THE UNIVERSITY OF RHODE ISLAND

University of Rhode Island DigitalCommons@URI

Graduate School of Oceanography Faculty Publications

Graduate School of Oceanography

2015

Comparative biogeochemistry–ecosystem–human interactions on dynamic continental margins

Lisa A. Levin

Kon-Kee Liu

See next page for additional authors

Creative Commons License

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs

This is a pre-publication author manuscript of the final, published article.

Citation/Publisher Attribution

Levin, L. A., Liu, K.-K., Emeis, K.-C., Breitburg, D. L., Cloern, J., Deutsch, C., Giani, M.,...Wishner, K. (2015). Comparative biogeochemistry–ecosystem–human interactions on dynamic continental margins. *Journal of Marine Systems*, 141, 3-17. doi: 10.1016/j.jmarsys.2014.04.016

Available at: https://doi.org/10.1016/j.jmarsys.2014.04.016

This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.

Authors

Lisa A. Levin, Kon-Kee Liu, Kay-Christian Emeis, Denise L. Breitburg, James Cloern, Curtis Deutsch, Michele Giani, Anne Goffart, Eileen E. Hofmann, Zouhair Lachkar, Karin Limburg, Su-Mei Liu, Enrique Montes, Wajih Naqvi, Olivier Ragueneau, Christopher Rabouille, Santosh Kumar Sarkar, Dennis P. Swaney, Paul Wassman, and Karen F. Wishner

1 2	Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins
3	Lisa A. Levin ¹ *, Kon-Kee Liu ² , Kay-Christian Emeis ³ , Denise L. Breitburg ⁴ , James
4	Cloern ⁵ , Curtis Deutsch ⁶ , Michele Giani ⁷ , Anne Goffart ⁸ , Eileen E, Hofmann ⁹ , Zouhair
5	Lachkar ¹⁰ , Karin Limburg ¹¹ , Su-Mei Liu ¹² , Enrique Montes ¹³ , Wajih Naqvi ¹⁴ , Olivier
6	Ragueneau ¹⁵ , Christophe Rabouille ¹⁰ , Santosh Kumar Sarkar ¹⁷ , Dennis P. Swaney ¹⁸ , Paul
7	Wassman ¹⁹ , Karen F. Wishner ²⁰
8	
9	* ¹ Corresponding author Center for Marine Biodiversity and Conservation, Scripps
10	Institution of Oceanography, 9500 Gilman Dr. La Jolla, CA 92093-0218, USA; 858-
11	534-3579; <u>llevin@ucsd.edu</u>),
12	² Institute of Hydrological and Oceanic Sciences, National Central University, Chungli,
13	TAIWAN 320, <u>kkliu@ncu.edu.tw</u>
14	³ Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Max-Planck-Str.1, 21502
15	Geesthacht, GERMANY; kay.emeis@ <u>hzg.de</u>
16	⁴ Smithsonian Environmental Research Center, PO Box 28 647 Edgewater, MD 20676,
17	USA, breitburgd@si.edu ⁵ United States Coolegies Survey 245 Middlefield Rd, Marla Bark, CA 04025, USA:
18 10	⁵ United States Geological Survey, 345 Middlefield Rd., Menlo Park, CA 94025, USA; jecloern@usgs.gov)
19 20	⁶ School of Oceanography, University of Washington, Seattle, WA, 98195, USA,
20 21	cdeutsch@uw.edu
21	⁷ Instituto di Oceanografia e Geofisica Sperimentale (OGS), Via A. Piccard 54 34151
22	Trieste, ITALY, mgiani@inogs.it
25 24	⁸ Laboratoire d'Océanologie, Université de Liège, B6c, B 4000 Liège, Belgium &
24 25	STARESO, F 20260 Calvi, FRANCE; a.goffart@ulg.ac.be
26	⁹ Center for Coastal Physical Oceanography, Old Dominion University, Norfolk,
27	Virginia, 23508, USA, hofmann@ccpo.odu.edu
28	¹⁰ Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH
29	Zurich, Zurich, SWITZERLAND CHN E 23.1, Universitätstrasse 16 8092 Zürich,
30	SWITZERLAND, zouhair.lachkar@env.ethz.ch
31	¹¹ Department of Environmental and Forest Biology, State University of New York
32	College of Environmental Science and Forestry, Syracuse, NY 13210 USA,
33	klimburg@esf.edu
34	¹² Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education,
35	Ocean University of China, Qingdao 266100, P. R. China, sumeiliu@ouc.edu.cn.
36	¹³ College of Marine Science, University of South Florida, St. Petersburg, Florida, USA,
37	emontesh@mail.usf.edu
38	¹⁴ National Institute of Oceanography, Goa, India, naqvi@nio.org.
39	¹⁵ Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de
40	la Mer, Technopôle Brest-Iroise, 29280 Plouzané, FRANCE ;
41	olivier.ragueneau@univ-brest.fr
42	¹⁶ Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
43	christophe.rabouille@lsce.ipsl.fr
44	¹⁷ Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road,
45	Calcutta 700019, INDIA, sarkar.santosh@gmail.com

45 Calcutta 700019, INDIA, sarkar.santosh@gmail.com

¹⁸ Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA, dps1@cornell.edu USA ¹⁹ Dept. of Arctic and Marine Biology, Faculty of Bioscience, Fishery and Economy, University of Tromsø, 9037 Tromsø, NORWAY, paul.wassmann@uit.no ²⁰ University of Rhode Island, 215 S Ferry Rd, Narragansett, RI 02882, USA, kwishner@gso.uri.edu Abstract: The ocean's continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO₂-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO₂-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services including primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins. **Keywords:** anthropogenic factors, coastal biogeochemistry, climate change, eutrophication, ecosystem services, time series Regional Terms: Continental margins, Europe, North Atlantic, North Pacific; Arctic

88 89

1. Introduction to dynamic margin ecosystems

90 The oceans' continental margins extend for some 150,600 km (Jahnke, 2010) and

91 encompass estuarine, open coast, shelf, canyon, slope, and enclosed sea ecosystems.

92 They are both gateway and window to the open ocean, where water, nutrients, energy,

93 sediments, contaminants and organisms meet and are transferred through land-margin

and margin-open ocean interactions (Levin et al., 2001). The continental margins include

95 proximal estuaries, bays, lagoons and banks, and distal shelves, slopes and marginal seas.

