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Abstract

In this study, we provided molecular evidences that IL-6 contributed to the decreased capacity of

oxidative biotransformation in human liver by suppressing the expression of CYP3A4. After

human hepatocytes were treated with IL-6, DEC1 expression rapidly increased, and subsequently,

the CYP3A4 expression decreased continuously. Furthermore, the repression of CYP3A4 by IL-6

occurred after the increase of DEC1 in primary human hepatocytes. In HepG2 cells, knockdown

of DEC1 increased the CYP3A4 expression and its enzymatic activity. In addition, it partially

abolished the decreased CYP3A4 expression as well as its enzymatic activity induced by IL-6.

Consistent with this, overexpression of DEC1 markedly reduced the CYP3A4 promoter activity

and the CYP3A4 expression as well as its enzymatic activity. Using sequential truncation and site

directed mutagenesis of CYP3A4 proximal promoter with DEC1 construct, we showed that DEC1

specifically bound to CCCTGC sequence in the proximal promoter of CYP3A4, which was

validated by EMSA and ChIP assay. These findings suggest that the repression of CYP3A4 by

IL-6 is achieved through increasing the DEC1 expression in human hepatocytes, the increased

DEC1 binds to the CCCTGC sequence in the promoter of CYP3A4 to form CCCTGC-DEC1

complex, and the complex downregulates the CYP3A4 expression and its enzymatic activity.
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1. Introduction

The liver is the richest source of drug metabolism [1], which is regulated by the expression

of drug-metabolism enzymes [1,2]. Cytochrome P450 3A4 (CYP3A4) is the most important

human CYP in the liver and small intestine and plays a major role in the biotransformation

of many drugs. Actually, it is responsible for the oxidative metabolism of more than 60% of

all pharmaceuticals [3,4] and its activity shows a wide inter-individual variability, which

forms a basis for clinically significant drug interactions and toxicities [5,6]. Cytokines such

as tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6), which increase in inflammatory

diseases and some cancers [7,8], have been shown to down-regulate the expression of a

variety of drug-metabolizing enzymes including CYP3A4 [7,9,10,11]. Transactivation by

nuclear receptors such as pregnane X receptor (PXR) and constitutive androstane receptor

(CAR), is largely responsible for the increased expression of these genes [2]. Some studies

have reported that the decrease of CYP3A4 enzyme expression is associated with the

repression of CAR and PXR in mouse liver during the acute phase response [12] and in

human hepatocytes mediated by IL-6 [11]. However, other mechanisms may also contribute

to the down-regulation of CYP3A4 in inflammation, because CYP3A4 decreases to a larger

extent compared to PXR in response to cytokines such as IL-6 [11].

Human DEC (differentially expressed in chondrocytes, DEC), mouse STRA13 (stimulated

with retinoic acid 13), and rat SHARP (split and hairy related protein) constitute a new and

structurally distinct class of basic helix-loop-hellix (bHLH) proteins [13,14,15]. The bHLH

proteins are intimately associated with the developmental events such as cell differentiation

and lineage commitment [16,17,18]. The HLH domain in the bHLH motif is responsible for

dimerization, whereas the basic region mediates DNA binding [19]. Two members of DEC/

STRA/SHARP proteins are identified in each mammalian species studied with a sequence

identity of >90% in the bHLH region and ~40% in the total proteins, respectively [14]. They

are called DEC1 and DEC2, exhibiting an overlapping tissue distribution. DEC/STRA/

SHARPs have been implicated in cell differentiation [14,20], maturation of lymphocytes

[21], regulation of molecular clock [22], and involvement in maintaining the homeostasis of

metabolism [23]. In addition, DEC1 expression is highly elevated in response to

environmental stimuli such as hypoxia and cytokines such as TNFα [24,25].

In this study, we report that DEC1 is a transcriptional repressor of CYP3A4, a major human

enzyme that plays an important role in oxidative biotransformation [26]. After human

hepatocytes were treated with IL-6, the DEC1 expression rapidly increased, then, the

expression of CYP3A4 decreased at both mRNA and protein levels. Meanwhile, the

repression of CYP3A4 by IL-6 occurred after the increase of DEC1 in primary human

hepatocytes. So we hypothesize DEC1 is a transcriptional repressor of CYP3A4, and DEC1
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induction is one of important mechanisms of the reduction of CYP3A4 expression by IL-6

in primary human hepatocytes.

2. Materials and methods

2.1. Chemicals and supplied

IL-6 was purchased from R & D Systems (Minneapolis, MN, USA). FlagCMV2 vector,

rifampicin and Williams'E medium were purchased from Sigma-Aldrich (St. Louis, MO,

USA). Dulbecco's modified Eagle's medium, high-fidelity platinum Taq DNA polymerase,

and insulin-transferrin-selenium G supplement were purchased from Invitrogen (Carlsbad,

CA, USA). GeneJet™ DNA VitroTransfection Reagent (Ver II) was from SignaGen

Labortories (Gaithersburg, MD, USA). Dual-luciferase reporter assay system and P450-

Glo™ Luminescent cytochrome P450 3A4 Assay system were purchased from Promega

(Madison, WI, USA). Fetal bovine serum was from Hyclone Laboratories (Logan, UT,

USA). The antibody against glyceraldehyde-3- phosphate dehydrogenase (GAPDH) was

from Abcam (Cambridge, UK). The goat anti-rabbit IgG conjugated with horseradish

peroxidase from Pierce Chemical (Pierce, Rockford, IL, USA). Polyclone antibody (from

rabbit) against DEC1 and CYP3A4 were kindly provided by Dr.Yan Lab (University of

Rhode Island). Nitrocellulose membrane was from Bio-Rad Laboratories (Hercules, CA,

USA). DEC1 shRNA plasmid and IgG were from Santa Cruz (Santa Cruz, CA, USA).

Nuclear extraction kit, Chromatin Immunoprecipitation Assay Kit was from Active Motif,

Inc (Carlsbad, CA, USA). [γ-32P]ATP was from FuRui Bioengineering company (Beijing,

China). All other reagents were from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Culture and treatment of human primary hepatocytes and hepatoma cells

Human primary hepatocytes in 6-well plates were obtained from the Liver Tissues

Procurement and Distribution System (University of Minnesota, Minneapolis, MN or

CellzDirect, Pittsboro, NC, USA). The ten hepatocyte donors were all non-smokers of four

males (21-65 years old) and six females (35-72 years old) with seven white and three black.

