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DEC1, a Basic Helix-Loop-Helix Transcription Factor and a
Novel Target Gene of the p53 Family, Mediates
p53-dependent Premature Senescence”
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Yingjuan Qian*’, Jin Zhang*, Bingfang Yan®, and Xinbin Chen*'

From the *Center for Comparative Oncology, University of California, Davis, California 95616, the SDepartment of Cell Biology,
University of Alabama, Birmingham, Alabama 35294, and the 1]Department of Biomedical Sciences, University of Rhode Island,

Kingston, Rhode Island 02881

Cellular senescence plays an important role in tumor suppres-
sion. p53 tumor suppressor has been reported to be crucial in
cellular senescence. However, the underlying mechanism is
poorly understood. In this regard, a cDNA microarray assay was
performed to identify p53 targets involved in senescence.
Among the many candidates is DEC1, a basic helix-loop-helix
transcription factor that has been recently shown to be up-reg-
ulated in K-ras-induced premature senescence. However, it is
not clear whether DEC1 is capable of inducing senescence. Here,
we found that DECI is a novel target gene of the p53 family and
mediates p53-dependent premature senescence. Specifically,
we showed that DEC1 is induced by the p53 family and DNA
damage in a p53-dependent manner. We also found that the p53
family proteins bind to, and activate, the promoter of the DEC1
gene. In addition, we showed that overexpression of DEC1
induces G, arrest and promotes senescence. Moreover, we
found that targeting endogenous DEC1 attenuates p53-medi-
ated premature senescence in response to DNA damage. Fur-
thermore, overexpression of DEC1 induces cellular senescence
in p53-knockdown cells, albeit to a lesser extent. Finally, we
showed that DEC1-induced senescence is p21-independent.
Taken together, our data provided strong evidence that DEC1 is
one of the effectors downstream of p53 to promote premature
senescence.

The p53 protein has emerged as a key tumor suppressor at
the crossroads of cellular stress-response pathways. In response
to a stress signal, such as DNA damage, hypoxia, or activated
oncogenes, p53 is activated and functions as a sequence-spe-
cific transcription factor regulating a plethora of downstream
target genes, which mediate various p53 functions, such as cell
cycle arrest, apoptosis, and senescence (1, 2). However,
although many target genes have been identified, those
involved in p53-dependent cellular senescence are still poorly
understood (3). Thus, identification of novel p53 targets
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involved in senescence is of great interest because cellular
senescence may be as important as apoptosis in mediating p53-
dependent tumor suppression (4).

Cellular senescence was first described as “replicative senes-
cence” because of a limited life span of human diploid fibro-
blasts in vitro (5), which is triggered by DNA damage signals
originating from progressive telomere shortening during cell
divisions (6). Senescent cells are characterized by enlarged cell
size, flattened morphology, inability to synthesize DNA, and
expression of the biomarker, senescence-associated (SA)?
B-galactosidase (7). Recent studies have shown that various
stress signals, such as aberrant oncogene activity (8) and cancer
chemotherapeutic drugs (9, 10), are able to initiate senescence-
like phenotypes (“premature senescence”). It has been shown
that cellular senescence utilizes both p53 and p16 pathways in
human cells (8, 11). p53 up-regulates p21, a pleiotropic inhibi-
tor of cyclin/cyclin-dependent kinases, which initiates growth
arrest by preventing pRb phosphorylation by cyclin-dependent
kinases. In contrast, p16 specifically inhibits cyclin-dependent
kinase 4/6 to prevent pRb phosphorylation (12). In addition, a
recent report showed that p53 selectively cooperates with p130,
a member of the pRb family, to induce premature senescence
when the p16/pRb pathway is disrupted (13). Moreover, DNA
damage promotes cancer cell senescence primarily through
p130 (14). Interestingly, lack of p53 or p21 diminishes but does
not abrogate DNA damage-induced premature senescence in
tumor cells (15), which suggests that senescence can occur
through a p53-independent mechanism or an unknown p53
target gene.

DEC1 (differentiated embryo-chondrocyte expressed gene
1), also called STRA13 (stimulated with retinoic acid 13) in
mouse and SHARP2 (enhancer of split and hairy related pro-
tein 2) in rat, along with DEC2, belongs to a new subfamily of
basic helix-loop-helix (bHLH) transcription factors (16).
DECI functions as a transcription repressor by directly binding
to class B E-boxes (17) by interacting with components of the
basal transcription machinery, such as TFIIB, TBP, and TFIID
(18, 19), or by recruiting a histone deacetylase corepressor com-

2 The abbreviations used are: SA, senescence-associated; HA, hemagglutinin;
siRNA, small interfering RNA; nt, nucleotide; ChIP, chromatin immunopre-
cipitation; p53-RE, p53-responsive element; bHLH, basic helix-loop-helix;
BrdUrd, bromodeoxyuridine; PI, propidium iodide; GAPDH, glyceralde-
hyde-3-phosphate dehydrogenase; KD, knockdown; pRb, retinoblastom
protein.
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plex (20). Interestingly, DEC1 is implicated in cell cycle regula-
tion, differentiation, and apoptosis in response to various extra-
cellular stimuli, including hypoxia, serum starvation, and
retinoid acid (16). Indeed, overexpression of DEC1 inhibits cell
proliferation in multiple cell types, such as NIH3T3 (20), HEK-
293T (21), and HaCat cells (18). However, the mechanism by
which DECI1 regulates cell proliferation is not clear. Further-
more, a recent report shows that premature senescence
induced by oncogene K-rasV12 correlates with DEC1 up-regu-
lation (22), but it is not clear whether DEC1 is capable of induc-
ing senescence.

