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ABSTRACT 1 

The preventive effects of the American cranberry (Vaccinium macrocarpon) 2 

against urinary tract infections are supported by extensive studies which have 3 

primarily focused on its phenolic constituents. Herein, a phenolic-free 4 

carbohydrate fraction (designated cranf1b-F2) was purified from cranberry fruit 5 

using ion exchange and size exclusion chromatography.  MALDI-TOF-MS 6 

analysis revealed that the cranf1b-F2 constituents are predominantly 7 

oligosaccharides possessing various degrees of polymerisation and further 8 

structural analysis (by GC-MS and NMR) revealed mainly xyloglucan and 9 

arabinan residues. In antimicrobial assays, cranf1b-F2 (at 1.25 mg/mL 10 

concentration) reduced biofilm production by the uropathogenic Escherichia 11 

coli CFT073 strain by over 50% but did not inhibit bacterial growth. Cranf1b-F2 12 

(ranging from 0.625 - 10 mg/mL) also inhibited biofilm formation of the non-13 

pathogenic E. coli MG1655 strain up to 60% in a concentration-dependent 14 

manner. These results suggest that cranberry oligosaccharides, in addition to 15 

its phenolic constituents, may play a role in its preventive effects against urinary 16 

tract infections.  17 

 18 

Keywords:  American cranberry, Vaccinium macrocarpon, phenolic, 19 

oligosaccharide, biofilm, Escherichia coli 20 

  21 
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1. Introduction 22 

Urinary tract infections (UTI) commonly occur anywhere from the kidney in the 23 

upper urinary tract to the bladder in the lower urinary tract.  Although UTIs are 24 

generally easy to treat with antibiotics, acute infections can be dangerous for 25 

elderly, infant and immunocompromised patients (Jepson, Williams, & Craig, 26 

2012). Some UTI patients can experience frequent recurrent infections and 27 

increased susceptibility to drug resistant uropathogens (Jepson et al., 2012; 28 

Reid et al., 2001). Over 80% of UTIs are associated with Escherichia coli, which 29 

may be transmitted from the bowel to urethra.  Biofilms that form on the 30 

bladder wall help prevent the bacteria from being eradicated by the immune 31 

system and antibiotics (Anderson et al., 2003; Moreno et al., 2008). Evidence 32 

suggests that consumption of the American cranberry (Vaccinium macrocarpon 33 

Aiton) juice can inhibit the presence of bacteria in urine and reduce UTI 34 

symptoms associated with bacteriuria and pyuria (Avorn et al., 1994; Reid et 35 

al., 2001). Our group (LaPlante, Sarkisian, Woodmansee, Rowley, & Seeram, 36 

2012), and others (Côté et al., 2011; Iswaldi et al., 2012; Lian, Maseko, Rhee, 37 

& Ng, 2012) have studied the antimicrobial effects of the phenolic constituents 38 

of cranberries. Some studies (Foo, Lu, Howell, & Vorsa, 2000a, 2000b; Gupta 39 

et al., 2012; Howell et al., 2005) have shown that cranberry proanthocyanidins 40 

(commonly known as PACs), with at least one A-type linkage, inhibit the 41 

adherence of type p-fimbriated E. coli to uroepithelial cells and human red blood 42 

cells. The chemistry of cranberry PACs (Lee, 2013) and their absorption and 43 
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metabolism have been studied (Ou & Gu, 2014). However, the non-phenolic 44 

constituents in cranberry have been less investigated (Hotchkiss, Nunez, Khoo, 45 

