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Key Points 24 
 25 

• Climate change will have the greatest impacts on the chemical lifetimes and distributions 26 
of volatile persistent organic pollutants. 27 

• Marine sediment has sequestered 75% of cumulative releases of polychlorinated 28 
biphenyls since the onset of production in 1930. 29 

• Arctic sea ice retreat is likely to enhance losses of volatile congeners but increase net 30 
deposition of higher molecular weight congeners. 31 

  32 
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Abstract 33 

Human activities have released large quantities of neutral persistent organic pollutants (POPs) 34 

that may be biomagnified in food webs and pose health risks to wildlife, particularly top 35 

predators. Here we develop a global 3-D ocean simulation for four polychlorinated biphenyls 36 

(PCBs) spanning a range of molecular weights and volatilities to better understand effects of 37 

climate-driven changes in ocean biogeochemistry on the lifetime and distribution of POPs. 38 

Observations are most abundant in the Arctic Ocean. There, model results reproduce spatial 39 

patterns and magnitudes of measured PCB concentrations. Sorption of PCBs to suspended 40 

particles and subsequent burial in benthic marine sediment is the dominant oceanic loss process 41 

globally. Results suggest benthic sediment burial has removed 75% of cumulative PCB releases 42 

since the onset of production in 1930. Wind speed, light penetration and ocean circulation exert a 43 

stronger and more variable influence on volatile PCB congeners with lower particle affinity such 44 

as CB-28 and CB-101. In the Arctic Ocean between 1992 and 2015, modeled evasion (losses) of 45 

the more volatile PCB congeners from the surface ocean increased due to declines in sea ice and 46 

changes in ocean circulation. By contrast, net deposition increased slightly for higher molecular 47 

weight congeners with stronger partitioning to particles. Our results suggest future climate 48 

changes will have the greatest impacts on the chemical lifetimes and distributions of volatile 49 

POPs with lower molecular weights. 50 

  51 
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1 Introduction 52 

Human activities release large numbers of persistent organic pollutants (POPs) to the 53 

environment, hundreds of which are known to be persistent, bioaccumulate in food webs, and 54 

may pose health risks to exposed wildlife and humans [Scheringer et al., 2012]. The ocean is a 55 

terminal sink for many of these chemicals, some of which are regulated internationally under the 56 

Stockholm Convention [Lohmann et al., 2007; UNEP, 2001]. Multimedia box models have been 57 

applied to better understand the global environmental fate of compounds with different 58 

molecular weights and volatilities [Axelman and Gustafsson, 2002; Mackay and Paterson, 1991; 59 

Scheringer et al., 2000; Wania and Daly, 2002]. However, effects of climate-driven variability in 60 

ocean biogeochemistry on POPs are poorly characterized [Armitage and Wania, 2013]. Such an 61 

analysis is enabled by satellite observations and ocean state estimates incorporated into Earth 62 

systems models. Here we develop a 3-D ocean simulation for polychlorinated biphenyls (PCBs) 63 

within such a model (the MITgcm) to better understand how variability in ocean 64 

biogeochemistry affects the transport, accumulation and removal of hydrophobic neutral POPs.  65 

PCBs are a class of 209 chlorinated aromatic compounds that were used extensively in 66 

industrial equipment and consumer products prior to a global phase out in the 1970s [Breivik et 67 

al., 2002; Breivik et al., 2007]. PCB emissions peaked (ca. 1970) at approximately 3000 Mg a-1 68 

before they were phased out in most regions globally and they have subsequently declined to 69 

several hundred Mg a-1 (ca. 2010) [Breivik et al., 2002; Breivik et al., 2007]. Atmospheric 70 

deposition is the main source of PCBs to the global oceans, and rivers are a minor contributor 71 

[Jurado et al., 2004; Lammel and Stemmler, 2012; Wania and Daly, 2002]. High PCB 72 

concentrations in crustaceans from the deep Pacific Ocean illustrate their penetration to even the 73 

most remote regions of the ocean [Jamieson et al., 2017]. Prior work has characterized PCB 74 



 5 

behavior in the environment, quantified their physical-chemical properties, and developed global 75 

release inventories [Breivik et al., 2007; Corsolini and Sarà, 2017; Gioia et al., 2008b; 76 

