
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2016

Storybook - A Casual Game
Benjamin Peake
Worcester Polytechnic Institute

Connor Geoffrey Porell
Worcester Polytechnic Institute

Nathaniel Michael Bryant
Worcester Polytechnic Institute

William Emory Blackstone
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Peake, B., Porell, C. G., Bryant, N. M., & Blackstone, W. E. (2016). Storybook - A Casual Game. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/2848

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2848?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Storybook - A Casual Game

Emory Blackstone, Nathan Bryant, Benny Peake, Connor Porell

April 27, 2016

A Major Qualifying Project Report:
submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
by

Emory Blackstone

Nathan Bryant
Benny Peake
Connor Porell

Date: April 2016 Approved:

Professor David Finkel, Advisor

Professor Britton Snyder, Co-Advisor

This report represents the work of one or more WPI undergraduate students.
Submitted to the faculty as evidence of completion of a degree requirement.

WPI routinely publishes these reports on its web site without editorial or peer review.

Abstract

Acknowledgements

List of Tables and Figures

1) Introduction

a) Casual Game Prompt

b) Inspiration

c) Art Inspiration

2) Design Process

a) Tool Selection

i) Engine Selection

ii) Team Collaboration

b) Workflow

c) Core Mechanic - Pages

d) Deck-Building Combat

e) Major Goal - Simplicity

f) Cooperative Gameplay

g) Short Play Sessions

3) Gameplay

a) Combat

b) Character Select

c) Room Types

i) Start Room

ii) Combat Room

iii) Shop Room

iv) Exit Room

d) Deck Management

e) Dungeon Traversal

f) Genre Typings

g) Tutorial

4) Art

a) Design Goals

b) Initial Concepts

c) Implementation

5) Sound

a) Music

b) Sound Effects

6) Technical Implementation

a) Photon

i) Why Photon?

ii) How Base Photon Works

iii) Photon Modification

b) Networked Combat

i) Initial Implementation

ii) Networked Implementation

iii) User Input & Tying to Other Systems

c) Enemy AI

i) Properties

ii) Move Selection

iii) Target Selection

d) Map Generation

e) Event Dispatcher

f) Dungeon Master

g) Inventory

h) Player Entity

i) Map Movement

j) Music and Sound Managers

7) User Testing

a) Testing Process

b) Results

i) Tutorial

ii) Gameplay

iii) User Interface

c) Changes Made Based on Feedback

8) Post Mortem

a) Evolution of Design

b) Change in Scope

i) Focus of Game

ii) Room Types and Features

c) Change in Art Direction

d) Final Result

Appendix

a) List of Definitions

b) Survey and Results

Works Cited

Abstract

The purpose of this MQP was to construct a small-scale game such that we would have

adequate time to properly balance and polish it. The prompt of a casual game led us to design a

cooperative multiplayer dungeon crawler/collectible card game hybrid, something we have never

seen in a casual game before. Our goal over the course of development was to keep scale

manageable while also creating a unique game that we could polish and proudly show off.

Acknowledgements

 We would first and foremost like to thank our advisors, Professor David Finkel and

Professor Britton Snyder. Their creative guidance was a great asset throughout the course of

development.

 Additionally, we would like to thank Dillon DeSimone and Francesca Carletto-Leon for

their assistance with artwork and gameplay design, respectively. Though they were only

available to help us for a single term, all the work they put in was greatly appreciated.

 We would like to thank Louis Alexander, a student at Berklee College of Music, who

composed the soundtrack to Storybook.

 Lastly, but most certainly not least, we would like to thank everyone who playtested the

game or left the slightest bit of critique on Storybook. You may not know it, but we took every

piece of critique seriously, so each one of you helped to shape Storybook into what it is today.

List of Tables and Figures

Figure 1: Screenshot of Rogue (1-B)

Figure 2: Ensemble casts in video games (1-B)

Figure 3: Simple vs. complex cards. (2-D)

Figure 4: Breakdown of a Page. (2-D)

Figure 5: Multiplayer Storybook combat screen (3-A)

Figure 6: Combat move dealing damage (3-A)

Figure 7: Character select screen (3-B)

Figure 8: Entering a combat room (3-C)

Figure 9: Shop room interface (3-C)

Figure 10: Managing the Deck user interface (3-D)

Figure 11: Choosing a direction (3-E)

Figure 12: Selecting a Page for a new room (3-E)

Figure 13: The type advantage system in Storybook (3-F)

Figure 14: Damage calculation in Storybook (3-F)

Figure 15: Example of a tutorial prompt (3-G)

Figure 16: Using art style to overcome technical limits. (4-A)
Figure 17: First concept art (4-B)
Figure 18: Early character sketches (4-B)
Figure 19: Character redesigns (4-B)
Figure 20: Genre type icons (4-C)
Figure 21: Page comparison (4-C)

Figure 22: Final art results with all “visual tweaks” in place (4-C)
Figure 23: Combat state machine (6-B)
Figure 24: Enemy editor values (6-C)
Figure 25: Map Manager editor values (6-D)
Figure 26: Sample generated map (6-D)
Figure 27: Using the EventDispatcher in code (6-E)
Figure 28: Event dispatcher system (6-E)
Figure 29: Dungeon Master editor values (6-F)
Figure 30: Inventory timeline (6-G)
Figure 31: Map movement state machine (6-I)

Figure 32: Deck management UI before and after feedback. (7-C)
Figure 33: Old Page design versus redesign. (7-C)
Figures A-1 - A-21: Survey Questions

1. Introduction

A. Casual Game Prompt

 A casual game is typically defined as a type of video game where the “[player] does not

have a long-term commitment to a game and can approach playing the game on an infrequent

and spontaneous basis” (1). Most casual games are played for only a few minutes at a time

before the player puts it down (2). As such, the typical casual game is more of a time-killer rather

than a sit-down-and-play type of game. Many people often play casual games to pass a few spare

minutes such as when waiting for a bus or train, or as a small diversion while on a lunch break.

Some popular examples of casual games are Clash of Clans (3), Angry Birds (4), and Trivia

Crack (5).

B. Inspiration

 Early in the design process, we brainstormed for Genres and high-level gameplay

concepts, drawing from some of our favorite games. A common theme among the team was the

desire to create a dungeon crawling game, similar to Rogue (6) or The Binding of Isaac (7).

While uncommon if not nonexistent among casual games, dungeon crawlers have the potential to

be remade into the casual game format. By reducing the scope of the game to use smaller and

fewer floors/levels, introducing the ability to save in the middle of the dungeon, and toning down

the infamous difficulty common among dungeon crawlers, we drew up a plan to make a dungeon

crawler game more accessible and playable in quick bursts.

Figure 1: Screenshot of Rogue. Dungeon crawlers such as Rogue were common among inspirations for

Storybook.

 Another early inspiration for us was the desire to create some sort of ensemble cast

uniting characters from various backgrounds, such as Nintendo’s Super Smash Bros. (8) series.

When we were thinking of characters we wanted to recreate in our game, we had wildly different

tastes. The concept of an ensemble cast featuring characters of different backgrounds was a key

component in choosing the setting and world of Storybook.

Figure 2: Ensemble casts in video games. One of the most famous examples is Super Smash Bros. (9), a

fighting game that features a host of characters from various Nintendo franchises.

 The idea of the crossover story was another big inspiration for us. These involve

characters from different stories traveling to each other’s worlds so that they can interact. These

kinds of stories have been around for ages, and are especially popular in things like superhero

comics like Marvel's Avengers (10) as well as in other forms of pop fiction. Crossovers are

really fun to play with from a creative standpoint because it gives you the opportunity to put

characters into settings and situations they wouldn’t normally be in, so your sandbox is a lot

broader. This made it very appealing to base our game on this idea.

C. Art Inspiration

For the art style of the game, we wanted to aim for simplicity, not only because we felt

that it would fit the casual, lighthearted nature of the game, but also because of the practical

concern of only having one artist. With this goal in mind, we looked at a lot of older games from

the 1990’s, as many of these were forced to have simple art styles because of the technology of

the time. We looked at several games that we thought achieved a really nice look despite these

limitations, such as Nintendo 64 games like Super Smash Bros., and thought about how we could

emulate that.

 As for the designs of the characters, inspiration was abundant. These characters were

meant to represent heroic archetypes from broad literary Genres, so naturally we took cues from

all sorts of games, books, and movies. For the comic book hero, we of course looked at

characters from Marvel and DC comics, drawing a lot of inspiration from the likes of Superman

(11) and Captain Marvel (12). For science fiction, we referenced games like Halo (13) and

Metroid (14), as well as movies like Star Wars (15) to create our armored space bounty hunter.

The main inspiration for the fantasy character was Robin Hood (16), because we liked the idea of

a speedy roguish character rather than a knight (which may have been the more obvious choice).

Finally, the horror character takes inspiration from monster stories like Frankenstein (17), Dr.

Jekyll and Mr. Hyde (18), and The Incredible Hulk (19).

2. Design Process

A. Tool Selection

I. Engine Selection

 When starting our project one of the biggest decisions that we had to make was what

engine we would use to create our game. The engine that we chose would influence nearly every

aspect of the game including what we could and could not do, what the game would look like,

and even how much time it would take to get tasks done. To make this decision we constantly

took into account what our end goal for the project was, including what we wanted to personally

gain from the experience, and looked at how individual engines would influence the path to those

goals.

 Our major goals for the project were to create a small, unique, casual game that provided

some level of complexity in creation that would allow us to further develop our skills. To

achieve these goals we needed an engine that would provide easy to use tools and be highly

flexible to meet our needs.

Unity (20) met these needs perfectly. Unity focus on breadth rather than depth in its tools.

Its editors are very simple and shallow. Learning these editors required no more than about an

hour each meaning that the engine could be learned quickly and new skills with the engine could

be picked up quickly and in parallel with development. The focus on breadth and the shallow

tool set also meant that Unity was much more bare bones. Rather than Unity handling the core

gameplay mechanics like walking, jumping, etc. it only handle base engine functionality like

rendering, physics, and animation; the rest was up to the developer to create. This design

principle of the engine meant that Unity was very open to extensibility making it very flexible.