In this study, we identified DECI as a direct target of the p53
family. We found that DEC1 is induced by p53 family proteins
and DNA damage in a p53-dependent manner. In addition, we
identified a potential p53-binding site in the promoter of the
DECI gene. Moreover, we found that overexpression of DEC1
alone elicits premature senescence, and knockdown of DEC1
attenuates DNA damage-induced premature senescence. Fur-
thermore, we found that overexpression of DEC1 is able to ini-
tiate cellular senescence in p53-knockdown cells albeit to a
lesser extent, and DEC1-induced senescence is p21-independ-
ent. Taken together, our data strongly indicate that DEC1 is one
of the mediators downstream of p53 to promote premature
senescence.

EXPERIMENTAL PROCEDURES

Plasmids—FLAG-tagged wild-type DEC1 and untagged
mutant DEC1 ¢cDNAs in pCMV and pcDNA4 expression vec-
tors were described previously (17, 21). To generate untagged
wild-type DEC1 in pcDNAA4 for tetracycline-inducible expres-
sion (Invitrogen), the cDNA fragment was amplified from
FLAG-tagged wild-type DEC1 ¢cDNA (17) with forward primer,
5'-AGGAATTCACCATGGAGCGGATCCCCAGCG-3', and
reverse primer, 5'-AGTCTAGAAGGAAGGAAAGCAAAG-
CAG-3'. To generate a construct for the inducible expression of
DECI1 siRNA, two oligonucleotides, 5'-GATCCCCGCACTA-
ACAAACCTAATTGTTCAAGAGACAATTAGGTTTGT-
TAGTGCTTTTTGGAAA-3" and 5'-AGCTTTTCCAAAAA-
GCACTAACAAACCTAATTGTCTCTTGAACAATTAG-
GTTTGTTAGTGCGGG-3', were designed to target the
DECI fourth exon (in boldface). The oligonucleotides were
annealed and cloned into pBabe-H1, a pol III promoter-driven
short hairpin RNA expression vector with a tetracycline oper-
ator sequence inserted before the transcriptional starting site
(23). The resulting vector was designated pBabe-H1-siDEC1.
To generate a construct that stably expresses p21 siRNA, one
pair of oligonucleotides with the siRNA targeting region as
shown in boldface, sense, 5'-TCGAGGTCCGCCTCCTCAT-
CCCGTGTTCTTCAAGAGAGAACACGGGATGAGGAG-
GCTTTTTG-3', and antisense, 5'-GATCCAAAAAGCCTC-
CTCATCCCGTGTTCTCTCTTGAAGAACACGGGATG-
AGGAGGCGGACC-3’, were annealed and cloned into
pBabe-U6 at BamHI and Xhol sites, a pol III promoter-driven
vector as described previously (24). The resulting vector was
named pBabe-U6-sip21. The construct expressing p53 siRNA
was described previously (25).

To generate a luciferase reporter under the control of the
DECI promoter (nt —4468 to +170), two genomic DNA frag-
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ments were amplified from MCF7 cells and ligated together
through a common EcoRYV site. The first pair of primers are as
follows: forward primer, DEC1-KpnI-4468 (5'-ATGGTACC-
CAGGCTGGAGTACAGTGGCATGATC-3’'), and reverse
primer, DEC1-EcoRV-As (5'-ACGCCCACAACTTGCTTGC-
TCAGATATCAC-3'). The second pair of primers are as fol-
lows: forward primer, DEC1-EcoRV-S (5'-AGTGATATCTG-
AGCAAGCAAGTTGTGGGCATG-3'), and reverse primer,
DEC1-Xhol (5'-AACTCGAGCCGCAGATGTTCCTCTGA-
GTCTGAG-3'). To generate a DECI promoter lacking the
potential p53-RE, a fragment from nt —2343 to +170 was
amplified with forward primer, DEC1-KpnI-2343 (5'-TTGGT-
ACCCACACAATGAAGCAGGTCGCCC-3'), and reverse
primer, DEC1-Xhol as shown above.

Cell Lines—MCF7, RKO, MCF7-p53-KD, and RKO-p53-KD
were cultured in Dulbecco’s modified Eagle’s medium supple-
mented with 10% fetal bovine serum at 37 °C with 5% CO.,.
H1299 cell lines that inducibly express p53 family proteins were
described previously (26-28). MCF7-p53-KD and RKO-
p53-KD are derivatives of MCF7 and RKO, respectively, in
which p53 was stably knocked down by RNA interference.
MCEF7-TR-7, which expresses the tetracycline repressor, was
generated in our laboratory. To generate cell lines that induc-
ibly express wild-type or various mutant DEC1 proteins,
MCEF7-TR-7 cells were transfected with pcDNA4-DECI,
pcDNA4-DEC1-M, or pcDNA4-DEC1-R58P and selected with
medium containing 200 pg/ml Zeocin. To generate cell lines in
which DEC1 is inducibly knocked down, MCF7-TR-7 cells
were transfected with pBabe-H1-siDEC1 and selected with 0.5
pg/ml puromycin. MCF7 cell lines, in which p53 or p21 was
stably knocked down and DECI1 is inducibly expressed, were
generated by transfecting pBabe-U6-sip53 or pBabe-U6-sip21
into M7-DEC1-16 as generated above, and cells were selected
with 0.5 ug/ml puromycin.

Affymetrix GeneChip Assay and Northern Blot Analysis—To-
tal RNAs were isolated by using TRIzol reagent (Invitrogen).
The U133-plus GeneChip was purchased from Affymetrix.
GeneChip analysis was performed according to the manufac-
turer’s instruction. Northern blot analysis and preparation of
p21 and GAPDH probes were described previously (29). Wild-
type DEC1 cDNA was used as probe and amplified as described
above.