Upon the arrival of the hepatocytes, the culture media were replaced with Willians'E

medium containing insulin-transferrin-selenium supplement and penicillin/streptomycin

[27]. After incubation at 37 °C with 5% CO2 for 24 h, the hepatocytes were treated with 10

ng/ml IL-6 for 24 h (for mRNA level) or 48 h (for protein level) [27]. Hepatoma (HepG2)

cells were purchased from American Type Culture Collection (Mannassas, VA, USA), and

maintained in the Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal

bovine serum, penicillin/streptomycin, and 1 × nonessential amino acids. HepG2 cells were

seeded at the density of 106 cells/well (6-well plates), 2.5 × 105 cells/well (12-well plates)

and that of 8 × 104 cells/well (48-well plates )in a regular medium, and the treated cells were

cultured in a 1% serum-reduced medium.

2.3. Quantitative reverse transcription-polymerase chain reaction

The total RNA was isolated by using a RNA-Bee (Tel-Test Inc., Friendswood, TX, USA)

according to the manufacturer's instruction and checked by formaldehyde gel electrophoresis

for quality control. The first-strand cDNA was synthesized using total RNA (1 μg) at 25 °C
for 10 min, 42 °C for 50 min, and 70 °C for 10 min by using random primers and moloney
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murine leukemia virus reverse transcriptase (Promega, Madison, WI, USA). The cDNAs

were then diluted eight times and the quantitative PCR was conducted with TaqMan Gene

Expression Assay kits (Applied Biosystems, Foster City, CA, USA). The TaqMan assay

identification numbers are: CYP3A4, Hs00604506_m1; DEC1, Hs00186419_m1; GAPDH,

4352934E. A 20 μl PCR mix contained 10 μl of universal PCR master mixture, 1 μl of gene-

specific TaqMan assay mixture (probe), 6 μl of diluted cDNA as template and 3 μl of water.

The PCR amplification and quantification were done in an Applied Biosystems 7900 real-

time PCR system (Applied Biosystems, Foster City, CA, USA) with one cycle at 50 °C for 2

min and 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 seconds and 60 °C for 1

min. The signals from each target gene were normalized based on the signal from GAPDH.

2.4. Plasmid constructs and site-directed mutagenesis

A cDNA encoding the full-length DEC1 was isolated by a cDNA-trapping method [19].

DEC1 mutant constructs were prepared by PCR with full-length DEC1 as the template as

previously described [19]. CYP3A4-DP and CYP3A4P promoter reporters (−7836/−6093 to

−362/+53, −362/+53) were prepared as previously described [27,28]. A set of deleted and

mutated constructs targeted on proximal promoter, which were presented in Fig. 4A, were

prepared by PCR using the targeting primers shown in Tab. 1 and Tab. 2. The fragments

harboring these elements were amplified by PCR with primers that were extended to include

appropriate endonucleases (Xhol/HindIII) to facilitate the subsequent ligation. The

sequences of all of the CYP3A4 reporter gene constructs were verified by direct DNA

sequencing.

2.5. Transient co-transfection experiment

HepG2 cells were plated in 48-well plates in Dulbecco's modified Eagle's medium (DMEM)

supplemented with 10% fetal bovine serum at the density of 8 × 104 cells/well. Transfection

was conducted by GeneJet™ DNA VitroTransfection Reagent (Ver II). The transfection

mixtures contained 50 ng of a reporter plasmid (CYP3A4-DP-luc), 50 ng of hPXR plasmid,

a corresponding concentration of FlagDEC1 along with 5 ng of Null-Renilla reniformis

luciferase plasmid. Vector plasmid was used to equalize the amount of plasmid DNA for

each transfection. HepG2 cells were transfected for 24 h and the transfected cells were

treated with rifampicin (Rif) 10 μM for another 24 h. The cells were washed once with

phosphate-buffer saline (PBS) and then lysed by 1 × passive lysis buffer (Promega,

Madison, WI). The collected cells were subjected to two cycles of freeze/thaw. The reporter

enzyme activities were assayed with Dual-Luciferase reporter assay system. This system

contained two substrates, the firefly luminescence and Renilla luminescence, which were

used to determine the activities of two luciferases sequentially. The firefly luciferase

activity, which reflected the reporter activity, was evaluated by mixing an aliquot of lysates

(10 μl) with Luciferase Assay Reagent II (Promega, Madison, WI). Then, the firefly

luminescence was quenched and the Renilla luminescence was activated simultaneously by

adding Stop & Glo reagent (Promega) to the sample tubes. The firefly luminescence signal

intensity was normalized based on the intensity of Renilla luminescence signal as

normalized luciferase activity, and the ratio of normalized luciferase activity from the

transfected with FlagDEC1 over the transfected with vector served as relative luciferase

activity.
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2.6. The modulation of DEC1 expression by DEC1 shRNA and DEC1 overexpression

To define the role of DEC1 in the IL-6-mediated down-regulation of CYP3A4, the

expression of DEC1 was regulated by DEC1 shRNA and overexpression. In the DEC1

shRNA experiment, HepG2 cells were plated in 6-well plates at the density of 106 and

transfected with the DEC1 shRNA construct ( 800 ng/well ) or the corresponding vector for

72 h with a change of fresh medium at 36 h. The same procedure was used for

overexpression experiment except for replacement DEC1 shRNA construct with the

FlagDEC1 construct or the FlagCMV2 (vector) for 48 h. The transfected cells were treated

with IL-6 (10 ng/ml) or the same volume of PBS for 24 h, and the expressions of CYP3A4

and DEC1 were monitored by real-time PCR and Western blot.

2.7. Western analysis

Human hepatocytes (8 μg) and HepG2 cell lysates (80 and 2 μg for DEC1 shRNA and

DEC1 overexpression, respectively) were resolved by 7.5% SDS-polyacrylamide gel

electrophoresis and electrophoretically transferred to a nitrocellulose membrane. After

nonspecific binding sites were blocked with 5% nonfat milk, the blots are incubated with an

antibody against CYP3A4 (1:2500), DEC1 (1:2500) and GAPDH (1:4000). The preparation

of the antibody against human CYP3A4 and DEC1 was described elsewhere [19,29]. The

primary antibodies were subsequently localized with goat anti-rabbit IgG conjugated with

horseradish peroxidase. Horseradish peroxidase activity was detected with a

chemiluminescent kit (Pierce, Rockford, IL, USA). The chemiluminescent signal was

captured by KODAK Image Station 2000 (Estman Kodak, Rochester, NY, USA), and the

relative intensities were quantified by KODAK Image Analysis software (Estman Kodak,

Rochester, NY, USA).