We could develop our own systems and tools where we needed to and even import plugins for

functionality that did not come with the base engine. Effectively we could mold the engine to

meet our needs.

 In the end the choice to use Unity greatly helped us. Over the course of the project we

ended up developing many tools and resources for ourselves and gaining the experience to fully

control our game. Had we picked another engine such as Unreal (21) such flexibility may have

been difficulty or even impossible. The choice of Unity gave us the flexibility and creative

control we needed to create such a unique experience.

II. Team Collaboration

 Along with our engine we also had additional tools to help us collaborate and bring the

project together. Through these tools we could share ideas, assets, design concepts, and more.

These tools consisted of GitHub (22), Trello (23)/Hack N Plan (24), and Slack (25). We also

played around with Unity Cloud Build (26) but were never able to get it integrated in a reliable

way.

 GitHub we used as our main way of bringing assets together. In addition to the Git

repository that it supplied us with, GitHub also gave us a visual toolset for looking at content

currently on the repository, seeing who changed what, and applying comments. In early

development this was a very helpful set of tools as we could point to a specific

line/section/system of code and comment about structural ideas. It also allowed us to easily share

sections of the code between each other by allowing us to refer to commit numbers and URLs to

such commits.

 For our task system we ended up switching halfway through from Trello to Hack N Plan.

Both use the same basic concept of having cards for tasks that can be assigned to users and

moved around to different categories. We ended up switching to Hack N Plan (which at the time

was in beta) as it was specifically designed for game creation. We could categorize tasks based

on if it was programming, art, design, etc. and for what phase of the project we wanted it done

by. Hack N Plan also allowed for time estimation to be applied to each task and would calculate

number of hours required to reach certain deadlines.

 At the center of this we used Slack for team based communication. Slack allowed us to

communicate effectively with each other and organize our chats into different channels. This

allowed us to easily chat about multiple subjects with each other at once without people missing

what was said or having messages get lost in the chat history. In addition to this chat

functionality we could also integrate Slack with many of our other services. We were able to

integrate Slack with both GitHub and Google Calendar (27) so we could get notifications of

when commits were being made and when events were happening.

 Using these tools together greatly helped our progress. It allowed us to be able to work

more independently while still being able to bring assets together into one game. It allowed us to

have constant communication as we worked on our own tasks and as we got more into the feel of

how to use each one became a core part of our total tool set.

B. Workflow

 Throughout every step of our game we had a clear and well defined workflow. We

allowed to be subject to change as needed, but was always agreed to be followed and would not

change without first consulting the team. This enabled us to very easily keep track of who was

working on what, what there was left to do, and allowed us to change our way of working when

we found problems in the workflow or as certain method became obsolete.

 The early stages of development for us focused on building core systems and content that

would be used throughout the rest of development. We needed a system that content was created

not only in an organized manner, but also in a elegant way that made sense to all people on the

team. For these reasons during the early stages of development our workflow was very rigid.

Tasks were first discussed in group meetings where we determined what steps forward had to be

made for the next iteration, with each of these iterations being about a week long. These tasks

were then assigned to a single person who seemed to fit best for that task. After the task was

completed it would be put up for review before officially becoming part of the main game. This

ensured that we knew who exactly was working on what and that we could shape the core of our

game exactly how we wanted to.

 As the core systems became complete and we continued onto the later stages of

development, a more relaxed system needed to be put in place. During later development most

tasks became independent pieces that did not need to be built off of. We also had many more

tasks in late development as most tasks focused on individual game pieces. For this reason we

changed our workflow to reflect the new needs. Rather than planning out every task we moved

towards a task pool model. Tasks could be created and assigned by anyone who was free. When

a task was finished we allowed it to be put immediately into the game rather than needing to go

through review. As content no longer needed to be built off each other this workflow allowed for

a lot more parallelization and didn’t require team members to wait on other team members.

 Overall our workflow allowed us to work efficiently. While there were still many bumps

along the way as we learned what did and did not work, having a well defined workflow

definitely did more good than it did bad and was one of the core reasons we were able to get

through our project.

C. Core Mechanic - Pages

 Early in the design process, we had proposed the idea of including items, gear and

currency that would be separate from Pages. However, as we discussed the design, we realized

that the Pages that build the rooms of the dungeon should be the core mechanic of our game, so

we decided to cut all of these extras, and had Pages fill their role. Instead of having items that

can be used in combat to heal health, specific Pages would do that when chosen as the move. To

replace gear, which would give the player higher stats when equipped, we decided on having a

deck-building aspect with the Pages, so the Deck would level up as the player went through the

game. Finally, instead of having a currency for players to buy items with in the shop, we decided

that players spending Pages for more powerful Pages seemed like good mechanic that put the

focus on the Pages.

D. Deck-Building Combat

 The deck-building style of combat came about as a result of our decision to create

strategic combat while removing the stress that is common to real-time battles. Combat is

entirely turn-based, allowing each player time to plan out their moves without feeling any

pressure due to relentless enemy attacks. While many trading card games feature complex rules

on each card, allowing for a wide variety of strategies, we chose to keep the rules of our cards

relatively simple. The wide variety in the complexity of card game rules can be seen in Figure 3,

which contrasts a card from Yu-Gi-Oh! (28) with one from Magic: The Gathering (29). Many

early cards from the Yu-Gi-Oh! trading card game have fairly simple rules, featuring little more

than a level, type, and attack and defense strength. In contrast, many cards from Magic: The

Gathering feature more complex rules, allowing for complex strategies and synergies with other

cards. We chose to keep Storybook’s rules simple, since this reduces the skill curve, making the

game easier for new players to pick up.

Figure 3: Simple vs. complex cards. To make Storybook easier to approach, we opted to have simple

rules for combat, as seen in many early cards in the trading card game Yu-Gi-Oh! (left) (30), as opposed

to the more complex rules behind games such as Magic: The Gathering (right) (31).

 To keep Pages as the core mechanic, we chose to have Pages serve as the cards in

combat. In combat, players only use Pages from an object called the Deck, which is a subset of

all the Pages owned by that player. A Deck consists of a set of Pages separate from the player’s

inventory. Initially, the Deck is made of randomly chosen Pages, though over the course of the

game players are able to swap newly acquired Pages into their Deck. There is also a limit to the

number of Pages that may be placed into a Deck. This adds more depth to the deck-building

aspect of the game, as the player must balance building a Deck to suit them well during combat,

while also including Pages that they wish to give up as “currency” in the shops as well as Pages

with which they can build a new room.

 In combat, a Page has several components that the player needs to be aware of at all

times. The most prevalent is the Page’s type, or Genre, indicated by the color of the Page. To

help Genres feel unique, we implemented them in a manner similar to the type matchup systems

found in many role-playing games, such as Pokémon (32) or Fire Emblem (33). Each Page falls

under one of the four main Genres in Storybook: Comic/yellow, Science Fiction/blue,

Fantasy/green, or Horror/red. Each Genre is unique in that it has advantages or disadvantages

against the other Genres.

 In addition to its type, each Page has a level. In combat, the Page’s level determines its

base power and its overall effectiveness. Page levels run from 1 to 7, with 7 being the strongest.

Players start the game with nothing but level 1 Pages; these are meant to be a sort of starter Page.

Over the course of the game, players will eventually fill their Deck with higher level Pages,

allowing them to fight stronger enemies, win more powerful Pages, and trade up for rarer Pages

at the Shop.

 In combat, each Page serves one of two purposes: Attack or Boost. Attack Pages do just

as they say, they deal damage based on the Page’s level, as well as taking type advantage into

effect. Boost Pages serve as support moves, raising a particular stat of an ally. The effect of a

Boost Page is dependent on its Genre, and is clearly indicated on the Page by an icon. Fantasy

Pages boost speed, Comic Pages boost offense, Science Fiction Pages boost defense, and Horror

Pages restore health points. A full breakdown of a Page’s structure can be seen in Figure 4.

Figure 4: Breakdown of a Page.

E. Major Goal - Simplicity

 Throughout the design process of Storybook, our major goal was simplicity since it is

intended to be a casual game. Initially, we considered having dungeons that the players would

walk around in, solve puzzles and explore, in addition to the turn based enemy encounters.

However, we felt that this would have been too detached from what we wanted to be the focus of

our game; the turn based combat and Pages, so we decided to cut this altogether. Instead, we

decided on having the players fight enemies in a room, and then simply choose which room they

would like to visit next, where there could be another encounter or a special room, like a shop.

We felt that this was better for our game because it made it simpler and easier to learn, as well as

made the game more focused, since we cut everything that didn’t revolve around the combat and

the Pages.

 However, although we were striving for simplicity, we also wanted to create a game and

systems where an experienced player can also be challenged. We were inspired by the Pokémon

series with trying to do this. In those games, a casual player with not much knowledge of the

game can play through and reach the ending without much trouble. Experienced players, on the

other hand, can use their knowledge in later game modes and even competitive games against

other players, where they, too, can be challenged. The reason for this is that there are a lot of

mechanics that are not necessary for progressing through the game, but are crucial when playing

against another player of similar skill level. We planned to achieve this goal with type matchups,

where certain Genres are effective against one other Genre, but are also weak to one. We also

wanted to achieve this through the Deck management, since we planned on including many

different types of Pages with varying effects, which meant that players had a variety of options

and strategies when deciding which Pages to put in their Deck. Finally, to ensure that new

players wouldn’t be daunted by the game, we planned on having the more challenging modes

separate from the main game.

F. Cooperative Gameplay

 Playing with friends is a common feature among casual games, with some popular

examples being Clash of Clans or Words with Friends (34). Most games that do have multiplayer

have players going against each other in what usually is a competitive scenario. On the other

hand, there are some games that have players working together for a common cause against AI

opponents, such as Minecraft (35). This was something that we were interested in doing with our

game since we thought that it would fit well with the gameplay that we had been designing. We

believed that the deck-building combat would be perfectly suited for co-op gameplay since there

would be collaboration between the players in terms of deck-building. For example, one player

may agree to serve a support role, taking a bunch of stat boost Pages in their Deck, while the

other player may fill the role of an attacker, with a bunch of attack Pages in their Deck. We also

wanted cooperative gameplay because from our experience it is a fun feature and results in

engaging collaboration amongst the players.

