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ABSTRACT

Detailed understanding of submesoscale processes and their role in global ocean circulation is constrained, in

part, by the lack of global observational datasets of sufficiently high resolution. Here, the potential of ther-

mosalinograph (TSG) andVisible Infrared Imager Radiometer Suite (VIIRS) data is evaluated, to characterize

the submesoscale structure of the near-surface temperature fields in the Gulf Stream and Sargasso Sea. In

addition to spectral density, the structure function is considered, a statistical measure less susceptible to data

gaps, which are common in the satellite-derived fields. The structure function is found to be an unreliable

estimator, especially for steep spectral slopes, nominally between 2 and 3, typical of the Gulf Stream and

Sargasso regions. A quality-control threshold is developed based on the number and size of gaps to ensure

reliable spectral density estimates. Analysis of the impact of gaps in the VIIRS data on the spectra shows that

both the number of missing values and the size of gaps affect the results, and that the steeper the spectral slope

the more significant the impact. Furthermore, the TSG, with a nominal resolution of 75m, captures the spectral

characteristics of the fields in both regions down to scales substantially smaller than 1 km,while theVIIRS fields,

with a nominal resolution of 750m, reproduce the spectra well down to scales of about 20 km in the Sargasso Sea

and 5 km in the Gulf Stream. The scales at which the VIIRS and TSG spectra diverge are thought to be de-

termined by sensor and retrieval noise.

1. Introduction

All numerical models of physical processes make as-

sumptions about physics at scales smaller than that of

the model-grid spacing. This is referred to as subgrid-

scale parameterization. Recent observational and nu-

merical work show the physics in the upper ocean at

scales smaller than the first baroclinic mode [generally

referred to as the submesoscale and not resolved in

global ocean general circulation models (OGCMs)] to

be rich in structure and processes. Moreover, these

processes may play a significant role in, and interact

with, the larger-scale circulation, for example, through

their impact on air–sea fluxes, vertical motion, and

particle redistribution (e.g., Lapeyre and Klein 2006;

Capet et al. 2008; Thomas et al. 2008; Molemaker et al.

2010; D’Asaro et al. 2011; Fox-Kemper et al. 2011).

To date, most studies of submesoscale processes have

been numerical owing to the paucity of observational

datasets at these scales. A number of multiplatform

experiments have been undertaken at these scales [e.g.,

Scalable Lateral Mixing and Coherent Turbulence

(LatMix)1; Ocean Surface Mixing, Ocean Submesoscale
Corresponding author address: Fabian Schloesser, Graduate
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Interaction Study (OSMOSIS)2], but these experiments

are expensive and very limited in space and time. On the

other hand, until recently, routine sampling of the upper

ocean, undertaken either over large spatial scales and/or

large temporal scales, has been relatively coarse: the

highest-resolution satelliteborne observations of the

ocean surface have sampled at approximately 1 km, but

the noise associated with these samples rendered them

of little use at scales smaller thanO(10 km) (Deschamps

et al. 1981, 1984). Gliders have been employed to sample

along repeat tracks (e.g., Todd et al. 2011; Cole and

Rudnick 2012); however, these sections are still rela-

tively isolated and coverage is far from global. Fur-

thermore, with the exception of a small number of

datasets, the spatial scale at which long-term, repeated

ship surveys sample tends to be O(5 km) and coarser.

The latter is determined by the temporal sampling rate

and ship speed. Since these observations tend to be

taken from commercial vessels, there is little control

over the ship speed and the sampling rate is constrained

by the instrument, ship-to-shore transmission rates, and/

or onboard storage capacity. Sections from research

vessels, repeated as the ships go to and from their home

port, may be of interest for the study of coastal processes,

but the repeated portion of these sections tends to be

short and there is little regularity in their frequency.

The objective of the work presented herein is to de-

termine the spatial fidelity of shipborne thermosalinographs

(TSGs) and theVisible Infrared ImagingRadiometer Suite

(VIIRS) carried on the recently launched Suomi–National

Polar-Orbiting Partnership (Suomi-NPP) satellite. The

TSGs have been deployed on a number of ships of

opportunity but not widely used because of concerns

with data quality. The interest in VIIRS stems from the

fact that instrument noise is low, making for higher-

quality sea surface temperature (SST) retrievals com-

pared with those of other operational satelliteborne

infrared instruments with similar resolution and cov-

erage (Schueler et al. 2002). VIIRS samples the earth’s

surface twice daily with a spatial resolution of 750m for

the operational SST product, compared with O(1 km)

for Advanced Very High Resolution Radiometer

(AVHRR) and Moderate Resolution Imaging Spec-

troradiometer (MODIS) products. Unfortunately, infra-

red radiometers are susceptible to cloud contamination

so retrieved SST fields tend to be spatially patchy. A

second objective of this project, therefore, is to explore

the role of data gaps and their characteristics to better

understand differences between in situ and satellite-

derived SST datasets.

Different methodologies for deriving the statistical

measures are compared for both observational and syn-

thetic datasets. Specifically, we compare temperature

spectra and structure functions obtained from VIIRS

with those obtained from an acoustic Doppler current

profiler (ADCP) and a TSG, both mounted on theMotor

Vessel (MV)Oleander. Temperatures acquired as part of

the ADCP system, although coarser in spatial resolution

(3–5km) than the TSG data (;75m), are included here

as a reference dataset in that their spectra have been

published in recent studies of submesoscale processes in

the region (e.g., Wang et al. 2010; Callies and Ferrari

2013). The Oleander route transects several distinct dy-

namical regimes; our analysis focuses on the Sargasso Sea

and the Gulf Stream (Fig. 1). To test the reliability of the

different methods in each of these regions, we also apply

them to synthetic datasets with known properties.

The datasets used are introduced in detail in the next

section. In section 3 we provide an overview of the dif-

ferent spectral methods used. Analysis of the TSG and

VIIRS data is provided in section 4. We close with a

summary and discussion in section 5. In three appendixes

we discuss a simple model for the ADCP sensor response

and apply the methods used to synthetic data with known

properties and provide a list of acronyms.

2. Data

a. Oleander region and subregions

The area of our study is the region between Hamilton,

Bermuda, and Port Elizabeth, New Jersey, along the

route of the Oleander, a container ship that makes

weekly round trips between these two destinations (see

FIG. 1. VIIRS SST image from 12May 2012. Black line indicates

the nominalOleander track, and circles denote the endpoints of the

Sargasso Sea and Gulf Stream regions.

