots. This happens since those are all the roots of the
generator polynomial g(x), which divides any codeword ω(x). This is equivalent to saying
that the vector a = (a0, a1, ..., an−1) formed by the coe�cients of ω(x) satis�es HaT = 0
where:
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H =


1 α α2 α3 · · · αn−1

1 α2 α4 α6 · · · α2(n−1)

1 α3 α6 α9 · · · α3(n−1)

...
. . .

...
1 αd−1 α2(d−1) α3(d−1) · · · α(d−1)(n−1)


To prove that the minimum distance of the code is d it su�ces to show that the

minimum weight of any codeword is d. So let us assume there is a codeword with vector
representation c = (c0, c1, ..., cn−1) whose weight is dc = m < d. So we must have cji 6= 0
for i = 1, ...,m and cji = 0 otherwise. Therefore, by starting with the following expression,

HcT =


1 α α2 α3 · · · αn−1

1 α2 α4 α6 · · · α2(n−1)

1 α3 α6 α9 · · · α3(n−1)

...
. . .

...
1 αd−1 α2(d−1) α3(d−1) · · · α(d−1)(n−1)




c0
c1
...

cn−1

 = 0

and considering the 0 components of the vector c we can obtain:

HcT =


αj1 αj2 αj3 · · · αjm

α2j1 α2j2 α2j3 · · · α2jm

α3j1 α3j2 α3j3 · · · α3jm

...
. . .

...
α(d−1)j1 α(d−1)j2 α(d−1)j3 · · · α(d−1)jm




cj1
cj2
...
cjm

 = 0

Since m < d the number of equations is greater than or equal to the number of
unknowns. Therefore, we can reduce the number of equations, in order to obtain a
square matrix and the following homogeneous system:

αj1 αj2 αj3 · · · αjm

α2j1 α2j2 α2j3 · · · α2jm

α3j1 α3j2 α3j3 · · · α3jm

...
. . .

...
αmj1 αmj2 αmj3 · · · αmjm




cj1
cj2
...
cjm

 = 0

Since c′ = (cj1 , cj2 , ..., cjm) is a nontrivial solution the matrix determinant must be 0.
However, we have:

∣∣∣∣∣∣∣∣∣∣∣

αj1 αj2 · · · αjm

α2j1 α2j2 · · · α2jm

α3j1 α3j2 · · · α3jm

...
. . .

...
αmj1 αmj2 · · · αmjm

∣∣∣∣∣∣∣∣∣∣∣
= αj1αj2αj3 ...αjm

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1
αj1 αj2 · · · αjm

α2j1 α2j2 · · · α2jm

...
. . .

...
αmj1 αmj2 · · · αmjm

∣∣∣∣∣∣∣∣∣∣∣
=

= αj1αj2αj3 ...αjm(αjm − αj1)(αjm − αj2)...(αjm − αjm−1)(αjm−1 − αj1)...(αj2 − αj1) 6= 0

(since all αji are di�erent), which is a contradiction.
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Appendix B

Hardware Complexity

B.1 Average number of nonzero coe�cients for elements

of GF (2m)

For our complexity estimation, especially for the number of LFSR taps (which translates
into XOR gates) it is important to know how many nonzero bits there are on the binary
representation of an arbitrary element of GF (2m), say αi, when i ≥ m. In order to do
that, we estimate the average of nonzero bits on αi, by summing over all combinations
of at least 2 nonzero bits among m bits:

m∑
i=2

(
m

i

)
i

2m −m
=

m∑
i=2

m

(
m− 1

i

)
2m −m

=

m
m−1∑
i=1

(
m− 1

i

)
2m −m

=
m

2

(∑m−1
i=1

(
m−1
i

)
2m−1 − m

2

)
=
m

2

(
2m−1 − 1

2m−1 − m
2

)
≈ m

2
(B.1)

B.2 Reducing the complexity of Syndrome computa-

tion

The scheme for computing the syndromes Si presented in Section 5.2.2 is intuitive, and it
makes sense to introduce it �rst. However, especially for larger block sizes n, this scheme
becomes much larger. Therefore, we introduce a modi�cation to the circuits for syndrome
computation, which manages to reduce the complexity.