2.8. Enzymatic assay

HepG2 cell lysates were prepared in 100 mM potassium phosphate buffer. The activity of

CYP3A4 was determined with a P450-Glo™ kit (CYP3A4) (Promega, Madison, WI, USA)

[27] according to the manufacturer's manual. Briefly, cell lysates (16.5 μg in 12.5 μl) were

mixed with 12.5 μl of CYP3A4 substrate Luciferin-BE (4×). After a 10-min pre-incubation

at 37°C, the NADP regeneration mixture (25 μl containing 400 mM KPO4) was added to

initiate enzymatic reaction. The reaction lasted for 30 min at 37°C and was terminated by

adding 50 μl of Luciferin Detection Reagent (Promega, Madison WI). After another 10 min

of incubation at room temperature, the luminescent signal intensity was determined by

EGΣG BERTHOLD Microplate Luminometer (PerkinElmer, Waltham, MA, USA). Several

controls were performed including incubation without cell lysates or regeneration system.

2.9. Electrophoretic mobility-shift assays (EMSA)

HepG2 cells were plated in six-well plate and transfected with FlagDEC1 expression

construct (800 ng/well) and FlagCMV2 (800 ng/well) for 24 h. Nuclear extracts were

prepared with a nuclear extraction kit (Active Motif). Nuclear protein (10 μg) was incubated

with purified 32P-labelled double-stranded oligonucleotides (5'-

AGCTCCAGCCCTGCCTCCTTCTCTA -3’) in a final volume of 10 μl containing 1 ×

DNA-binding buffer (Pierce). For competition experiments, nuclear extracts were incubated
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with excess un-labelled probe (5 ×, 50 ×) or un-labelled mutants (mut1, mut2, mut3) (50 ×)

and mixed with the radiolabelled probe. mut1: 5’-

AGCTCCAGTTTTGCCTCCTTCTCTA-3’ (mut CCCTGC); mut2: 5’-

AGCTCCAGCCCTGCCTAATTCTCTA -3’(mut +); mut3: 5’-

AGCTCCAGTTTTGCCTAATTCTCTA -3’(mut CCCTGC/+). For supershift assay, an

anti- DEC1 was added either before or after the nuclear extracts were incubated with the

radiolabelled probe. The protein-DNA complexes were resolved in 6% polyacrylamide gel

electrophoresis and visualized by autoradiography (Typhoon 8600 Variable Mode Imager )

(Amersham, Silicon valley, CA). Several controls were performed including nuclear extract

from the cells transfected with corresponding vector and no radiolabelled probe.

2.10. Chromatin immunoprecipitation (ChIP) assays

Chromatin immunoprecipitation (ChIP) assay was performed with the Chromatin

Immunoprecipitation Assay Kit (Active Motif). Chromatins were prepared from the

following sources: HepG2 cells were seeded at the density of 3 × 106 cells/flask (50 ml)

overnight and treated with IL-6 (10 ng/ml) or the same volume of PBS for 24 h or were

transfected with FlagDEC1 (3 μg) or the same amount of FlagCMV2 for 48 h. Cells were

fixed with 1% formaldehyde-containing DMEM at room temperature for 10 min and then

treated with Glycine Stop-Fix solution. The cells were washed with PBS, harvested, and

centrifuged at 720 g for 10 min at 4 °C. Pellets were resuspended in 1 ml of lysis buffer and

incubated on ice for 30 min, then processed with a Dounce homogenizer for 10 strokes and

centrifuged at 2,400 g for 10 min at 4 °C. Nuclei were suspended in 0.5 ml of Shearing

Buffer and sonicated with the Branson Sonifier 150 (Branson, Danbury, CT) by three

strokes of 20 seconds pulse at power level 5 with a 30 seconds interval on ice to achieve

optimal chromatin sizes ranging from 400 to 800 bp. The sheared chromatins were collected

as the supernatant after being centrifuged at 12,000 g for 12 min. The preparation of

chromatins from human liver tissues from three individual donors were obtained from

Jinling Hospital (Nanjing Medical Unversity, Nanjing). The study was approved by Ethics

Committee of Nanjing Medical University and was informed consent was obtained from

each individual donor. The liver tissues were frozen in liquid nitrogen and pulverized into

powder, followed by cross-linking with 1% formaldehyde for 15 min at room temperature

and subsequent termination of cross-linking with addition of Glycine Stop-Fix solution. The

soluble chromatins were prepared by following the same procedure described above. For

ChIP experiments, 50 μl aliquots of sheared chromatins were used for immunoprecipitation

with the addition of 25 μl of protein G magnetic bead suspension and 2 μg of DEC1

antibodies [19] or 2 μg of IgG antibodies as a negative control. The chromatins were eluted

from the magnetic beads after being washed with ChIP buffers, followed by reversing the

cross-link with the addition of Reverse Cross-link Buffer and being heated at 65 °C

overnight. The proteins in the solution were digested by proteinase K at 37 °C for an hour,

followed by the addition of proteinase K stop solution to terminate the reaction. The final

volume of the eluted chromatin DNA was 100 μl. For the preparation of input DNA, 10 μl of

sheared chromatins was diluted up to 100 μl to reverse the cross-link and proteinase K

digestion, followed by 10-fold dilution with water.
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Four sets of primers were used for PCR amplification. The primer sets the CCCTGC

sequence at the position −51 bp consisted of the forward primer pCYP3A4 (−253b) 5’-

CACT TGAGTTTCTG ATAAGAAC-3’ and the reverse primer pCYP3A4 (−35b) 5’-

GTCTTCCTTTCAGCTCTGTGTTGCT-3’. The expected PCR product is a 218 bp

fragment encompassing the sequence from nucleotides −253 to −35 in the CYP3A4

promoter. The negative control primer (No CCCTGC sequence) set consisted of the forward

primer pCYP3A4 (-457b) 5’-GAGGAAAGACTCTAAGAGAA-3’ and the reverse primer

pCYP3A4 (−251b) 5’- GTTCTTATCAGAAACTCAAGTG-3’ and amplified a 206 bp

fragment encompassing the sequence from nucleotides −457 to −251 in the CYP3A4

promoter. PCR amplification was carried out in a final volume of 25 μl with 2 μl of eluted

chromatin DNA, input DNA, or water (mock) as template and 1 unit of high-fidelity Taq

DNA polymerase (Invitrogen) with the following cycling parameters: 94 °C for 3 min, 40

cycles of 94 ° C for 45 seconds, 53 °C for 45 seconds, and 68 °C for 45 seconds, followed

by an extension at 68 °C for 5 min. PCR products were resolved on 2% agarose gels and

visualized by Biosens sc 810 Gel Electrophoresis Image analytic system (Shanghai, China).