McLachlan et al., 2017; Schwarzenbach et al., 2003]. This makes PCBs ideal as benchmark 77 

compounds for better understanding the behavior of persistent, bioaccumulative and toxic POPs 78 

in the ocean and interactions with different biogeochemical processes. 79 

The global residence time and distribution of many organic contaminants is affected by 80 

biogeochemical characteristics of the ocean such as productivity, photochemistry, circulation, 81 

suspended particle dynamics, and sea-ice cover [Lohmann and Belkin, 2014; Schwarzenbach et 82 

al., 2003; Sobek and Gustafsson, 2014]. Both evasion and particle scavenging can remove 83 

organic chemicals from the surface ocean [Galbán-Malagón et al., 2012]. Chemicals evaded 84 

from the ocean to the atmosphere will be redeposited elsewhere and thus have an extended 85 

lifetime in the biosphere. Chemicals with a stronger propensity to sorb to particles will have a 86 

shorter lifetime in biologically relevant components of the environment due to faster burial and 87 

sequestration. Thus, the relative importance of evasion and sorption to particles is essential for 88 

understanding chemical fate and lifetime in the ocean. The balance between these processes 89 

depends on both the physical-chemical properties of pollutants as well as ecosystem conditions 90 

such as productivity, temperature, wind-speed and turbulence [Zhang and Lohmann, 2010].  91 

The main objective of this study is to better understand how the distribution of neutral 92 

hydrophobic POPs in seawater is affected by variability in ocean biogeochemistry. We develop a 93 

3-D global simulation for PCBs within an ocean general circulation model (MITgcm) forced by 94 

atmospheric inputs from the GEOS-Chem Chemical Transport Model (CTM) [G. Forget et al., 95 

2015; Friedman and Selin, 2016]. We evaluate the model against observations and apply it to 96 

better understand the relative importance of different input and removal processes. We explore 97 
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variability across PCB congeners spanning a range of molecular weights and volatilities and use 98 

our simulation to estimate impacts of climate-driven changes in surface temperatures, sea ice 99 

cover and ocean circulation in the Arctic, where the largest changes are occurring. 100 

2 Model Description 101 

2.1 General Model Description 102 

We added four PCBs (chlorinated biphenyl (CB)-28, CB-101, CB-153, CB-180) as 103 

tracers to the Massachusetts Institute of Technology general circulation model (MITgcm). 104 

Tracers were selected from the seven congeners frequently measured by the International 105 

Council for the Exploration of the Sea (ICES-7) and represent a range of physicochemical 106 

properties [Duinker et al., 1988]. The MITgcm has a horizontal resolution of 1°×1° globally, 107 

with higher resolution in the Arctic (40 km×40 km) and near the equator (0.5°×1°). It has 50 108 

vertical layers spanning 5 m intervals at the surface and 500 m near the ocean floor [G. Forget et 109 

al., 2015]. Advection and diffusion of PCBs is based on ocean state estimates from the 110 

Estimating the Circulation & Climate of the Ocean (ECCO-v4) climatology. Surface boundary 111 

conditions (e.g., wind stress, seawater temperatures, and sea-ice cover) from the ERA-Interim re-112 

analysis fields spanning 1992-2015 and ocean transport parameters are optimized in ECCO-v4 to 113 

produce a best fit to in situ and satellite observations of the physical ocean state and sea ice cover 114 

[Forget and Ponte, 2015; Gael Forget et al., 2015; G. Forget et al., 2015]. 115 

We forced the ocean model with monthly atmospheric concentrations and deposition of 116 

PCBs between 1930-2015 from the GEOS-Chem global atmospheric model [Friedman and 117 

Selin, 2016]. We assumed negligible concentrations of PCBs in the ocean prior to the onset of 118 

global production in 1930. The GEOS-Chem simulation estimates primary releases based on the 119 

high anthropogenic emissions scenario recommended in prior work and surface temperature 120 
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[Breivik et al., 2007; Friedman and Selin, 2016]. Projected emissions to 2015 were based on 121 

continued product use trends suggested by the same authors [Breivik et al., 2007]. We neglected 122 

inputs to the ocean other than atmospheric deposition because other work suggests they are small 123 

[Jurado et al., 2004; Lammel and Stemmler, 2012]. 124 

2.2 Model parameterization and sensitivity analysis 125 

Air-sea exchange of PCBs was modeled using a standard two-layer thin film transfer 126 

model [Johnson, 2010]. Chemical evasion in the polar oceans is thought to be enhanced by 127 

turbulence from sea ice-rafting [Loose et al., 2014]. We thus doubled the piston velocity over 128 

regions partially covered with sea-ice, following previous work [Zhang et al., 2015]. Model 129 

parameters for air-sea exchange of PCBs are provided in the supporting information (Table S1) 130 

[Duce et al., 1991; Friedman and Selin, 2016; Fuller et al., 1966; ITTC, 2006; Johnson, 2010; 131 

Laliberté, 2007; Liss and Slater, 1974; Nightingale et al., 2000; Sander, 1999; Smith, 1980; 132 

Tsilingiris, 2008; Tucker and Nelken, 1990; Wilke and Chang, 1955]. 133 

PCBs rapidly reach equilibrium between the dissolved and solid phases in seawater 134 

[Sobek et al., 2004]. Partitioning to suspended particles was therefore represented as a reversible 135 

equilibrium based on an empirically measured organic carbon partition coefficient (KOC) adjusted 136 

for temperature and salinity [Sobek et al., 2004]. The physicochemical properties of the four 137 

congeners are detailed in the supporting information (Table S2) [Li et al., 2003; Schenker et al., 138 