G. Short Play Sessions

 With our goal of a casual game in mind we wanted our game to be relatively easy to pick

up and put down at any point. This was a significant challenge to try and merge with a

multiplayer game. Unlike most other casual games we couldn’t simply allow a player to quit at

any point as we needed all players to be playing at one time. To overcome this issue we decided

to focus on shorter play sessions. We wanted it to be possible for our game to be completed in a

short amount of time and instead focus on multiple iterations. By doing this players would not

have to devote a huge amount of time to a single play through.

3. Gameplay

A. Combat

 In combat, the players face off against one or more enemy characters that they must

defeat. Each of the characters in combat have hit points, and when these hit points reach zero,

that character is defeated and removed from the combat. The players win if they manage to

defeat all of the enemy characters, and lose if they are all defeated. Each character also has stats

that affect the results of moves, such as the defense stat reduces the amount of damage that the

character takes. The combat is turned based, and first waits for all characters, enemies and

players, to select a move to use for that turn. A move can either boost a stat of the selected

character for a couple of turns, or deal damage to the selected character.

Figure 5: Multiplayer Storybook Combat Screen

 The enemies choose moves based on their AI, while the players use their Deck of Pages

for these moves. At the start of combat, players are given five Pages randomly selected from

their Deck seen at the bottom of Figure E, and draw a new Page at the beginning of each turn.

Players can select any of these Pages in their hand for their move, and then must select the

targets. If the player selects a boost Page, then they must then select a character on their team to

boost, and if it is an attack, they must select a character on the enemy team.

 Once moves are selected, the combat enters the execution stage, where the selected

moves are played out. The order that the moves are used is determined by the speed of each

characters, with the ones with the higher speed stat going first. If a character is defeated before

they are able to use their move, the move is not used and they can no longer select moves for the

rest of the combat. Also, if a character is a target of a move and is defeated before the move is

use, that move randomly selects a new target, making sure to only target enemies if it is an attack

or only players if it is a boost. If all of the moves are used and both teams have at least one

character remaining, the combat enters the move selection phase once again.

Figure 6: Combat move dealing damage

 After each move is used, the game checks to see if either side is completely defeated. If

all of the players are defeated, the game over screen is displayed and the players can return to the

main menu to start a new game. If the enemy team is defeated, the players have won and are

given the combat win screen, where they can select a new Page to add to their inventory. This is

how the players can improve their Deck, since the Pages received from winning combat are

typically more powerful than the Page that they used to make the room.

B. Character Selection

Figure 7: Character select screen

 At the start of each game, players must select the character that they would wish to play.

In a multiplayer game, each character can only be used by one player. A player selection is

indicated by a greyed out button underneath the character, similar to how the Submit button

looks in Figure 7. One of the differences between the characters is the stats. For example, since

the Comic Book Genre represents attack, the comic book character has slightly higher attack

than the other characters. In addition to this, each character has a Genre that they are strong

against, and one that they are weak against. We will elaborate on this further in Section F: Genre

Typings.

C. Room Types

 When the map is generated, all of the rooms are assigned a type, each of which trigger a

different event. Each room type also has a different appearance in game, with the shop room

having a wooden floor, and the combat rooms having a floor based on the Genre.

I. Start Room

 The start room is the room that the players are placed in at the beginning of each floor. In

this room, the players can manage the Pages in their Deck, possibly placing in Pages that they

received from combat wins in the previous floor. Once each player is satisfied with the contents

of their Deck, the players can start to explore the floor. If the players return to the start room, the

Deck management menu will appear again and they can once again select which Pages they want

to have in their Deck.

II. Combat Room

 When players enter a combat room, an enemy team is displayed in the center of the room,

and the game transitions to combat. The Genre of the room and team is determined by the Genre

of the Page used to build the room. For example, if the players use a Comic Book Page to build a

room, the enemy team will be of Comic Book type and the room will be Comic Book themed.

The floor of the combat room changes based on the Genre, with an example being the street that

represents the Comic Book Genre. Finally, scenery objects are randomly placed within the room,

that also correspond to the Genre of the room.

Figure 8: Entering a combat room

III. Shop Room

 When players enter a shop room, Pages to trade for are generated and the shop menu is

opened up. In the shop menu, players can trade their Pages for more powerful Pages, which are

generated separately for each player. The levels and Genres of the generated shop Pages are

based on the Genre and level of the Page used to build the room. Typically, the level is 2-3 levels

higher than the Page used, and the Genre tends to match the Genre of the Page used. To trade for

Pages, players must give up a maximum of three Pages whose levels must add up to or exceed

the level of the Page that they are trying to trade for. Once a Page is traded for, the Pages that the

player used are dropped from their inventory, and the new shop Page is added. The Pages that

are generated by the shop are saved, so if one Pages is left to trade for and the player wants to get

it later, by re-entering the shop that exact Page will be up for trade again. Alternatively, if a

player has gotten all of the shop Pages, the shop menu will not open when they re-enter the room

since there are no Pages left.

Figure 9: Shop room interface

IV. Exit Room

 The exit room is the room that the players are trying to find on each floor, since it brings

them to the next floor or the win screen if it is the final floor of the game. However, before being

able to go the next floor, the player’s must first fight a special boss character. The boss

characters are more powerful than regular enemies, but the game transitions to a combat just like

in the combat rooms. The combat runs as before, and once the boss is defeated, the players will

have the option to move to the next floor. However, they can choose to continue exploring the

floor, if, for example, they still want to find the shop of that floor. When the return to the exit

room, there will be no combat since the boss is already defeated, and they will have the option to

move to the next floor. If they choose to move to the next floor, the game saves their current

inventory and HP, and loads a new floor of the dungeon.

D. Deck Management

 As mentioned in section 2-D, deck-building is a major component of the gameplay. The

Deck of Pages is used for moves in combat, and always has a set amount of fifteen Pages. At the

start of the game, the player will receive fifteen Pages for their Deck, as well as additional Pages

for them to possibly swap into their Deck. Also, throughout the game, players will receive new

Pages from either winning combat encounters or trading for Pages in the shop. At the beginning

of each floor, players will be able to manage their Deck, that is choose which Pages they want to

put into their Deck and which Pages they want to keep on the side.

Figure 10: Managing the Deck user interface

E. Dungeon Traversal

 As players go through the game, they will be choosing doors to open in the dungeon in

their search of the exit room on each floor. After a room event occurs (combat, shop menu, etc.),

the players must choose a direction to move in based on the doors available in the current room.

In a multiplayer game, a leader is chosen for each room, and they are the one that have the say in

which direction the group moves in.

Figure 11: Choosing a direction

Once the player chooses a direction, they must choose a Page to place down to build the

room. The Page chosen has various effects on the event of the room that is created. For example,

if it is a combat room, then the team chosen will match the Genre of the selected Page, meaning

it will mostly contain enemies matching that Genre. If it is a shop, then the Pages generated to

trade for will more likely match the Genre of the chosen Page than being any of the other

Genres. The level also has an effect, such as making enemies in combat rooms more powerful

will better rewards, and increasing the average level of the Pages generated to trade for in the

shop. When a player uses a Page for building a room, it is dropped from their inventory and is

replaced with a basic level one Page.

Figure 12: Selecting a Page for a new room

Once the players reach the exit room and clear the boss, they will have the option of

moving onto the next floor. The game does not automatically move them to the next floor since

the players may want to continue exploring the current floor, with one possible reason being to

find the shop for the floor. Once players choose to move to a new floor, the game starts a new

level with more powerful enemies or ends the game if they were at the final floor of the game.

F. Genre Typings

 Many role-playing games feature some sort of type matchup system to allow different

classes to feel unique and to add more depth to the gameplay. Perhaps the most well-known

example of this is the Pokémon series, which features a rock-paper-scissors style of type

advantages and disadvantages across each of its 18 types of characters. To give a sense of

identity to each of the characters in Storybook, we implemented a simple type advantage system

to give each Genre (the “classes” of Storybook) its own strengths and weaknesses against other

Genres. In short: Fantasy beats Science Fiction, Science Fiction beats Comic, Comic beats

Horror, and Horror beats Fantasy. Figure 13 shows how the types match up against each other.

Figure 13: The type advantage system in Storybook. Arrows point in the direction of a positive

advantage. For example, a Fantasy attack is more effective on Science Fiction characters than on a

Horror or Comic character.

 Because Storybook features relatively few classes compared to other role-playing games,

we decided it was best to keep the type matchup system simple. This also makes the type

advantages less daunting to learn for a new player, as they only have to remember a small

handful of interactions, as opposed to the hundreds of potential type interactions in a game such

as Pokémon. Each Genre has an advantage against a single other Genre; a disadvantage against

the Genre it is weak to; and no advantage or disadvantage against the remaining two Genres.

Additionally, when a character uses a Page that is of their own Genre, they receive a small boost

to their attack power. However, when using Boost Pages, the type advantage system is even

simpler; the effects of Boost Pages are amplified when a Boost Page is used on a character of the

same Genre, otherwise there is no change in their effectiveness.

 In keeping with the general theme of simplicity, the damage calculation formula in

Storybook is rather simple as well. Though it takes in numerous factors including the attacker’s

strength; the defender’s defense; the types of the attacker, defender, and the Page being used; and

the Page’s level, the damage calculation formula does not feature any complex calculations. We

wanted a simple, concise formula so that it is both easier for us to balance Storybook’s combat,

as well as so players can easily grasp how effective their attacks will be. Figure 14 displays the

full damage calculation formula.

Figure 14: Damage calculation in Storybook. Though taking in a number of factors, the formula is

relatively simple, making it easy to balance as well as giving players a relatively easy way to gauge their

strength.

G. Tutorial

 To teach the players the game, we decided to implement a tutorial game mode that would

cover all of the basics. In a complete run of the tutorial, players will select a character, manage

their Deck, enter a combat room, enter a shop, and enter an exit room. At the beginning of each

new event, a window will appear with some text explaining what the event is and how it works.