& Strahan, 2013). Herein, we provide the first report describing the structural 46 

characterization of a phenolic-free carbohydrate fraction purified from cranberry 47 

and its evaluation for inhibition of biofilm formation by both uropathogenic (E. 48 

coli CFT073) and non-pathogenic (E. coli MG1655) strains of E. coli.  49 

 50 

2. Materials and methods 51 

2.1. Bacterial strains and media 52 

E. coli strains CFT073 and MG1655 were gifts from Dr. Paul Cohen (University 53 

of Rhode Island).  Luria Bertani (LB) medium (BD, NJ, USA) was 54 

supplemented with 5 g/L dextrose. M63 medium (Bioworld, OH, USA) was 55 

supplemented with 1 mM MgSO4, 2 g/L dextrose and 5 g/L casamino acid. 56 

 57 

2.2. Fractionation of cranberry materials    58 

2.2.1. Purification of crude cranberry hull extract (Cranf1) 59 

Scheme S1 (see Supplementary data) shows the fractionation flow chart of 60 

cranberry materials with yields and their total phenolic contents. Briefly, a 61 

pectinase (Klerzyme 150, DSM Food Specialties, South Bend, IN, USA) 62 

degraded cranberry hull extract (Cranf1) was fractionated using an Agilent 971-63 

FP flash purification system (Agilent Technologies, Santa Clara, CA, USA) with 64 

Biotage SNAP KP-C18-HS 120g cartridges (Biotage, Charlotte, NC, USA). 50 65 
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mL of Cranf1 aqueous solution (100 mg/mL) was loaded onto the pre-66 

conditioned C18 column cartridge and eluted sequentially with 500 mL of de-67 

ionised H2O, 500 mL of 15% methanol/water, and finally 500 mL of MeOH at 35 68 

mL/min. Fractions eluted with 100% water were pooled as Cranf1W with a yield 69 

of 38.1% (w/w), fractions eluted with 15% methanol were pooled as Cranf1b 70 

with a yield of 23.8%, and fractions eluted with 100% methanol were pooled as 71 

Cranf1M with a yield of 28.1% (see Scheme S1, Supplementary data).  72 

 73 

2.2.2. Purification of oligosaccharide enriched fraction Cranf1b 74 

Cranf1b was introduced onto an anion exchange column (Sepharose Q XL 75 

16/10, GE Healthcare Life Sciences, Pittsburgh, PA, USA) and eluted with step-76 

wise gradient of NaCl aqueous solution (0-1 M) at 5 mL/min on a ÄKTA fast 77 

protein liquid chromatography (FPLC) system (GE Healthcare Life Sciences). 78 

Ten mL fractions were collected and assayed for total carbohydrate content 79 

assay.(Masuko et al., 2005) The pooled carbohydrate-containing fractions were 80 

freeze-dried and desalted (10×300 mm Bio-gel P2 column; BIO-RAD, Hercules, 81 

CA, USA). The constituents that eluted with 100% de-ionised H2O and 0.1 M 82 

NaCl were combined and further purified by gel filtration (Sephacryl S-100 HR 83 

16/60, GE Healthcare Life Sciences; elution with de-ionised H2O at 0.25 84 

mL/min), yielding two fractions designated as cranf1b-F1 and cranf1b-F2.  85 

 86 

2.3. Biofilm assay 87 
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The antibiofilm property of the cranberry materials was measured against E. 88 

coli CFT073 and MG1655 using a modified crystal violet staining method in 89 

round bottom 96-well microtiter plates (George, 2011; Naves et al., 2008; Niu 90 

& Gilbert, 2004). Bacteria colonies from TSA plates were inoculated into LB 91 

broth and incubated at 37 °C with 175 rpm shaking for 24 h. The cultures were 92 

then diluted 100-fold in M63 medium, distributed in microtiter wells, and treated 93 

with a series of two-fold dilutions of test samples (10 - 0.019 mg/mL).  The 94 

plates were incubated at 37 ˚C for 6 h or 48 h, gently washed with de-ionised 95 

water, and stained with 125 μL of 0.1% crystal violet solution for 15 min. The 96 

solution was removed and the wells were again gently washed with de-ionised 97 

water and dried for 1 h. 125 μL of 30% acetic acid solution was added to each 98 

well and incubated for 15 min. 100 μL from each well was transferred to a flat 99 

bottom microtiter plate and the OD550 was measured (Spectramax M2, 100 

Molecular devices, Sunnyvale, CA, USA). Percent biofilm formation was 101 

calculated as the average OD550 of three replicate treatment wells divided by 102 