2 http://www.osmosis.ac.uk/.
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Fig. 1). The ship traverses several distinct dynamical re-

gimes: shelf, slope sea, the Gulf Stream, and the Sargasso

Sea. While delineation of these regions is somewhat

ambiguous because the Gulf Stream meanders signifi-

cantly in the vicinity of theOleander track, we define the

Gulf Stream region as that between 368 and 398N, and the

Sargasso Sea region as that between 32.58 and 368N.

These choices ensure that the energeticGulf Stream front

is always contained in the Gulf Stream region and, con-

versely, that the Sargasso Sea region is relatively quiet.

b. Oleander data

Three of our datasets are derived from measurements

taken by instruments mounted on the Oleander.

1) ACOUSTIC DOPPLER CURRENT PROFILER

(ADCP)

At the outset of the Oleander Project in 1992, the

Oleander was equipped with a narrowband 150-kHz

ADCP mounted in a sea chest in the keel (Flagg

et al. 1998). The instrument was replaced by an Ocean

Surveyor 75-kHz ADCP in 2004. ADCPs primarily

measure velocity; however, to correct for the effect of

temperature in the speed of sound, a thermistor mea-

sures temperature in the sea chest at about 5–6-m

depth, depending on the load of the Oleander. In our

study, we use the processed time series from the 75-kHz

instrument from 1 January 2005 to 21 November 2013,

which is bin averaged and has a temporal resolution of

3min, corresponding to about 1.5 km at a typical

cruising speed of 16 kt (8m s21).

The accuracy of the thermistor in the 75-kHz ADCP

is 0.1K and the resolution is 0.027K. Because the

sensor is glued to insulating material next to the array

stack, it is expected to respond relatively slowly, but its

response time is not well known.3 We estimate the re-

sponse time of the ADCP thermistor to be between 5

and 10min as described in appendix A. A slow re-

sponse time such as this has implications with regard to

the estimated spatial spectra as discussed in section 4a.

The Oleander ADCP data were downloaded from

the Oleander data portal,4 and inspected for quality

following Wang et al. (2010). A Barnes filter (Barnes

1964) with a decay scale ds of 1.5 km, which is similar to

the resolution of the processed time series, was then

used to interpolate sections onto an along-track grid with a

resolution of 1.25km to allow for application of standard

algorithms, such as the discrete Fourier transform (DFT).

For computational efficiency, the Barnes filter makes use

of data points within a circle of radius DS5 2ds5 3km

centered on each grid point; if no valid data are available

for a given grid point, then it is flagged as missing.

2) THERMOSALINOGRAPH (TSG) AND REMOTE

TEMPERATURE SENSOR (TEX)

The Oleander is equipped with a thermosalinograph

that measures temperature and salinity at the engine

intake. The system was operated by the National Oce-

anic and Atmospheric Administration (NOAA) from

2001 to fall 2013 and by the Oleander Project from

September 2014 to present. It consists of a Sea-Bird

Electronics (SBE) 45, which measures temperature and

salinity from the seawater intake in the interior of the

ship. The accuracy of the temperature sensor is 0.002K,

the resolution is 1024K, and the response time is 0.5 s.

Because temperature can be altered while water is flowing

through the intake pipes (;4.5m before the SBE 45

sample is taken), the thermosalinograph was equipped

with an additional SBE 38 remote temperature sensor

(TEX; accuracy: 0.0001K, resolution: 0.00025K, and re-

sponse time: 0.5 s) from September 2007 to fall 2013. The

SBE 38 measures temperature directly at the intake, that

is, the temperature ‘‘external’’ to the Oleander. In our

study we analyze the temperature data from September

2007 to June 2013 from the SBE 45 (TSG) and SBE 38

(TEX) sensors. Analyzing both time series provides the

opportunity to explore whether the quality of the ‘‘in-

terior’’ measurements is sufficient to provide reliable es-

timates of spectral slopes. Thedatawere downloaded from

the NOAA Atlantic Oceanographic and Meteorological

Laboratory (AOML) website, where links to the datasets

were made available upon request. The sampling fre-

quency of the TSG and TEX sensors is one measurement

per 10 s, such that their horizontal resolution (;75m at a

speed of 16kt) is significantly finer than that of theADCP.

For quality control, we use the standard quality control

by NOAA with regard to whether a grid point is located

over water or land. In addition, we perform our own

quality control (QC) as part of the project. Specifically,

we test whether temperature is in a reasonable range (08–
338C). We also eliminate spikes from the time series;

spikes being defined as data points with temperatures at

least 0.5K above (or below) those from both adjacent

data points. A particular problem with the TSG data is

that sometimes the pump does not operate properly.

Data measured at these times are characterized by

higher-than-normal temperatures and very low vari-

ability. We eliminate such faulty data through manual

3 The manufacturer estimates that the thermistor in the 75-kHz

ADCP takes about 30–60min to acclimate to a temperature

change. The 150-kHz ADCP thermistor is believed to respond

significantly faster, because it is glued directly to the conductive

naval bronze housing.
4 http://po.msrc.sunysb.edu/Oleander/.
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inspection. As with the ADCP data, the TSG and TEX

sections are interpolated on an equidistant along-track

grid with a resolution of 75m, using the length scales

ds5 75m and DS5 150m.

c. Visible-Infrared Imager-Radiometer Suite (VIIRS)

Our final dataset consists of SST fields derived from

the VIIRS instrument launched on the Suomi-NPP

satellite in October 2011. The SST product used here

[Joint Polar Satellite System (JPSS) VIIRS sea surface

temperature environmental data record (EDR)5] was

retrieved from the VIIRS ‘‘moderate resolution bands,’’

which have a nadir resolution of 750m and, because of

the way in which the instrument is configured, decreases

very slowly to approximately 1600m at the scan edge, a

ground distance of approximately 1500km from nadir

(Seaman et al. 2014; Schueler et al. 2013). For this study,

we use only the best-quality data, quality level 1. This

removes most clouds as well as a number of pixels that

were cloud free. To compare the VIIRS data to the

Oleander sections, we use an isotropic Barnes filter with

ds5 750m to interpolate SST on an equidistant grid

with a resolution of 750m along a nominal Oleander

section with start points and endpoints at 64.78E,
32.458N and 72.858E, 39.9758N, respectively, and a con-

stant latitude–longitude angle. For each grid point, data

points within a distance ofDS (1.5 km in this case) of the

point of interest are considered. When no valid data are

available withinDS, the data point is flagged as missing.