2.11. Other analyses

Protein concentrations were determined with BCA assay (Pierce, Rockford, IL, USA) based

on the albumin standard [27]. Data are presented as mean ± SD from at least three

independent experiments. Statistical analysis was performed using SAS software version

9.1, (SAS Institute, Cary, NC. USA). The significant difference between the treatments was

claimed at P < 0.05 based on one-way analysis of variance followed by Duncan's multiple

comparison tests.

3. Results

3.1. IL-6 rapidly induces DEC1 expression and continuously reduces CYP3A4 expression
in primary cultured human hepatocytes

After human hepatocytes were treated with IL-6 (10 ng/ml) or the same volume of PBS for

1.5, 3, 6, 12 and 24 h, DEC1 mRNA levels were monitored by qRT-PCR. DEC1 mRNA

levels significantly increased after an hour and a half treatment, and peaked at 6 h, then, the

induction of DEC1 expression decreased (Fig 1A). The expression of CYP3A4 continuously

decreased after 3 h treatment (data not shown). Meanwhile, the repression of CYP3A4 by

IL-6 occurred after the increase of DEC1 in human hepatocytes. To further investigate

whether the decrease of CYP3A4 mRNA was translated into the decrease in protein level,

the expression of DEC1 and CYP3A4 at protein level for 3, 6, 12 and 24 h after being

treated with IL-6 (10 ng/ml) was determined by Western blotting in cultured human

hepatocytes. The data showed that DEC1 protein level increased after 3 h treatment, and

peaked at 6 h, and then, the induction of DEC1 expression decreased. The expression of

CYP3A4 continuously decreased after 3 h treatment (Fig. 1B) till 24 h. The changes in

protein level corresponded to the changes at mRNA level.
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3.2. DEC1 mediates the suppression of CYP3A4 expression and its enzymatic activity
induced by IL-6

There occurs a rapid increase of DEC1 expression after an hour and a half of treatment with

IL-6, but the significant continuous decrease of CYP3A4 occurred after 3 h treatment, which

suggests that the decrease of CYP3A4 expression occurs after the increase of DEC1 induced

by IL-6 in human hepatocytes.

To determine the role of DEC1 in the down regulation of CYP3A4 in response to IL-6, we

performed knockdown and overexpression experiments to selectively modulate the

expression of DEC1. In the knockdown experiment, HepG2 cells were transfected with

DEC1 shRNA construct for 72 h by using corresponding vector as a control. After being

treated with IL-6 (10 ng/ml) or PBS for 24 h, the DEC1 and CYP3A4 levels in cells were

analyzed by using qRT-PCR and Western blot. To test shRNA against DEC1 efficiency, the

cell lysates (80 μg) were analyzed for DEC1 by Western Blot. In the results, DEC1

knockdown alone significantly increased the CYP3A4 expression both in mRNA and

protein levels and enzymatic activity (Fig. 2B, 2C). And IL-6 significantly decreased

CYP3A4 both in mRNA and protein levels and enzymatic activity in the cells transfected

with the vector, but, not in the cells transfected with the DEC1 shRNA construct (Fig. 2B,

2C). Meanwhile, IL-6 significantly increased DEC1 expression in the cells transfected with

vector, but not in the cells transfected DEC1 shRNA construct (Fig. 2A, 2C). Each

experiment was confirmed to have a DEC1 shRNA knockdown effect of 60% or more on

corresponding gene expression by using qRT-PCR and Western blot (Fig. 2A, 2C). These

results suggest that knockdown of DEC1 partially abolishes the decrease of CYP3A4

triggered by IL-6 in hepatocytes.

In the overexpression experiment, the construct encoding FlagDEC1 was used instead of the

DEC1 shRNA construct in the previous experiment. HepG2 cells were seeded in 12-well

plates at the density of 2.5 × 105 and transfected with FlagDEC1 150 ng or 300 ng/well for

48 h, and the transfected cells were analyzed for CYP3A4 expression and its enzymatic

activity. Contrary to the DEC1 knowndown experiment, the DEC1 overexpression

significantly decreased CPY3A4 expression and its enzymatic activity (Fig. 2D, 2E).

Moreover, DEC1 decreased the CYP3A4 expression and its functional activity in a dose-

dependent manner (Fig.2D, 2E). The data, connectively, suggest that DEC1 is a repressor of

CYP3A4 and mediates the decrease of CYP3A4 expression and its functional activity

triggered by IL-6 in hepatocytes.

3.3. DEC1 represses the transactivation of CYP3A4-DP promoter

Our previous data showed that the IL-6-mediated repression of CYP3A4 occurs at the

transcriptional level in hepatocytes [11]. In the present study, we found that DEC1 is

required for the IL-6 induced repression of CYP3A4 and the increased DEC1 is likely to

lead to the CYP3A4 decrease in hepatocytes. Next, we investigated whether DEC1, as a

transcriptional factor, repressed the CYP3A4 promoter. HepG2 cells were transfected with

mixtures containing 50 ng of a reporter plasmid (CYP3A4-DP-luc), 50 ng of hPXR and a

corresponding concentration of FlagDEC1 along with 5 ng of Null-Renilla reniformis

luciferase plasmid by using GeneJet™ DNA VitroTransfection Reagent (Ver II). Vector
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plasmid was used to equalize the amount of plasmid DNA for each transfection. HepG2

cells were transfected for 24 h and collected for luciferase assay. As shown in Fig. 3A,

DEC1 repressed the CYP3A4-DP-luciferase in a dose-dependent manner. The repression of

DEC1 on CYP3A4 reporter provides direct evidence that this transcription factor is a

regulator of the CYP3A4 promoter, presumably by interacting with a certain region. To test

this possibility, we examined DEC1 mutants including those without DNA binding domain