2005; Schwarzenbach et al., 2003; Wania and Daly, 2002]. Particle concentrations and vertical 139 

transport of PCBs associated with export fluxes were simulated using the ecological simulation 140 

(DARWIN-ECCO v4) embedded within the MITgcm. The ecological simulation has been 141 

described and evaluated elsewhere [Dutkiewicz et al., 2012].  142 
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Some sorption to dissolved organic carbon (DOC) is also known to occur and is 143 

particularly important in the coastal environment [Burkhard, 2000]. However, typical surface 144 

ocean DOC concentrations for pelagic marine regions (51-79µM) and the mean partition 145 

coefficient for dissolved organic carbon (log KDOC=0.71 log KOW-0.50 ) suggest less than 5% of 146 

PCBs will be bound in this phase [Burkhard, 2000; Dutkiewicz et al., 2012; Hansell et al., 2009]. 147 

Sorption coefficients for DOC may vary depending on organic carbon composition but such data 148 

are not available to parameterize our model simulations and we thus neglect sorption to DOC in 149 

our ocean simulation.  150 

We conducted sensitivity simulations to explore the impacts of uncertainties in KOC 151 

values, particle concentrations, carbon export fluxes and degradation rates. Prior work has 152 

hypothesized that stronger relative sorption to organic carbon occurs in low productivity 153 

ecosystems such as the open ocean [Sobek et al., 2004]. Marine primary productivity predicted 154 

by satellite measurements ranges from 44 - 57 Pg C a-1 [Carr et al., 2006]. Estimates of annual 155 

export of carbon from the euphotic zone vary widely (5 to >12 Pg C a-1) and the simulation used 156 

here is on the lower end of this range (6 Pg C a-1) [Boyd and Trull, 2007; Henson et al., 2011]. 157 

This results in a low bias in particle concentrations in the subsurface ocean. 158 

We ran the 1930-2015 simulation using the range of log KOC values reported in prior 159 

work (5.82 to 8.31) for CB-153, which is the most prevalent congener in many regions of the 160 

ocean [Hawker and Connell, 1988; Li et al., 2003; Schenker et al., 2005; Sobek and Gustafsson, 161 

2014; Sobek et al., 2004]. The upper bound of KOC values reported by Sobek et al. [2004] is 162 

higher than supported by recent data [Panagopoulos et al., 2016; Stenzel et al., 2013]. It can be 163 

used to explore model sensitivity to a potential underestimate in carbon export since both higher 164 

KOC values and higher particle concentrations will result in greater PCB partitioning to the solid 165 
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phase.  We found the low and mid-range values of KOC for CB-153 resulted in modeled dissolved 166 

concentration peaks (9-16 pg L-1) at three tropical Atlantic Ocean stations that exceeded the 167 

ranges of measurements (0.06 to 3.5 pg L-1) (Figure S1b). The best model performance was 168 

obtained using the upper 95th percentile confidence limit of the KOC, reflecting combined 169 

influences of higher PCBs sorption to particles than predicted by the geometric mean KOC and 170 

likely higher carbon export fluxes from the surface ocean. Gustafsson et al. [1997] reported PCB 171 

setting fluxes from the surface ocean mixed layer of the North Atlantic for CB-52, CB-128, and 172 

CB-194 that ranged from 0.02-12 pmol m-2 d-1 based on 234Th and PCB concentrations in 173 

suspended particles. This compares well to our modeled results for different congeners (CB-28, 174 

CB-101, CB-153, and CB-180) of 0.0002-7 pmol m-2 d-1. Annually averaged settling fluxes in 175 

this study are lower than those reported by Galbán-Malagón et al. [2012] for the polar North 176 

Atlantic during peak biomass production. At this time, particle concentrations are approximately 177 

one order of magnitude higher than outside the spring-summer season [Stramska and Stramski, 178 

2005]. 179 

Polychlorinated POPs degrade through both photolytic and biological processes but rate 180 

data are not specifically available for PCBs [Abramowicz, 1990; Friesen et al., 1990; Sinkkonen 181 

and Paasivirta, 2000]. Assuming uniform degradation with depth, which has been used in other 182 

models [Wania and Daly, 2002], results in decreasing PCB concentrations with depth. Measured 183 

PCB concentrations increase with depth in the water column and peak between 400 m and 3000 184 

m (Figure S2) [Booij et al., 2014; Gustafsson et al., 2005; Sun et al., 2016]. Prior research 185 

suggests microbial degradation of PCBs is approximately one order of magnitude lower than 186 

photolytic degradation [Sinkkonen and Paasivirta, 2000; Zhang et al., 2015]. We thus used the 187 

following expression to represent degradation of PCBs in the water column:  188 
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𝑘𝑑𝑒𝑔 = (0.9
𝑘𝑏𝑎𝑠𝑒,𝑇