3. Methodology

Different methodologies are used throughout the lit-

erature to estimate spectral slopes. Here, we focus on two

methods: The most widely used is the DFT, generally

determined by a fast Fourier transform (FFT) algorithm

designed to efficiently determine the DFT (e.g., Wang

et al. 2010). The second approach is based on the second-

order structure function (Deschamps et al. 1981; Wald

1983; McCaffrey et al. 2015). Here we review the un-

derlying theory and describe the steps involved in each of

the methods, and introduce two measures for rating the

quality of data with missing points.

a. Relation between spectral density, autocorrelation
function, and structure function

In the case of an infinite, continuous time series x(t),

the autocorrelation functionRxx is the Fourier transform

of the spectral density and is linearly related to the

second-order structure function. Consequently, when

the spectral density follows a power law P(v);v2g , the

structure function has the from S2(Dx);Dxl, and the

two slopes are related by

g5 l1 1 (1)

(e.g., Deschamps et al. 1981; Frisch 1995). In the case of

discrete finite time series xn with n5 0, . . . , N2 1, as is

the case in the present study, the relations between P, S2,

and Rxx differ. The autocorrelation function is defined by

R
xx
(d)[ hx

n
x
n1jdji5

1

N2 jdj �
N212jdj

n50

x
n
x
n1jdj , (2)

with d52N1 1, . . . , N2 1. The discrete Fourier

transform of xn is

x̂(v
k
)[ �

N21

n50

x
n
e2ıvkndt , (3)

where vk 5 2pk/T, with T5NdT being the total length

of the record, and dt is its temporal resolution. The

power spectral density is given by

P(v
k
)[ x̂x̂*5 �

N21

n50
�
N21

m50

x
n
x
m
e2ıvk(m2n)dt , (4)

where x̂* denotes the complex conjugate of x̂. To illustrate

the relation between spectral density and autocorrelation,

we substitute d5m2n for index m, which gives

P(v
k
)5 �

N21

n50
�

N212n

d52n

x
n
x
n1d

e2ıvkddt,

5 �
N21

d512N
�

N212jdj

n50

x
n
x
n1jdje

2ıvkddt . (5)

Substitution of (2) and using the symmetries of the ex-

ponential function gives

P(v
k
)5 �

N21

d512N

(N2 jdj)R
xx
(d)e2ıvkddt,

5Re[2R̂0 2R0(0)] , (6)

where R0(d)[ (N2 jdj)Rxx(d) is the biased autocorre-

lation function. The second-order structure function is

related to the autocorrelation function by

S
2
(d)[

1

N2 jdj �
N212jdj

n50

(x
n
2 x

n1jdj)
2,

522R
xx
(d)1

1

N2 jdj �
N212jdj

n50

(x2n 1 x2N2n) , (7)
5 http://www.nsof.class.noaa.gov/saa/products/search?datatype_

family=VIIRS_EDR.
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where the expected value of the last term in (7) is

2Rxx(0) for a homogenous time series.

Equation (6) illustrates that in the case of a discrete

finite time series, the power spectral density is related

to the biased autocorrelation function, rather than

Rxx, as would be the case for an infinite, continuous

time series x(t). Moreover, dynamical regimes with con-

stant slopes only extend over a finite range of scales in the

ocean. As a result, the precise circumstances under which

(1) adequately describes the relation between slopes of

the structure functions and spectra are still under debate

(e.g., Webb 1964; Huang et al. 2010; McCaffrey et al.

2015). In this study we test the accuracy of relation (1) for

the VIIRS and TSG datasets.

b. Cohesion

All our datasets have gaps. Because the VIIRS mea-

surements are strongly affected by cloud cover, they

have significantly more missing data along the Olean-

der track than the in situ sections. As a result, it is

impossible to select a sufficient number of (nearly)

complete VIIRS sections for our analysis. This is po-

tentially problematic because data gaps, depending

on their nature (i.e., their number and length), affect

the estimate of spectral densities. Thus, for selecting

the VIIRS sections used, we seek an approach that

balances the number of available sections with the

possible error due to the gaps contained therein. Here,

we introduce two measures to characterize the gaps.

These measures are used in our study to assess the

quality of a section and its potential for improving the

ensemble mean.

Consider a time series xn with N data points xi,

i5 0, . . . , N2 1 with x(1)n 2 xn being the data points with

valid values, and x(2)n 2 xn being the data points without

valid values. TermN1 ,N is the number of valid points,

and N2 5N2N1 is the number of points with missing

data. We define

Q[
N

1

N
(8)

as the ratio of valid to total data points in each section,

and we define the ‘‘noise cohesion’’ as

C[
M

2

N
2
2 1

5
12 1/L

gap

12
1

N(12Q)

, (9)

where M2 is the number of neighboring data-point pairs

(xi, xi11), where neither xi nor xi11 is a valid data value;

that is, both belong to x(2)n (e.g., Cayula and Cornillon

1992). The second equality in (9) illustrates the (nonlinear)

relationship between the noise cohesion and the average

length of the gaps, Lgap [N2/(N2 2M2), where N2 2M2

is the number of gaps. So, for any two of N, Q, and Lgap

fixed, C increases toward 1 as the remaining parameter

increases (note that 0#Q# 1 and 1#Lgap #N). Our

results (discussed below) suggest that C provides a useful

measure for obtaining a first-order characterization of the

gap structure. Figure 2 shows 2D histograms, indicating

the relative abundance of VIIRS sections as a function of

Q and C in the Sargasso Sea and the Gulf Stream.

c. Methods

1) DISCRETE FOURIER TRANSFORM (DFT)

A common method to estimate spectral densities is to

use FFT algorithms to obtain the Fourier transform and

from this the spectral density. These algorithms require

gap-free time series6 on equidistant grids; that is, gaps, if

they exist in the original time series, must be filled prior

to applying the algorithm. Gaps result from cloud cover

in the satellite-derived SST fields, and from bubbles or

intermittent system failures in the in situ time series.

Here, we use a Barnes filter to interpolate the original

data onto a regular grid (section 2) and linear interpolate

to fill gaps in the resulting interpolation. To reduce ali-

asing effects, sections are detrended and a Blackman

window is applied. To allow averaging of spectral densi-

ties and to increase frequency resolution, we have padded

the sections with zeros to a length of 750km prior to

applying the FFT algorithm.

We explored an alternative method for obtaining

spectral densities, that of taking the Fourier transform

from the biased autocorrelation function, but abandoned

this approach in favor of the DFT. For complete time

series, the autocorrelation method is equivalent to the

FIG. 2. Number of VIIRS sections with a given noise cohesion

and ratio of good to total data points in the (a) Sargasso Sea and

(b) Gulf Stream regions. Black line indicates Q2C520:1.