96 These are susceptible to changes in biodiversity, water quality, and productivity and have97 been increasingly perturbed by human activities.

98

Margin ecosystems include hard and soft-substrate habitats ranging from structurally 99 complex wetlands, kelp forests, coral reefs, rocky reefs and sand beaches, to sedimented 100 estuaries, slopes and canyons. Most of the habitat volume, however, occurs in the 101 102 overlying water column, with variation linked to water masses, circulation, and land and atmospheric interactions. As one crosses depth contours from estuaries across the shelf 103 104 to the continental slope, steep gradients in nutrient concentrations, temperature, salinity, oxygen, pH and suspended matter are found that impact the productivity, composition, 105 diversity, and abundance of organisms (Cloern, 1996; Hofmann et al., 2011; Levin and 106 107 Sibuet, 2012). Relative to their area, the margins account for a disproportionately large fraction of the global primary production (10 - 15%), nutrient recycling, carbon burial (> 108 60% of total settling organic carbon), and fisheries production (Walsh et al. 1988; 109

Muller-Karger et al., 2005). They also are exceptionally dynamic systems with ecosystem
 structures that can oscillate slowly or shift abruptly, but rarely remain static.

112

113 The current continental margin seascape has been shaped extensively by climate change and human activities, yielding altered ecosystem services. Margin ecosystems provide 114 key services in the form of physical protection from waves, storms, and floods, chemical 115 buffering, food provisioning, nursery support, nutrient cycling, habitat fostering 116 biodiversity, carbon sequestration, recreation, and aesthetic value. Finely tuned 117 biogeochemical interactions drive these functions. Because human populations are 118 119 disproportionately concentrated in coastal cities, there is heterogeneity in the human 120 effects on margins, creating mosaics of heavily impacted and relatively pristine systems. Nutrient inputs, freshwater extraction, fishing, construction, species introductions, and 121 contamination are but a few of the many ways humans alter coastal ecosystems. Also the 122 steady increase of anthropogenic CO_2 inputs to the atmosphere will result in significant 123 changes in water column temperature, oxygenation, pH, and productivity by 2100, with 124 major consequences for margin ecosystems and the over 1 billion people that depend on 125 them for food, employment and revenue (Mora et al., 2013; FAO, 2012). 126

127

While margin research has a long history among oceanographers (Banner et al., 1980. Walsh et al., 1988, Biscaye et al., 1994, Duarte et al. 1999, Antia et al., 2001, Liu et al., 2010), a synoptic view of dynamic coupled margin systems has emerged more slowly and the linkages between human and natural biogeochemical variations, ecosystem response and human social structures are only now being explored. The interactive effects of remote forcing from distant inland activities, from atmospheric processes, and from physical processes far out to sea are becoming more apparent. There are, however, gaps in our understanding of the combined effects of multiple drivers on coastal biogeochemistry and ecosystems across all continental margins. The objectives of this paper are to provide an overview of sources of biogeochemical variation on margins, associated ecosystem responses, and the societal and policy implications, with a focus on lessons from multiple continental margin time series (Fig 1).

140

This paper reflects the themes and discussions of the continental margins working group 141 of IMBER IMBIZO III (Goa, India in January 2013). In this paper we examine drivers of 142 biogeochemical variation on margins, distinguishing natural from CO₂-based climate 143 variability, and more direct human drivers. We next compare temporal trends for 144 multiple physical and biogeochemical parameters at geographically contrasting locations 145 We then discuss the complex ecosystem responses to biogeochemical variation and 146 trends on margins, in particular those related to warming, deoxygenation, acidification 147 and hydrologic alterations. We subsequently identify the key roles played by continental 148 margin time-series stations (Fig. 1) in identifying and attributing drivers of change and in 149 understanding the associated ecosystem responses. Finally, we examine societal 150 responses to changing margin biogeochemistry and ecosystems, highlighting areas where 151 social and natural scientists must work together. Case studies (expanded in Supplement 152 153 B) are synthesized to provide insights into the sensitivity of margins to natural and human perturbations, the ecological, social and economic consequences that stem from these 154 perturbations, and the policy actions needed to mitigate impacts on coastal ecosystems 155 and their resources. 156

157

158 159

2. Natural and human-induced drivers of biogeochemical variation on margins

160 Controls on biogeochemistry of margins are complex and dynamic. In this paper we 161 distinguish drivers associated with natural *variability*, anthropogenic CO_2 –driven *climate* 162 *change* and direct human (*anthropogenic*) impacts. It is often difficult to disentangle 163 these three forcing mechanisms, as well as to distinguish local change from regional to 164 global-scale pressures. Multiple factors act together – exerting top-down (often human) 165 and bottom – up (natural or human) controls on ecosystem structure simultaneously.

166

167 *Natural Sources of Variability*

168 Natural variation in biogeochemical features affecting margin ecosystems occurs on a 169 vast range of time scales, from millions of years to hours. Direct measurements during 170 the past century in many of the systems discussed here have revealed large, abrupt, persistent changes in the structure and function (or state) of an ecosystem, which were 171 sometimes interpreted as regime shifts (Mumby et al., 2007; de Young et al., 2008; 172 173 Barnovsky et al. 2012). These may be manifested as simultaneous changes in phytoplankton, dominant consumer species, and trophic structure. Regime shifts often 174 175 yield major consequences for fisheries and human livelihood (McFarlane et al., 2002; 176 Zhang and Gong, 2005). Examples can be found in the North Pacific - Pacific Decadal Oscillation (Wooster and Zhang, 2004), North Atlantic (Alheit et al., 2014) Caribbean 177 coral reefs (Hughes, 1994), Mediterranean Sea (Conversi et al., 2010), Northern Adriatic 178 179 Sea (Conversi et al., 2009) and North Sea (Beaugrand, 2004). In the Northern Hemisphere, major ecosystem shifts were observed in the late 1980s to early 1990s, with 180

synchronous shifts following an overall period of high variability. These ecosystem
regime shifts were linked to changes in global-scale climate indices (Chavez et al., 2011;
Conversi et al., 2010; Möllmann et al., 2011). It is cautioned that these abrupt changes
are sometimes difficult to distinguish from random fluctuations or overfishing effects and
their true nature often remains unclear (e.g., Hsieh et al., 2005).