𝑅𝐴𝐷𝑠𝑢𝑟𝑓
× 𝑅𝐴𝐷𝑧 + 0.1𝑘𝑏𝑎𝑠𝑒,𝑇 ×  𝑓𝑟𝑒𝑚𝑖𝑛,𝑧) × 100  (Eq.1) 189 

where kbase,T is the temperature adjusted degradation base rate, RADsurf and RADz are the 190 

shortwave radiation intensity at the surface and at depth z, and 𝑓𝑟𝑒𝑚𝑖𝑛,𝑧 is the remineralized 191 

fraction of organic carbon at depth z. Organic carbon remineralization rates are used as a proxy 192 

for bacterial activity in the water column [Dutkiewicz et al., 2009; Zhang et al., 2015]. Resulting 193 

modeled degradation half-lives in the upper ocean (top 1000 m) for CB-28 (3.8 years), CB-101 194 

(10.4 years), CB-153 (20.9 years), and CB-180 (27.2 years) agree well with those reported 195 

elsewhere [Galbán-Malagón et al., 2013b; Sinkkonen and Paasivirta, 2000; Wania and Daly, 196 

2002]. 197 

3 Results and Discussion 198 

3.1 Modeled global distribution of PCBs in seawater 199 

Figure 1 shows the modeled global distribution of PCBs in the surface ocean (5 m depth, 200 

ca. 2008) compared to measurements collected between 2000-2015. Modeled seawater PCB 201 

concentrations were highest in the Northern Hemisphere for all four congeners due to proximity 202 

to historic sources. Seawater measurements between 2000-2015 were clustered in the 203 

Mediterranean Sea and Arctic Ocean, and sparse data have been collected from other ocean 204 

regions (Figure 1, Table S3). The atmospheric model used to force our ocean simulation has a 205 

relatively coarse resolution (4°×5°) and when combined with the narrow shape of the 206 

Mediterranean Sea produces anomalous deposition patterns due to multiple atmospheric grid 207 

cells that contain only a small fraction of water. We thus focus model evaluation on the Arctic 208 

Ocean.  209 
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Median modeled concentrations overlap with the measured ranges in surface seawater for 210 

all four PCB congeners and capture important spatial patterns (Figure 1 and 2). Both modeled 211 

and measured concentrations peak in the Norwegian and Greenland Seas and are lowest in the 212 

high Arctic. Variability in observations is greater than for modeled concentrations, which reflects 213 

the coarser spatial resolution and associated spatial averaging that occurs in the model. Both the 214 

model and measurements indicate the most volatile congener (CB-28) is most abundant in the 215 

Arctic, and the highest molecular weight congener (CB-180) is approximately two orders of 216 

magnitude lower in concentration (Figures 1 and 2). This contrasts the modeled distribution at 217 

mid-latitudes and in the tropics (Figure 1, Table S3) where the higher molecular weight 218 

congener, CB-153, is most abundant due to higher deposition. Fractionation of more volatile 219 

congeners with increasing latitude is consistent with measurements in ocean water and sediment 220 

cores [Gustafsson et al., 2001; Sobek and Gustafsson, 2004].   221 

For other ocean regions, insufficient data are available to perform a quantitative model 222 

evaluation. In addition, ship-based sampling always faces the issue of shipboard contamination 223 

due to the potential presence of trace-level contaminants on the ship itself [Lohmann et al., 224 

2004]. During active sampling, incomplete separation of the dissolved and solid phases in 225 

reported PCB measurements is known to occur [Adams et al., 2007]. Such issues may explain the 226 

lack of clear latitudinal variability in ocean measurements compared to the distinct enrichment in 227 

the Northern Hemisphere in the model. 228 

Model results indicate the global oceans contain approximately 6% of the 4PCBs (sum 229 

of CB-28, CB-101, CB-153 and CB-180) released to the environment between 1930 and 2015. In 230 

2015, only 2% of the 4PCBs (approximately 22 Mg) was present in the ocean above 1000 m 231 

depth (Figures 3 and 4). Burial of PCBs in benthic sediment in the deep ocean (9400 Mg) and in 232 
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coastal/shelf regions (3400 Mg) has sequestered 75% of cumulative releases between 1930 and 233 

2015 (Figure 3), emphasizing the importance of this pathway as a removal process [Jönsson et 234 

al., 2003]. Our parameterization for PCB degradation in seawater suggests it has removed an 235 

additional 13% from environmental reservoirs (2200 Mg). This is substantially higher than in 236 

previous modeling studies and more than the present ocean reservoir [Wania and Daly, 2002]. 237 

Thus, better observational constraints on PCB degradation rates in seawater have global 238 

significance for understanding their ultimate fate in the environment. As noted elsewhere, 239 

atmospheric oxidation is a less important loss pathway (3%) [Axelman and Gustafsson, 2002; 240 