6 At this point we are technically dealing with spatial series, but

we continue to refer to them as time series, a nomenclature that is

historically consistent.
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DFT, but for data with missing values, it has the advan-

tage that no interpolation is required across data gaps;

hence, it appeared to be well suited to this project.

However, tests with synthetic data (discussed in appendix

B) indicate that the DFT gives more precise estimates

than the autocorrelation function method for time series

similar to those in our datasets.

2) STRUCTURE FUNCTIONS

We also estimate the second-order structure functions

for the temperature sections. Structure functions

provide a different perspective on the data than spectral

density. In addition, it may be possible to estimate the

slope of the spectral density using (1), when the structure

of the data (i.e., the number and coherence of missing

data points) makes it difficult (impossible) to employ

standard techniques for estimating spectral densities di-

rectly (e.g., McCaffrey et al. 2015). An advantage of

structure functions is that it does not require interpolation

over missing data points; hence, even time series with

relatively few data points improve the estimate of the

average structure function. Ensemble-averaged structure

functions are calculated by averaging over the contribu-

tions from all data-point pairs in the dataset for a given

point separation (rather than by averaging over the

structure functions computed for each section).

3) SLOPES AND CONFIDENCE INTERVALS

The slope of the spectral density or structure function

over a given interval is estimated by fitting a first-order

polynomial to the log10 of the spectral density or structure

function versus the log10 of the wavenumber or separa-

tion of data points over that interval. The intervals used

are noted in the text and in Tables 1 and 2. We estimate

95% confidence intervals by using a bootstrapping

method (e.g., Efron and Tibshirani 1986) to generate 104

realizations of the average spectral densities.

4. Results

In this section, we report the results of the analysis of

the four datasets described in section 2. We start by

comparing the three in situ datasets from the Oleander.

a. TSG, TEX, and ADCP

1) AVERAGE SPECTRA

Figure 3 shows the DFT spectral densities of the

ADCP, TSG, and TEX sections in the Sargasso Sea and

Gulf Stream regions. A very strict quality standard of

Q. 0:999 is used for all in situ data due to the large

number of high-quality sections available. With that

choice the number of sections used is 522 and 527 for

ADCP, 205 and 178 for TSG, and 236 and 236 for TEX in

the Sargasso Sea and the Gulf Stream, respectively.

Spectral slopes are estimated for wavelengths between 10

and 100km [0.1–0.01 cycles per kilometer (cpkm) ]for all

three datasets, and for the interval 1–10km (1–0.1 cpkm)

for TSG and TEX, and are reported in Table 1. Gener-

ally, the Gulf Stream region is more energetic than the

Sargasso Sea, and the slopes are steeper. Samelson and

Paulson (1988) and Wang et al. (2010) suggest that

spectral densities of temperature and potential energy are

proportional. If that assumption is valid, then the slopes

suggest that the Gulf Stream is somewhat closer to a

quasigeostrophic regime, where a slope of g5 3 would be

observed, whereas other processes are of relatively larger

importance in the Sargasso Sea. On the other hand, it

TABLE 1. Spectral slopes.

Region Gulf Stream Sargasso Sea

Interval (cpkm) [0.01,0.1] [0.1,1] [0.01,1] [0.01,0.1] [0.1,1] [0.01,1]

ADCP 22.66 6 0.06 22.51 6 0.09

TSG 22.46 6 0.07 23.37 6 0.08 23.01 6 0.05 22.21 6 0.12 22.46 6 0.13 22.31 6 0.13

TEX 22.43 6 0.07 23.12 6 0.08 22.92 6 0.05 22.21 6 0.11 22.23 6 0.13 22.17 6 0.13

VIIRS 2 2.40 6 0.14 21.79 6 0.25

TABLE 2. Structure function slopes.

Region Gulf Stream Sargasso Sea

Interval (km) [5,50] [0.5,5] [0.5,50] [5,50] [0.5,5] [0.5,50]

ADCP 1.3 6 0.03 1.16 6 0.03

TSG 1.16 6 0.03 1.6 6 0.02 1.26 6 0.02 0.97 6 0.05 1.26 6 0.09 1.06 6 0.05

TEX 1.13 6 0.03 1.51 6 0.02 1.22 6 0.02 0.98 6 0.04 1.20 6 0.09 1.06 6 0.05

VIIRS 1.13 6 0.05 0.78 6 0.06
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has been shown that the slopes of density (potential

energy) and temperature spectra can diverge due to

density compensation (e.g., Rudnick and Ferrari 1999;

Kolodziejczyk et al. 2015).

Although the general shape of the spectra is similar

for the three datasets, their details differ. The ADCP

sections are less energetic than the TEX and TSG sec-

tions, particularly at smaller scales (& 10km); thus, the

ADCP spectra have steeper slopes. Qualitatively, this

discrepancy can be explained by a response time of

5–10min for the ADCP thermistor (appendix A; Fig. 3),

which is expected based on the location of the temper-

ature sensor within theADCP. The simplemodel [(A1)]

used for simulating the ADCP thermistor response

overestimates the damping of small scales relative to that

of larger scales, suggesting that the thermistor response is

more complex than assumed by (A1). Other issues may

contribute to the discrepancy, albeit likely less strongly:

The data products made available involve different fil-

tering and averaging, and the ADCP temperatures are

measured in the sea chest, whereas the thermosalino-

graph samples from the engine intake.

Spectral densities forTSGandTEXare consistent over a

wide range of scales, with TEX being more energetic at

scales of O(1 km) and smaller. Because TEX samples are

taken directly at the water intake, modifications to the

temperature prior to the measurements are expected to be

minimal. This may not be true for TSG temperatures,

which are on average biased 0.24K warm compared with

average TEX temperatures, suggesting that water warms

within the system. This imposed heat flux not only in-

creases temperature but likely also dampens short-term

fluctuations, which reduces spectral energy at smaller

scales. Despite these modifications, the TSG and TEX

spectra compare relatively well, suggesting that the in-

ternal TSG sensor on the Oleander generates a robust

measurement of the temperature structure, providing

useful information when TEX records are unavailable.

2) STRUCTURE FUNCTIONS

The structure functions computed for the same sec-

tion as the spectral densities in Fig. 3 are shown in Fig. 4.

In general, a picture similar to that associated with the

spectral densities emerges, with the Gulf Stream region

being more energetic and showing steeper slopes than

the Sargasso Sea. The structure functions also reproduce

the differences among the three datasets seen in the

comparison of their spectral densities; that is, TSG and

TEX are more energetic at smaller scales.