186

199

187 Margins may also be subject to basin-specific and regional influences. For example, the 188 California Cooperative Oceanic Fisheries Investigations (CalCOFI), one of the longest existing oceanographic time series (63 y), reveals major natural variations in water 189 190 column temperature, oxygen, pH and current strength that are associated with changes in the regional hydrography of the California Current Ecosystem over multiple time and 191 space scales (Checkley and Barth, 2009; McClatchie et al., 2010; Nam et al., 2011; Send 192 193 and Nam 2012). In addition to the Pacific Decadal Oscillation, there are decadal scale 194 ENSO cycles, seasonal and week-long upwelling events that alter productivity and/or ocean biogeochemistry with marked shifts in oxygen and pH (Fig 2). Variability in these 195 196 environmental parameters results in changes in the regional biodiversity and ecosystem structure with significant impacts on ecosystem services we depend on (Doney et al. 197 2012). 198

200 Much natural climate variability and some manifestations of climate change occur abruptly over short time and space scales. Most margins experience episodic, extreme 201 events that shape their ecosystems, often through biogeochemical modification. For 202 203 example the Rhone River carries 80% of its solid flux during 5% of the time (Antonelli et al., 2007) with large biogeochemical consequences (Cathalot et al., 2010). Extreme storm 204 events can reshape coastal systems with short-lived, dramatic changes in salinity and 205 206 flushing rates and through more persistent alterations of channel openings (Paerl et al., Atmospheric deposition of nutrients associated with air mass outflow from the 207 2001). Indo-Gangetic Plain to the northern Bay of Bengal is significant and most can occur over 208 209 4 months in association with the NE monsoon, highlighting the temporal nature of these atmospheric drivers (Srinivas et al., this volume). These are likely to have direct 210 consequences for eutrophication in Bay of Bengal surface waters triggering profuse algal 211 blooms in the adjacent Sundarban wetland (Naha Biswas et al., 2013). Heat waves that 212 last for a few weeks can induce mass mortality in coastal ecosystems of the 213 Mediterranean Sea either directly (Garrabou et al., 2009; Marba and Duarte, 2010) or 214 through the spread of disease and invasive species (Lejeusne et al., 2010). 215

216

As with short time scales, small areas of the ocean can play key roles in global 217 biogeochemical fluxes on margins. For example, 1% of the ocean's water volume 218 accounts for 50% of N removal through water column denitrification and annamox in 219 oxygen deficient zones (Deutsch et al., 2011), and 60-70% of the annual denitrification 220 rate occurs in shelf sediments (Codispoti, 2007). Submarine canyons carry 80-90% of the 221 sediment and organic matter fluxes to the open seafloor sediments, with transport 222 affected by climate-driven stratification, wind regime and winter cooling (Canals et al., 223 2006; Rabouille et al., 2013). It is proposed that the Congo River, with the second largest 224 discharge in the world, carries 50% of the river's silica through an 800-km long 225 submarine canyon to a 3000 km² deep-sea fan (Raimonet et al., this volume). The 226

functions of submarine canyons as key removal agents via deep-sea fans and deltas may
be diminished by climate change-driven reduction of dense water formation with less
cascading and deep export (Herrmann et al., 2008; Rabouille et al., 2013).

230

231 An important question to emerge is whether natural variability associated with exposure to stressful conditions (such as hypoxia or hypercapnia) confers evolutionary pre-232 233 adaptation to further stress from climate change or direct human activities. Evidence 234 suggests that animals in margin settings subject to upwelled, low-pH waters are resilient to such conditions (e.g., Thomsen et al., 2010; Yu et al., 2011; Hoffmann et al., 2014). In 235 236 other coastal regions where hydrographic variability is also intense and there are multiple controls from land, detection of trends, sources and biological responses including 237 adaptation can be difficult (Duarte et al., 2013). Whether hydrographic stressors that vary 238 239 naturally (oxygen, acidification and warming) elicit more adaptation than 'unnatural' 240 (man made) trace organic or metal/metalloid contaminants, remains an open question.

241

242 CO₂-driven climate drivers

Rising CO₂ in the atmosphere is reshaping margin ecosystems by increasing sea level,
ocean warming, ocean acidification and ocean deoxygenation (Doney et al. 2012). There
are also climate shifts that alter patterns of heat, drought, precipitation, and flooding that
modify margins directly and indirectly through changes in land use, runoff, and human
activities.

248

249 CO₂-induced warming and enhanced stratification have been linked to declining oxygen concentrations on the southern California shelf and upper slope (Bograd et al., 2008) as 250 well as increased seasonal hypoxia on the inner Oregon shelf (Chan et al., 2008). These 251 252 changes also involve lowered pH and high pCO₂ (Frieder et al. 2012; Alin et al. 2012), with consequences for biogeochemical cycling and ecosystem structure in the California 253 Current (CC) system (Doney et al. 2012). Upwelling is intensifying and low pH (which 254 255 promotes aragonite undersaturation) is spreading in the northeast Pacific (Feely et al. 2008; Gruber et al., 2012). The observed low pH conditions in the CC system are shaping 256 characteristics of this ecosystem by affecting calcifying species and have resulted in the 257 decline of cultured bivalves (Barton et al., 2012). Whether the oxygen and pH changes 258 reflect a continuous, secular trend resulting from CO₂-driven climate changes or are part 259 of a larger (50 y) natural cycle remains controversial (McClatchie et al. 2010; Deutsch et 260 al., 2011). These changes are occurring in an ecosystem already subject to high natural 261 variability (Fig. 2). Clear understanding of this complexity is needed for forecasting 262 future conditions. 263

264

265 Beyond upwelling regions, perhaps the greatest manifestations of climate change are found on the shelves of the Arctic Ocean. Among the most massive of inputs, a full 10% 266 of the freshwater reaching the oceans occurs in the Arctic, which has only 4 million 267 people living there. Thaving of permafrost due to warming yields increased inputs of soil 268 organic carbon and methane to the coastal ocean and atmosphere (Schurr, 2013), and will 269 270 influence many aspects of the Arctic coastal ecosystem (Whiteman et al., 2013). The 271 freshwater from melting sea ice combined with degradation of released organic matter is causing major perturbation of low pH in the Arctic. Baseline monitoring of the W. Arctic 272