average OD550 of replicate control wells (30 wells/plate). Each experiment was 103 

conducted in duplicate. 104 

 105 

2.4. High Performance Size Exclusion Chromatography (HPSEC) 106 

HPSEC was carried out at 40 °C on a TSKgel G3000PW column [7.5 × 300 mm 107 

column, Tosoh Bioscience LLC, King of Prussia, PA, USA; Hitachi LaChrom 108 

Elite HPLC, Tokyo, Japan; 0.6 mL/min de-ionised water, refractive index (RI) 109 
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detection]. The molecular weights of compounds were determined by 110 

comparison of retention times to a standard curve (Supplementary Fig. S1) 111 

generated with standard dextrans of molecular weights ranging from 1000 to 112 

50000 Daltons. 113 

 114 

2.5. Glycosyl composition analysis 115 

Sugar composition was determined by GC-MS analysis of monosaccharides 116 

(York, Darvill, McNeil, Stevenson, & Albersheim, 1986). Briefly, 100 μg of 117 

sample was hydrolysed with 2M TFA for 2 h at 121 °C. The hydrolyte was 118 

reduced with sodium borodeuteride (NaBD4) at room temperature for 1.5 h. The 119 

reduced monosaccharides were O-acetylated with acetic anhydride at 50 °C for 120 

20 min. The resulting product was extracted with dichloromethane and 121 

analysed by GC-MS (DB-1 column, GC Model 6890/MS Model 5973, Agilent 122 

Technologies, Santa Clara, CA, USA). The monosaccharide composition was 123 

determined by comparison with a GC-MS profile of monosaccharide standards. 124 

 125 

2.6. Glycosyl linkage analysis 126 

Partially methylated acetate alditols (PMAAs) of cranf1b-F2 were analysed by 127 

GC-MS (Ciucanu & Kerek, 1984; York et al., 1986). Briefly, 600 μg of sample 128 

was permethylated with iodomethane and concentrated sodium hydroxide in 129 

DMSO. The permethylated oligosaccharide was hydrolysed with 2M TFA and 130 

reduced with NaBD4. The sample was then acetylated with acetic anhydride 131 
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and extracted with dichloromethane. GC-MS analysis was conducted using a 132 

Supelco SP2331 column (Sigma-Aldrich, St. Louis, MO, USA). The GC-MS 133 

profile was analysed by comparison of retention time and electron-impact 134 

fragmentation spectra with PMAA standards.  135 

 136 

2.7. NMR analysis 137 

The cranf1b-F2 was deuterium exchanged twice by D2O shake and dissolved 138 

in D2O with addition of 1 μL of DMSO as internal reference. 1H, 13C, 2D COSY, 139 

TOCSY, NOESY, HSQC and HMBC spectra were obtained on a 500 MHz NMR 140 

spectrometer (Varian VNMRS 500MHz, Agilent Technologies) at 25 °C. 141 

 142 

2.8. MALDI mass spectrometry 143 

Cranf1b-F2 (1 mg/mL in H2O) was mixed with 2,3-dihydrobenzoic acid (DHB) 144 

matrix solution (v/v=1:1). Two μL of the mixture was analysed by MALDI-TOF-145 

MS (Axima Performance, Shimadzu, Kyoto, Japan) in positive reflectron mode 146 

with power set at 80kV. 500 profiles were collected for each experiment. 147 

 148 

3. Results and discussion 149 

In this study, we investigated a carbohydrate fraction extracted from cranberry 150 

and evaluated its inhibitory effect on biofilm formation of two strains of E. coli. 151 