Luciferase Reporter Assay—The dual luciferase assay was
performed in triplicate according to the manufacturer’s
instruction (Promega). Briefly, 0.25 g of a luciferase reporter,
0.25 pg of empty pcDNA3, or pcDNA3 that expresses p53 or
p53(R249S) and 9 ng of an internal control Renilla luciferase
assay vector pRL-CMV (Promega) were transfected into p53-
null H1299 cells by using the ESCORT V transfection reagent
according to the manufacturer’s instruction (Sigma). Cells were
seeded at 2 X 10* per well in 24-well plates 24 h before trans-
fection. 18 h post-transfection, luciferase activity was measured
with the dual luciferase kit and Turner Designs luminometer.
The fold change in relative luciferase activity is a product of the
luciferase activity induced by a p53 family protein divided by
that induced by an empty pcDNA3 vector.

Chromatin Immunoprecipitation (ChIP) Assay—ChIP assay
was performed as described previously (24). The binding of a
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anol (70%) overnight followed by
BrdUrd/PI staining. Briefly, after cen-
trifugation, the cells were treated with
1 ml of 2 N HCl/Triton X-100 for 30
min at room temperature, centri-
fuged, resuspended in 1 ml of 0.1 m
Na,B,O, (pH 8.5) to neutralize the
sample, and incubated with fluores-
cein isothiocyanate-labeled anti-

-+ - + - 4+ - + - -+ -

+ — + — + Induction BrdUrd antibody (BD Biosciences) for
30 min at room temperature followed
by addition of 300 ul of phosphate-

buffered saline/PI (50 ug/ml). Samples
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were analyzed by fluorescence-acti-

” - --I p21 vated cell sorting (BD Biosciences).

Western Blot Analysis—Whole
cell extracts were prepared with 2X
SDS sample buffer and boiled for 5
min at 95 °C. The antibody against
DEC1 was generated in rabbit (21).
Antibodies against p53, p21, p130,
and HA epitope were purchased
from Santa Cruz Biotechnology.
Anti-actin, and mouse IgG, and
rabbit IgG were purchased from
Sigma. Anti-Myc epitope was pur-

FIGURE 1.DEC1 is up-regulated by the p53 family. A, DEC1 isinduced by p53, p633, p63+, p733,and ANp73f3
but not mutant p53(R249S). Northern blots were prepared with RNAs purified from H1299 cells that were
uninduced (—) orinduced (+) to express various p53 family proteins as shown at the top of the figure. The blots
were probed with cDNAs derived from the DECT, p21,and GAPDH genes, respectively. GAPDH was measured as
a loading control. B, DEC1 is induced upon DNA damage in a p53-dependent manner. Northern blots were
prepared with RNAs purified from MCF7, MCF7-p53-KD, RKO, and RKO-p53-KD cells that were untreated (—) or
treated (+) with 0.35 pg/ml doxorubicin (Dox) for 24 h. The blots were analyzed as in A. C, DEC1 expression is
up-regulated by p53 family proteins. Western blots were prepared with extracts from H1299 cells that were
uninduced (—) orinduced (+) to express various p53 family proteins as shown at the top of the figure. p53 and
mutant p53(R249S) were detected by anti-p53. The Myc-tagged p63 proteins were detected by anti-Myc
epitope, and the HA-tagged p73 proteins were detected by anti-HA epitope. DEC1, p21, and actin were
detected by their respective antibodies. The level of actin was measured as a loading control. D, DECT expres-
sion is up-regulated by DNA damage in a p53-dependent manner. Western blots were prepared with extracts
from MCF7, MCF7-p53-KD, RKO, and RKO-p53-KD cells that were untreated (—) or treated (+) with 0.35 pg/ml

chased from Abcam. Anti-Rb (clone
XZ-77) was used as described (31).
SA-B-Galactosidase Staining As-
say—This assay was performed as
described previously (7). Cells were
washed with 1X phosphate-buff-
ered saline and fixed with 2% form-
aldehyde, 0.2% glutaraldehyde for
10-15 min at room temperature.
Cells were then washed twice with

doxorubicin for 24 h. The blots were analyzed as in C.

p53 family protein to the DECI promoter was detected with
forward primer, 5-GGTTCAAGCGATTCTCCTGCCTC-3/,
and reverse primer, 5'-CAGTGGCTCACGCCTGTAATCCT-3'.
Primers that were used to amplify the p53-responsive element 1
within the p21 promoter were described previously (24). Prim-
ers for the amplification of the GAPDH promoter were used as
described previously (30).

Growth Rate and Colony Formation Assay—For growth rate
analysis, cells were seeded at 1 X 10* per well in 6-well plates
with or without doxycycline (an analog of tetracycline) in trip-
licate. Attached cells were counted at the indicated times. For
colony formation assay, cells were seeded at 500 per well in
6-well plates with or without doxycycline in triplicate. Colonies
were fixed with methanol:glacial acetic acid (7:1), washed in
H,O, and stained with 0.02% crystal violet.

DNA Histogram Analysis—Cells were seeded at 5 X 10* per
100-mm plate with or without doxycycline in triplicate. Cells
were incubated with 20 um BrdUrd (Sigma) at 37 °C, 5% CO,,
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1X phosphate-buffered saline and
stained with fresh SA-B-galactosid-
ase staining solution at 37 °C without CO,. The SA-B-galacto-
sidase staining solution contains 1 mg/ml 5-bromo-4-chloro-3-
indolyl-B-p-galactopyranoside, 40 mwm citric acid/sodium
phosphate (pH 6.0), 5 mMm potassium ferrocyanide, 5 mm potas-
sium ferricyanide, 150 mm NaCl, and 2 mm MgCL,.