Because (1) applies only when the spectral slope is

constant and extends over an infinite frequency interval, it

is not straightforward to compare slopes of the structure

function at different separation intervals to spectral slopes

at different wavelength. It has been suggested, however,

that different high- and low-frequency regimes can be

compared to small- and large-separation parts of the

structure function if both parts are sufficiently well re-

solved (McCaffrey et al. 2015). Here, we explore that

possibility by computing the slopes of the structure func-

tion l over the intervals from 5 to 50km and from 0.5 to

5km (Table 2). Spectral and structure function slopes are

compared graphically in Fig. 5. Generally, steeper struc-

ture functions correspond to steeper spectra, and changes

in slopes from small to larger separations are consistent

FIG. 3. Spectral densities from TEX (black curves), TSG (green curves), and ADCP (pink curves) sections in the (a) Sargasso Sea and

(b) Gulf Stream regions. Dashed and dashed–dotted curves show spectra from simulated ADCP sections (appendix A), shading indicates

95% confidence intervals, and gray lines indicate slopes of 22 and 23.

SEPTEMBER 2016 S CHLOES SER ET AL . 1849



with those from small to large wavelengths, consistent with

McCaffrey et al. (2015). It is also apparent, however, that

l is significantly flatter (l1 1, g) thanwould be expected

from (1), consistent with findings based on the simulated

time series reported in appendix B. Furthermore, the

steeper the slope the greater the discrepancy; that is, the

discrepancy is generally more pronounced when the fits

are over shorter spatial scales (1–10km) and in the Gulf

Stream region. This is consistent with the results of

Huang et al. (2010), who show that the structure function

is not a good method for estimating spectral slopes when

there is a large difference in energy between small and

large scales, that is, a steep spectral slope.

3) SEASONAL CYCLE

An understanding of the seasonal variability in the

spectral slopes is important because the VIIRS data

distribution is not uniform over the year. Figure 6 shows

the TSG spectral densities averaged by season over the

dataset. Interestingly, the seasonal cycles in the Sargasso

Sea and Gulf Stream regions have a different, almost

opposite phase. In the Sargasso Sea, spectral energy

reaches a maximum in summer. The relatively large sea-

sonal differences, in particular at smaller scales, may ex-

plain part of the increase in the confidence interval in the

mean spectrum at smaller scales. This is consistent with the

findings of Luce andRossby (2008), who used the 150-kHz

Oleander data to estimate the seasonal variability of the

eddy population in the Sargasso Sea and found that eddy

numbers peaked in summer and fall.

On the other hand, Callies et al. (2015) found that

potential energy spectra computed from data from the

LatMix experiment in the Sargasso Sea are more

energetic in winter than in summer (they also compute

kinetic energy spectra from LatMix data and from the

Oleander ADCP 75-kHz data at 50-m depth, which are

also more energetic in winter.) Several issues may con-

tribute to this discrepancy: First, the seasonal cycle of

near-surface potential energy may be dominated by

changes in mixed layer depth and stratification, rather

than surface density variability. Furthermore, density

variability may also be affected by density compensation

FIG. 4. Structure functions from TSG, TEX, andADCP sections in the (a) Sargasso Sea and (b) Gulf Stream regions. Gray curves indicate

slopes of l5 1 and 2.

FIG. 5. Graphical display of the information in Tables 1 and 2.

Spectral slopes vs the structure function slope for Sargasso Sea

region (x) and Gulf Stream region (o). Structure function slopes

calculated for 5–50 km are plotted against spectral slopes calcu-

lated for 10–100 km (black), 0.5–5 km for 1–10 km (blue), and 0.5–

50 km for 1–100 km (red); gray lines indicate (1).
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(e.g., Rudnick and Ferrari 1999; Kolodziejczyk et al.

2015). Hence, it is not clear how well the surface tem-

perature variability represents potential energy.

Second, the winter and summer LatMix experiments

occurred in different areas; that is, the observed differ-

ence in seasonal cycles could be dominated by regional

differences. Both LatMix areas are also closer to the

Gulf Stream than our Sargasso Sea region, and in the

Gulf Stream region we find that spectral energy is

maximal in winter (right panel of Fig. 6; the blue curve

lies just under the green curve there). Third, the surface

quasigeostrophic mode decays exponentially from the

surface, and its impact may be far smaller at 50m (Callies

and Ferrari 2013), where the kinetic energy spectra from

Oleander data are computed, than at 5–6-m depth,

where TEX temperatures are measured. In summary,

our findings suggest that the seasonal cycle of sub-

mesoscale processes varies spatially, between different

dynamical regimes.

4) EFFECTS OF GAPS

To test the impact of gaps in real data, we have arti-

ficially introduced gaps into the TSG sections in the same

manner as described in appendix B and recalculated the

spectra and spectral slopes. Figure 7 shows 2Dhistograms

indicating the change in slope resulting from gaps in the

Sargasso Sea and Gulf Stream regions. As with the syn-

thetic data (appendix B), the spectral slopes are increas-

ingly biased low asQ decreases and C increases, and this

effect becomes more pronounced as the true spectral

slope increases. These results motivated our choice to

include only VIIRS sections with Q2C.20:1 (dashed

lines in Figs. 7a,b) in the following section.

b. VIIRS

1) SPECTRAL DENSITIES

The spectral densities of VIIRS sections with

Q2C.20:1 and Q. 0:5 are compared to those of

TEX in Fig. 8. With these criteria, the number of sections

was limited to 65 (64) in the Sargasso Sea (Gulf Stream)

region. The seasonal distribution of VIIRS sections in the

Sargasso Sea is significantly skewed toward summer: The

65 sections available include only 2 in December–

February (DJF), but 24 in March–May (MAM), 25 in

June–August (JJA), and 14 in September–November

(SON). Because Fig. 6a indicates a strong seasonal cycle

in the Sargasso Sea, with spectral energy peaking in sum-

mer, particularly at smaller scales, this sampling bias

FIG. 6. Spectral densities of TEX sections averaged over seasons in the (a) Sargasso Sea and (b) Gulf Stream regions. Shading indicates

95% confidence intervals, and gray curves indicate slopes of 22 and 23.