The 1H NMR spectra of the original cranberry starting material (Cranf1) and its 152 

three major purified fractions namely, Cranf1W, Cranf1b and Cranf1M were 153 
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obtained (see Supplementary data). The 1H NMR spectrum of Cranf1b showed 154 

only trace resonances above 7.0 ppm, indicating that phenolics were mostly 155 

removed by C18 column chromatography. The crude cranberry extract cranf1b 156 

was purified by anion exchange chromatography and four fractions, cranf1b-F1 157 

(64.0%), cranf1b-F2 (17.5%), cranf1b-F3 (2.5%) and cranf1b-F4 (<1%), were 158 

collected (Figure 1a). Due to the limited quantities of the latter fractions, only 159 

cranf1b-F1 and cranf1b-F2 were further studied. Cranf1b-F1 and cranf1b-F2 160 

were next purified by gel filtration, resulting in only one peak for each sample 161 

(Figure 1b). The homogeneity of cranf1b-F2 was further confirmed by HPSEC 162 

profile (Supplementary Fig. S6) and the average molecular size was predicted 163 

to be 1370 Da. However, MALDI-TOF MS spectrometry of cranf1b-F2 produced 164 

a series of oligosaccharide sodium adduct ions (Supplementary Fig. S7), 165 

revealing it to be a mixture of oligomers within a close molecular weight range. 166 

The ions at approximately 1055, 1085, 1217, 1247, 1349, 1379, 1511, 1541 can 167 

be attributed to Hex3Pen4 (5 hexoses and 4 pentoses), Hex4Pen3, Hex4Pen4, 168 

Hex5Pen3, Hex4Pen5, Hex5Pen4, Hex5Pen5 and Hex6Pen4, respectively. 169 

Clusters of less abundant ions were observed above 1700 representing 170 

oligosaccharides with degrees of polymerisation (DP) larger than 11.  171 

 172 

The GC-MS profile (Supplementary Fig. S8a) of the monosaccharide acetate 173 

alditols (Table 1) indicated that the cranf1b-F2 was primarily composed of 174 

arabinose (46%), glucose (40%), xylose (12%) and trace quantities of galactose 175 
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(2%). The predominance of glucose, xylose and arabinose suggests that 176 

cranf1b-F2 is likely a xyloglucan (FRY, 1989; McNeil, Darvill, Fry, & Albersheim, 177 

1984).  178 

 179 

Glycosyl linkages of each monosaccharide are listed in Table 1 (GC-MS profile 180 

see Supplementary Fig. S8b). In addition to the common glycosyl linkages 181 

known for xyloglucan (Fry et al., 1993) 5-α-Arab, 3-α-Arab and 3,5-α-Arab were 182 

also found in cranf1b-F2.  These additional linkages are consistent with 183 

arabinan side chains that are commonly present in cell-wall pectic substances 184 

(Caffall & Mohnen, 2009). In xyloglucan nomenclature for side chain subunits 185 

(Fry et al., 1993) cranf1b-F2 glycosyl linkages belong to side chain subunits S, 186 

L, X and G. 1H and 13C NMR chemical shifts were assigned for the identified 187 

cranf1b-F2 subunits (Table 1) based on the recorded 1D NMR and 2D NMR 188 

spectra (see Supplementary data) and in consideration of previous reports 189 

(Busato et al., 2005; Hoffman et al., 2005; Jia, Cash, Darvill, & York, 2005; 190 

Shakhmatov, Toukach, Michailowa, & Makarova, 2014; Watt, Brasch, Larsen, 191 

& Melton, 1999).  192 

 193 

Although commonly found as separate polymer components of plant cell walls, 194 

a portion of xyloglucan and pectic polysaccharides are proposed to be 195 

covalently bound (Femenia, Rigby, Selvendran, & Waldron, 1999; Popper & Fry, 196 

2005, 2008; Thompson & Fry, 2000; Vidal, Williams, Doco, Moutounet, & 197 
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Pellerin, 2003). The putative xyloglucan-pectin complex model was first 198 

introduced by Albersheim and coworkers in 1973 (Keegstra, Talmadge, Bauer, 199 

& Albersheim, 1973).  Thompson and Fry (Thompson & Fry, 2000) observed 200 

xyloglucan that co-eluted with anionic pectin during anion exchange 201 

chromatography and remained part of the complex after treatment with 8M urea, 202 