RESULTS

Identification of DEC1 as a Novel Target Gene of the p53
Family—To identify novel genes regulated by p53, an
Affymetrix GeneChip assay was performed with U133 plus
Chips and RNAs purified from MCF7 cells uninduced or
induced to express p53. Many known p53 target genes, such as
MDM2, p21, and PIG3, and several novel targets, such as DNA
polymerase m (pol H) (32) and myosin VI (33), were found to be
highly induced by p53. We also found that DEC1 was induced
by p53. To confirm this, Northern blot analysis was performed.
We showed that DEC1 was induced by p53 but not mutant
p53(R249S) in H1299 cells (Fig. 1A, DECI panel). Similarly,

VOLUME 283-NUMBER 5+-FEBRUARY 1, 2008

8T0Z '€Z $q0100 U0 Afiq1T pueis| 8poyy Jo AluN e /6.10°q['mmmy/:dny wolj papeo|umoq


http://www.jbc.org/

DEC1 Is a Mediator of p53-dependent Premature Senescence

A B

214
H O pcDNA3
4211 AGGCAAGTTTTTAAATTTCAGGICATGaTC-4181 E 12 + W p353(R249S)
ol 341 glo r aps3
i El T8t @ p63p
p53-RE =l
+170 2
g4r
-4468 = Luc S 2 L
=
-2343 20
pGL2-Decl-4468 pGL2-Decl-2343
C Decl gene p21 gene GAPDH gene
-4416 =4220 -2734 -2549 =172 +40
197b 186bp 212b
S, | iy
D MCF7 E H24-p63B-17 F H24-p73p-24
Input  IP: IgG  IP: p33 Input  IP: 1gG  IP: p63 Input  IP: 1gG IP: p73
-+ - + - + Induction - + - + =+ Induction - + - + — +

(— = = =N NI e - ]
P o CEE e T
CO o ETE o

p53-proficient (MCF7 and RKO)
but not p53-knockdown (MCF7-
p53-KD and RKO-p53-KD) cells
(Fig. 1D, DEC1 and p21 panels).

As a transcription factor, p53 reg-
ulates gene expression by directly
binding to a p53-responsive ele-
ment (p53-RE) in the target gene.
The consensus p53-RE is composed
of two half-sites (RRRC(A/T)(A/
T)GYYY, where R represents purine
and Y pyrimidine) separated by up
to 13 nt (37). Thus, if DECI is a
direct p53 target, one or more p53-
REs should exist in the DECI gene.
To test this, we analyzed the
genomic locus of the DECI gene
and found one potential p53-bind-
ing site located between nucleotides
—4211 to —4181, with the sequence
of AGGCAAGTTTTTAAATTTC-
AGGTCATGATC (Fig. 2A). Upon

FIGURE 2. Identification of a potential p53-responsive element (p53-RE) in the DEC1 gene. A, schematic
presentation of the DECT genomic structure and luciferase (Luc) reporter constructs along with a potential
p53-RE located at nt —4211 to —4181 in the promoter of the DECT gene. B, potential p53-RE in the DECT gene
is responsive to p53, p63B, and p73 but not to mutant p53(R249S). The luciferase assay was performed as
described under “Experimental Procedures.” C, schematic presentation of the DECT1, p21, and GAPDH promot-
ers with the location of the potential p53-REs and PCR primers used for ChIP assays. D-F, p53, p6383, and p733

bind to the p53-RE in vivo. See details in the text.

p21, a well characterized p53 target, was up-regulated by p53
but not mutant p53(R249S) (Fig. 14, p21 panel). Because the
p53 family proteins, p63 and p73, have been shown to activate
some p53-responsive genes, including p21 (34), we examined
whether DEC1 is induced by p63 and p73. We found that both
DEC1 and p21 were induced in H1299 cells by p63p, p63Yy,
p73B, and ANp738 (Fig. 1A, DECI and p21 panels).

DNA damage stabilizes and activates p53, leading to induc-
tion of p53 target genes (35). If DECI is a true p53 target, it
would be induced by DNA damage in cells that contain an
endogenous wild-type p53 gene. To this end, MCF7, MCEF7-
p53-KD, RKO, and RKO-p53-KD cells were untreated or
treated with doxorubicin, an inhibitor of topoisomerase II that
can induce DNA double strand breaks (36). We found that
DECI1 was induced by doxorubicin in MCF7 and RKO cells (Fig.
1B, DECI panel). Similarly, p21 was induced (Fig. 1B, p21
panel). In contrast, little if any DEC1 or p21 was detected in
p53-knockdown MCF7 and RKO cells (Fig. 1B, DEC1 and p21
panels).

Next, we examined whether an increase in DECI transcript
correlates with an increase in DEC1 protein. We found that
DEC1 was up-regulated in H1299 cells by p53, p63«a, p63p,
ANp63S, p637y, ANp63vy, p73a, ANp73e, p7383, and ANp733
but not mutant p53(R249S) and ANp63« (Fig. 1C, DEC1 panel).
The expression of p21 was measured as a positive control and
found to be induced by p53, p63«, p638, ANp63, p637, p73a,
p73B, and ANp73B but not mutant p53(R249S), ANp63c,
ANp63y, and ANp73« (Fig. 1C, p21 panel). In addition, we
showed that like p21, DEC1 was induced by DNA damage in

FEBRUARY 1, 2008+VOLUME 283+NUMBER 5

alignment with the consensus
sequence, this p53-RE contains two
mismatches at noncritical positions
(Fig. 2A, mismatches in lowercase
and core sequences in boldface).