Friedman and Selin, 2016]. The terrestrial environment contains the remainder of environmental 241 

releases included in our analysis since 1930. These results emphasize the effectiveness of natural 242 

sequestration mechanisms at reducing concentrations in the biosphere following a global phase 243 

out in chemical production. 244 

3.2 Temporal shifts in the global ocean reservoir 245 

 The modeled global upper ocean reservoir (top 1000 m) of PCBs peaked during the 246 

highest atmospheric releases in the 1970s and 1980s and has declined by more than 90% since 247 

this time (Figure 4). In the deep ocean, the reservoir of CB-180 peaked in 1968, followed by CB-248 

153 in 1979, CB-101 in 1990 and CB-28 in 1997 (Figure 4). This timing follows their molecular 249 

weight and associated volatilities, particle affinities and hydrophobicities [Schwarzenbach et al., 250 

2003]. More rapid scavenging of high molecular weight PCBs increased the proportion of lighter 251 

congeners (CB-28 and CB-101) in the ocean from 20% of the 4PCBs in 1970 to 58% in 2015 252 

and is consistent with enrichment of moderately chlorinated congeners in modern sediments 253 

[Gustafsson et al., 2001]. Shifts in congener composition led to a 37% increase in modeled 254 
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global residence time of the sum of four PCBs in the upper ocean between 1970 and 2015 255 

(Figure S3).   256 

The spatial distribution of PCBs in the ocean has shifted over time toward the Southern 257 

Hemisphere (Figure 5, Figure S4). In 1970, when primary emissions of PCBs were very high, 258 

64% of the global ocean reservoir in the ocean was contained in the North Atlantic and North 259 

Pacific Oceans. By 2015, this declined to 39%. Over the same time period, the Southern 260 

Hemisphere ocean reservoirs increased from 30% to 54% of the global total. These results 261 

illustrate the role of the Northern Hemisphere oceans as an ongoing exporter of historic pollution 262 

to the equatorial and southern ocean basins over multi-decadal timescales. 263 

3.3 Major biogeochemical processes driving global distribution 264 

Figure 6 shows the relative importance of different biogeochemical processes for PCB 265 

inputs and losses across the upper ocean (top 1000 m). Despite declines in PCB releases, 266 

atmospheric deposition to the surface ocean is still the most important input source to all ocean 267 

regions and accounted for 49-99% of total inputs across basins and congeners in 2015 (Figure 6a, 268 

Table S4). Almost 60% of modeled total deposition occurred in the North Pacific and North 269 

Atlantic basins even though they make up only 33% of surface area of the ocean [Eakins and 270 

Sharman, 2010]. This reflects their continued proximity to emissions sources from PCBs used in 271 

historic manufacturing in the global PCB inventory [Breivik et al., 2007]. More recent studies 272 

have suggested that global inventories of PCB releases should be updated to account for missing 273 

recent sources in the Southern Hemisphere [Gioia et al., 2008b; Lohmann et al., 2012; Zhang 274 

and Lohmann, 2010]. 275 

As discussed above, advection of PCBs from the Northern Hemisphere to the Southern 276 

Hemisphere (4PCBs = 2.5 Mg in 2015) though lateral ocean circulation has become substantial 277 
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in recent years for some basins. Modeled fluxes of PCBs with lateral ocean circulation accounted 278 

for 48% of total inputs to the upper Equatorial and South Atlantic Ocean and 20% of inputs to 279 

the Indian Ocean in 2015. Other sources to the upper ocean such as upwelling from the deep 280 

ocean accounted for less than 10% of the modeled total inputs across basins. 281 

Globally, we find modeled particle-associated scavenging of PCBs from the upper ocean 282 

accounted for 69% of total losses in 2015 (Figure 6b, Table S4). This is consistent with 283 

observational studies that have suggested the marine biological pump is a globally significant 284 

removal mechanism for PCBs from the upper ocean [Dachs et al., 2002; Galbán-Malagón et al., 285 

2012]. Across basins, particle-associated export of PCBs from the top 1000 m of the water 286 

column accounted for between 25% and 75% of losses in 2015 (Figure 6b, Table S4). The Arctic 287 

Ocean has a water column depth of less than 1000 m in many regions due to an expansive 288 

continental shelf. Thus, particle-associated removal is reflected by burial in benthic sediment in 289 

the Arctic basin (42% of the 4PCBs losses), as has been noted elsewhere [Sobek and 290 

Gustafsson, 2014].  291 

The importance of other PCB removal processes from the upper ocean varies spatially 292 

and by congener. Globally, evasion accounts for 16% of total losses from the upper ocean, 293 

degradation for 11%, and deep water formation for 4% (Figure 6b, Table S4). For the higher 294 

molecular weight congeners (CB-153 and CB-180), scavenging by particles is the dominant 295 

removal process across all basins (59-97%, Figure 6b, Table S4). These two compounds have log 296 

octanol water partition coefficients (Kow) of greater than 7.31, which is linearly related to their 297 