For example, when the first enter a combat, the game explains that they need to use Pages from

their hand as combat moves. We decided to implement the tutorial in this way because it allows

the players to learn the game one bit as a time, instead of being overwhelmed from the game

explaining everything to them at once. Also, it allows the player to play the game in between

each tutorial message, so the player does not become bored from not being able to play for

extended period of time.

Figure 15: Example of a tutorial prompt

4. Art

A. Design Goals

In developing the game’s visual style, we decided early on to strive for simplicity. We

felt that a less realistic, more cartoon-ish style would fit the light, casual nature of the game, and

that because we only had one artist on the team that it would be better to avoid more labor-

intensive styles. We started thinking about how we could visualize our game using mainly

simple shapes and colors. We looked to old Nintendo 64 games for inspiration, as that consoles

limitations restricted all of its art assets to few polygons and simple textures. Kirby 64: The

Crystal Shards (36) and the original Super Smash Bros. were two of the games we looked at

most.

Figure 16: Using art style to overcome technical limits. Despite technical limitations, these games both

achieve nice looking visuals with a lot of character.

 The first major decision we had to make was whether to use 3D or 2D art for the game.

 We decided that either could work for our target art style, but ultimately went with 3D. The

decision mainly came down to the fact that at the time, our artist had more experience making

game assets in 3D and felt that he would be more comfortable with that workflow.

B. Initial Concepts

 One of the first concepts we came up with was the idea of the combat sequences taking

place on a giant book. At some point we did consider creating distinct battlefields for each

Genre, but we wanted to keep the scope limited. We liked the book idea because it fit well with

the game’s themes, and the idea of fighting on top of a book seemed pretty unusual. With that in

mind, we created some quick concept art.

Figure 17: First concept art

 Even though nothing about this picture really made it into the final game except the book,

it still demonstrates the main idea of the game: different characters fighting for control of the

story. Everything after sort of grew from this basic concept.

As mentioned in earlier sections, the game’s four player characters were meant to be

archetypes of the four literary genres, fantasy, sci-fi, horror, and comic book. When designing

these characters, I started by simply sketching out characters that seemed lifted from each genre,

a roguish “Robin Hood” type character for fantasy, a space bounty hunter for sci-fi, a Mr. Hyde-

esque monster for horror, and a superhero for comic book.

Figure 18: Early character sketches

As we continued to develop the game and began to make final decisions about

mechanics, we decided to go in a slightly different direction with the character designs. The

game’s strategy mostly revolves around knowing how effective each Genre type is against each

other type, and to make it easier for the player to keep up with, each type is coded to a color

(Horror = red, Fantasy = green, etc.). We thought that the character designs should also serve to

help the player keep track of the type system using the color code. In other words, the Horror

character should very clearly be “the red guy” and so forth. To accomplish this, we made new

designs that were less human and more abstract. Our thinking was that these new characters

were not so much people plucked from different worlds, but rather representations of each

genre’s “essence”. We thought of them as sort of a pantheon of “Storybook Gods”.

Figure 19: Character redesigns. These designs are very close to what ended up in the final game.

C. Implementation

Once we had settled on a general art direction and nailed down the character designs, the

actual production pipeline was fairly straightforward. We decided it would be best to use

Autodesk Maya (37) for all of the modeling and animation, as it best supports a low-poly style

and workflow. After that, it was just a matter of getting each asset modeled, rigged, textured,

and animated.

As mentioned earlier, one of the bigger limiting factors was that we only had one artist

working on our team, so prioritization of art assets was key. It was decided early on that the four

player characters should be given the most attention, as they are the most essential part of

gameplay, and the only assets are seen by the player throughout play. These characters were

modeled, rigged, and animated in Maya and used textures hand-painted in Photoshop (38). The

environment assets consist of Photoshop hand-painted floor textures and simple “clutter” objects

made in Maya.

 One issue we faced while creating the environment was what to do about the skybox. We

wanted to give the sense that the “rooms” in the game were drifting in a sort of cosmic nether-

space between worlds, so we thought it would be cool if the skybox was animated to reflect that.

 This was proving difficult to achieve with a traditional 6-sided cube mapped skybox, because

Unity required each side to be an individual texture. Instead, we just put a large inverted sphere

over the whole environment and textured the inside. We made the texture with several layers

and transparency maps and animated them individually to achieve the hazy, floaty look that we

wanted.

Along with the characters, the other essential art assets were the Pages used in the game.

 As described in earlier sections, the Pages are the core of the gameplay, used by players to

create Decks for combat and to generate the dungeons. Because they are so central to the game,

it was very important that the Pages looked nice and were very readable to the player. We were

able to get a second artist, Dillon DeSimone, to help out for a few weeks of the project, and in

that time he did a lot of graphic design work that greatly contributed to the look and layout of the

Pages.

Figure 20: Genre type icons made by our “guest artist”

 Because the Pages need to quickly convey several pieces of information to the player,

their design relies heavily on icons and symbols like these. The Pages were revised multiple

times during development in order to make them as useful as possible to the player.

Figure 21: Earlier design (left) versus revised (right), putting less emphasis on text and more on the icons

 Once the assets were all in place, the last phase was tweaking settings in the Unity engine

to achieve the look we wanted. With low-poly assets like ours, choosing the right shader and

import settings can go a long way in nailing down our visuals. Softening the normals on the

models and applying a “toon” shader (which adds black outlines to each objects among other

visual tweaks) were two of the most effective techniques we used, as they deemphasized the

individual polygons on the assets and made them appear more as unified simple shapes.

Figure 22: Final art results with all “visual tweaks” in place

5. Sound

A. Music

We wanted our game to have some original music to stand out, so we decided to contact

Tangent Music LLC (39), and they agreed to make a couple original tracks for Storybook. The

three tracks that we requested were a menu theme for starting up the game and joining/creating a

game, a dungeon theme, and a combat theme. To get started, we had a discussion with the

members of Tangent Music LLC to describe the gameplay mechanics and art direction of our

game. From there, we sent them some music sample from games that we enjoyed and believed fit

how we wanted to the tracks in Storybook to sound. During the development of our game, we

stayed in contact with Tangent Music LLC, giving them updates on our game, as well as

receiving the status and latest versions of the tracks. Once we received a track for the game, we

imported it into Unity and had it play at the appropriate time during the game.

B. Sound Effects

 We did not have much to work with in terms of sound effects, so we decided that we

would use royalty-free sounds that we would find on the internet or self-recordings for some of

the simpler sounds. Because of this, we also decided that we would only use sound effects at key

moments throughout the game. One of the major uses of sound effects in our game is when a

selection is made in a UI menu, since giving feedback to the player is important with UIs. Also,

we used sound effects in combat for attacks and boosts, since we believed that it made the

combat more satisfying since each move has an auditory impact.

6. Technical Implementation

A. Photon

I. Why Photon?

 From very early on in the games design we knew we would want to provide some form

of networked multiplayer. To fit our design and constraints we needed a networking solution that

would be both easy to use and quick to setup while still allowing for flexibility in our code. We

also needed a solution that would allow for matchmaking so users did not have to remember their

friends IP address. Finding such a solution proved difficulty and we ended up going through a

number of different networking solutions each with their own ups and downs

 We finally decided on a third party tool called Photon (40). Photon provided us with most

of the features we desired. The company itself provided matchmaking and relay servers for use

by developers eliminating our need to figure out how players would connect to each other.

Although these servers cost money a free plan was provided to allow for easy testing.

 Photon also came with an open-source Unity API. This API integrated communication

with photon servers into the engine itself. Objects could be marked to receive network

information including when players connected and disconnected and when new rooms were

created. The only thing the API did not provide was a flexible way of sending data. The best the

API could do was provide a way for game objects to write data into a stream that would be sent

to other players, as well as triggering remote code on other players. Due to its open-source nature

however we found we were able to write our own object networking solutions to provide us with

the flexibility that we needed.

II. How Base Photon Works

 Photon can be divided up into two sections. There is the architecture section, which deals

with how data is physically transported from one player to another, and there is the game world

section which deals with how players’ worlds are represented through network data.

 As mentioned previously, Photon provided servers for developers to use. These servers

had two responsibilities, match-making and data relay. The match-making was relatively simple

to understand. Players would connect to the match-making server where they could then ping the

server about room information (Photons name for matches). Players could then either connect to

an existing room or create their own for other players to connect to. Once connected to a room

Photon would use its relay servers to allow communication between clients. These relay server

only purpose was to relay data between clients, not be authoritative server on what's happening

in the game. To still allow for an authoritative server design Photon would mark one client as a

“master client” which was designated to have authority over the game.

 Photon provided a Unity library which was composed of both a low level and high level

API. The low level API was focused mostly on allowing communication between clients through

photon. It provided serialization, packet delivery, and room management methods that could be

used so that raw socket communication was not needed. The high level API provided the actual

integration with Unity. The main construct of the high level API was the PhotonView. This was

a component that could be added onto objects in order to make them networkable. This network

view defined which client owned the object and provided functionality for serializing other

components on the same object.

III. Photon Modification

 Early on in the development of our game we decided that the game should be as close to

full server authoritative as possible. This would mean that the server (or master client) would be

in charge of everything and clients would simply replicate it on their end. Our game being

entirely turn based also meant that there was no need for any client side prediction, so our

network code simply had to send inputs from players to the server, and then have the server send

back the world state and events. This flow of data was desirable for us as it meant our net code

would be fairly easy to follow and create. At no time would we have to worry about resolving

client conflicts.

 To help make development easier later on we decided to dedicate time to modifying

Photons high level API to be more authoritative server friendly, and to allow cleaner and more

flexible net code. The first major modification we did was the addition of sync properties. This

allowed us to write object serialization code not as a block of code serializing to a stream, but

rather as attributes on object properties. This gave us an easy view of how an object's state would

be serialized and allowed for quick changes in an object's state serialization.

 When state serialization was not a viable solution however we relied on Photons RPC

system (remote procedure call) which allowed us to remotely call a piece of code on another

client. As we were using a central server method we did not want to allow these to be called from

any client to help ensure that the game remained secure. Thus we limited the calling pipe to now

be only from server to client. When clients needed to talk back to a server about input we

allowed the server to mark special objects as being controlled by a client and through these

objects clients could send messages back to the server.