This other way of computing Si = r(αi) is based on the fact that the division algorithm
for polynomials allows us to write:

r(x) = φi(x) · a(x) + b(x)

where φi(x) is the minimal polynomial of αi over GF (2) and b(x) is the remainder of the
division of r(x) by φi(x). Since φi(αi) = 0, we have that r(αi) = b(αi). Building a circuit
that computes b(αi) can again be done with an LFSR.
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Example B.1.
Since α3 has φ3(x) = 1 + x + x2 + x3 + x4 as minimal polynomial over GF (2), we
use the fact that by applying the division algorithm to xk, where k ≥ 4, we obtain
xk = φ3(x) · xk−4 + x3 + x2 + x+ 1, to devise the following circuit:

- - - -�
�� �
�� �
�� �
��
- - - -+ + + +

? ? ? ?ri

Figure B.1: LFSR to calculate b(x)

After all coe�cients of r(x) are shifted in, the LFSR contains the coe�cients of b(x).
Now, in order to �nd b(α3) we simply notice that:

b(α3) = b0 + b1α
3 + b2α

6 + b3α
9 = b0 + b3α + b2α

2 + (b1 + b2 + b3)α
3

and we only need to recombine the outputs of the LFSR (with corresponding additions)
to obtain b(α3) = r(α3).

This new method for computing syndromes may seem to achieve the same level of
complexity than the one presented in Section 5.2.2. The main di�erence comes from the
fact that, in general, division by φi(x) requires fewer gates than multiplication by alphai

(required in the previous method). To compute the 2t syndromes, the complexity of each
method is described as follows:

1. When we multiply b(α) ∈ GF (2m) by αi, we obtain b(α)αi = b0α
i+b1α

i+1+b2α
i+2+

... + bm−1α
i+m−1. In order to reduce this expression to its m-bit representation,

we must use the generator polynomial of the Galois Field to �nd the equivalent
representation of each of the last m αi+k's. In general, we assume that each of
those αi+k will have a representation with m

2
nonzero bits (from Equation (B.1)),

resulting in im
2
feedback loops (and XOR gates) in the LFSR. Since we need one

LFSR for each odd syndrome, we obtain a total of m
2

∑t
`=1 (2`− 1) = mt2

2
XOR

gates for the LFSRs, and an extra m
2
XORs per even syndrome.

2. When we use the remainder approach, we only need at most m feedback loops (and
XOR gates) for each minimal polynomial being considered (since their degree is at
most m). However, the outputs must still be recombined to form the remainders.
We do that by following Example B.1 and computing b(αi) = b0 + b1α

i + b2α
2i +

... + bm−1α
(m−1)i. For each of the m − m/i αi+k's, we again must �nd an m-bit

equivalent representation, requiring (m−m
i
)m

2
feedback loops in each LFSR. Overall

we have m+ m
2

∑t
`=1

2`
2`−1
≤ m+ tm2

2
XOR gates.

Since, for larger codes t > m, we conclude that for our complexity analysis we can
assume the second implementation.
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B.3 Gate count for Inverter block

We can basically divide the inverter into three parts. For the "squarer" LFSR, we realize
that we will need m · m

2
XORs. The array of AND gates essentially computes all m2 com-

binations between each bit from a and each bit from b. In order to estimate the number
of XORs needed for the combinational logic responsible for the parallel multiplication,
we observe that when we multiply to generic elements of GF (2m), we obtain:(

a0 + a1α + a2α
2 + ...+ am−1α

m−1
) (
b0 + b1α + b2α

2 + ...+ bm−1α
m−1
)

=

= a0b0 + (a0b1 + a1b0)α + ...+
∑
i+j=k

aibj α
k + ...+ am−1bm−1α

2m (B.2)

Since all the pairs aibj are already available to us we just need to count the number
of sums, which, from Equation (B.2), turn out to be:

0 + 1 + 2 + ...+ (m− 2) + (m− 1) + (m− 2) + ...+ 2 + 1 + 0

However, the coe�cients of αi for i ≥ m actually become feedback loops (since we
simplify them to their m-bit representation). Since, according to Equation (B.1), we
obtain in average m