FIG. 7. Estimated spectral slope (contours) for TEX sections

modified by adding artificial gaps with varying C and Q in the

(a) Sargasso Sea and (b) Gulf Stream regions. Contour interval is

0.1. Shading indicates the difference between the estimated slope

and the spectral slope without gaps. VIIRS sections with (Q, C)

above the dashed lines are not used to estimate mean spectra.
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is expected to affect the results. For this reason, we com-

pare the VIIRS spectra to the TEX spectra in JJA (red

curve in Fig. 8a; the annual mean TEX spectrum is also

shown for reference). With the seasonal bias removed, we

find good agreement on larger scales; however, VIIRS

spectra are significantly more energetic on scales & 20km.

In the Gulf Stream region, there are also more sections

in summer than in winter (18 vs 10). Since the distribution

is more uniform and seasonal differences are weaker

(Fig. 6b), we compare annual mean spectra in the Gulf

Stream region (Fig. 8b). The spectra agree at scales

*5km, but the VIIRS sections are more energetic at

smaller scales. Interestingly, although TEX and VIIRS

spectra diverge at different spatial scales in the Sargasso

Sea and the Gulf Stream, they diverge at the same energy

levels (cf. Figs. 8a,b). Note also that because of the higher

energy at smaller scales, VIIRS spectral slopes are flatter

than those obtained from TEX (see Table 1).

Because VIIRS measures the ocean skin temperature

(the upper 10mm or so of the water column), whereas

TEXmeasurements are taken at 5–6-m depth, the flatter

and more energetic VIIRS spectra may be due to dif-

ferent physical signals [it is tempting to suggest that

surface quasigeostrophic processes (g5 5/3; Blumen

1978) decay rapidly enough with depth so that the

deeper TEX measurements reflect mainly quasigeo-

strophic processes (g5 3). The presence of a diurnal

cycle in the upper 5–6m, with homogenization during

the night and restratification during the day, makes this

argument problematic because it is difficult to reconcile

the surface quasigeostrophic adjustment time scales with

the diurnal cycle]. On the other hand, the VIIRS spectra

could also be affected by the less stringentQ–C standards

used, the higher noise level of the VIIRS sensors, or flaws

in the retrieval process, which are discussed next.

To illustrate the expected effect of gaps on the VIIRS

spectra, we have subsampled the TEX sections (only

JJA in the Sargasso Sea) to the VIIRS resolution and

introduced artificial gaps with Q and C sampled from

the corresponding VIIRS sections with Q2C.20:1

and Q. 0:5. The spectral densities estimated from

these sections are indicated by the green curves in

Fig. 8. In the Sargasso Sea, the results suggest that the

gaps explain only a relatively small fraction of the

difference between VIIRS and TEX at scales smaller

than 2 km (the green curve deviates from the red

curve only at small scales in Fig. 8a). In the Gulf

Stream region, on the other hand, the gaps explain a

larger fraction of the discrepancy, as is expected be-

cause of the steeper slope of the spectral density. We

repeated the calculation with stricter Q–C criteria to

reduce the possible impact of missing data; however,

the results are not conclusive because the significant

reduction in the number of usable sections has the

effect of increasing the confidence interval.

To illustrate the effect of noise on the spectral densi-

ties, we added white noise of amplitude 0.1K7 in

FIG. 8. Spectral densities fromVIIRS (blue curves) andTEX (black curves) sections in the (a) Sargasso Sea and (b)Gulf Stream regions.

Red curve in (a) indicates TEX in the summer months (JJA). Pink (green) curves indicate TEX sections (JJA only in the Sargasso Sea)

subsampled onVIIRS resolution with (without) white noise of amplitude 0.1 K, and with artificial gaps characterized by the sameQ andC

as the VIIRS sections. Shading indicates 95% confidence intervals, and gray curves indicate slopes of 22 and 23.

7We estimated an amplitude of ;0.1K for the pixel-to-pixel

noise in VIIRS SST retrievals from the distribution of pixel-to-

pixel temperature differences in dynamically quiet regions.
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addition to the artificial gaps to the subsampled TEX

sections (magenta curves in Fig. 8). Because the effect

of white noise on the spectral density decreases as the

ratio of signal to noise increases, the impact in the en-

ergetic Gulf Stream region is small compared with that

in the Sargasso Sea, where it leads to a significant flat-

tening of the spectra at smaller scales.

Another difference between the satellite and in situ

data is that the satellite samples the entire area within a

fewminutes, whereas theOleander requires about 1.5 days

for one section. The impact of this difference is likely

minimal owing to the rapid ship speed of 8ms21; the

Oleander crosses 30-km mesoscale features in 1h.

In summary, we note that TEX and VIIRS spectra

diverge at different spatial scales but at the same energy

levels in the Sargasso Sea and the Gulf Stream. This is a

strong indication that sensor and retrieval noise is un-

derlying these discrepancies. On the other hand, the

satellite measures the ocean skin temperature, whereas

the thermosalinograph samples at 5–6m below the sur-

face. Hence, it is possible that processes underlying the

temperature fields differ at these depths.

2) STRUCTURE FUNCTION

Structure functions for the VIIRS data are shown in

Fig. 9. Since the structure function (7) is insensitive to

gaps, all sections with Q$ 0:5 are used, which increases

the number of used sections to more than 150 in both

regions. The structure functions show the same relations

between VIIRS and TEX as the spectral densities. We

further note that again, the slope of the structure func-

tions reported in Table 2 is smaller than predicted by (1).

We also show the structure functions using only data

from daytime [71 (74) sections in the Sargasso Sea (Gulf

Stream)] and nighttime [83 (84) sections in the Sargasso

Sea (Gulf Stream)]. We find that although the shape

does not differ much between day and night, the tem-

perature field is more energetic at daytime at all scales.

This difference results from a difference in either the

underlying daytime and nighttime SST fields or the

processing. In cases with high diurnal warming, such as

the eastern Mediterranean during summer months, we

have noticed a significant increase in the mean SST

gradient magnitude due to patchiness in the surface

wind speed. This explanation is more likely to be valid in

the Sargasso Sea, where the day–night difference is

more pronounced in summer (not shown), as is the di-

urnal warming (Cornillon and Stramma 1985). It is not

so likely in the Gulf Stream, where the day–night dif-

ference is independent of season. An alternate expla-

nation is that the difference results from the different

form of the VIIRS SST algorithm used for nighttime

and daytime retrievals. Nighttime SST retrievals are

based on three spectral channels—two in the 10–12-mm

atmospheric window (M15 and M16, the VIIRS band

or channel specifications) and the 3.7-mm band (M12)—

while daytime retrievals rely only on M15 and M16;

M12 was excluded to avoid sun glint in this spectral

band. The difference in the set of spectral channels

used in the retrieval process also results in differences

in the portion of the algorithm that flags bad data—

presumably pixels contaminated by clouds. It is not

clear at this time which of these is the primary cause for

the day–night difference.