(DEC1-M), substitution mutant (DEC1R58P), and C-terminal deletion mutants (DEC11-347,

DEC11-270, DEC11-197, DEC11-150) (Fig.3B) for their repressive ability towards this

reporter (CYP3A4-DP-luc). HepG2 cells were plated in 48-well plates and transfected with

mixtures containing 50 ng of a reporter plasmid (CYP3A4-DP-luc), 50 ng of hPXR plasmid,

50 ng of FlagDEC1 or FlagCMV2 along with 5 ng of Null-Renilla reniformis luciferase

plasmid for 12 h and all the transfected cells were treated with 10 μM rifampicin (Rif) for

another 24 h. Then the cells were collected for luciferase assay. As shown in Fig. 3C, the

wild type DEC1 repressed the CYP3A4 reporter Rif-induced transactivation, whereas

DEC1R58P and DEC1-M showed no effects towards the CYP3A4-DP-Luc. The C-terminal

deletion mutants such as FlagDEC11-347, FlagDEC11-270, on the other hand, showed that the

repression of DEC1 decreased as deletion increased (Fig. 3B, 3C). Furthermore,

FlagDEC11-197 showed no repression of CYP3A4 reporter, whereas FlagDEC11-150, which

has no ligand binding domain but DNA binding domain, markedly transactivated the

CYP3A4 reporter by two fold (Fig. 3C).

3.4. DEC1 is specifically recruited to the CCCTGC sequence in the CYP3A4 proximal
promoter

DEC1 represses the CYP3A4 promoter and the DNA binding domain is required for DEC1

to regulate the CYP3A4 promoter, which suggests that DEC1 interact with certain sequence

in the CYP3A4 promoter. Next, we located the sequence of the CYP3A4 promoter

interacting with DEC1 by using sequential truncation and site directed mutagenesis of

CYP3A4 promoter. As shown in Fig. 4B, DEC1 repressed both CYP3A4-DP-luc and

CYP3A4-P-luc, which suggests that the DEC1 response element(s) is (are) located in

CYP3A4-P-luc. So we prepared a series of 30 base pairs deletion mutants from −302 to

−212 of CYP3A4-P-luc, 20 base pairs deletion mutants from −212 to −92 of CYP3A4-P-

Luc and every 5 base pairs mutants from −92 to +4 of CYP3A4-P-luc. The diagrammatic

presentation of reporters was shown in Fig. 4A. As shown in Fig. 4C, DEC1 repressed all

the CYP3A4 proximal promoter deletion mutants and 5 base pairs mutants. However, the

reduction of every 5 base pairs mutants from −52 to +4 of CYP3A4-P decreased, which

suggested that DEC1 probably bound to this region (Fig. 4C).

To validate the direct binding of the DEC1 to CYP3A4 proximal promoter, EMSA

experiments were carried out in vitro with DEC1 and the three double-stranded

oligonucleotides from −79 to +4 of CYP3A4 promoter. The data showed that the double-

stranded oligonucleotides from −59 to −35 of the CYP3A4 promoter bound to DEC1 (Fig.

5A), excessively unlabeled probe (5×, 50×) partially or completely competed with the

binding band, and shifted band was completely supershifted by an anti-DEC1 antibody (Fig.

5A). In order to test whether the probe (−59 to −35) in the CYP3A4 promoter is a specific

sequence to bind to DEC1, three mutated probes (−59 to −35) were determined to compete
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with the binding band of DEC1, as well as wild type probe. As shown in Fig. 5B, excessive

unlabeled wild type probe (50 ×) competed with the binding band, but excessive mutated

probes containing CCCTGC sequence (mut1 and mut3) (50 ×) did not compete totally,

while mut2 (50 ×) partially did (Fig.5B). The data suggest that DEC1 bound directly to

CCCTGC sequence in the CYP3A4 proximal promoter.

After demonstrating the specific binding of DEC1 to the CCCTGC sequence by EMSA, we

next performed the ChIP experiments to determine whether DEC1 is specifically recruited to

the CCCTGC sequence in the CYP3A4 promoter in vivo. Chromatins were prepared from

HepG2 cells treated with IL-6 or transfected with DEC1 expressed plasmid and

immunoprecipitated with anti-DEC1 antibodies. A primer set, pCYP3A4 (-253b) and

pCYP3A4 (-35b), flanking the CCCTGC sequence, was used to detect the presence of

CCCTGC -containing chromatin DNA. As shown in Fig. 6, a CCCTGC -containing PCR

fragment was readily detected by using precipitated chromatins with antibodies against

DEC1, whereas no PCR products were amplified in a sample precipitated with IgG

antibodies, which indicates the specificity of the assay. To further validate this finding, a

second set of primers, pCYP3A4 (−457b) and pCYP3A4 (−251b), locating 450 bp upstream

of the CCCTGC sequence, was used as a negative control to amplify a 206 bp fragment. As

shown in Fig. 6B, a PCR product (no CCCTGC-containing fragment) with the expected size

was readily detected with input chromatin DNA. However, no PCR products were detected

with chromatin DNA immunoprecipitated with IgG or DEC1 antibodies, which confirmed

the specificity of the ChIP assay.

To confirm the finding from HepG2 cells, we next performed ChIP assays using chromatins

prepared from human liver. Consistent with the data from HepG2 cells, a CCCTGC-

containing PCR fragment was robustly detected. While no signal was detected using

negative control primer set or chromatins immunoprecipitated with IgG antibodies (Fig. 6C).

Taken together, these data clearly demonstrated that DEC1 was specifically recruited to the

CCCTGC sequence.

4. Discussion

It has been reported that drug biotransformation is impaired in patients with liver conditions

such as hepatitis and cirrhosis [30,31]. In those conditions, as the production of various

proinflammatory cytokines (e.g., IL-6) markedly increased [32,33], the metabolisms of

many drugs decreased [34,35,36]. Our studies have shown that IL-6 suppresses the CYP3A4

expression at both mRNA and protein levels, and suppresses the CYP3A4 activity as well in

human hepatocytes.