6M NaOH and proteinase. Treatment with arabinanase and/or galactanase 203 

converted a great portion of the complex into neutral compounds, suggesting 204 

that covalent bonding occurs between xyloglucan and the Ara/Gal-rich pectic 205 

domain, likely on the arabinan and/or arabinogalactan side chains of a 206 

Rhamnogalacturan I region (Abdel-Massih, Baydoun, & Brett, 2003; Popper & 207 

Fry, 2005; Thompson & Fry, 2000). However, no NMR spectroscopic evidence 208 

for a covalent linkage has yet been reported. In our study, co-elution of the 209 

xyloglucan and arabinan components of cranf1b-F2 in every chromatography 210 

step, coupled with its slight acidity, (Thompson & Fry, 2000) suggests the 211 

existence of a covalent linkage.  212 

 213 

The original cranberry material (Cranf1) and its three major purified fractions, 214 

namely, Cranf1W, Cranf1b and Cranf1M were tested for the prevention of 215 

biofilm formation against E. coli MG1655, a non-uropathogenic strain, and  E. 216 

coli CFT073, a well-studied uropathogenic strain (Welch et al., 2002) (see Table 217 

S1, Supplementary data). At equivalent concentrations (1.25 mg/mL), Cranf1b 218 

showed the most reduction in biofilm formation against the uropathogenic E. 219 
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coli CFT073 strain, therefore its sub-fractions, Cranf1b-F1 and cranf1b-F2 were 220 

further tested against this strain. Although no activity was observed for cranf1b-221 

F1, cranf1b-F2 reduced biofilm formation of E. coli CFT-073 by as much as 50 % 222 

at 1.25 mg/mL after 6 h of incubation (Figure 2a).  The reductive effect on 223 

biofilm formation was maintained for at least 48 h (Figure 2a) with no growth 224 

inhibition, demonstrating that the reduced biofilm after 6 h is not merely due to 225 

a delay in the initiation of biofilm production.  Interestingly, the highest 226 

inhibitory effect was not achieved at the highest concentration tested. While the 227 

reason for the declining prevention at higher concentration is not yet known, we 228 

hypothesise that aggregation of the cranf1b-F2 sample may be partially 229 

responsible.  HPSEC analysis showed that large particles (>100,000 Da) 230 

formed at the higher concentration (Supplementary Fig. S6). Aggregation of 231 

oligosaccharides would lead to less concentration of active molecules in 232 

solution, hence having a potential impact on the overall activity.  Biofilm 233 

formation by E. coli MG1655 was also sensitive to the effects of cranf1b-F2 234 

(Figure 2b), but not to cranf1b-F1. A concentration-dependent reduction in 235 

biofilm formation was observed between 10 and 0.625 mg/mL; however, an 236 

increase in biofilm formation was consistently observed between 0.625 and 237 

0.156 mg/mL of cranf1b-F2. The distinct dose-response patterns between 238 

CFT073 and MG1655 may derive from their different abilities to form and 239 

sustain biofilms. MG1655 naturally produces much lighter biofilm than CFT073, 240 

which likely makes it more vulnerable to biofilm modifying agents.  241 
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  242 

As previously discussed, the role of the polyphenols (including PACs) present 243 

in cranberries in its preventive effects against urinary tract infections has been 244 

extensively studied by several groups (LaPlante, Sarkisian, Woodmansee, 245 

Rowley, & Seeram, 2012; Gupta et al., 2012; Howell et al., 2005). Thus, it is 246 

possible that the multiple constituents, including polyphenols and 247 

oligosaccharides, present in the cranberry whole fruit act additively, 248 

complementarily, and/or synergistically in its overall biological effects. 249 

Interestingly, in the current study, we did not observe any growth inhibitory and 250 

anti-biofilm effects of the Cranf1M fraction (which was enriched in polyphenol 251 

constituents) on both of the E. coli strains which was in agreement with our 252 

previous report (LaPlante, Sarkisian, Woodmansee, Rowley, & Seeram, 2012). 253 

Therefore, while it appears that the phenolic constituents did not contribute to 254 

the inhibition of biofilm formation by the uropathogenic E. coli CFT073 strain 255 