To determine whether this
p53-RE is responsive to a p53 family
protein, two DNA fragments from the DECI promoter, in
which the p53-RE is retained (—4468/+170) or deleted
(—2343/+170), were cloned into pGL2-basic luciferase
reporter. The resulting vectors were designated pGL2-DEC1-
4468 and pGL2-DEC1-2343, respectively (Fig. 2A4). Next, lucif-
erase reporter assay was performed and showed that p53, p63p,
and p73f3 were able to increase the luciferase activity for pGL2-
DEC1-4468 but not pGL2-DEC1-2343 (Fig. 2B). In contrast,
mutant p53(R249S) was inert (Fig. 2B). As a positive control,
the p2I1 promoter was highly increased by p53 but not
p53(R249S) (data not shown). These data suggest that the
p53-RE in the DECI gene is responsive to p53.

To further examine whether a p53 family protein can bind to
the p53-RE in the DECI gene in vivo, ChIP assay was performed
with primers shown in Fig. 2C (left panel). The binding of the
p53 family proteins to the p53-RE in the p2I promoter was
determined as a positive control (Fig. 2C, middle panel). Addi-
tionally, a region within the promoter of the GAPDH gene was
amplified as a control for nonspecific binding (Fig. 2C, right
panel). To test the binding of p53 to the DECI promoter, MCF7
cells were untreated or treated with doxorubicin to activate
p53, and the p53-DNA complexes were immunoprecipitated
with anti-p53 antibody or mouse IgG as a control. We found
that the captured fragments containing the p53-RE were signif-
icantly increased upon induction of p53 by DNA damage (Fig.
2D, DECI panel). Similarly, p53 bound to the p53-RE1 in the
p21 gene in response to DNA damage (Fig. 2E, p21 panel).
However, no fragments were enriched by control IgG (Fig. 2D,
DECI and p21 panels). Furthermore, the GAPDH promoter
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FIGURE 3. Overexpression of DEC1, but not mutant DEC1-M and DEC1-R58P, inhibits cell proliferation and induces cell cycle arrest in G,. A, left and
middle panels, generation of MCF7 cell lines that inducibly express DEC1, mutant DEC1-M, or DEC1-R58P. The levels of DEC1, DEC1-M, and DEC1-R58P were
quantified with anti-DEC1. Right panel, level of DNA damage-induced DEC1 is comparable with that of ectopic-expressed DEC1. Western blots were prepared
with extracts from M7-DEC1-16 cells that were uninduced (—) or induced (+) with doxycycline for 24 h and MCF7 cells that were untreated (—) and treated (+)
with 0.35 ug/ml doxorubicin for 24 h. B, DEC1, but not DEC1-M and DEC1-R58P, inhibits cell proliferation. The growth rate of MCF7 cells that were uninduced
orinduced to express DEC1, DEC1-M, and DEC1-R58P was measured over a 9-day period. MCF7 cells (MCF7-TR-7) that were treated with or without doxycycline
(an analog of tetracycline) were used as a control. C, DEC1, but not DEC1-M and DEC1-R58P, inhibits colony formation. Colony formation assay was performed
with MCF?7 cells that were uninduced or induced to express DEC1, DEC1-M, or DEC1-R58P for 14 days. D, DEC1, but not DEC1-M and DEC1-R58P, induces G,
arrest. MCF7 cells were uninduced or induced to express DEC1, DEC1-M, or DEC1-R58P for 4 days and then used for BrdUrd/PI dual parameter analysis as
described under “Experimental Procedures.”

was not recognized by p53 (Fig. 2D, GAPDH panel). To analyze then used for ChIP assay. The p63-DNA complexes were
the binding of p63 or p73, H1299 cells were uninduced or immunoprecipitated with anti-Myc antibody or rabbit IgG as a
induced to express Myc-tagged p63 or HA-tagged p7383 and  control (Fig. 2E). The p73-DNA complexes were immunopre-
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expressed. To determine whether

cellular senescence induced by
8 Control overexpressed DEC1 is physiologi-
B Induction cally relevant, Western blot analysis

was performed to compare the lev-
els of DNA damage-induced DEC1
and ectopic-expressed DEC1 in
MCEF7 cells. We showed that the
level of DNA damage-induced
DEC1 was comparable with that of
ectopic-expressed DEC1 (Fig. 34,
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FIGURE 4. Overexpression of DEC1, but not mutant DEC1-M and DEC1-R58P, induces premature senes-
cence. A, DECT, but not mutant DEC1-M and DEC1-R58P, is capable of inducing premature senescence. MCF7
cells, which were uninduced or induced to express DEC1, DEC1-M, or DEC1-R58P for 8 days, were analyzed by
SA-B-galactosidase staining assay as described under “Experimental Procedures.” B, quantification of the per-
centage of SA-B-galactosidase-positive colonies shown in A. See details in text. G, DEC1-induced senescence
results in up-regulation of hypophosphorylated p130. Western blots were prepared using extracts from MCF7
cells that were uninduced (—) or induced (+) to express DEC1 for 0, 1, 3, 5, or 7 days.

cipitated with anti-HA antibody or mouse IgG as a control (Fig.
2F). We found that both p63 and p733 bound to the p53-RE in
the DECI gene as well as to the one in the p21 gene (Fig. 2, E and
F, DECI and p21 panels). In contrast, the GAPDH promoter
was not recognized by p638 and p73 (Fig. 2, E and F, GAPDH
panels). In sum, these data indicate that DECI is a direct target
gene of the p53 family.