 The open nature of Unity and Photon allowed us to have a great amount of control over

our networked environment. We ended up having the power to not only include these changes

but several others that helped us accomplish things not possible with the out of the box solution.

This flexibility allowed us the power to write complex net code quickly and spend more time on

building the actual game than just writing net code.

B. Networked Combat

 The major component of our game is the combat, which needed to be synced over the

network, so a lot of thought went into designing this core system. There were many iterations

during the implementation of this system, and every step was carefully thought out and tested

once completed to ensure that everything was working.

I. Initial Implementation

 To start with this system, the primary goal was to get a turn-based combat working

locally, with networking being pushed back to a later iteration. The end result was a basic

implementation where the user would press space bar and the player pawn would attack the

enemy pawn, and then the enemy pawn would attack the player pawn. The key components of

this implementation were the combat state machine, the Combat Manager, and the Combat Pawn

classes.

The combat state machine handles the transitions of the combat between its four possible

states; waiting for input, executing the moves, players win and players lose. The game waits in

the input state until the player hit the spacebar, and then executes the moves displaying simple

animations. After each move is completed, the game checks to see if either side was defeated,

and transitions to the corresponding win or lose state if necessary. If all the moves were executed

and neither side was fully defeated, it returns to the waiting for input state.

Figure 23: Combat state machine with transitions

 The Combat Manager is in charge of various aspects of the combat, primarily starting the

combat by transitioning from the overworld. The Combat Manager spawns the necessary pawns

for the combat, as well as sets up the state machine and sets in in the waiting for input state. The

final role of the Combat Manager in this version is keeping track of the moves that each pawn

has selected, although in this version there was only one move that could be used.

The final component of the combat is the Combat Pawns, which store the stats of the

characters, as well as handle move selection. When the player hits spacebar, the Combat Pawn

sends the selected move to the Combat Manager. By the end of this iteration, we had a working a

thoroughly tested version of combat for a single player, and the next step was to get it working

with Photon networked multiplayer.

II. Networked Implementation

 Designing how the combat would function over the network was a challenge because we

needed to make sure that the implementation would never result in players being de-

synchronized. The first aspect that we considered was figuring out what we needed to send over

the network to the other players. What we learned is not that much needed to be sent, basically

just the move that each player selected, as well as the targets of these moves. As a result, we

decided that these values would be the only things sent over the network during combat, so

everything else, such as executing the moves, would be done locally so as to avoid potential

points for a de-synchronization to occur between players. To handle this, there were two key

additions made, being the Combat Manager sending out player move selections to all players, as

well as a networked state machine.

 The Combat Manager object was instantiated on all clients, meaning that RPCs could be

sent out to all of the players. Whenever a move was received by the Combat Manager, it sent out

the move data to all of the players via an RPC call. Because enemies choose moves based on

their AI, it would be possible that if the AI was left to select a move on all clients that the

selected moves would be different. As a result, we had only the enemies on the master client

select a move, and then the Combat Manager sent out this selection to the other players.

 The networked state machine was also something that was managed by the master client.

The state machine that was in the initial version was made to only run on the master client.

Because of this, we created networked objects for each of the states that would be created on all

players when the master client entered a new state. So once all the moves received and the

master client state machine transitioned to the execute moves state, the master client would

create an Network Execute state on all clients which would run all of the selected moves on each

client separately. Once all players executed the moves locally, the master client would be

notified and would transition back to the waiting for selection state.

Implementing the combat in this manner proved to be effective, as there were only a few

values/objects being synchronized, and thus, only a few points where the game could de-sync for

the players. This made it easy for debugging when something went wrong since there were only

a few spots in the code where the problem could be occurring. The next big step for us from here

was allowing the user to select a particular move and its targets, as well as tying in the Pages and

the Page moves.

III. User Input & Tying to Other Systems

Our first step in handling user input was designing the UI for combat, and implementing

this design into the game. Once we planned out the UI, we built it in Unity using the UI building

tools, and then went to work on giving this UI functionality in combat.

One of the primary additions that we made in this stage was the Combat Deck, which was

associated with each player and the source of all the Pages that the player would be able to

choose from for their move. The way the Deck worked was at the beginning of every combat, it

would grab all of the Pages from the player’s inventory that were marked as being a part of the

Deck and shuffling it. At the start of the combat, five Pages would be drawn from the Deck and

placed in the combat UI for them to select, with a new Page being drawn each turn after that.

Once a Page was selected, the player would then choose the targets for the Page. After

submitting the Page, the move was sent over the network via the method described in the

previous section.

Another component of our game that needed to be integrated into the combat was the

Player Entity, so that the damage that players took during each combat could be carried over to

the next enemy encounters. To do this, the stats from the Player Entity object were loaded into

the Combat Pawns at the beginning of each combat. At the end, the values would be updated in

the Player Entity based on the ending values in the Combat Pawn. At this point, we had a

functioning combat system that could be played with multiple players over the network, and was

fully integrated the necessary features of our game.

Breaking up the combat system into these steps during its creation proved effective,

because the end result is a stable turn-based system that stays synchronized over the network.

With many different actions and combinations that can occur during combat, having a stable

system was necessary for the creation of our game. It also allowed us to add new content to

combat, such as new moves or enemies, and be confident that the underlying system was not the

problem if a bug arose.

C. Enemy AI

I. Properties

 When designing the enemy AI, the major goal was to make it easy to create many

different enemies that have variety of different behaviors. To do this, we separated out the major

attributes of enemy AI, being stats, move selection, and target selection, so that it would be easy

to mix and match these attributes to create different enemies. Separating the attributes made it

possible to create new enemies with different behaviors and models on the fly without having to

create new code, which proved helpful during the balancing stage of development.

Figure 24: Enemy editor values

II. Move Selection

 Every enemy has a variety of stats that can be set in the editor, including general combat

stats, such as hit points and attack power, as well as some AI values. These AI values include an

aggression value, starting mana value, and mana per turn. Each enemy also has a list of combat

moves that it can choose from. To give weights to the moves that an enemy has, we decided to

assign mana values to each move. This means that an enemy can only selects moves that it has

enough mana to use. All enemies have a starting mana value and an amount of mana that they

gain per turn, all of which can be set in the Unity editor. The other AI value is the aggression

value, which is between 0 and 1, and affects whether the enemy prioritizes support moves that

boost stats of its teammates or attack moves. The higher the aggression value, the more likely the

enemy is to choose an attack move, and the lower it is, the more likely a support move will be

chosen.

III. Target Selection

 Once an enemy has chosen a move, it needs to choose the targets of that move. If the

move is an attack move, the enemy will only have the opposing team characters to choose from,

and support move only allows for teammates to be targets. Since target selection is specific to the

move being used, the target selection algorithm is placed in the move object instead of the

enemy. For example, when an enemy uses one of its attack moves, a selection might be choosing

the pawn with the lowest health. The way the moves are implemented make it easy to make

multiple moves that have the same effect, but a different target selection method, which allows

for a variety of different behaviors. With this system, we can also make moves that are specific

to certain enemies, like boss characters, to make that particular enemy seem unique since they

would be the only one in the game to have that move.

 The end result is a system that makes it easy to create new enemies and to balance the

ones that are already in the game. One downside is that this system required a lot of different

move object classes to be created, each with their own target selection process and effect, but we

believe that it was worth the time because it has allowed for varied enemy behaviors.

D. Map Generation

 One of the most common aspects of a rogue-like game is random map generation, so it

was important that we implemented this feature in a fun and effective way in our game. The

major goal of the map generation was to design a system that created varied map layouts with a

lot of designer input to influence the process. To accomplish this, many of the variables that are

used in the generation process are exposed to the developer. The most basic control over the map

generation that the designer has is that they can set the length and width of the map. Another

variable that can be set is the minimum distance from start to exit, which is the minimum number

of rooms that the players would have to travel through to get from the start to the exit. Finally,

since the maze generation algorithm used created linear paths, the designer can set a number of

extra connections that they would like to see added to the maze.

Figure 25: Map Manager editor values

To generate the door placement for each room, a depth-first search maze generation

algorithm was used. First, the start and exit positions are randomly placed on the map. From

there, the algorithm starts at the start position and checks the surrounding position in a random

order. Once it has a random surrounding position, it will connect it to the room it is currently

looking at as long as it is a valid position on the map, the room has not already been

visited/connected, and as long as making the connection does not violate the minimum distance

from start to exit set by the designer. Because it never makes connections with rooms that have

already been visited, the algorithm tends to make a linear maze. After the maze is generated, it

creates the additional hallways/connections based on the number set by the designer as

mentioned earlier. To add additional halls, it first randomly selects two adjacent rooms that are

not currently connected. From there, it checks to make sure that adding this connection would

not violate the minimum start to exit distance. As long as it passes this check, it will connect the

rooms, and keep doing this until it adds the number of extra connections set by the designer.

Finally, the map generation algorithm places the shop room in the map by grabbing a random

position that is neither the start nor exit.

Figure 26: Sample 4x4 map generated in the game. St indicates start room, Sh is the shop, and E is the

exit for the floor.

The result of this map system is that the levels in our game feel natural to progress

through and as though they were hand designed. Also, with the amount of designer input that we

allowed for, it makes it so that we can change the maps based on the level that player is on, such

as larger maps for the later levels.

E. Event Dispatcher

 One problem we found as we got more into the core game programming was how to

allow separate systems to allow objects to communicate with each other in an easy to use and

flexible way. Originally we just used plain method calls from one object to another. However

this quickly created a huge number of dependencies in our game and made changing code to

difficult.

To fix this issue we created the event dispatcher system. The event dispatcher system was

composed of three main parts, the caller, the dispatcher, and the listener. The caller was simply

the object that wanted to inform the world about something happening. It would call a method on

the specific event dispatcher it wanted to inform. As an example you might see some code that is

demonstrated in Figure 27.

Figure 27: Using the EventDispatcher in code

 This code would inform the dispatcher that a room had been entered. The dispatcher

would then forward this to all listeners who had registered for this dispatcher. Listeners we

implemented as interfaces which allowed us to make any type of object a listener for any

dispatcher very easily. The total system ended up looking like Figure 28.