2
feedback loops for each such αi, we calculate the number of XORs

to be:

(0 + 1 + 2 + ...+ (m− 1)) +
m

2
((m− 2) + (m− 3) + ...+ 1 + 0) =

=
m(m− 1)

2
+
m

2
· (m− 1)(m− 2)

2
=
m3

4
− m2

4
(B.3)

B.4 Gate count for Chien's Search block

In the Chien's Search block, for each of the t blocks containing an αi multiplier, we have
m �ip-�ops. Additionally, we obtain im

2
LFSR taps, and we therefore have our total XOR

gates count to be:

m

2

2t∑
i=1

i =
m

2
(2t+ 1) t =

m

2
(2t+ 1) t = mt2 +

mt

2
(B.4)

In the summation block, we need to take each of the m-bits from each of the t multiplier
blocks, which requires a total of m(t− 1) XORs. To test whether the m bits of the result
are all 0 except for the least signi�cant one we need 2m NAND gates.
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Appendix C

Sudan's algorithm maple source code

# Matthew Dailey and Ilan Shomorony

# advised by Prof. Martin

# March 3, 2009

# Sudan list decoding algorithm

with(linalg):

with(PolynomialTools):

with(difforms):

# input n,d,t set of points m,l

# need Q(x,y) to have weighted degree at most m+Ld

# This procedure implements Sudan's list decoding algorithm

# n is the number of points

# d is the maximum degree of a polynomial that one is searching for

# t is the number of points in which a polynomial found must match

the n points in

# m,L are used as parameters and are used for creating Qxy

# allPts is a list of the points stored in a [n x 2] array

# theModulus in a prime number representing which field we are

working over

sudanCoeff:=proc(n,d,t::integer,m,L,allPts, theModulus)

local numPoints, numCoeff,

r,c,allTerms,coeffMat,term,pointX,pointY,coeff, j ,k, theRank,

i,b,B,Qxy, allPoly, solNum, copyMat, allFactors, listFacts,

numFact, kk, currPoly, currInverse,

Thm5, claim4B,boundN,copyCoeff:

# tell if the algorithm gurantees to return a polynomial if one

exists

Thm5 := d* ceil(sqrt(2*(n+1))/d)-floor(d/2);

claim4B := m+l*d:
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boundN := (m+1)*(l+1)+d*(l+1)*l/2:

printf("For claim 3, we need : %d > : %d :=n\n", boundN, n);

printf("For claim 4, we need t := : %d > : %d\n" , t,

claim4B);

printf("For Theorem 5, we need t:= %d > %d\n", t, Thm5);

allPoly:= []: # a list with all the possible curves

numPoints := n:

# get all terms which have weighted degree less than or equal to

m+Ld

allTerms := simplify(sum(sum( (y^k)*(x^j) ,

j=0..m+(L-k)*d),k=0..L));

#print(allTerms);

numCoeff := nops(allTerms);

printf("numPoints = %d number of coefficients =

%d\n",numPoints, numCoeff);

# generate coefficient matrix

coeffMat := matrix(numPoints, numCoeff):

# Fill the coefficient matrix with the corrent values for each

point

# meaning for each term (i.e. x^2*y) fill in the x value and y

value from the current point

for c from 1 by 1 to numCoeff do

term := op( c, allTerms):

for r from 1 by 1 to numPoints do

pointX := allPts[r,1]:

pointY := allPts[r,2]:

coeff := subs(x=pointX, y=pointY, term):

coeffMat[r,c] := coeff:

end do:

end do:

# To reduce the matrix to find our coefficients

# we need to create the solution vector which is the zero vector

b:=vector(numPoints ):

for i from 1 by 1 to numPoints do

b[i]:=0:

end do:

# We need to use the inert form to row reduce our matrix to stay

in

# our finite field

coeffMat := Gaussjord(coeffMat, 'thRank', 'theDet') mod

theModulus ;
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# Now we wish to solve for the coefficients of the terms, such

as x^2 and xy

# The number of free variables is equal to

(numCoeff-theRank):=numSolutions

B:=linsolve(coeffMat,b,'theRank',mm );

printf("The rank of the coefficient matrix is %d\n", theRank);