273 Ocean reveals that 20% of the Canada Basin surface waters exhibit aragonite

- undersaturation (Robbins et al., 2013).
- 275

276 As temperatures continue to increase (Behrenfeld et al., 2006), warming is expected to reduce productivity over much of the ocean (Mora et al., 2013). It is uncertain whether 277 lowered production will reduce oxygen depletion in midwater (from decomposition of 278 279 sinking phytoplankton and respiration of vertical migrators), counteracting the 280 deoxygenation effects of global warming (from increased stratification and reduced mixing). Alternatively, intensified upwelling in a warmer world may pump more 281 282 nutrients into surface waters, increase respiration of microbes and other organisms, and increase the rate of deoxygenation. As a direct effect or through changes in currents such 283 as the Gulf Stream, warming might increase methane emissions via dissociation of gas 284 285 hydrates on continental margins (Phrampus and Hornbach, 2012). Massive gas hydrate deposits in the shallow Arctic Ocean are particularly susceptible and their release may 286 exacerbate acidification and oxygen depletion via aerobic methane oxidation in the water 287 column (Biastoch et al., 2011). There has yet to be exploration of modern biological 288 289 responses to long-term increases in methane fluxes on margins, although the geologic 290 past may hold lessons in this regard (Kennett et al., 2003).

291

292 Direct Human Drivers

Rivers are a primary conduit of nutrient loading to the shelf from terrestrial sources of 293 nutrients. Since the development in the early 20th century of the Haber-Bosch process 294 295 for fixing nitrogen for use in fertilizers, the global nitrogen cycle has become increasingly affected by anthropogenic inputs. The net anthropogenic nitrogen inputs (NANI) to a 296 297 region include fertilizer application, atmospheric deposition, agricultural N fixation by 298 leguminous crops, and the nitrogen associated with food and livestock feed crossing regional boundaries. Nitrogen flux in rivers is often highly correlated to the NANI of 299 their drainage basins (e.g., Howarth et al., 1996; Han and Allen, 2008; Swaney et al., 300 301 2012). In areas of high population densities (e.g., coastal cities) or regions of industrialscale livestock production, as is increasingly seen in India and China, the nitrogen 302 associated with the trade of food and feed commodities may be very significant. In areas 303 304 of high crop production, synthetic N fertilizer is typically the dominant source of N (e.g., Yan et al., 2010). In India, use of synthetic fertilizer has grown exponentially over the 305 last fifty years, making Indian agriculture one of the most intense consumers of fertilizer 306 in the world (Swaney et al., this issue). Between 1970 and 2000, the coastal Bay of 307 Bengal has experienced massive N and P loading (50% and 35% increase, respectively) 308 causing eutrophication; 70-80% of the loading is from agricultural sources (Sattar et al., 309 2014). 310

311

Margins play a key role in filtering nutrients and contaminants that enter the ocean via
 runoff and rivers. Productive estuarine ecosystems, particularly wetlands, are able to

remove nutrients by denitrification, uptake by vascular plant, phytoplankton, and

microbes, by promoting flocculation and enhancing deposition and burial (Kennedy

316 1984, Howarth et al., 2006; Dähnke et al., 2008; Lassaletta et al., 2011; Howarth et al.,

2012). Intensive filter feeding by bivalves such as oysters and mussels can also remove

particulate nutrients and control eutrophication (Cloern et al. 1982; Dame 2012). The

319 filtering functions of margins have been greatly affected by massive wetland loss over the 320 past century, due largely to changing land use and sea level rise. Globally, overfishing (of oysters) and species introductions (of invasive bivalves) have also had a major influence 321 322 on water filtration functions (Dame 2011).

323

Human acceleration of nutrient cycles and eutrophication are among the best studied of 324 325 the anthropogenic forcing factors and cause the most conspicuous adverse effects upon 326 continental margins as witnessed by diverse case studies (Table 1, Fig. 1). Intensified nitrogen loading is widespread in coastal ecosystems receiving effluents from catchments 327 328 with dense human populations (Rabalais, 2004; Glavovic et al., submitted). This yields continental margin dead zones (coastal hypoxic areas resulting from eutrophication), 329 which number over 475 and are on the rise (Diaz and Rosenberg, 2008; World Resources 330 331 Institute, 2013). The largest of these occur in the Baltic Sea, the Black Sea, the northern Gulf of Mexico and the East China Sea (Rabouille et al., 2008; Zhu et al., 2011), where 332 historical hypoxia induced by natural climate conditions and circulation has been 333 exacerbated by human nutrient input (Zillén et al. 2008; Rabalais et al., 2010; K.-K. Liu 334 335 et al., this issue). The relative importance of natural and human (nutrient) drivers and efficacy of nutrient legislation has been under debate in recent years (e.g., Bianchi et al., 336 2008). For example, shrinking of hypoxic areas in the Black Sea appears to have resulted 337 338 from reductions in human agricultural nutrient inputs, though the extent of the human impacts on this ecosystem is still not clear (Mee et al., 2005). In addition, as indicated 339 above, the balance between N, P and Si is being modified by many factors that affect 340 coastal production, both qualitatively and quantitatively (Ragueneau et al., 2005). CO₂-341 driven changes in warming, winds, upwelling, and precipitation will inevitably influence 342 both the intensity and areal cover of hypoxia in many dead zones (Rabalais et al., 2009, 343 344 2014; Giani et al., 2012).