Koc (upper bound greater than 8.31) and a good proxy for partitioning to lipids [Chiou, 1985; 298 

Sobek et al., 2004].  299 
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A single dominant removal process for PCBs from the upper ocean is less identifiable for 300 

the lower molecular weight congeners CB-28 and CB-101 with lower log Kow values. For CB-301 

28, modeled degradation is the dominant removal process in the Equatorial and South Atlantic 302 

(57%), Equatorial and South Pacific (54%), Indian Ocean (62%) and Mediterranean Sea (70%) 303 

but evasion is more important in the Arctic, North Pacific and Atlantic Ocean basins (21-41%) 304 

(Figure 6b, Table S4). This reflects higher winter wind speeds in Northern Hemisphere oceans 305 

that enhance PCB losses through evasion and greater shortwave radiation intensity near the 306 

tropics that enhance water column degradation. Removal processes for CB-101 in the upper 307 

ocean are diverse and depend on basin specific characteristics. The lack of a single dominant 308 

removal process for lower molecular weight PCB congeners demonstrates that the removal of 309 

some POPs can only be determined after characterizing basin-specific differences in 310 

biogeochemical properties.  311 

Prior work suggests that accumulation of persistent organic contaminants in the 312 

subsurface ocean may provide an ongoing source to the surface ocean and atmosphere after 313 

elimination of primary emissions sources [Hung et al., 2016; Stemmler and Lammel, 2013]. 314 

These studies have proposed that the ocean could act as source rather than sink for some legacy 315 

POPs due to mixing, seasonal entrainment of the mixed layer, and diffusion of volatile chemicals 316 

back to the surface ocean, followed by evasion to the atmosphere [Lohmann et al., 2012; Nizzetto 317 

et al., 2010; Stemmler and Lammel, 2013]. Such processes have been proposed as one 318 

explanation for slowing declines in atmospheric concentrations of PCBs and even increases at 319 

some Arctic monitoring stations [Gioia et al., 2008b; Hung et al., 2016]. The simultaneous peak 320 

in environmental releases and the upper ocean reservoir of CB-153 and CB-180 suggest seasonal 321 
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entrainment does not exert a major influence on surface and atmospheric concentrations of these 322 

congeners (Figure 4).  323 

For CB-28, we find an upper ocean response lag of ten years and a short half-life against 324 

evasion (2 months) in ocean surface mixed layer (Figure 3, 4 and 6). Vertical transport 325 

contributes similar amounts of CB-28 (9 Mg) and CB-153 (10 Mg) to the mixed layer (upper 326 

55m). However, the ratio of inputs to losses of CB-153 (1.0) in the mixed layer is less than half 327 

that of CB-28 (2.5), mainly due to rapid particle-associated removal and downward vertical 328 

transport (Figure 3). Thus, model results suggest in ocean basins with significant evasion, such 329 

as the Arctic, North Pacific and Atlantic Oceans, the subsurface PCB reservoir is a potential 330 

source of more volatile congeners to the atmosphere. Our findings show that differing 331 

meteorological conditions between basins drive removal of lighter molecular weight congeners 332 

indicating they will be affected more strongly by climate-driven changes to ocean 333 

biogeochemistry.   334 

3.4 Climate-driven changes in the Arctic Ocean 335 

In the Arctic, global temperature anomalies are two times higher than the global average 336 

[IPCC, 2014]. In 2017, September sea ice extent was 25% lower than the 1981-2010 average, 337 

reflecting changes in atmospheric circulation, weakened Atlantic Meridional Overturning 338 

Circulation and increased poleward heat transport [Delworth et al., 2016; Ding et al., 2017; 339 

IPCC, 2014; Rahmstorf et al., 2015; Richter-Menge et al., 2017; Stroeve et al., 2007]. We 340 

examined the impacts of such rapid changes on PCB cycling in the Arctic Ocean by forcing the 341 

model with the ERA-Interim re-analysis fields that capture changes in temperature, sea-ice 342 

cover, and ocean circulation observed in the Arctic Ocean between 1992-2015 [G. Forget et al., 343 

2015].  344 
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Figure 7 shows modeled differences in 2015 seawater PCB concentrations due to 345 

variability in ocean circulation and sea-ice cover between 1992-2015 compared to a baseline 346 

simulation with constant ocean state conditions (1992-1996). Results show changes in ocean 347 

conditions resulted in a decline in CB-28 seawater concentrations by an additional 54% 348 

compared to the constant meteorology scenario. In contrast, model results show an increase in 349 

concentrations of CB-153 in Arctic surface seawater relative to the constant climate scenario.  350 

Differences in the directionality of changes in PCB concentrations between congeners 351 

reflect their contrasting sensitivity to physical/chemical processes. CB-28 is much more volatile 352 

and thus ice-free waters and longer seasonal ice-free periods resulted in greater losses through 353 

increased evasion (41% change) and degradation (28% change) using the 1992-2015 354 

climatology. The net increase in mean 2015 CB-153 concentrations with varying meteorological 355 

conditions relative to the constant climate scenario was small in our simulation (0.0004 pg L-1 or 356 