DECI Induces G, Arrest and Initiates Cellular Senescence—
To test whether DEC1 is a downstream effector of p53 to medi-
ate senescence, MCF7 cell line was chosen because it has a
functional p53 pathway but lacks p16 (38). In addition, MCF7
cells undergo premature senescence upon treatment with
doxorubicin (9, 10). Because p53 and pl6 are the two major
signaling pathways leading to cellular senescence (8, 12), the
MCEF?7 cell line is an ideal system to address how p53 regulates
senescence. To analyze the biological activity of DEC1, multiple
MCE?7 cell lines, which inducibly express DEC1 and mutant
DECI proteins, DEC1-M and DEC1-R58P, under the control of
a tetracycline-inducible promoter, were generated. DEC1-M
lacks residues 53— 65 in the DNA binding domain and thus is
transcriptionally inactive (21). Because of the deletion,
DECI-M has a lower molecular mass than its wild-type coun-
terpart. DEC1-R58P has a point mutation at codon 58 (arginine
to proline) within the DNA binding domain, which diminishes
its DNA binding activity (21). Four representative cell lines
were selected for further studies (Fig. 3A, left and middle pan-
els) as follows: M7-DECI1 (clone 6 and 16) in which wild-type
DECI1 can be inducibly expressed, M7-DEC1-M (clone 11) in
which DECI1-M can be inducibly expressed, and M7-DEC1-
R58P (clone 2) in which DECI1-R58P can be inducibly
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right panel).

Because cells that end at senes-
cence must initially undergo cell
cycle arrest, growth rate analysis
and colony formation assay were
performed to examine whether
overexpression of DEC1 affects cell
proliferation. We found that over-
expression of DEC1 inhibited the
proliferation of MCEF7 cells over a
9-day period in both DEC1-express-
ing cell lines (Fig. 3B). As controls,
doxycycline, DEC1-M, or DECI-
R58P had no effect on cell prolifera-
tion (Fig. 3B). Consistently, overex-
pression of DEC1, but not
doxycycline, DEC1-M, or DECI-
R58P, inhibited the size and/or number of colonies (Fig. 3C).
Next, BrdUrd/PI dual parameter analysis was performed to
characterize the cell cycle profile and showed that overexpres-
sion of DEC1 increased the percentage of cells in G; phase,
concomitantly with a decrease in the percentage of cells in S
(BrdUrd positive cells) and G, phases (Fig. 3D). In contrast,
doxycycline, DEC1-M, and DEC1-R58P had no effect on
BrdUrd incorporation (Fig. 3D). Taken together, we concluded
that the effect of DECI on cell proliferation is specific, and the
DNA binding activity of DEC1 is required for inducing cell
cycle arrest.

To test whether DECI is capable of inducing senescence,
SA-B-galactosidase staining assay was performed. Microscopic
analysis showed that the number of SA-B-galactosidase-posi-
tive colonies was increased in DEC1-expressing cells compared
with that in control and mutant DEC1-expressing cells. These
SA-B-galactosidase-positive colonies exhibited senescence-
like phenotypes, such as enlarged cell size, flattened morphol-
ogy, and perinuclear blue (Fig. 44). To quantify the extent of
DEC1-induced senescence, 150-200 colonies were counted
and colonies containing =50% SA-B-galactosidase-positive
cells were defined as senescent colonies. We found that over-
expression of DEC1 markedly increased the percentage of
senescent colonies in both M7-DEC1-6 and M7-DEC1-16 cell
lines (Fig. 4B), whereas overexpression of DEC1-M or DEC1-
R58P had no effect (Fig. 4, A and B). We would like to note that
a small number of MCEF?7 cells underwent spontaneous senes-
cence under normal cell culture conditions as reported previ-
ously (10). Similarly, overexpression of DEC1 was able to inhibit
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FIGURE 5. DEC1 is required for DNA damage-induced premature senescence. A, characterization of p53-
knockdown MCF7 cell lines. Western blots were prepared with extracts from MCF7 and MCF7-p53-KD cells that
were untreated (—) or treated (+) with 0.35 ng/ml doxorubicin for 24 h. B, knockdown of p53 diminishes DNA
damage-induced premature senescence. MCF7 or MCF7-p53-KD cells, which were cultured for 3 days and then
untreated (—) or treated (+) with 0.03 ug/ml doxorubicin for 2 days, were analyzed by SA-B-galactosidase
staining assay. G, quantification of SA-B-galactosidase-positive colonies shown in B. D, generation of MCF7 cell
linesin which DEC1 is inducibly knocked down. Western blots were prepared with extracts from MCF7 cells that
were uninduced (—) or induced (+) to express DEC1 siRNA for 3 days, followed by treatment with (+) or
without (—) 0.35 ug/ml doxorubicin for 24 h. E, knockdown of DEC1 attenuates DNA damage-induced prema-
ture senescence. MCF7 cells, which were uninduced (—) or induced (+) to express DEC1 siRNA for 3 days and
then untreated (—) or treated (+) with 0.03 wg/ml doxorubicin for 2 days, were analyzed by SA-B-galactosidase
staining assay. F, quantification of SA-B-galactosidase-positive colonies shown in E. G, knockdown of p53
diminishes DNA damage-induced up-regulation of hypophosphorylated p130 and pRb. Western blots were
prepared with extracts from MCF7 and MCF7-p53-KD cells that were cultured for 3 days and then untreated (—)
or treated (+) with 0.03 wg/ml doxorubicin for 2 days. H, knockdown of DEC1 selectively diminishes up-regu-
lation of hypophosphorylated p130 upon DNA damage. Western blots were prepared with extracts from
MCF7-DEC1-KD-1 cells that were uninduced (—) or induced (+) to express DEC1 siRNA for 3 days and then
untreated (—) or treated (+) with 0.03 wg/ml doxorubicin for 2 days.