FIG. 9. Structure functions of TEX (black curves) andVIIRS sections (blue curves) in the (a) Sargasso Sea and (b) Gulf Stream regions.

Red curve in (a) is computed only from the TEX section during summer, and pink and green curves correspond to VIIRS sections at

daytime and nighttime, respectively. Gray curves indicate slopes of l5 1 and 2.
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5. Discussion

In the present study, we calculate spectral densities

and structure functions of surface temperature along

sections between New Jersey and Bermuda. We use

three in situ datasets: temperature measurements from

an ADCP, a TSG, and its TEX. All instruments are

mounted on the Oleander, a container ship making

weekly round trips between New Jersey and Bermuda.

In addition, we analyze satellite-derived SST from the

VIIRS carried on the Suomi-NPP spacecraft. We com-

pare two methodologies for computing spectral slopes

from the datasets as well as with synthetic data, to esti-

mate the effect of gaps, resulting from cloud cover in

satellite-derived SST fields, on spectral slopes. These

analyses, discussed in more detail in subsequent sub-

sections, suggest that for SST in the Sargasso Sea and in

the vicinity of the Gulf Stream,

d the Oleander-mounted TEX and TSG provide consis-

tent SST spectra down to scales of O(1 km)
d the structure function is not a reliable estimator of the

spectral slope in either region
d spectra from the full-resolution VIIRS SST fields

agree with in situ data on mesoscales but show

elevated energy levels at smaller scales with possible

physical and technical explanations

a. In situ data

Our analysis indicates that temperature spectra esti-

mated from TEX and TSG compare well down to scales

of O(1 km). Spectra from TEX are more energetic at

scales &5 km, which we attribute to the warming of TSG

temperatures while water flows through the intake pipes.

Despite these drawbacks, our analysis suggests that

Oleander TSG temperatures can be used as a reliable

substitute for characterizing the temperature struc-

ture on larger scales (but not for absolute temper-

ature) if TEX data are not available. Interior TSG

data from other ships may also be useful; however,

because of possible differences in the system (e.g.,

pipe length), the temperature modification may be

different and damp the temperature structure at

larger scales. Spectra estimated from the tempera-

tures measured by the Oleander 75-kHz ADCP are

significantly less energetic at submesoscales, in par-

ticular at scales & 10km. This difference can be ex-

plained by the slow response time (5–10min, appendix

A) of the ADCP thermistor, which is due to the ADCP

assembly.

b. VIIRS data

Spectra estimated from full-resolution VIIRS SST

fields interpolated on a nominalOleander track compare

well with those from TEX for scales *5km in the Gulf

Stream region and *20 km in the Sargasso Sea re-

gion. At smaller scales, VIIRS spectra are more en-

ergetic and have flatter slopes. In both regions, the

VIIRS spectra separate from the TEX spectra at a

similar energy level, approximately 102 K2 km. This

coincidence points toward pixel-to-pixel noise in the

VIIRS SST fields as a possible explanation for the

discrepancy, which is a typical problem for full-resolution

SST fields derived from infrared satelliteborne sen-

sors (Deschamps et al. 1981, 1984; Obenour 2013). On

the other hand, simulated VIIRS spectra, obtained by

adding data gaps and noise consistent with that in

VIIRS to the TEX temperatures (based on pixel-to-

pixel temperature differences from VIIRS fields, white

noise with an amplitude of 0.1K is assumed), cannot

fully explain the difference between TEX and VIIRS

spectra.

Since VIIRS measures the skin temperature of the

ocean, whereas TEX samples at the engine intake at a

depth of 5–6m, it is also possible that different physical

processes affect the temperature records of the two in-

struments. For example, the VIIRS data are more likely

to be affected by diurnal warming. In this regard, we also

found a significant difference between the daytime and

nighttime temperature structures in VIIRS, in particular

in the Sargasso Sea. Since it takes about 1.5 days for

theOleander to travel fromNew Jersey to Bermuda, the

in situ sections include both, daytime and nighttime, the

consequences of which are unclear. To better quantify

the different causes for the difference between the

in situ and VIIRS data requires further investigation.

c. Spectral density versus structure function

By comparing spectral slopes estimated by DFT and

slopes of the structure function from our datasets, as

well as from synthetic data with known properties (ap-

pendix B), we have shown that (1) does not provide a

good approximation of the relation between slopes of

spectral density and those of the structure function for

SST in the Gulf Stream and Sargasso Sea regions. Spe-

cifically, the structure functions were consistently flatter

than expected from (1), and the error increases with the

spectral slope. This is consistent with the findings of

Huang et al. (2010): the structure function is not a good

indicator of the spectral slope when significant amounts

of energy are contained at the low-frequency end of the

spectrum compared with the amount of energy at the

high-frequency end.

An advantage of the structure function, on the other

hand, is that it is not affected by data gaps; hence, for

patchy datasets such as VIIRS SST fields for this re-

gion, the amount of usable data is significantly larger
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compared to DFT. For this reason, we found the struc-

ture function to be useful to contrast the structure of

VIIRS temperature at daytime and nighttime and

summer versus winter, which would have been pro-

hibitive using spectra (e.g., in the Sargasso Sea, only

two VIIRS sections satisfied the imposed Q–C stan-

dard in winter).

In conclusion, thermosalinograph and VIIRS data

provide reliable spectra of the near-surface temperature

of the ocean over a broad spectral range. However, sev-

eral challenges remain, in particular at submesoscale and

smaller scales for VIIRS. At such scales, the accuracy of

the spectra is limited by sensor noise. This problem is

more pronounced in the relatively quiet Sargasso Sea

than the Gulf Stream due to the different signal-to-noise

ratios. Further research is needed to better understand

the spatial and temporal variations of submesoscale

processes in the ocean, and, in particular, to resolve to

what extent the difference at scales & 20km between

VIIRS and thermosalinograph data can be attributed to

noise versus differences in the temperature structure be-

tween the surface and 5-m depth. Despite these concerns,

VIIRS is of significant value as a tool to study the struc-

ture of the upper ocean because of its global coverage—

clouds permitting—from early 2012 to present. Finally,

we note that spectral estimates may not be a good mea-

sure of short-scale features, such as fronts that cover

only a small fraction of the ocean surface but that are

readily resolved in satellite-derived SST fields, because

of the sharp discontinuities with which they are often

associated.
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APPENDIX A

Simulated ADCP Thermistor Response

To estimate the effect of the slow ADCP thermistor

response, we simulate ADCP temperature TADCP as-

suming that TEX measures the true ocean temperature

TTEX. We use a linear model,

TADCP
t 5

TTEX 2TADCP

dt
, (A1)

where dt is the response time for the ADCP, with an

initial condition of TADCP 5TTEX at t5 0.