1%). Larger increases of up to 100%, or 0.06 pg L-1 were apparent in the areas with greatest sea-357 

ice cover retreat such as the Canadian Basin, the East Greenland Rift Basin and on the Barents 358 

shelf (Figure 7B).  359 

CB-153 has a greater propensity for binding to particles leading to greater stability and 360 

retention in the surface ocean. Thus, declining sea-ice cover in the Arctic Ocean resulted in a net 361 

increase in atmospheric deposition and overall increase in seawater concentrations in some 362 

regions. Such patterns are consistent with observed increases and stabilization in biotic 363 

concentrations in the Arctic. For example, data from 358 time-series covering Arctic mussels, 364 

marine fish, seals and polar bears suggest that the annual rate of decline in CB-153 365 

concentrations in biota was reduced from 3.7% in the 1980s and 1990s to 2.5% after 2000 366 

[AMAP, 2016b].  367 
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Arctic sea-ice cover is projected to retreat 60% in the coming decades and mean fall 368 

temperatures may increase by as much as 13°C by the end of the 21st century [IPCC, 2014].  369 

This is likely to further increase evasion of more volatile congeners. Extended seasonally ice-free 370 

waters and associated increases in light availability increased ocean productivity in the Barents 371 

Sea and the Eurasian Arctic between 2003-2017 [Richter-Menge et al., 2017]. Melting of 372 

permafrost is expected to increase riverine inputs of labile DOC to the Arctic Ocean [Panneer 373 

Selvam et al., 2017]. Satellite data suggest that net primary productivity increased by 20% 374 

between 1998-2009 and may reach 730 Tg C yr-1 in an ice-free Arctic [Arrigo and van Dijken, 375 

2011]. Increases in particle-associated removal in a more productive ocean may attenuate any 376 

increases in atmospheric deposition of higher molecular weight congeners and ultimately reduce 377 

the residence times in ocean of high molecular weight compounds. Our findings suggest that 378 

changes in ocean biogeochemistry resulting from projected sea ice retreat, increasing surface 379 

temperatures, and changing ocean circulation will decrease concentrations of lighter molecular 380 

weight POPs and slow concentration declines of POPs with higher molecular weights. For PCBs, 381 

the large decline in emissions exerts the dominant influence on concentration trends. However, 382 

for neutral hydrophobic POPs with increasing production trends, such as organophosphate esters, 383 

changes in Arctic ecosystem properties may exert a much more pronounced pattern and result in 384 

differing trends among low and high molecular weight compounds [Li et al., 2017; Sühring et 385 

al., 2016]. 386 

4 Summary and Conclusions 387 

We developed a global ocean simulation for four PCB congeners between 1930 and 388 

2015. PCB concentrations in the upper ocean have declined by over 90% since 1970, mainly due 389 

to declines in primary emissions and particle-associated removal from the water column. We 390 
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estimate that burial in coastal and marine sediment accounts for cumulative removal of 391 

approximately 75% of the PCBs released to the atmosphere since 1930. In 2015, the global 392 

ocean reservoir of the four PCBs modeled in this study was equivalent to 6% of releases since 393 

1930, with only 2% in the upper ocean above 1000 m. The slowest decline in seawater PCB 394 

concentrations has occurred among the lightest molecular weight congeners, resulting in an 395 

increase in their proportion in the upper ocean reservoir in recent years. The enormous lack of 396 

data in the Southern, South Pacific, Indian, and South Atlantic Oceans highlights critical research 397 

needs for the future. 398 

Biogeochemical processes driving PCB inputs and losses vary among basins and by 399 

congener. Atmospheric deposition is the most important input source for the surface ocean. 400 

Model results suggest 56% of global deposition was located in the North Atlantic and North 401 

Pacific basins in 2015. Lateral transport of legacy PCB pollution from the Northern Hemisphere 402 

to the Southern Hemisphere oceans through thermohaline circulation has become increasingly 403 

important in recent years, particularly for the Equatorial and South Atlantic Ocean. For the 404 

higher molecular weight PCB congeners, particle-associated removal dominates losses across all 405 

basins but a combination of evasion, degradation, particle settling and lateral transport is 406 

important for the lighter molecular weight congener removal.  For the lighter molecular weight 407 

congeners, basin-specific biogeochemical conditions such as high winds in the North Atlantic 408 

determine the major loss processes, suggesting the importance of future climate-driven changes 409 

in the global oceans for the fate of many anthropogenic pollutants. Differences among high and 410 

low molecular weight PCB congeners observed in this study may be more pronounced for 411 

neutral hydrophobic POPs with stable or increasing emissions. 412 
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Increases in seawater temperature, changes in circulation and reductions in sea-ice cover 413 

between 1992 and 2015 in the Arctic Ocean increased evasion of the lowest molecular weight 414 