It is well-known that inflammation decreases the drug metabolism enzymes including

CYP3A4, but the mechanism(s) of such action is (are) still controversial. Several studies

proposed possible mechanisms which were limited to the increases of signal transducer and

activator of transcription 3 (STAT3), mitogen-activated protein kinases (MAPKs), or

nuclear factor-κB (NF-κB), which directly impaired the action of nuclear receptors involved

in the regulation of CYP3A4 [37]. For example, if the actions of PXR and constitutive

androstane receptor (CAR), which are responsible for the induction of CYP3A4 by
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xenobiotics [35], are impaired, the expression of their target genes such as CYP3A4 will be

influenced. Gu et al [38] found that lipopolysaccharide (LPS) and proinflammatory

cytokines (TNFα) increased the level of NF-κB that forms heterodimers with retinoid X

receptor-α (RXR-α). The formation of NF-κB - RXR-α heterodimer consumes the RXR-α

to disrupt the combination of PXR and RXR-α and therefore represses the CYP3A4

transcription. Pregnane X receptor (PXR) was abundantly expressed in liver and intestine,

which are predominately responsible for the entry and metabolism of chemicals [5,39].

Pregnane X receptor has been recognized as a key regulator that mediates the induction of

many chemical elimination genes including CYP3A4 [39,40].

Some studies have reported that the decrease of the CYP3A4 enzyme expression is

associated with the repression of CAR and PXR in mouse liver during the acute phase

response [12] and in human hepatocytes [11]. However, other mechanisms may also

contribute to the downregulation of CYP3A4 in inflammation because the much bigger

decrease of CYP3A4 was compared to the decrease of PXR in response to cytokines such as

IL-6 [11].

Differentiated embryo-chondrocyte expressed gene 1 (DEC1), an important transcription

factor that has a basic helix-loop-helix domain and is ubiquitously expressed in both human

embryonic and adult tissues, has a pivotal function in various biological phenomena,

including neurogenesis, neuroregulation, chondrogenesis, cell growth, oncogenesis [19,41],

immune balance and circadian rhythm. It has been paid an increasing attention for its role in

maintaining the homeostasis of metabolism and energy [23,42].

Recently, it has been reported that DEC1 repressed the transactivation of RXR heterodimers,

such as liver X receptor (LXR), farnesoid X receptor (FXR), vitamin D receptor (VDR), and

retinoic acid receptor (RAR) [43]. One study showed that the hepatic DEC1 mediates the

ligand-dependent LXR signal to regulate the expression of genes involved in the hepatic

clock system and metabolism [44].

In the present study, we found that IL-6 rapidly induced the DEC1 expression and

continuously reduced the CYP3A4 expression in primary cultured human hepatocytes.

Meanwhile, the repression of CYP3A4 by IL-6 occurred after the increase of DEC1 in

human hepatocytes (Fig. 1A, 1B). So we hypothesize that the decrease of CYP3A4

expression in primary human hepatocytes by IL-6 is due to the rapid increase of the DEC1

expression. In order to investigate the role of DEC1 in the downregulation of CYP3A4 in

response to IL-6, experiments of both knockdown and overexpression of DEC1 gene were

conducted to selectively modulate the expression of DEC1.

Our results also indicated that DEC1 knockdown alone significantly increased the CYP3A4

expression and enzymatic activity (Fig. 2B, 2C). Furthermore, IL-6 significantly decreased

CYP3A4 expression and enzymatic activity in the cells transfected with the vector, but, not

in the cells transfected with the DEC1 shRNA construct (Fig. 2B, 2C). IL-6 significantly

increased DEC1 expression in the cells transfected with vector, but not in the cells

transfected DEC1 shRNA construct (Fig. 2A, 2C). The DEC1 knockdown efficiency was at

least more than 60% in each experiment (Fig. 2A, 2C). The results indicate that the DEC1
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knockdown can partially abolish the decrease of CYP3A4 expression and its enzymatic

activity induced by IL-6 in hepatocytes.

Contrary to the DEC1 knockdown experiment, the overexpression of DEC1 significantly

decreased CPY3A4 expression and its enzymatic activity (Fig. 2D, 2E). Moreover, DEC1

decreased the CYP3A4 expression and its enzymatic activity in a dose-dependent manner

(Fig. 2D, 2E). The data suggest that DEC1 directly down regulates the expression of

CYP3A4 in hepatocytes. The decrease of CYP3A4 mRNA suggests two possibilities: (1)

DEC1 suppresses the transcription and/or (2) DEC1 increases the degradation of mRNA.

We have presented evidences to support the first possibility. First, the CYP3A4 promoter

reporters were repressed by transfection with DEC1 in a dose-dependent manner in HepG2

cells (Fig. 3A and 4B). Furthermore, the DNA-binding domain is required for DEC1 to

repress the CYP3A4 promoter (Fig. 3C) activated by Rif. On the other hand, the repression

of DEC1 decreased as the C-terminal deletion increased, such as FlagDEC11-347,

FlagDEC11-270 (Fig. 3B, 3C). Moreover, FlagDEC11-197 presented no repression of

CYP3A4 reporter, whereas FlagDEC11-150, which has no ligand binding domain but has

DNA binding domain, markedly transactivated the CYP3A4 reporter activity by two fold

(Fig.3C) activated by Rif. FlagDEC11-150, with only DNA binding domain but without

ligand binding domain, combined with target genes but had no effect and then prevent from

the action of endogenous DEC1. FlagDEC11-150 possibly acted as an antagonist of DEC1

(Fig.3C). More importantly, the repression of the promoter mediated by DEC1 was

comparable with the extent of the decreased mRNA (Fig. 2D, 3A and 4B), which provided

direct evidence to confirm that the transcriptional repression is responsible for the decrease

of the CYP3A4 expression. Second, we have located a genomic sequence in CYP3A4 gene

to response to DEC1. We studied the CYP3A4 gene promoter transcriptional repression via

reporter assay. DEC1 repressed all the CYP3A4 proximal promoter deletion mutants and 5

base pairs mutants. However, the reduction of every 5 base pairs mutants from −52 to +4 of

CYP3A4-P decreased, which suggests that DEC1 binds to this region (Fig. 4C). To examine

the direct binding of DEC1 to CYP3A4 proximal promoter, EMSA experiments were

carried out. We found that the double-stranded oligonucleotides from −59 to −35 of the

CYP3A4 promoter bound to DEC1 (Fig.5A), the excessively unlabeled probe (5×, 50×)

partially or completely competed with the radioactive-labelled probe (weak band or no

band), and the shifted band was completely supershifted by an anti-DEC1 antibody (Fig.