345

3. Comparisons across continental margins 346

347

- 348 To gain a broader sense of how shelf systems are responding to climatic forcing and direct human activities we have compared multiple physical and biogeochemical 349 350 observations collected at geographically contrasting locations (Fig. 3, Table 2). Consistent with the global warming trend, three out of five margins (the Cariaco Basin, 351 East China Sea and North Sea) have shown increasing temperatures over the last four 352 decades (slope = X °C yr⁻¹; p < 0.01), except for San Francisco Bay (slope = -0.029 °C 353 yr^{-1} ; p = 0.07) where a cooling trend has been detected (For more detail see Supplement 354 355 A). The cooling trend observed in San Francisco Bay is attributed to an increase in upwelling intensity accros the entire California Curruent system resulting from increasing 356 357 northerly wind stress along the western coast of the US (Chavez et al., 2011). The warming trend in the Cariaco Basin, in turn, is the result of the weakening of the Trade 358 359 Winds, and thus of upwelling intensity, along the southern Caribbean Sea (Astor et al.,
- 2013; Taylor et al., 2012). 360
- 361

No significant trends in sea surface salinity (SSS) are observed at the Cariaco Basin or 362

the North Sea. SSS in the Bohai Sea, however, shows a positive trend (0.0632 yr^{-1}) (Fig. 363

364 3b). The increasing salinity of the Bohai Sea is thought to be caused by decreasing365 freshwater discharge from the Yellow River (Fig. 3d).

366

The load of dissolved inorganic nitrogen (DIN) in Changjiang (aka the Yangtze River),
which empties into the East China Sea, has increased by over two-fold (Liu et al., 2014)
between 1970 and 2002 (Fig. 3c), while this river's freshwaterwater discharge has only
increased slightly (Fig. 3d). This suggests that rising DIN concentrations in the
Changjiang River is mainly due to the intensive use of chemical fertilizer (Yan et al.,

- 2010). By contrast, and due to EU policy change, the DIN load discharged to the North
- Sea has decreased by 50% since 1977. Dissolved inorganic phosphorus (DIP) shows a
 similar decreasing trend at this location (Pätsch and Lenhart, 2011)
- 375

The sea surface chlorophyll-*a* concentrations in SF Bay have increased in the last two
decades (Fig. 3e), which is consistent with the observed decreasing trend in SST .
Simultaneously, however, chlorophyll-*a* in the Cariaco Basin shows a decreasing trend

since the late 90's due to weaker upwelling events and stronger thermal stratification

(Taylor et al., 2012). The monthly mean sea surface chlorophyll-*a* in the East China Sea
 derived from ocean color products by NASA's Sea-viewing Wide Field-of-view Sensor

- derived from ocean color products by NASA's Sea-viewing Wide Field-of-view Sensor
 (SeaWiFS) also exhibits a significant increasing trend since 1998, which is thought to
 result from increased DIN loads from the Changjiang River (Fig. 3c) (K.-K. Liu et al.,
 this issue).
- 385

In response to increasing phytoplankton growth, bottom water oxygen saturation in SF
Bay and the East China Sea has shown a significant decline (Fig. 3f). Oxygen saturation
shows a weak decline in the upper 3 m at the CARIACO Station (Fig 3f), probably due to
warming and possibly to lower oxygen production by phytoplaknton (Fig 3e).

390

Different margins show markedly different responses to local stressors and to global scale change. Variations in availability and temporal coverage of different environmental
 parameters highlight the need for comprehensive and sustained time-series observations
 on continental margins. These are required in ordert to understand ecosystem responses
 to natural, CO₂ climate-driven and direct human perturbations.

- 396
- **4. Ecosystem responses to biogeochemical change on continental margins**
- 398

Some of the most apparent environmental and ecosystem consequences due to the
common climate and human stressors discussed in this special issue are summarized in
Table 1 and discussed below.

402

Human alteration of hydrological processes such as damming and water diversion (B3,
B4), drives very noticeable physical changes in margins causing loss of habitats due to
coastal erosion or reduced river discharge (e.g., S.M. Liu, this issue). When combined
with climate effects, resulting salinity increases can lead to species invasions that reshape
coastal ecosystems. Following massive water diversion and drought in San Francisco
Bay, an invasion by Asian clams altered the timing and magnitude of phytoplankton
availability, with cascading trophic consequences (Cloern and Jassby, 2012, B3). In the

Bay of Brest, introduction of an invasive limpet changed the seasonality of primary

- 411 production, which in turn has changed benthic biodiversity and completely modified the
- benthic-pelagic coupling over a 30-year period (Grall and Chauvaud, 2002).
- 413

In a broad sense, land use change alters how rainfall interacts with the landscape. Some 414 land-use activities result in increased soil degradation and erosion (i.e., agriculture, 415 416 mining), and in eutrophication of rivers and continental margins through the use of 417 fertilizers. The coastal zone's high primary productivity and the abundant filter feeders (e.g., Lotze et al., 2006) offset land-derived nutrient inputs to some extent, but are tested 418 419 by eutrophication and overfishing (B2). Moreover, rising sea levels will lead to flooding of low-lying coastal regions like India and Bangladesh, movement of seawater farther up 420 estuaries, and intrusion of seawater into groundwater reservoirs. 421

422

Eutrophication is among the most widespread of coastal insults (Table 1; B2, B3, B4, B5, 423 B6), but the outcomes, which include productivity enhancement *and* hypoxia, can be 424 complex. For example, several cross-system comparisons indicate that increased N 425 426 enhances total landings of fish and mobile shellfish even in systems with hypoxia (Fig. 4), although individual species may decline and the overall composition of the catch can 427 be affected (Nixon and Buckley, 2002; Breitburg et al., 2009b). On the downside, 428 hypoxia - an endocrine disrupter in fish that experience chronic exposure (Thomas et al., 429 2006) - can favor gelatinous plankton and some bivalves (Breitburg et al., 2003), and 430 create and eliminate shallow water refuges for small and juvenile fishes (Breitburg et al. 431 432 2009a).