# For each free variable, we will set it equal to one and get

numSolutions different possible solution

# and for each one we will look for factors that are linear in y.

for solNum from 1 by 1 to 1 do #(numCoeff-theRank) -- is

number of different free variables

copyMat:= evalm(B):

# Set the specific variable equal to one and all others zero

for i from 1 by 1 to (numCoeff - theRank) do

for j from 1 by 1 to numCoeff do

if i = solNum then

copyMat[j] := subs( mm[i]=1, copyMat[j]):

else

copyMat[j] := subs( mm[i]=0, copyMat[j]):

end if:

end do:

end do:

# Now we have a specific solution and we print it out

# we take the coefficients and dot product them with the

actual terms to construct the polynomial

Qxy:=sum( copyMat[ii]*op(ii, allTerms),ii=1..numCoeff) :

printf("Solution number %d, and polynomial\n ",solNum);

# now we want to loop through all the factors and find all

those which are linear in y

# and output their inverses (of f(x)) such that we write a

factor linear in y as (y-f(x))

allFactors := Factors(Qxy) mod theModulus:

print(allFactors);

# if we have non-trivial factors

if nops(allFactors) = 2 then

listFacts := allFactors[2]:

numFact := nops(listFacts):

for kk from 1 by 1 to numFact do

currPoly := (listFacts[kk])[1]: # get the actual factors

# printf("Current polynomial :: %a\n", currPoly);
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# find the inverse, if it exits and add it to the list

currInverse := findInverse( currPoly, y, theModulus):

if currInverse <> -1 then

print(currInverse);

end if:

#-----------------------------------------------------------------

# make sure that for each of the polynomials that we will

return

# that it agrees in at least t places with the points we

inputted

if currInverse <> -1 and isMatcht( t, allPts, n,

currInverse, theModulus) then

allPoly := [op(allPoly), currInverse]:

end if:

end do:

end if:

end do:

# return all possible found polynomials in a list

return allPoly:

end proc:

# This procedure takes in a value t, a list of points, and an

expression in x, a modulus, the number of points

# it returns true if f(points_x_i_value) = (y_i mod theMod) for at

least t x_i's

# The points can have repeated x coordinates

# however, for our usage, the points should not have repeated

coordinates

isMatcht := proc( t::integer, allPts, numPts::integer,

anExpression, theMod::integer)

local numMatches, i:

numMatches := 0:

for i from 1 by 1 to numPts do

if allPts[i,2] = ( subs(x=allPts[i,1], anExpression) mod

theMod ) then

numMatches := numMatches + 1:

end if:

end do:

printf ("numMatches is %d and t is %d and degree is %d\n",
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numMatches, t, degree(anExpression,x));

return numMatches >= t:

end proc:

# Procedure to build the terms for Sudan's algorithm

# this creates Qxy

generateAllTerm := proc(l::integer, m::integer, d::integer)

local allTheTerms:

allTheTerms := simplify(sum(sum(y^k*x^j, j = 0 .. m+(l-k)*d), k

= 0 .. l)):

return simplify(allTheTerms):

end proc:

# a procedure to make aPoly = (aVar - f(x)) and then find the

inverse of

# f(x) mod primeField

# Requires the coefficient of aVar is a constant

findInverse:=proc(aPoly, aVar, primeField)

local theCoeff, newPoly:

# Look through aPoly to see if it is linear in aVar

# if it is, then find aVar-newPoly := aVar (mod primeField)

# Then find the inverse of newPoly (mod primeField)

# return this value, or -1 if not found

if type(aPoly, linear(aVar)) = false then

return -1:

end if:

# extract the coefficient of aVar

theCoeff := coeff(aPoly,y,1):

# make sure the coefficient is a constant

if type(theCoeff, const) = false then

return -1:

end if:

newPoly := (-1*(aPoly - theCoeff*aVar)) mod primeField:

# if the factor is just c*y, then 0 does not have an inverse

(i.e. newPoly = 0 now)

if newPoly = 0 then

return -1:

end if:
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newPoly := (newPoly / theCoeff) mod primeField:

newPoly := simplify(newPoly): # standard way to write

return newPoly;

end proc:

# this procedure will generate n random points with success

probability p

# of the function thePoly, and will generate a random field

element otherwise

# the field elements are from 0 to (theMod - 1)

# This function returns a list n by 2 matrix of the (x,thePoly(x))

points

# if a fifth argument is included, it is a list of points with the

x values entered.

genListPoints := proc(n::posint, thePolyB, theMod, p)

local numCorrPoints, thePoints, THEMAXRAND, theNoise,

noiseLevel, roll, i, aVal:

numCorrPoints := 0: # for our records, how many successful

points

# for randomness of the x values and for probability

THEMAXRAND := 1000000:

theNoise := rand(1..THEMAXRAND):

noiseLevel := ceil(p*THEMAXRAND): # if below this value, success

roll := rand(0 .. theMod-1):

# See if the user sent in the points

if nargs(args) = 4 then

thePoints := matrix(n, 2):

for i from 1 to n do

thePoints [i, 1] := roll();

end do:

else # user sent in the points

thePoints := args[5]:

end if:

# generate the (x,y) points

for i from 1 to n do

aVal := theNoise():

if p = 0 then

thePoints [i, 2] := roll():
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elif aVal < noiseLevel then

# generate a real point

thePoints [i, 2] := thePolyB(thePoints[i, 1]) mod theMod;

numCorrPoints := numCorrPoints + 1:

else

# generate a random point

thePoints [i, 2] := roll():

if thePoints[i,2] = ( thePolyB(thePoints[i,1]) mod theMod)

then

numCorrPoints := numCorrPoints + 1:

end if:

end if:

end do:

printf("Number of actual points generated by %a is: %d\n",

thePoly, numCorrPoints);

return thePoints:

end proc:

# this procedure will generate n random unique x coordinates

# the field elements are from 0 to (theMod - 1)

# This function returns a list n by 2 matrix of the (x, - ) points

genListUniqueX:= proc(n::posint, theMod)

local THEMAXRAND,roll, i, aVal, allPossPts, thePts, tempPoint, j;

thePts := matrix(n, 2);

if n > theMod then

printf("Not enough field elements\n");

return:

end if:

# This will tell us if the point has been chosen already

allPossPts := matrix(theMod, 2):

for i from 1 to theMod do

allPossPts[i,1] := i mod theMod:

allPossPts[i,2] := 0: # not yet selected

end do:

roll := rand(1 .. theMod):
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for i from 1 to n do

tempPoint := roll();

for j from 1 by 1 while allPossPts[tempPoint, 2] = 1 do

tempPoint := roll();

end do:

# now have a unique x coordinate, add it

allPossPts[tempPoint,2] := 1;

thePts[i,1] := tempPoint mod theMod:

end do:

return thePts:

end proc:

#*************************************************************

#*************************************************************

#*************************************************************

# NOW the new way to call the procedure

myN:= 16: # number of points to generate

theMod := 17: # We are working in Z mod theMod

# This is the probability of selecting a random point

p := .7: # the probability that the random point will be from the

function

f := x -> 4*x^3 + 9*x^2+3*x+2 mod theMod: # the polynomial we are

trying to find

d := 3; # the maximum degree of a polynomial we are looking for

n:= 16:

m:=ceil(d/2) - 1;

m:= 1:

l := ceil ( sqrt(2*(n+1)/d) ) - 1;

l:= 3:

# The number of places in which a factor must match the list of

points

t := max(m+l*d+1, d*(l+1)-m + 1):

# generate all the terms needed

allTerms := generateAllTerm(l, m, d):

# Create unique x points

theMat := genListUniqueX(myN, theMod):

89



# assign y values to these points

theMat := genListPoints(myN, f, theMod, p, theMat):

theMat := evalm(theMat):

# Call sudan's list decoding algorithm

A := sudanCoeff(myN, d, t, m, l, theMat, theMod):
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