(based on our bioassays), their overall contribution to the prevention of urinary 256 

tract infections by the whole cranberry fruit should not be discounted.   257 

  258 

4. Conclusion 259 

In conclusion, our study demonstrates that a phenolic-free, oligosaccharide 260 

component of cranberry modifies the biofilm formation of E. coli strains CFT073 261 

and MG1655. Thus, in addition to PACs and other polyphenols, certain 262 

carbohydrate components in cranberry may also contribute to its overall anti-263 
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infective properties.  Further investigation to clarify the structure-activity 264 

relationships of these oligosaccharides is currently being pursued by our group. 265 

 266 
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Figure 1 

 

Figure 1a. Elution profile of Cranf1b on Sepharose Q XL 16/10 column, 

eluted by stepwise gradient of NaCl (0-1 M) (total sugars, -▪-). 

 

Figure 1b. Elution profile of Cranf1b-F2 on Sephacryl S-100 HR 16/60 

column, eluted by de-ionised water (total sugars, -▪-).
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Figure 2 

 

Figure 2a. Inhibition of E. coli CFT073 biofilm formation by Cranf1b-F2 at 

concentration from 0.019 mg/mL to 10 mg/mL. 

 

Figure 2b. Inhibition of E. coli MG1655 biofilm formation by Cranf1b-F2 

at concentration from 0.019 mg/mL to 10 mg/mL.  
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Table 1. 13C NMR and 1H NMR chemical shifts (δ in ppm) for cranf1b-F2. 

Residue   

(Mol %) 
Subunits Linkages C1/H1 

C2/H

2 

C3/H

3 

C4/H

4 
C5/H5 C6/H6 

Araf (56%) 

Arabina

n 
t-α-Araf 

107.69  81.56 77.17 84.58 61.75  - 

5.14  4.13 3.95 4.03 3.84  - 

Arabina

n 
3,5-α-Araf 

108.11  79.83 82.90 82.11 67.14  - 

5.11  4.28 4.09 4.30 
3.83/3.9

3 
- 

Arabina

n 
5-α-Araf 

108.15  81.53 77.25 83.02 66.89  - 

5.08  4.12 4.02 4.21 
3.88/3.7

9 
- 

Arabina

n 
3-α-Araf 

107.72  80.26 84.33 83.09 - - 

5.18  4.36 3.95 4.14 - - 

S t-α-Araf 
109.87  81.66 77.05 84.44 61.81 - 

5.15  4.19 3.93 4.06 3.71 - 

Xylp 

(14%) 

S 2-α-Xylp 
99.20  79.47 72.47 70.03 61.87 - 

5.08  3.56 3.85 3.65 3.55 - 

L 2-α-Xylp 
98.98  81.14 - - - - 

5.14  3.6 - - - - 

X t-α-Xylp 
99.48  72.06 73.67 70.14 - - 

4.94  3.54 3.71 3.61 - - 

Galp (2%) L t-β-Galp 

105.10  - - - - - 

4.60-

3.73 - 
- - - - 

Glcp 

(27%) 

_G t-β-Glclp 
105.24  - - - - - 

4.53  3.62 - - - - 

G 
4,6-β-

Glcp 

103.35  73.5 74.77 79.74 74.32 67.47 

4.53  
3.38 3.66 3.67 3.82 

3.87/3.8

0 

G 
4,6-β-

Glcp 

103.20  73.5 74.77 79.64 74.32 67.04 

4.52  
3.37 3.66 3.69 3.82 

3.93/3.8

2 

G 4-β-Glcp 
103.10  73.79 76.11 79.55 - - 

4.51  3.3 3.49 3.54 - - 

G_ α-Glcp 
92.40  71.85 - - - - 

5.21  3.57 3.82 3.64 3.94 3.86 

G_ β-Glcp 

96.34  74.44 75.32 81.15 75.41 60.52 

4.65  
3.28 3.63 3.62 3.59 

3.80/3.9

4 
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