5A). The data suggest that DEC1 binds to the region from −59 to −35 in the CYP3A4

promoter.

Many studies have demonstrated that DEC1 negatively regulated target genes through

binding E-box (CACGTG) element in their promoters [19,45,46,47]. While other studies

reported that DEC1 regulated target genes such as survivin and mPer1 through binding to

the Sp1 site in promoter [48,49]. In the region (−59 to −35) of the CYP3A4 promoter, there

is no E-box but a similar Sp1 sequence (CCCTGC). Next, three mutated probes (Fig.5B)

were tested to compete with wild type probe. As a result, the excessive mutated CCCTGC

probes (mut1 and mut3) did not compete with the radioactive-labelled probe totally

(presented bands), while the excessive mutated 6 base pairs next to CCCTGC probe (mut2)

partially did that (presented weak band) (Fig. 5B). The data suggest that DEC1 binds to the
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CCCTGC sequence to form DNA-protein binding complex, which downregulates the

CYP3A4 promoter.

Alternatively, Sp1 interacts with other proteins and the resultant complexes collectively

determine DNA binding selectivity. In support of this possibility mSHARP, a DNA related

mouse protein has been shown to interact with Sp1 [50]. In this study, we have demonstrated

that anti-DEC1 antibody completely disrupts the shifted bands with wild type probe

including CCCTGC sequence (Fig.5A, B), which suggests that DEC1 is part of the

CCCTGC-DEC1 complex and this complex represses the promoter of CYP3A4. This

finding is also strongly confirmed by ChIP assays (Fig. 6A, 6B, 6C).

In summary, our work points out several important conclusions. First, DEC1 is induced

rapidly by IL-6. Potentially, DEC1 is an inducible protein during acute-phase inflammation.

Second, the repression of CYP3A4 by IL-6 is achieved through increasing theDEC1

expression in human hepatocytes, and the increased DEC1 binds to the CCCTGC sequence

in the CYP3A4 promoter to form CCCTGC-DEC1 complex which downregulates the

activity of the CYP3A4 promoter. Third, DEC1 transcriptionally downregulates the

expression of CYP3A4 in response to IL-6, which proves, for the first time, that DEC1 has

been implicated in metabolizing xenobiotics including the vast majority of clinically used

drugs, environmental procarcinogens and toxins.
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Abbreviations

DEC1 differentially expressed in chondrocytes 1

IL-6 interleukin-6

CYP450 cytochrome P450

PXR pregnane X receptor

hPXR human pregnane X receptor

Rif rifampicin

TNF-α tumor necrosis factor α

GAPDH glyceraldehyde-3-phosphate dehydrogenase

PCR polymerase chain reaction

DMEM Dulbecco's modified Eagle's medium

PBS phosphate-buffered saline

bHLH basic helix-loop-hellix
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HLH helix-loop-hellix

SHARP split and hairy related protein

STRA13 stimulated with retinoic acid 13

qRT-PCR quantitative reverse transcription-polymerase chain reaction

EMSA electrophoretic mobility shift assay

ChIP chromatin immunoprecipitation
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Fig.1. Time course of DEC1 and CYP3A4 expression in primary human hepatocytes treated with
IL-6
(A) Time course of DEC1 mRNA level in human hepatocytes treated with IL-6. Human

primary hepatocytes were treated with IL-6 (10 ng/ml) or the same volume of PBS for 24 h.

Total RNA was isolated and subjected to qRT-PCR analysis for the level of DEC1 probe as

described under Materials and Methods. The qPCR Cts were 25 for DEC1, and 20 for

GAPDH. (B) Time course of DEC1 and CYP3A4 protein levels in human hepatocytes

treated with IL-6. Human hepatocytes were treated with IL-6 (10 ng/ml) or the same volume

of PBS for 48 h, and cell lysates were prepared and lysates (8 μg) were subjected to Western

blot analyses with an antibody against DEC1, CYP3A4 or GAPDH (n = 5). All experiments

were repeated at least three times, and data were expressed as mean ±SD. * p<0.05,

statistically significant decrease by IL-6 treatment.
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Fig.2. Repression of CYP3A4 as a function of DEC1
(A) (B) Effect of DEC1 knockdown on DEC1 and CYP3A4 mRNA level induced by IL-6.

HepG2 cells in 6-well plates were transiently transfected with a mixture containing 800 ng

of the DEC1 shRNA construct or the corresponding vector (per well). After 72 h incubation,

the transfected cells were treated with IL-6 (10 ng/ml), or PBS for another 24 h. Total RNA

was prepared and analyzed for levels of DEC1, CYP3A4 and GAPDH by qRT-PCR. The

qPCR Cts were 25 for DEC1, 24 for CYP3A4 and 20 for GAPDH. (C) Effect of DEC

knockdown on CYP3A4 protein and catalytic levels induced by IL-6. HepG2 cells were
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subjected to same procedure as above, cell lysates were analyzed for CYP3A4 (100 μg) by

Western blot and its enzymatic activity as described in materials and methods. To determine

the DEC1 knockdown efficiency, the cell lysates (80 μg) were analyzed for DEC1 by

Western Blot. (D) (E) Effect of DEC1 overexpression on the repression of CYP3A4 and its

functional activity. HepG2 cells in 6-well plates were transiently transfected with 800 ng of

FlagDEC1 construct or the corresponding vector (per well). After 48 h incubation, the

transfected cells, total RNA were isolated and analyzed for the expression of CYP3A4, and

GAPDH by qPCR. And cell lysates (100 μg) were analyzed for CYP3A4 expression by

Western bolt and its enzymatic activity. To determine the transfection efficiency, the cell

lysates (2 μg) were analyzed for DEC1 by Western Blot. All experiments were repeated at

least three times, and data were expressed as mean ±SD. * p< 0.05, significant difference

from IL-6 treatment and PBS treatment and # p<0.05, significant difference from DEC1

shRNA- or DEC1-transfected cells and vector-transfected cells.
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Fig.3. Requirement of DNA binding for DEC1 to repress CYP3A4 promoter
(A) DEC1 repressed CYP3A4 promoter in a dose-dependent manner. HepG2 cells were

cultured in 48-well plates and transfected with CYP3A4-DP-Luc (50 ng), hPXR (50 ng),

corresponding concentration of DEC1 ( 1, 5, 10, 20, 50 ng ) and 5 ng of Null-Renilla

reniformis luciferase plasmid. Vector plasmid was used to equalize the mount of plasmid