Figure 28: Event dispatcher system

 Although at first glance this system may seem like an oddly complicated way of making

calls between objects it was a helpful strategy for us for creating communications between two

objects in entirely unrelated systems. This allowed us to make our game code somewhat flexible

to change and gave us the option to move pieces around.

F. Dungeon Master

 Random generation of certain aspects of the game is a major feature of rogue-like games

such as this one, so we created the Dungeon Master. We wanted to centralize most of the random

generation, so most of it is in this object, particularly dealing with Page generation and drops. To

make it easier for balancing, we provided a variety of values that can be tweaked that would

change the probabilities of certain events happening, such as the probability of obtaining a higher

level Page after a combat. The Dungeon Master also handles randomly generating the shop

Pages, which can also be tweaked by altering values that are exposed to the designers. The

Dungeon Master object proved helpful while balancing our game because it made it easy to find

Caller Dispatcher

Listener A

Listener B

Listener C

Page generation since it was all centralized this object, and made balancing a simpler task with

all of the values that were exposed to affect the Page drops.

Figure 29: Dungeon master editor values

G. Inventory

 One of the core features of our game was the concept of being able to hold multiple cards

in an inventory. We wanted players to be able to pick up new cards, move cards around, and

drop cards when the user no longer needed them. The concept of this itself wasn’t too difficult;

we essentially just needed a small data store that contained what cards the player had to use. The

major challenge came from trying to get this to work on an authoritative server. Because the

server was the only entity allowed to change things, a player could not locally make changes to

their inventory, but had to inform the server of what they wanted changed. Unlike simple input,

this could cause conflicts with both the server and client trying to make modifications at once.

The players’ state could easily become out of date causing the two clients to de-sync.

 For a solution we turned our attention towards source repository systems like Git and

SVN. The main appeal of these repository systems was their ability to allow multiple clients to

make changes in parallel and merge them together so long as nothing overlapped. By applying

this to an inventory system players would not only be able to keep their version of the inventory

in sync, but would also would allow the server and player to apply changes at the same time.

 In our implementation we defined a timeline of “commits” to the inventory. Each commit

represented one change to the inventory system. The timeline was split up into two sections, the

locked timeline and the floating timeline:

Figure 30: Inventory timeline

 The locked timeline consisted of commits that the local client was certain about, and the

floating timeline consisted of commits that had been applied to the inventory but had yet to be

validated. When a commit is made on a client it is put on the front of the floating timeline and

the changes are made locally. The commit is then sent to the authoritative client who will try to

apply the commit onto their locked timeline. If the commit is successful the commit is sent to all

players to be locked. If it fails, then the original sender is told to revert. This is done by having

the client revert all commits on the floating head up to the invalid commit. The client will then

try to re-apply the other floating commits in front of it. This is used to check to make sure that

changes to the inventory after the invalid move are also not invalid.

H. Player Entity

 With our game being multiplayer it was very important for our game to have the ability to

share player information between players. To give players one center location for their

information we created a player entity system. The player entities were not the physical

representation of the players in the world, but were rather an invisible construct used to represent

the real world player in the game. These entities could store information about a player's name,

what Genre they chose health, inventory, and more.

 To allow the player entities to be flexible throughout the game we developed a game

management system to handle the player entities. This system was built to allow player entities

to be swapped out at any point during the game, thus allowing functionality of the player entities

to change as our game went from one state to another. This system allowed us complete

flexibility over the game logic will relative ease.

I. Map Movement

 While our concept of map movement was simple, making it work reliably over the

network proved to be more complicated. We needed to create a system that would run a state

machine, allow rooms and other events to execute code, allow player objects to move with each

other, and keep all players in sync across the network. We also wanted this system to be flexible

and very open to change to allow for features of the game to be changed easily.

 We ended up creating three major pieces for this code. The first was the room movement

code itself. To make moving from room to room easy we define nodes within each room to

define where the doors and center of the room are. We then created a very simple mover that

could be instructed to move to a node on the master client. The master client would relay this

node to all players and all players would simply move towards the node at a constant speed. To

make sure everything remained in sync with each other we also had the master client handle all

events for reaching the nodes, and had the event messages relayed to the other clients.

 We then had to solve the challenge of keeping players moving with each other. Originally

we defined each player's pawn (the player model they controlled) as a mover on the network and

had each player move to a specific node. However we quickly found that this code was very hard

to manage and was to prone to visual errors. It was much simpler for us to define a single mover,

and create the pawns as dummy objects that moved to offsets around the real mover. This made

moving all players very simple as we now had one unified piece of code to deal with.

 Finally there was the matter of applying the game logic to the player's movement. As our

movement was going to go from one state to another naturally we built our player movers

designed around a state machine system. We used Unity’s coroutine system as the basis for our

state machine. This allowed us to write code that could stop computing on one frame, and

resume computing on the next. By doing this we could write easy to understand state code that

would wait on conditions to be meet with a simple loop rather than requiring complicated code to

return back to the same point of execution.

Figure 31: Map movement state machine

The Room Event state seen in Figure 31 ended up being a part of the room's code rather

than the mover. This gave us the ability to completely change the behavior of this step in the

state machine with very little effort.

 To make this work over the network we decided to follow a strict authoritative server

model. Rather than running the state machine on all clients and syncing the transitions, we only

ran the state machine on the master client and informed the other clients of information they

needed to know. Clients thus would be informed of what state the machine was on, but would

have no actual logic for what to do. This allowed us to easily change the code for the state

machine without worrying that clients code would break.

J. Music and Sound Managers

 In order to play music in-game, we needed to program our own music system, as Unity

does not have a built-in way of handling music without code provided by a developer. Over the

course of Storybook’s development, the way in which we structured the music system changed

several times, resulting in a constant shift in the way in which we designed the music manager.

 To handle playing music over the course of the game, we developed a Music Manager.

The Music Manager’s primary job is to handle storing all music tracks in the game, as well as

switching between them. We put all the music tracks into the Music Manager as individual

members- i.e. one audio file per music track instead of a single list holding all of them. Because

of the low music track count in Storybook, keeping track of individual pieces of music is

relatively easy. Additionally, we added class members to the Music Manager that allowed us to

revert to a previous track easily, which is particularly useful for going in and out of combat. The

Music Manager primarily works by listening for various types of events that would signal a

change in music, and calling a function to fade into the appropriate track. For example, when the

players enter a new room, the room will send an event stating that the players have entered a new

room to the Music Manager. The room also sends its Genre with this event, so the Music

Manager knows which music track to load. Upon receiving this event, the Music Manager sets

the current music track based on the Genre passed in. The Music Manager behaves similarly

when it receives an event stating that combat has started or ended. If combat has started, it

simply changes the music track to the combat music. If combat has ended, the Music Manager

will receive an event stating so, and it will play the music track stored as the last track played.

This event-driven architecture for Storybook’s Music Manager is a relatively clean and simple

way to handle changing music, though it only came about through a series of redesigns.

 Originally, the Music Manager was an isolated entity that had no knowledge of all music

tracks in the game; the different types of Rooms stored their own music. In theory, we thought

this would be an easy way to customize rooms, as each room could have had its own unique

overworld and combat themes. Whenever the game required the music to change, the appropriate

object would directly ask the Music Manager to fade into the desired track. Obviously, this

structure is an extremely bad way to design code, as it allows any object with audio files to

potentially hijack the music system, so further in the development cycle, we chose to redesign

the Music Manager.

 As the Alpha version of Storybook neared completion, we chose to restructure the Music

Manager. For this redesign, we chose to store combat music and the last music track played

inside a Combat Instance upon its creation. The Combat Instance then handles changing the

music to and from combat. However, we felt that this implementation was too complex and

convoluted to use, so we planned to redesign it once more into the state it is in now.

To handle playing the title theme, we created an alternative Music Manager, called the

Persistent Music Manager. We used a different object to play the title theme because we felt the

base Music Manager and the Persistent Music Manager served different purposes. The base

Music Manager is designed to handle music changes in-game, while the Persistent Music

Manager is a simpler object that exists to play a single music track across several scenes. It lacks

any sort of fading functionality, and it only plays the title theme until the game starts. From that

point, the Music Manager will take over the job of playing music for the rest of the game.

In order to play sound effects, we developed the Sound Effects Manager. It is used for

one-shot sound effects, such as the clicking sound used in the user interface. Because it is only

concerned with playing single-use sound effects without volume control, fading, etc, the Sound

Effects Manager is much simpler in its design than the Music Manager. All it needs is a field for

each type of simple sound effect as well as a function to play them once.

7. User Testing

A. Testing Process

 For playtesting, we decided that we wanted to test both the tutorial game mode, as well as

a multiplayer game with two players together. As a result, our process was have players go

through the tutorial, and then join a multiplayer game with another player involved in the testing.

To recruit playtesters, we sent out an email to CS and IMGD majors at WPI, with the incent ive

being a gift card. We had them sign up for time slots so that the process was organized, and so

users could sign up with a friend to play the game together. If only one person was signed up for

a time slot, a member of our team played the game with the tester.

 While players were playing the game, we took notes on the actions that they were taking

and any questions that they might have had. We waited for players to complete the tutorial, and

then once they were both done, they started up a multiplayer game. In the multiplayer game, we

had they go through a few rooms together, typically four or five, and then had them stop so they

had time to fill out the survey. The survey contained a variety of questions, covering the UIs,

difficulty, tutorial and gameplay.

B. Results

I. Tutorial

The results from the tutorial section was that players felt decently prepared to start a

game after playing the tutorial, with the average score being three out of five, with five being the

best. From the responses, it appeared that the Deck management section was weakly covered in

the tutorial, as players seemed to have a hard time understanding the difference between the

Deck and the other Pages in their inventory. Also, some players noted that a few of the UIs could

have been explained better, such as the shop or the Deck management menu.

II. Gameplay

 Since Pages are the core mechanic of our game, most of the gameplay questions asked

were about the Pages. From the results, it appears the people enjoyed the idea of Pages and how

they are used in game, particularly using Pages to build rooms. However, players seemed to have

some trouble understanding the differences between Pages and what their effects in combat

would be. For example, people were unsure which color corresponded to which Genre, with

some players having to ask a couple times during the playthrough.