433

Reversal of eutrophication trends have been observed in some areas such as the Danish 434 435 straits (Carstensen et al., 2006), the Scheldt Estuary (Soetaert et al., 2006) and other continental European rivers discharging into the North Sea (Emeis et al., this volume), 436 the open Northern Adriatic (Giani et al., 2012), and the NW Black Sea (McOuatter-437 438 Gollop et al., 2009). In some instances P reduction has been considered to be a primary driver of these changes. In the areas subject to oligotrophication, overfishing may act 439 synergistically to diminish the trophic chain and reduce seafood resources (B5). 440 441 However, along the Danish and Finnish coasts, dissolved oxygen in bottom waters 442 continues to drop despite efforts to reduce nutrient discharge (Carstensen et al., 2014). In the Baltic Sea, which hosts nearly 20% of the world's identified coastal hypoxic sites, 443 climate and nutrient drivers interact with regional circulation patterns and wastewater 444 treatment technologies to produce a mosaic of faunal responses (Conley et al., 2011). 445 446

While eutrophication-induced hypoxia is spreading, warming also causes the ocean to 447 lose oxygen due to the synergistic effect of reduced oxygen solubility and enhanced 448 water column stratification (Bopp et al., 2001). This has been termed deoxygenation and 449 contributes to global expansion of oxygen minimum zones (Stramma et al. 2010). Recent 450 451 model results demonstrate the extreme sensitivity of the volume of suboxic water in the open ocean to changing climate conditions (Deutsch et al., 2011). Biological analyses 452 suggest that equator-ward species boundaries are highly sensitive to changes in ocean 453 454 temperature and oxygen content. Models predict a decline in metabolic scope of species (energy available for maintenance and reproduction) and functional habitat loss. 455

456 On margins both eutrophication and intensified upwelling typically increase production 457 while drawing down oxygen and creating hypoxia at deeper water levels. Animal avoidance of hypoxia acts to aggregate species around or above hypoxic zones, and leads 458 459 to habitat compression, both in estuarine settings and in open-ocean oxygen minimum zones (OMZs). The resulting aggregations are susceptible to overfishing (Craig, 2012, 460 Breitburg et al., 2009b), but high catches may mask the consequences of ecosystem 461 462 stress, making detection of habitat degradation difficult (Breitburg et al., 2009b). Such 463 conditions also induce shoaling of the zooplankton biomass layer at the thermocline (upper oxycline boundary) and concentration of midwater biomass in a layer at the lower 464 465 oxycline (Wishner et al., 2013). As oxygen declines and oxygen minima shoal in both the Atlantic and Pacific, large billfish are now found at shallower depths and are 466 increasingly susceptible to overfishing (Prince and Goodyear, 2006; Prince et al., 2010; 467 468 Stramma et al., 2011).

469

470 Upwelling margins, which host key world fisheries, exhibit strong vertical gradients in temperature, oxygen and pH associated with oxygen minimum zones (Paulmier et al., 471 2011). Across these gradients bathyal benthic assemblages reveal shifts in diversity, body 472 size, zonation, carbon processing, bioturbation, colonization and resilience (Levin, 2003, 473 Levin et al. 2009; Gilly et al., 2013; Levin et al., 2013). Intensified upwelling is predicted 474 to result in changes in biodiversity and ecosystem functioning associated with the 475 expansion of OMZs (Stramma et al., 2010; Gilly et al., 2013). Recent onset of seasonal 476 hypoxia on the Oregon inner shelf now causes summer die-offs of fish and invertebrates 477 478 (Grantham et al., 2004). Responses to intensified upwelling winds and increased 479 stratification can also vary regionally. For example, comparative analyses of the California and Canary systems reveal substantial differences in the responses of 480 481 biological production and air-sea CO₂ fluxes to upwelling intensification in these two systems (Lachkar and Gruber, 2013). These differences have been attributed to various 482 drivers such as the contrasting shelf topography, eddy activity, coastal water residence 483 484 times and basin-scale forcing in the two regions (Marchesiello and Estrade, 2009; Lachkar and Gruber, 2013). These differences also affect the vulnerability of these 485 ecosystems to global anthropogenic perturbations such as ocean acidification (Lachkar, 486 487 2014). Other upwelling regions have received less attention and could exhibit additional (or alternative) response mechanisms. 488

489

490 CO₂-induced climate change is the predominant forcing on the ecosystem of the polar margins (S8). Warming of the Arctic is taking place two to three times faster than global 491 rates (Trenberth et al., 2007); as a result sea-ice cover has been decreasing at a rate of 492 >10% per decade with ice-free summers expected in a few decades. Arctic ecosystems 493 are increasingly being challenged by tipping elements (Duarte et al., 2012; Naam, 2012; 494 Wassmann and Lenton, 2012). In the future Norway may experience decreased primary 495 productivity, while Russia will show increased productivity. Nowhere will adaptation be 496 a more critical element of sustainability than in the Arctic, because the Arctic shelves 497 have inordinate importance in feeding the world population. (See S8 for more details) 498 499

Among the many effects of rising atmospheric CO₂, the significant decrease of ocean pH (ocean acidification) and shift in seawater carbonate chemistry (Doney et al., 2001) may 502 elicit some of the most economically significant responses from margin ecosystems. 503 Acidification alters seawater chemical speciation, most notably the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton 504 505 to benthic molluscs, echinoderms, and corals, all of which are abundant in continental margins. Ocean acidification is exacerbated in the coastal zone by increased land-derived 506 507 nutrient inputs, which enhance, in turn, productivity of organic matter and therefore 508 respiration and release of CO_2 (e.g., Borges and Gypens, 2010; Cai et al., 2011). A 509 serious drop of aragonite saturation state has occurred in some coastal seas, such as the North Yellow Sea, threatening the aquaculture of shellfish (e.g., Zhai et al., 2014). Coral 510 511 reef ecosystems, which provide key fisheries, critical shoreline protection and habitats for a large number of species, are highly susceptible (Andersson and Gledhill, 2013). Due to 512 ocean acidification, rates of coral calcification may decrease, whereas rates of bioerosion 513 and carbonate dissolution may increase, resulting in a transition from net accretion to net 514 515 erosion. Impairment of the calcifying capacity of marine organisms is therefore expected to have negative impacts on coral reefs and other calcifiers (e.g., bivalves) and on the 516 517 ecosystem services they provide.