DNA for each transfection. After 24 h incubation, the transfected cells were treated with Rif

(10 μM) for another 24 h, and then, the cells were collected and analyzed for luciferase

activity. (B) Diagrammatic presentation of a series of wild type and various mutated DEC1

constructs. (C) Differential effect of wild type and various mutated DEC1 on CYP3A4
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promoter. HepG2 cells were cultured in 48-well plates and transfected with CYP3A4-DP-

Luc (50 ng), hPXR (50 ng), wild type DEC1 or corresponding mutated DEC1 (50 ng) along

with 5 ng of Null-Renilla reniformis luciferase plasmid for 24 h, and the transfected cells

were treated with Rif (10 μM) for another 24 h, and then, the cells were collected and

analyzed for luciferase activity. The data were expressed as normalized luciferase activity

(based on Null-Renilla reniformis luminescence signal) (n = 3). All experiments were

repeated at least three times, and data were expressed as mean ±SD. # p< 0.05, significantly

difference from DEC1-transfected cells and vector-transfected cells.
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Fig. 4. Differential repression of CYP3A4-DP-Luc and deleted mutants or 5 base pairs mutants
of CYP3A4-P-Luc
(A) Diagrammatic presentation of a series of deleted mutants or 5 base pairs mutants of

CYP3A4 luciferase reporter gene constructs. (B) Repressing effect of DEC1 on the

CYP3A4-DP-Luc and CYP3A4-P-Luc. (C) Differential repression of CYP3A4-DP-Luc and

deleted mutants or 5 base pairs mutants of CYP3A4-P-Luc. HepG2 cells were cultured in

48-well plates and transfected with CYP3A4-DP-Luc (50 ng), CYP3A4-P-Luc (50 ng), or

corresponding mutated CYP3A4-P-Luc and along with 5 ng of Null-Renilla reniformis

luciferase plasmid. After 48 h incubation, cells were collected and analyzed for luciferase

activity. The data are expressed as fold of induction (the ratio of normalized luciferase

activity from DEC1 transfection over vector transfection) (n = 4). All experiments were

repeated at least three times, and data were expressed as mean ±SD. * p<0.05, statistically

significant decrease by IL-6 treatment.
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Fig. 5. DEC1 binding to the CCCTGC sequence in the proximal promoter of CYP3A4 by EMSA
(A) DEC1 binding to region (−59/−35) of CYP3A4 proximal promoter. (B) DEC1 binding

to the CCCTGC sequence of CYP3A4 proximal promoter. HepG2 cells were plated in six-

well plates and transfected with Flag-DEC1 or Flag CMV2 800 ng/well overnight. Nuclear

extracts were prepared with a nuclear extraction kit (Active Motif). Nuclear proteins (10 μg)

were incubated with 32P-labelled oligonucleotides (5'-

AGCTCCAGCCCTGCCTCCTTCTCTA -3’) in a final volume of 10 μl containing 1 ×

DNA-binding buffer. For competition experiment, nuclear extracts were incubated with
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excess unlabelled wild type probe (5×, 50×) or each unlabelled mutated probe (mut1, 2, 3)

(50×) and then mixed with the radioactive-belled probe. For supershift assays, an anti-DEC1

antibody was added after the nuclear extracts were incubated with the radioactive-labelled

probe. The protein-DNA complexes were resolved on 6% polyacrylamide gel and visualized

by Typhoon 8600 Variable Mode Imager. Three independent experiments were performed.
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Fig.6. DEC1 being specifically recruited to the CCCTGC sequence in the CYP3A4 promoter by
ChIP
(A) HepG2 cells treated with IL-6. (B) HepG2 cells transfected with DEC1 expression

construct. The chromatins with optimized size ranging from 400 to 800 bp were prepared as

described in Materials and Methods. After immunoprecipitation with antibodies against

DEC1 or IgG as a negative control, one set of PCR amplification was performed to

specifically detect the presence of CCCTGC sequence-containing chromatin DNA. A

negative control primer (no CCCTGC sequence containing fragment) set was included to

amplify a 206 bp fragment 450 bp upstream of the CCCTGC sequence. PCR amplification
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was carried out in a final volume of 25 μl with 2 μl of eluted chromatin DNA, input DNA, or

water (mock) as template with 40 cycles. PCR products were resolved on a 1.5% agarose

gel. Three independent experiments were performed. (C) Chromatins were prepared from

normal human liver tissues and immunoprecipitated with antibodies against DEC1 or IgG.

The presence of CCCTGC sequence-containing chromatin DNA was detected by

amplification using a set of primers flanking CCCTGC sequence. PCR amplification using

the no CCCTGC sequence primers set was also performed as a control (n = 3).
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Table 1

Primers used for preparation of mutated constructs of CYP3A4-P-luc reporter gene The underlined letters

indicated the restriction sites.

Primer Sequence(5'-3')

CYP3A4-P(-302Xhols)-luc ATACTACTCGAGAGAGAACAAGGGCAAGAGAGAG

CYP3A4-P(-272 Xhols)-luc ATACTACTCGAGTAGATTTTATGCCAATGGCTC

CYP3A4-P(-242 Xhols)-luc ATACTACTCGAGTTCTGATAAGAACCCAGAACC

CYP3A4-P(-212 Xhols)-luc ATACTACTCGAGCCCAGTAACATTGATTGAGTT

CYP3A4-P(-192 Xhols)-luc ATACTACTCGAGTGTTTATGATACCTCATAGAA

CYP3A4-P (-172 Xhols)-luc ATACTACTCGAGTATATGAACTCAAAGGAGGTCA

CYP3A4-P(-152 Xhols)-luc ATACTACTCGAGTAGTGAGTGGTGTGTGTGTGAT

CYP3A4-P(-132 Xhols)-luc ATACTACTCGAGTTTCTTTGCCAACTTCCAAGGT

CYP3A4-P(-112 Xhols)-luc ATACTACTCGAGTTGGAGAAGCCTCTTCCAACTG

CYP3A4-P(-92 Xhols)-luc ATACTACTCGAGTGCAGGCAGAGCACAGGTGGCC

CYP3A4-P(+53HindIIIa)-luc ATACTAAAGCTTTGTTGCTCTTTGCTGG

“s”stands for sense and “a” stands for antisense
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