confirm that p53 is essential for
DNA damage-induced premature
senescence in MCF7 cells, p53 sta-
ble knockdown cell line, MCF7-
p53-KD, was utilized. As expected,
we found that p53 was stabilized by
treatment with doxorubicin in
MCF7 but not MCF7-p53-KD cells
(Fig. 5A, p53 panel). Similarly, p21
was induced by DNA damage in
MCEF7 but not MCF7-p53-KD cells
(Fig. 5A, p21 panel). Next, SA-
B-galactosidase staining assay
was performed and showed that
senescence-like phenotypes were
induced upon doxorubicin treat-
ment in MCF7 cells but not MCF7-
p53-KD cells (Fig. 5B). Here, we
would like to note that the morpho-
logical change induced by DNA
damage in MCF7-p53-KD cells is
likely due to cell cycle arrest via a
p53-independent mechanism (15).
By quantifying SA-B-galactosidase-
positive colonies, we found that the
percentage of senescent cells was
markedly reduced upon p53-knock-
down (Fig. 5C).

Because DEC1 is induced by
DNA damage in a p53-dependent
manner and overexpression of
DECI1 alone promotes senescence,
we examined whether DEC1 is
required for DNA damage-induced
premature senescence. To test this,
MCF?7 cell lines, in which endoge-
nous DECI is inducibly knocked
down via siRNA, were generated.
Two representative cell lines (M7-
DEC1-KD-1 and -34) were selected
for further studies. DEC1 was effi-
ciently knocked down upon induc-

cell proliferation and initiate premature senescence in U20S
osteosarcoma cells (data not shown).

A recent study showed that p53 cooperates selectively with
p130 to induce cellular senescence when the p16/pRb pathway
is disrupted (13). We speculated that DEC1 induces premature
senescence through p130 because MCF?7 cells are deficient in
pl6. To test this, the phosphorylation status of p130 and pRb
was examined, and it showed that the level of the active,
hypophosphorylated p130 was significantly increased by DEC1
(Fig. 4C, p130 panel), but hypophosphorylated pRb was only
slightly increased by DEC1 (Fig. 4C, pRb panel). Thus, we con-
cluded that overexpression of DEC1 alone is sufficient to pro-
mote premature senescence.

DECI1 Is Required for DNA Damage-induced Premature
Senescence—Previous studies have shown that p53 plays a key
role in premature senescence upon DNA damage (39, 40). To
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tion of siRNA regardless of DNA damage (Fig. 5D, DECI
panel). The levels of p53 and p21 were measured as positive
indicators of DNA damage (Fig. 5D, p53 and p21 panels). It has
been shown that short hairpin vectors, which can trigger an
interferon response, would lead to up-regulation of 2',5"-oli-
goadenylate synthetase (OAS1), a classic interferon target gene
(41). To rule out the possibility that DEC1 siRNA elicits an
interferon response, RT-PCR was performed to measure the
induction of OAS1 and showed that OAS1 was not induced
upon siRNA expression (data not shown). In addition,
growth curve analysis and colony formation assay showed
that DEC1-knockdown alone had no effect on cell prolifera-
tion in MCF7 cells (data not shown). Next, SA-B-galactosid-
ase staining assay was performed and showed that senes-
cence-like phenotypes were induced by treatment with
doxorubicin (Fig. 5, E and F), but the number of SA-3-galac-
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FIGURE 6. p53 modulates, but is not required for, DEC1-induced prema-
ture senescence. A, generation of MCF7 cell lines in which p53 was stably
knocked down and DEC1 is inducibly expressed. B, overexpression of DEC1 is
capable of inducing premature senescence in p53-knockdown MCF7 cells.
MCF7 and MCF7-p53-KD cells, which were uninduced or induced to express
DEC1 for 8 days, were used for SA-B-galactosidase staining assay. The per-
centage of SA-B-galactosidase-positive colonies was analyzed as in Fig. 4B.

tosidase-positive cells was substantially reduced by DEC1-
knockdown (Fig. 5, E and F).

To further analyze the effect of p53- and DEC1-knockdown
on DNA damage-induced senescence, we examined the phos-
phorylation status of p130. We found that the level of
hypophosphorylated p130 was significantly increased by treat-
ment with doxorubicin in MCF7 but not in MCF7-p53-KD cells
(Fig. 5G, p130 panel). Likewise, the level of hypophosphoryla-
ted p130 was reduced by DEC1-knockdown (Fig. 5H, p130
panel). Interestingly, we found that hypophosphorylated pRb
was altered upon p53-knockdown, but it was not affected by
DEC1-knockdown (Fig. 5, G and H, pRb panels). These data
indicate that DEC1 is one of the effectors downstream of p53 in
DNA damage-induced senescence.

p53 Modulates, but Is Not Required for, DECI-induced Pre-
mature Senescence—Given the importance of p53 in premature
senescence upon DNA damage (39, 40), it is likely that p53 plays
arole in DEC1-induced premature senescence. To test this, we
generated multiple MCF7 cell lines in which p53 was stably
knocked down and DEC1 is inducibly expressed. Two repre-
sentative cell lines (M7-(p53-KD)-DEC1-7 and -12) were
selected for future studies (Fig. 6A4). Western blot analysis
showed that comparable levels of DEC1 were inducibly
expressed in p53-proficient and -knockdown cell lines (Fig. 64,
DECI panel). However, unlike in M7-DEC1-6 and M?7-
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FIGURE 7. p21 is not required for DEC1-induced premature senescence.
A, generation of MCF7 cell lines in which p21 was stably knocked down and
DEC1 isinducibly expressed. B, overexpression of DEC1 is capable of inducing
premature senescence in p21-knockdown MCF7 cells. SA-B-galactosidase
staining analysis was performed as in Fig. 6B.