III. User Interface

 The final section of the survey covered the User Interfaces in the game, asking about the

quality of each of the different screens in our game. The results here were positive, with most

people saying that the combat UI, setting up a game, building a room with a Page UI, and the

shop UI were all easy to use and understand, with the average scores being around four out of

five. The menu that got the least positive feedback was the Deck management UI, averaging

around three out of five.

C. Changes Made Based on Feedback

 After completing the playtesting, we analyzed the survey results and decided on some

changes that we would make to the game based on the feedback. We noticed that the two major

areas that needed changing were the Deck management UI and explanation in the tutorial, as

well as the visual representation of Pages.

Figure 32: Deck management UI before and after feedback

In the left screenshot, the Pages are not sorted in the menu, and in the right one, they are sorted by Genre

 To improve the Deck management system, we first improved the messages that were

displayed in the tutorial, based on some of the difficulties people were having with it. People

noted that they felt overwhelmed when they first opened up the Deck management menu due to

the number of Pages in it, and one of the suggestions was sorting the Pages. As a result, we

decided to sort all of the Pages in most of the menus in the game by Genre, which makes it easier

to comprehend the contents of the Deck when viewing the Deck management UI. We also made

the Deck size smaller, from twenty to fifteen, so that it is easier for players to remember the

Pages that they have in their Deck. Finally, to make the characters feel more unique, each

player’s Deck contains only Pages that match the Genre of the character they have chosen, with

some extra randomly generated Pages in the inventory for them to choose to place in their Deck.

 As mentioned in the previous section, players were having a hard time remember what

the effects of Pages would be and what each color represented. As a result, we decided to

redesign how the Pages were displayed in game. One of the key changes was that in addition to

the color, we added an icon for the Genre on the Page. In addition, we also display which Genre

a Page would be effective against, and which Genre it would be weak against if it is an attack

Page. A comparison of the original Page design and the redesign can be found below.

Figure 33: Original Page design (left) versus redesign (right). Page design was overhauled after many

playtesters felt that Pages did not convey enough information.

8. Post Mortem

A. Evolution of Design

 As is expected with any game project, the design of Storybook changed numerous times

over the course of its development. When we started high-level design discussions early in

development, we originally planned to make Storybook more of a role-playing game with

dungeon crawler elements. The initial theme was drastically different too. Early ideas for

Storybook included crossovers of different time periods, mythologies, or cultures instead of the

final decision of literary genres. Shortly afterwards, we settled on the concept of a crossover of

literary genres, which we decided was a much more unique idea.

 One of the biggest changes we made from early design was the focus on multiplayer.

Many of our notes from early development state that the game was designed with a single-player

focus, but that we would allow for multiplayer. The initial goal was to create a game that was

meant to be played alone. Multiplayer would be implemented and balanced after we created a

single-player experience that was fun and satisfying to playthrough. We shifted the focus to a

multiplayer game early in development, as the programmers on our team felt that making a

solely single-player game would not pose much of a technical challenge and may not have been

as much fun to play.

 Initial ideas for gameplay were drastically different than what the current game became.

Early concepts for Storybook were much more like an exploration-based role-playing game with

heavy dungeon crawler elements. Like in the final game, players would still build the world as

they progress. However, the rooms were much bigger, allowed for free movement, and were far

more diverse than in the final game. At this point in development, we had decided on the theme

of literary genres, but we had not come up with the idea of universal Pages. Originally,

Storybook was going to feature a wide array of items, broken up into three categories: Pages,

which only served to build rooms; Equipment, which worked like armor in a role-playing game;

and Active Items, which were one-use items that provided some sort of bonus during combat.

Puzzles featured much more prominently in early design discussions as well. In early

designs of Storybook, not every room featured enemies. Some rooms would require characters to

use abilities unique to their Genre to complete puzzles which would unlock shortcuts through the

dungeon, reveal a hidden treasure, or provide some other bonus. Because the abilities required to

complete these puzzles was meant to be character-exclusive, these puzzles would only provide

additional bonuses to the player; they were not intended to halt progress.

 Early designs of Storybook allowed players to save a record of a victorious playthrough,

in a way, by saving a single item that the player held in their inventory at the end of the game.

The player would then have the option to keep that item as a special permanent item that would

persist across playthroughs. At the start of subsequent games, players would be able to choose to

start with one of their permanent items.

 The last major feature that was cut during development was a bestiary. Bestiaries feature

in many role-playing games as ways for players to view detailed information or get extra lore

about foes they have encountered. We originally planned for a much wider variety of enemies in

Storybook. Upon encountering an enemy for the first time, players would automatically record

details on that monster in their bestiary. In a multiplayer game, players’ bestiaries would

synchronize. Content inside a bestiary entry would include the enemy’s level, statistics, and

strategies to defeat them. The concept of a bestiary did not last long enough for us to consider

things such as completion rewards.

B. Change in Scope

The key to making a well-polished game in a short time span is to keep the scope of the

game manageable. Several times over the course of Storybook’s development, we made changes

to the scope of the game in order to afford enough time for balancing, as well as simply to cut

features we felt were unnecessary or did not fit right.

I. Focus of Game

 One of the biggest changes in the scope of the game was the focus on making it a more

condensed experience. Before we began programming the game, our advisors commented on the

monumental difference between having a more freeform style of exploration - like in our original

design - versus the more restrictive and condensed style of exploration present in the final game.

By this point, we were set on making a multiplayer-focused game, so the technical hurdles we

would have to overcome with freeform exploration were even more daunting than in a single-

player game. In a multiplayer game featuring a more open world, allowing players to freely roam

around, there were so many additional problems to consider. What happens if one player enters

combat, but not the rest of the party: Are they all dragged in, or can they join whenever they

want? What happens to players when they enter combat: How are they represented on the

overworld, if at all? Is the party allowed to split up and have players in more than one room at

once?

Since a mobile build was always one of our goals over the course of development, we

had to take into account the amount of processing power a game of this scale would use as well.

Allowing players to freely roam about the world meant that each phone now had to keep track of

up to four players’ worth of constantly changing positions, inventories, status, etc. For a PC-

based game, this type of multiplayer gameplay is certainly feasible and manageable, but for a

mobile phone, however, we felt that the technical requirements were just too much. Dropping the

open exploration style of gameplay also allowed us to design a game of a much more

manageable scope, making our goal of creating a finished and well-polished game much more

attainable.

 In addition to dropping the open world gameplay, we decided to cut the number of items

by making Pages universal. In the original design, Pages were a bit of an afterthought, as they

only served the purpose of building new rooms, serving no other purpose beyond that.

Equipment originally served as the passive stat boosts for players, and Active Items took a role

similar to Boost Pages in the current game. As we delved more and more into the literary themes

behind Storybook, we thought that making Pages an all-purpose item would both be an

interesting gameplay mechanic as well as easier to develop and balance. By combining all the

purposes of Equipment, Active Items, and the old Pages into a single item, players now have to

weigh the value of each Page strategically as it serves multiple purposes.

II. Room Types and Features

 Our early notes for Storybook listed a wide variety of rooms that could appear throughout

the dungeon. While the final game only includes four types of rooms (the starting room, combat

rooms, shops, and exit/boss rooms), the original plan was to implement over twice as many

special types of rooms. Among the cut types of rooms were the following:

● Curse room: Contains more challenging foes than usual, but will also drop a powerful

cursed item. Cursed items cannot be dropped unless the player holding it enters a

Sanctuary room.

● Empty room: Contains nothing of note. Unlike the final game, where the only featureless

room is the Start room, Empty rooms could be placed anywhere in the dungeon.

● Sanctuary room: Removes the “cannot drop” effect from Curse room items. Can

randomly drop items of above-average quality.

● Skull room: Contains boss-level enemies. Unlike the final game, where the boss only

appears at the exit, boss rooms could be placed anywhere in early Storybook.

● Speed room: Enemies walk faster in the overworld and have a higher Speed stat in

combat.

● Multiplier room: Contains greater quantity of enemies. Enemies are more likely to pursue

the player in the overworld.

● Teleport room: Acts as a shortcut between other Teleport rooms on the floor.

 Since we decided to cut out much of the open world exploration and item-based

gameplay, we either redesigned or cut these rooms entirely. Since the short play sessions are a

key part of Storybook’s design, we figured that having too many room types - while adding

diversity to the challenges the players encounter - would cause dungeons to become much larger

than they needed to be. In a game of a much larger scope, many of these rooms could have fit it,

but since Storybook was designed to be of a small scale, having such a large variety of rooms

seemed out of place.

C. Change in Art Direction

 One of the serious challenges we faced throughout the course of the project was working

with a small art staff. With three programmers and a single artist, we had to make do with

whatever we could get. For part of the year, we had the assistance of a few artists who

contributed work to Storybook as part of an independent study program. However, despite the

contributions of these artists, we still planned far more assets than we would ever be able to

produce. Early in development, we created a master list of art assets that we wanted to create for

the game. Among these assets was a fully modeled, rigged, and animated playable character for

each of the four Genres; as well as three common enemies and a boss for each Genre. That

doesn’t account for UI assets, skybox, textures, embellishment, and other necessary assets. We

had to cut most of the characters simply because creating good-looking, fully-animated models

of nearly two dozen characters is simply too much for a single artist on this sort of time scale. In

the end, we decided to design enemies as palette swaps of the player characters, featuring a

darker or more sinister-looking texture.

D. Final Result

The final version of Storybook is something incredibly different than what we set out to

create. Over the course of its year of development, Storybook evolved from a single-player-

focused action/exploration role-playing game with dungeon crawler elements to a multiplayer-

focused dungeon crawler with more linear progression. We faced practically every major hurdle

a game can face during development. Overambitious plans resulted in design overhauls on more

than one occasion. A wild overestimation of the feasibility of creating art assets caused us to find

creative solutions to implementing enemies into the game. What resulted was a valuable learning

experience. Every step we took to forming the final version of Storybook was a teaching moment

that helped us learn a bit more about the dos and don’ts of game development. Most importantly,

however, we feel that we succeeded in creating what we originally set out to make: a small-scale

game that has been finely polished to show not only our game development skills but also our

attention to and care for the small details.