518

519 The complexity of ocean biogeochemical-ecosystem interactions on margins means that some drivers will create responses that generate feedback – further altering a system. One 520 example occurs when acidification-induced undersaturation of carbonate minerals 521 adversely affects shell growth and settlement success of bivalves and coral polyps 522 building reefs; this is predicted to ultimately reduce oyster, mussel and clam populations 523 524 and coral reef building. Locally, the presence of large oyster populations buffers 525 increasing CO₂ and decreasing pH through shell dissolution and alkalinity increase. So lowered pH ultimately reduces local buffering capacity, leading to further reductions in 526 527 pH when the mineral buffer is exhausted. In addition, mass removal of shellfish (by harvest), could contribute to a deficit in the carbonate balance, as the shells form a 528 dissolution buffer needed by many animals to survive (Waldbusser et al., 2013). 529 530 Populations may be reduced to the point of unsustainability leading to 'recruitment overfishing'. 531

532

533 On some margins high-frequency climate oscillations are the dominant driver of biogeochemical variation and consequently, ecosystem structure. In the Bay of Calvi in 534 the Ligurian Sea of the NW Mediterranean (Goffart et al., this issue) the biogeochemical 535 condition is very oligotrophic during mild winters and mesotrophic during moderate 536 winters (B7). During severe winters, the Bay sustains a "high nutrient - low chlorophyll" 537 situation. With little human disturbances this Bay may serve as the baseline, against 538 which ecosystem changes in the Mediterranean due to direct human impacts can be 539 detected (see B7 for more details). In the East Pacific Ocean, interannual variations 540 linked to ENSO induce low productivity (well oxygenated) El Nino and high productivity 541 (low oxygen) La Nina conditions that affect fisheries production in the Humboldt and 542 543 California and Benguela current ecosystems (Arntz et al., 2006).

544

545 **5. Using time series to distinguish drivers of change**

546 Hydrographic and ecological time series have provided data critical to evaluating and

547 interpreting change on margins. Koslow and Couture (2013) have referred to ecological

time series as the Cinderella (hard working drudges) at the climate change ball. Beyond
this they may provide the "Anthropocene's canary in a coal mine" for many other forms
of human disturbance. Below we address the approaches, benefits and limitations of time
series in attribution of change on margins.

552

553 Several multi-decadal oceanographic time series measurements from a variety of coastal 554 and pelagic systems have shown how lower and intermediate trophic levels, and 555 biogeochemical cycling react to climate oscillations regionally and globally (Chavez et al., 2003; Black et al., 2011; Church et al., 2013) (Table 1). Multi-decadal time series of 556 557 phytoplankton have been generated for many regions including San Francisco Bay (Cloern and Jassby, 2013), Chesapeake Bay (Lee et al., 2013), Narragansett Bay 558 (Borkman and Smayda, 2009), the Cariaco Basin (Chavez et al., 2011, Muller-Karger et 559 al., 2013), the North Sea (Wiltshire et al., 2008) and areas of the Mediterranean Sea (e.g. 560 Goffart et al., 2002, Ninčević Gladan et al., 2010, Zingone et al., 2010, Goffart et al., 561 submitted) including the Northern Adriatic (Bernardi-Aubry et al., 2012, Marić et al., 562 2012, Mozetič et al., 2012) and Gulf of Naples (Ribera d'Alcalà et al., 2004). There are 563 also Arctic time series in the Bering, Chukchi, and Barents Sea. Most of these reveal 564 oscillations associated with climate variability (Borkman et al., 2009; Harrison et al., 565 2010). Indeed, such long-term ocean time series have been fundamental for expanding 566 567 our knowledge about the sensitivity of marine biodiversity, ecosystems and biogeochemistry to environmental change (Church et al., 2013; Koslow and Couture, 568 2013). However, moving forward an international network of time series is needed to 569 570 evaluate regional linkages and interpret global changes.

571

There are some major gaps in time series monitoring. Whereas models of nutrient fluxes 572 573 from watersheds abound, monitoring data to verify them do not. In the developing world, the scarcity of monitoring data adequate to characterize riverine nutrient flows has 574 impeded our understanding of the relationships with human activities. Research and 575 576 development of monitoring in these regions, should be made a priority, and would improve our management of coastal waters. It is important to add that not only the N 577 cycle should be monitored, but also changes in nutrient ratios delivered by rivers. In 578 579 particular the Si:N and Si:P ratios should be closely monitored as potential early warning indicators of disturbances (Billen and Garnier, 2007); indeed, they are often decreasing 580 due to excessive N and P inputs and decreasing Si inputs due to damming (Humborg, 581 582 1997) and the proliferation of invasive species (Ragueneau et al., 2005) causing replacement of diatoms by dinoflagellates. South East Asia, where anthropogenic factors 583 leading to decreasing Si:N and Si:P ratios combine, should be especially targeted for 584 monitoring (Ragueneau et al., 2006). 585

586

587 Modern time series gain added value when used in conjunction with paleooceanographic 588 studies (Black et al., 2011) and models (see Church et al., 2013); together these tools 589 allow researchers to discern natural sources of environmental change from variations 590 induced by climate change (warming, extreme flooding from river input or snow melt, or 591 heat waves) and direct human drivers such as eutrophication, damming and fishing 592 (Koslow and Couture, 2013). In some margin settings subject to long bouts of habitation 593 and inductrialization (a.g., Chasenaella Day, the apartel SE North See, northern Adriatio)

and industrialization (e.g., Chesapeake Bay, the coastal SE North Sea, northern Adriatic),

- natural variability is a small signal relative to the influence of humans. In others (e.g.,
 upwelling margins) natural variability produces an exceedingly strong signal and
- 596 irrefutably detecting CO₂-driven climate change or anthropogenic forcing is difficult.
- 597

Sediment and glacial ice core climate records often provide the long temporal perspective needed to identify climate oscillations prior to high anthropogenic CO_2 (> 280 ppm) conditions or resulting from long-term changes in human population density and land use practices (Cooper and Brush, 1993; Emeis et al., 2000; Yasuhara et al., 2012). Some of these geological climate records are now complemented by oceanographic and biogeochemical time series observations, thus providing valuable insights into the effects of anthropogenic perturbations on the marine environment (see Black et al., 2011).