=

DECI1-16 cell lines, no basal levels of p53 were detected in M7-
(p53-KD)-DEC1-7 and M7-(p53-KD)-DEC1-12 cell lines (Fig.
6A, p53 panel). Next, we examined the activity of DEC1 in the
absence of p53. We found that the ability of DEC1 to inhibit cell
proliferation, as measured by growth rate, colony formation,
and cell cycle profile, was not significantly affected by p53-
knockdown (data not shown). We also found that overexpres-
sion of DEC1 was still capable of inducing senescence in p53-
knockdown MCEF?7 cells, although this effect was much weaker
than that in p53-proficient MCF7 cells (Fig. 6B). These data
suggest that DEC1 functions downstream of p53 to initiate cel-
lular senescence and p53 mediates, but is not necessarily
required for, DEC1-induced premature senescence.

p21 Is Not Required for DECI-induced Premature Senescence—
p21 was first identified as an overexpressed gene in senescent
cells (42). It has been shown that p21 is capable of inducing
premature senescence in p53-null H1299 cells (43). To examine
whether p21 plays a role in DEC1-induced senescence, multiple
MCEF?7 cell lines, in which p21 was stably knocked down and
DECI1 is inducibly expressed, were generated. Two representa-
tive cell lines, M7-(p21-KD)-DEC1-12 and M?7-(p21-KD)-
DEC1-16, are shown in Fig. 7A. Compared with p21-proficient
MCF?7 cells (M7-DEC1-16), p21 was efficiently knocked down
in these two cell lines (Fig. 7A, p21 panel). In addition, a com-
parable level of DEC1 was expressed in both p21-proficient and
-knockdown MCEF?7 cells (Fig. 7A, DECI panel). Next, growth
rate and cell cycle profile analyses were performed and showed
that cell proliferation was inhibited by DEC1 regardless of p21
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status (data not shown). Furthermore, the efficiency of DEC1 to
promote premature senescence was not affected upon p21-
knockdown (Fig. 7B). Therefore, we concluded that p21 is not
required for the proper function of DECI1 to initiate senescence.

DISCUSSION

DECI1 belongs to the bHLH family of transcription factors
and is able to suppress cell proliferation in multiple cell lines
(18, 20, 21). Interestingly, a recent study has showed that onco-
gene K-rasV12-induced senescence is correlated with DEC1
up-regulation (22), but whether DEC1 is required for senes-
cence has not been determined. Here we found that DEC1 is
induced by p53 and DNA damage in a p53-dependent manner.
We also showed that p53 binds to the promoter of the DECI
gene and transcriptionally regulates DEC1 through a potential
p53-responsive element found in the DECI promoter. More-
over, we showed that overexpression of DEC1 alone initiates G,
arrest and senescence, and knockdown of DEC1 attenuates
DNA damage-induced premature senescence. Furthermore,
the phosphorylation status of p130 is altered during DEC1-me-
diated senescence, consistent with previous studies that p53-
mediated and DNA damage-induced senescence is primarily
through p130 (13, 14). Taken together, we concluded that
DECI is one of the effectors downstream of p53 to promote
premature senescence.

It has been shown that p53 and p16 are the two major signal-
ing pathways leading to cellular senescence, thus targeting p53
and p16 would circumvent oncogenic ras-induced senescence
(8). However, downstream effectors of p53 that may promote
cellular senescence are little known. The expression of promy-
elocytic leukemia protein is found to be regulated by p53 (44).
In turn, promyelocytic leukemia is capable of inducing prema-
ture senescence by stabilizing p53 via promoting p53 acetyla-
tion (45). In contrast, deacetylation of p53 antagonizes promy-
elocytic leukemia-induced premature senescence (46). These
data indicate that p53 plays an important role downstream of its
target during senescence. Interestingly, here we found that
overexpression of DEC1 is able to induce premature senescence
in p53-knockdown cells albeit to a less extent (Fig. 6B). This
suggests that p53 modulates, but is not required for, DEC1-
induced cellular senescence. In addition, a well studied p53 tar-
get, p21, is capable of initiating premature senescence in p53-
null H1299 cells (43). However, the efficiency of DEC1 to
promote premature senescence was not affected upon p21-
knockdown (Fig. 7B). Taken together, it is possible that DEC1
and p21 may independently elicit cellular senescence down-
stream of p53.

As a transcription factor, DEC1 may directly regulate some
targets involved in cell cycle arrest and senescence. To uncover
these potential targets of DEC1, an Affymetrix GeneChip assay
was performed by using M7-DEC1-16, which was uninduced or
induced to express DEC1. Several potential target genes were
identified, including epithelium-specific ETS gene-2 (ELF5/
ESE2) and -3 (EHF/ESE3). ELF5 and EHF belong to the Ets
family of transcription factors and may be involved in regulat-
ing cell proliferation, differentiation, and tumorigenesis (47,
48). Moreover, it has been reported that Ets family proteins,
Etsl and Ets2, can activate the p16 promoter, and an increase in
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Ets1 was observed in senescent human diploid fibroblasts (49).
Therefore, it is possible that ELF5 and EHF are downstream
targets of DEC1 to induce cell cycle arrest and/or cellular senes-
cence. Future studies to identify and confirm potential DEC1
targets involved in senescence would provide an insight into the
mechanism by which DEC1 mediates senescence.
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