Appendix

A. List of Definitions

What follows is a list of commonly used terms that will appear in this paper, alongside their

definitions.

Dungeon crawler: Dungeon crawlers are games that chiefly involve the player exploring and

fighting their way through a virtual dungeon. Many dungeon crawlers are procedurally

generated, meaning that the game builds the dungeon at the start of a play session instead of

using a pre-made layout (41).

Role-playing game: The most common definition of a role-playing game - also called an RPG -

is a game where a player assumes the role of a particular character. Common elements of RPGs

include leveling, where a player has various statistics that increase over the course of play;

menu-based combat; and a major central storyline that the players pursue (42).

Rogue-like: A game that features a combination of many of the following elements:

procedurally-generated worlds; a singular game world where all actions take place; dungeon-

crawler gameplay; turn-based combat; permanent choices and failure (43).

B. Survey and Results

Figure A-1: Survey question 1

Figure A-2: Survey question 2

Figure A-3: Survey question 3

Figure A-4: Survey question 4

Figure A-5: Survey question 5

Figure A-6: Survey question 6

Figure A-7: Survey question 7

Figure A-8: Survey question 8

Figure A-9: Survey question 9

Figure A-10: Survey question 10

Figure A-11: Survey question 11

Figure A-12: Survey question 12

Figure A-13: Survey question 13

Figure A-14: Survey question 14

Figure A-15: Survey question 15

Figure A-16: Survey question 16

Figure A-17: Survey question 17

Figure A-18: Survey question 18

Figure A-19: Survey question 19

Figure A-20: Survey question 20

Figure A-21: Survey question 21

Works Cited

[1] "What Is Casual Gaming?" What Is Casual Gaming? Computer Hope, 31 Dec. 2015. Web.

05 Apr. 2016. <http://www.computerhope.com/jargon/c/casual-gaming.htm>.

[2] "Report: Americans Serious About Casual Play." Report: Americans Serious About Casual

Play. Nielsen, 02 Sept. 2009. Web. 30 Mar. 2016.

<http://www.nielsen.com/us/en/insights/news/2009/report-americans-serious-about-casual-game-

play.html>.

[3] "Clash of Clans." Clash of Clans x Supercell. Supercell. Web. 11 Apr. 2016.

<http://supercell.com/en/games/clashofclans/>.

[4] "Angry Birds." Games | Angry Birds. Angry Birds. Web. 11 Apr. 2016.

<http://angrybirds.com/games/>.

[5] "Trivia Crack." Trivia Crack. Etermax. Web. 11 Apr. 2016. <http://triviacrack.com>.

[6] "Rogue (Game) - Giant Bomb." Rogue. GiantBomb. Web. 11 Apr. 2016.

<http://giantbomb.com/rogue/3030-22309/>.

[7] "The Binding of Isaac." The Binding of Isaac on Steam. Steam. Web. 11 Apr. 2016. <http://

http://store.steampowered.com/app/113200/>.

[8] "Super Smash Bros." Official Site - Super Smash Bros. for Nintendo 3DS/WiiU.

Nintendo/Bandai Namco Entertainment/Sora Ltd. Web. 11 Apr. 2016.

<http://smashbros.com/us/>.

[9] Screenshot of character selection from Super Smash Bros. for WiiU. 2014. Video game

screenshot.

<http://img15.deviantart.net/0050/i/2015/318/6/a/smash_wii_u_css_with_cloud_by_gameonion-

d9goef2.png>.

[10] "Core Team Members." Core Team Members | Characters | Marvel.com. Marvel. Web. 11

Apr. 2016.

<http://marvel.com/characters/list/986/core_team_members?&options[offset]=0&totalcount=17>

.

[11] "Man of Steel: Superman." Superman | DC Comics. DC Comics. Web. 27 Apr. 2016.

<http://www.dccomics.com/characters/superman>.

[12] "Captain Marvel." Captain Marvel | Characters | Marvel.com. Marvel. Web. 27 Apr. 2016.

<http://marvel.com/characters/9/captain_marvel>.

[13] "Halo." Halo - Official Site. 343 Industries/Microsoft Studios. Web. 27 Apr. 2016.

<https://www.halowaypoint.com/en-us>.

[14] "Metroid." Metroid Prime: Federation Force for Nintendo 3DS - Official Site. Nintendo.

Web. 27 Apr. 2016. <http://metroidprime.nintendo.com/>.

[15] "Star Wars." Star Wars.com | The Official Star Wars Website. Lucasfilm Ltd. Web. 27 Apr.

2016. <http://www.starwars.com/>.

[16] "Robin Hood." Robin Hood - Wikipedia, the free encyclopedia. Wikipedia. Web. 27 Apr.

2016. <https://en.wikipedia.org/wiki/Robin_Hood>.

[17] "Frankenstein." Frankenstein - Wikipedia, the free encyclopedia. Wikipedia. Web. 27 Apr

2016. <https://en.wikipedia.org/wiki/Frankenstein>.

[18] "Strange Case of Dr. Jekyll and Mr. Hyde." Strange Case of Dr. Jekyll and Mr. Hyde -

Wikipedia, the free encyclopedia. Wikipedia. Web. 27 Apr. 2016.

<https://en.wikipedia.org/wiki/Strange_Case_of_Dr_Jekyll_and_Mr_Hyde>.

[19] "Hulk." Hulk | Characters | Marvel.com. Marvel. Web. 27 Apr. 2016.

<http://marvel.com/characters/25/hulk>.

[20] "Create and Connect with Unity." Unity - Game Engine. Unity. Web. 27 Apr. 2016.

<https://unity3d.com/>.

[21] "Unreal Engine." What is Unreal Engine 4. Epic Games. Web. 27 Apr. 2016.

<https://www.unrealengine.com/what-is-unreal-engine-4>.

[22] "GitHub." GitHub. GitHub. Web. 27 Apr. 2016. <https://github.com/>.

[23] "Trello." Trello. Trello. Web. 27 Apr. 2016. <https://trello.com/>.

[24] "HacknPlan." HacknPlan | The project planning tool for game developers. HacknPlan.

Web. 27 Apr. 2016. <http://hacknplan.com/>.

[25] "Slack." Slack: Be less busy. Slack. Web. 27 Apr. 2016. <https://slack.com/>.

[26] "Unity Cloud Build." Unity - Services - Cloud Build. Unity. Web. 27 Apr. 2016.

<https://unity3d.com/services/cloud-build>.

[27] "Google Calendar." Google Calendar - Get the new app for Android and iPhone. Google.

Web. 27 Apr. 2016. <https://www.google.com/calendar/about/>.

[28] “Yu-Gi-Oh! Trading Card Game.” Yu-Gi-Oh! TRADING CARD GAME. Konami. Web. 11

Apr. 2016. <http://www.yugioh-card.com/en/>.

[29] “Magic: The Gathering.” MAGIC: THE GATHERING. Wizards of the Coast. Web. 11 Apr.

2016. <http://magic.wizards.com/>.

[30] Takahashi, Kazuki. Blue-Eyes White Dragon. 1996. Trading card artwork.

<http://940ee6dce6677fa01d25-

0f55c9129972ac85d6b1f4e703468e6b.r99.cf2.rackcdn.com/products/pictures/130170.jpg>.

[31] Palumbo, Anthony. Elgaud Shieldmate. 2012. Trading card artwork. <http://ecx.images-

amazon.com/images/I/61jRdQAFb%2BL._SY355_.jpg>.

[32] “Pokémon.” The Official Pokémon Website | Pokemon.com | Explore the World of

Pokémon. The Pokémon Company. Web. 11 Apr. 2016. <http://www.pokemon.com/us/>.

[33] “Fire Emblem Fates.” Fire Emblem Fates for Nintendo 3DS - Official site.

Nintendo/Intelligent Systems. Web. 11 Apr. 2016. <http://www.fireemblemfates.nintendo.com>.

[34] "Words With Friends." Words with Friends | The No.1 Mobile Word Game! | Zynga. Zynga.

Web. 27 Apr. 2016. <https://www.zynga.com/games/words-friends>.

[35] "Minecraft." Minecraft. Mojang Syngergies AB. Web. 27 Apr. 2016.

<https://minecraft.net/>.

[36] "Kirby 64: The Crystal Shards." Kirby 64: The Crystal Shards - Wikipedia, the free

encyclopedia. Wikipedia. Web. 27 Apr. 2016.

<https://en.wikipedia.org/wiki/Kirby_64:_The_Crystal_Shards>.

[37] "Maya." Maya | Computer Animation & Modeling Software | Autodesk. Autodesk. Web. 27

Apr. 2016. <http://www.autodesk.com/products/maya/overview>.

[38] "Photoshop." Photoshop Inspiration, Photoshop Information | Photoshop.com. Adobe

Systems Incorporated. Web. 27 Apr. 2016. <http://www.photoshop.com/>.

[39] "Tangent Music." Tangent Music." Tangent Music, LLC. Web. 27 Apr. 2016.

<http://www.tangentmusicllc.com/>.

[40] "Photon." Photon Unity 3D Networking Framework SDKs and Game Backend | Photon:

Multiplayer Made Simple. Photon Unity Networking. Web. 27 Apr. 2016.

[41] “Dungeon-crawler.” Dungeon-crawler dictionary definition | dungeon-crawler defined.

YourDictionary. Web. 13 Apr. 2016. <http://www.yourdictionary.com/dungeon-crawler>.

[42] “Role-Playing Game (RPG).” What is Role-Playing Game (RPG)? - Definition from

Technopedia. Technopeida. Web. 13 Apr. 2016.

<https://www.techopedia.com/definition/27052/role-playing-game-rpg>.

[43] “What a roguelike is.” What a roguelike is - RogueBasin. RogueBasin. Web. 13 Apr. 2016

<http://www.roguebasin.com/index.php?title=What_a_roguelike_is>.

	Worcester Polytechnic Institute
	Digital WPI
	April 2016

	Storybook - A Casual Game
	Benjamin Peake
	Connor Geoffrey Porell
	Nathaniel Michael Bryant
	William Emory Blackstone
	Repository Citation

	tmp.1535548689.pdf.U5Bvf