PCB (CB-28). A small increase in net deposition to the surface ocean occurred for CB-153 due 415 

to sorption to particles and thus greater stability in seawater. Continued declines in sea-ice cover 416 

and increases in seawater temperature are projected for the next several decades [IPCC, 2014].  417 

Thus, increases in Arctic seawater concentrations of some persistent pollutants (e.g. CB-153) and 418 

neutral POPs with high Kow (>7.3 in this study), but decreases for more volatile compounds (e.g. 419 

CB-28), may be expected. Potential climate-driven mobilization of legacy POP reservoirs in 420 

permafrost, glaciers and sea-ice should also be considered [AMAP, 2016a].  421 
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Figure Captions 669 

Figure 1. Modeled dissolved seawater concentrations of chlorinated biphenyl (CB)-28, CB-101, 670 

CB-153 and CB-180 at 5 m depth in 2008. Observations collected between 2000 and 2015 are 671 

shown as circles and the modeled year represents the mid-point of measurements. Data sources 672 

are as follows: Arctic Ocean: [Booij et al., 2014; Galbán-Malagón et al., 2012; Gioia et al., 673 

2008a; Gustafsson et al., 2005; Sobek and Gustafsson, 2014; Sobek et al., 2004] 674 

North Atlantic Ocean: [Galbán-Malagón et al., 2012; Gioia et al., 2008b; Gioia et al., 2008a; 675 

Lohmann et al., 2012; Sun et al., 2016]; South Atlantic Ocean: [Booij et al., 2014; Gioia et al., 676 

2008b; Lohmann et al., 2012; Sun et al., 2016];  Mediterranean Sea: [Berrojalbiz et al., 2011; 677 

Lammel et al., 2016], Pacific Ocean [Zhang and Lohmann, 2010];  Indian Ocean: [Booij et al., 678 

2014]; Southern Ocean: [Galbán-Malagón et al., 2013a]. 679 

 680 

Figure 2. Comparison of modeled and observed (2000-2015) dissolved concentrations of 681 

chlorinated biphenyl (CB)-28, CB-101, CB-153 and CB-180 in the upper 1000 m of the Arctic 682 

Ocean [Booij et al., 2014; Galbán-Malagón et al., 2012; Gioia et al., 2008a; Gustafsson et al., 683 

2005; Sobek and Gustafsson, 2014; Sobek et al., 2004]. Modeled and observed concentrations 684 

were matched by year. 685 

 686 

Figure 3. Modeled fate of PCBs released to the global environment between 1930 and 2015 to 687 

global reservoirs (sum of historical CB-28, CB-101, CB-153 and CB-180 releases) and major 688 

removal processes through degradation in the atmosphere and ocean. The 2015 atmospheric 689 

reservoir is estimated to be <0.01% of the cumulative releases since 1930 [Friedman and Selin, 690 

2016; Wania and Daly, 2002]. Bottom panels show 2015 global ocean budget of CB-28 and CB-691 
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153. Atm. deposition includes wet and dry particulate, and wet gaseous deposition, vertical 692 

transport includes advective and diffusive transport. Upward diffusive transport at the air-sea 693 

boundary denotes gross evasion and downward diffusive transport denotes gross gaseous 694 

deposition.  695 

* The terrestrial reservoir is based on the difference between environmental releases and 696 

cycling/loss pathways included in our analysis and does not account for localized point sources 697 

not included in Breivik et al. [2007].  698 

 699 

Figure 4. Modeled changes between 1930 and 2015 in the reservoir of PCBs in the upper ocean 700 

(top 1000 m) and deep ocean (below 1000 m to the seafloor). 701 

 702 

Figure 5. Changes in the mass distribution of chlorinated biphenyl (CB)-28, and CB-153 703 

between ocean basins between 1930 and 2015. Northern hemisphere basins are shades of blue 704 

and southern hemisphere basins are shades of red/orange.  705 

 706 

Figure 6. Relative importance of different input (panel a) and loss (panel b) processes for PCBs 707 

across ocean basins and congeners. Modeled mass flows of PCBs for 2015 are normalized to the 708 

magnitude of the dominant process to illustrate their relative importance for each congener. 709 

Polygons with small, pointed areas indicate a single dominant removal process. Part. sinking 710 

denotes sinking sorbed to particles at 1000 m. Hor. transport denotes net horizontal advective 711 

and diffusive transport. Vert. transport denotes gross vertical advective and diffusive transport at 712 

1000 m. 713 

 714 
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Figure 7. Modeled differences in PCB concentrations in the Arctic Ocean simulated using 1992-715 

2015 meteorology, ice cover, and ocean circulation relative to base results using constant 1992-716 

1996 conditions. Upper panel shows results for CB-28 and lower panel shows CB-153. 717 
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