To estimate a dt for the ADCP, we seek a best fit

between simulated 3-min bin-averaged temperature

and measured ADCP temperature by varying dt to-

gether with a constant shift in time and a constant

temperature difference. Depending on the section and

the cost function used, we obtain a dt between 5 and

10min. This range exists because in comparison to the

real ADCP, damping of high frequencies tends to be

too strong relative to that of lower frequencies in the

linear model (cf. Fig. 3), and the energy distribution

between high and low frequencies varies between dif-

ferent sections and regions.

APPENDIX B

Tests with Synthetic Data

a. Synthetic data

We evaluate the performance of the methods de-

scribed above by testing them with synthetic data with

known spectral density. Specifically, we generate a

synthetic time series by choosing a spectral slope

g and a length of the discrete time series N, with the

number of contributing frequencies NF $N. To do

this, we generate a random phase for each frequency

and use the inverse discrete Fourier transform to

generate a time series of length NF , of which we take

the first N points. Varying the parameter NF .N al-

lows us to explore the effect of energy below the re-

solved frequency interval on our spectral estimates.

Gaps are generated by sampling from a lognormal

distribution for a given ratio of good data points Q

and coherence C, which determine the number of

invalid data points, as well as the number of gaps in a

section.

For these simulations we chose N5 1024. Other pa-

rameter ranges are guided by typical values in our da-

tasets: 2#g# 3, typical of values in the open ocean,

1# (NF /N)# 50, 0:6#Q# 1, and 0:5#C# 1. For each

simulation, with a fixed g,NF ,Q, andC, we generate 100

time series, and the ensemble-averaged spectra and

structure functions. Spectral and structure function

slopes are determined from these averages.

b. Results

For complete synthetic time series, the DFT gen-

erates the expected spectral densities with correct
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slopes. The method is relatively insensitive to the pa-

rameter NF ; that is, a variation of the number of fre-

quencies used to generate the sample time series does not

significantly alter the result, suggesting that application of

the Blackman window minimizes aliasing.

Results differ for the structure function, as illustrated

in Fig. B1a, which shows a 2D histogram that indicates

the slopes of the structure function for separations

from 5 to 256 grid elements for varying spectral slopes

of the synthetic dataset and parameter NF . Generally,

the slope of the structure function is less than pre-

dicted by relation (1); however, slopes increase and

approach the prediction in the limit NF /N/‘. This
result is expected since in that limit (1) holds exactly.

The difference between the estimated slope and the

one predicted from (1) also increases with the spectral

slope of the synthetic time series. This is because with

larger spectral slopes, low frequencies become in-

creasingly energetic relative to higher frequencies

and hence have a greater impact on the variability. For

the same reason, the error in estimating the slope

also increases and structure function slopes are re-

duced as NF approaches N; that is, the energy of

‘‘unresolved’’ low frequencies is reduced (removed)

from the signal.

When gaps are introduced in the synthetic data, the

average structure function remains unchanged, as long

as the number of data-point pairs available to estimate

S2 remains unchanged (not shown). The gaps, however,

do induce a systematic error in the average spectral

estimates obtained with theDFT. Figure B1b shows the

slope of the spectral density as a function of a single gap

of varying length in the middle of the synthetic time

series and the ‘‘true’’ spectral slope g. It illustrates that

the estimate of the slope quickly degrades with

increasing length of the gap, and more significantly

with increasing g. Next, we vary the coherence C of the

missing data. Figure B2 shows 2D histograms of the

difference between the slopes of the synthetic time

series and those of the DFT estimate as a function ofQ

and C for g5 2:0, 2:5, and 3:0. Again, estimates of av-

erage spectral slopes are precise for complete time

series, but they deteriorate with decreasing Q.

Figure B2 also indicates that estimates improve as C

decreases for fixed Q, that is, as average gap lengths

decrease.

Guided by these tests, we use a ‘‘Q–C standard,’’

which takes into consideration both, the fraction of

good data points available (Q) and the structure of gaps

(C), when selecting sections best suited for the spec-

tral analysis of a given dataset. For each of the datasets

considered, we choose a Q–C standard that is as strict

as possible while retaining a reasonable number of

sections to be used with DFT. Conversely, since the

structure function is not sensitive to gaps, no Q–C

standard needs to be applied.

FIG. B1. (a) Slopes (contours) of the structure function for the synthetic time series shown as

a function of ‘‘expected slope,’’ g2 1 (where g is the prescribed spectral slope of the synthetic

data) and as a function of the ratio NF /N. Contour interval is 0.1. Shading indicates the dif-

ference between g2 1 and the estimated slope. (b) Spectral slopes (contours) of the synthetic

time series with varying slopes and one gap of size N1/N estimated from the DFT. Contour

interval is 0.1. Shading indicates the difference between actual and estimated slopes.

FIG. B2. Spectral slopes (contours) estimated from synthetic

time series with (a)–(c) g5 2, 2.5, and 3, modified by imposing

artificial gaps with varying Q and C. Contour interval is 0.1.

Shading indicates the difference between g and the estimate.
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APPENDIX C

Acronyms

A list of the acronyms used in this paper follows.

(Additonal acronyms are available online at http://

www.ametsoc.org/PubsAcronymList)

ADCP Acoustic Doppler current profiler

AOML Atlantic Oceanographic and Meteoro-

logical Laboratory

AVHRR Advanced Very High Resolution Radio-

meter

DFT Discrete Fourier transform

EDR Environmental data record

FFT Fast Fourier transform

JPSS Joint Polar Satellite System

LatMix Scalable Lateral Mixing and Coherent

Turbulence

MV Motor Vessel

MODIS Moderate Resolution Imaging Spectro-

radiometer

NOAA National Oceanic and Atmospheric

Administration

NPP National Polar-Orbiting Partnership

OGCM Ocean general circulation model

OSMOSIS OceanSurfaceMixing,OceanSubmesoscale

Interaction Study

QC Quality control

SBE Sea-Bird Electronics

SST Sea surface temperature ...........................

Suomi–NPP Suomi–National Polar-Orbiting Partnership

TEX Remote temperature sensor

TSG Thermosalinograph

VIIRS Visible Infrared Imager Radiometer

Suite
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