605

Time Series and Coastal Management. The motivation underlying the establishment of 606 607 ecological time series varies. In California, CalCOFI was developed in the 1950s to understand the boom and bust cycles of the sardine (Bograd et al., 2003; Chavez et al., 608 2003). At its inception, the CalCOFI concept of monitoring the entire ecosystem, now 609 widely accepted in the context of ecosystem-based management, was visionary and 610 somewhat heretical. In Chesapeake Bay, a long time series of young-of-year fish 611 abundances in Maryland waters was initiated in 1954 by the state fisheries agency to aid 612 management of several anadromous species (Durrell and Weedon, 2011), a time series of 613 jellyfish abundances was begun in 1960 by a University of Maryland researcher in 614 response to the 'Jellyfish Nuisance Act' (Cargo and King, 1990), and bay-wide time 615 series monitoring of water quality parameters was begun in the 1980s with funding from 616 the States of Maryland and Virginia and the US EPA to aid management efforts to 617 improve water quality conditions (Boesch et al., 2001). Governments of states bordering 618 the western coasts of Europe (OSPAR) and the Baltic Sea (HELCOM) initiated 619 monitoring programs in the 1970's to protect the marine environment from all sources of 620 pollution through intergovernmental cooperation. 621

622

623 Although each time series is fixed in space and provides local information, when data are combined across time series they can provide a powerful synoptic understanding of the 624 625 link between climate variability and ocean biogeochemistry (Church et al, 2013). The ICES Phytoplankton and Microbial Plankton Status Report 2009/2010 exemplifies this 626 for the North Atlantic (O'Brien et al., 2012). Records of sea ice cover and tipping points 627 in the Arctic provide another example (Carstensen and Weydmann, 2012). Under optimal 628 conditions, time series provide data prior to catastrophe (e.g., fishery collapse) so that 629 causes can be discerned. It is important, however, to recognize the value of understanding 630 regional differences and their forcing mechanisms. 631

632 *Time series constraints.* Spatially fixed time series may have limitations. Single-location measurements typically do not reveal spatial expansions, contractions or oscillations. 633 They cannot recognize change due to relocation of organisms or features, making it 634 difficult in some cases to untangle spatial and temporal change, although spatial 635 comparisons can sometimes be used as proxies of temporal change (e.g., Wishner et al., 636 637 2013). Satellite remote sensing has typically been the tool of choice for extrapolating 638 fixed time series observations to broader spatial and temporal scales. Some time-series stations (i.e., Hawaiian Ocean Time-series [HOT] and the Bermuda Atlantic Time Series 639

[BATS]) have been successful at using autonomous samplers and sensors (e.g., gliders,

- drifting profilers) for learning the regional significance of the measurements they collect.
- These are especially important for hard-to-reach areas like the Arctic and Antarctic, and
- 643 can expand coverage for traditional time series in other regions. Autonomous sampling
- 644 platforms, however, are expensive to operate and thus are out of reach for time-series
- programs with limited resources. Another approach is to engage platforms of opportunity.Industry with a presence on the ocean margins, such as offshore wind and aquaculture,
- fishing, fossil fuel extraction and minerals, may have a role to play in time series
- 648 development in the future, and should be broadly engaged to support monitoring efforts.
- 649 Expansion of programs like the World Ocean Council Smart Data/Smart Industries
- 650 (http://www.oceancouncil.org/site/smart_ocean.php) may be useful.
- Time, funding and facilities constraints often limit time series to the upper water column and basic hydrographic parameters. To link these to key resource needs and sustainable management – including aquaculture, fisheries, energy and minerals – it will be necessary to incorporate the sea floor and its organisms into time-series monitoring. Benthos monitoring can also provide critical information about biogeochemical feedbacks from the sea floor, processes often not included in large-scale climate or ecosystem models.
- 657
- Most margin time series are not of sufficient duration to detect variation outside normal 658 659 statistical variability (especially given decadal-scale cycles emerging in the atmospheresurface ocean system). Often shifts and change are misattributed due to lack of 660 knowledge about natural variability and its sources. Paleoceanographic records in ice 661 cores, sediment cores or tree rings allow us to extend understanding of margin processes 662 back in time, prior to the establishment of *in situ* observations (Gooday et al. 2009). 663 Innovative analyses of scales, teeth, otoliths and ichnofacies may allow use of such 664 records to reconstruct complex changes in exposure histories and food web dynamics 665 666 (Gooday et al., 2009; Morat et al., 2014). Recent development of geochemical proxies for detection of fish exposure to hypoxia offers the promise of identifying past and present 667 trends in oxygen concentration using otoliths (Limburg et al., 2011; 2014 [this volume]); 668 fish scales and other skeletal elements may also prove useful, but require testing. 669 670 Chronosequences from long-lived calcifying organisms (e.g., coldwater corals or bivalves) may provide excellent time series of temperature or pH as a basis for 671 672 chronometric analyses similar to dendrochronology (e.g., Chauvaud et al., 2005, 2012; Black et al., 2008). Novel functional gene microarrays may be used to evaluate the 673 674 diversity and composition of the denitrifying microbial community in hypoxic settings 675 like OMZs, allowing us to better understand how microbial metabolism can impact the 676 global climate through the production of N_2O , a bi-product of denitrification and a powerful greenhouse gas (Jayakumar et al., 2013). We need to further develop proxy 677 678 variables for environmental reconstructions, expand the data bases for regional-scale hindcasts, and strive to detect and interpret interannual variability from low resolution 679 680 archives. 681

682 While valuable in having fixed measurements, time series may also need to have an 683 adaptive observation component focused on (a) identifying changes and their underlying 684 causes and (b) monitoring parameters tied to the ecosystem services we care about, in 685 order to directly address policy concerns for effective management of these services. There is often a gap between what we can realistically measure, and what we want to

- achieve. This highlights the importance of research on basic processes and mechanisms
- that will identify indicators of change and incorporate process-based knowledge into our
- models. Often the early warning of degradation will come from land. For example,
- agricultural inputs, nutrient concentrations, N:P, Si:P, Si:N ratios or multiple nutrient
- 691 concentration data together could be key indicators (Billen and Garnier, 2007).

The burgeoning number of time series and rising volumes of data highlight a need to 692 693 engage more scientists in the analysis phase of time series research. There is also a challenge of maintaining continuity in the face of severe funding shortages; scientists 694 must advocate for continuation of monitoring programs. Key to the successful 695 continuation of time series is concise presentation of insight gained and raising the 696 awareness of the public and policy makers of their value. It is here that social scientists 697 can help natural scientists learn how to make a strong case without loss of integrity and 698 699 accountability.

700

6. The continental margin in the Anthropocene: the convergence of biogeochemistry, ecosystems and society

703

704 To be effective, economic models must be able to weigh the costs of the unwanted 705 impacts of stressors and forcings on ecosystem services discussed above and associated consequences against gains for society, and to attribute change to specific and 706 controllable drivers. To date scientists have failed to convey the message of the 707 overriding importance and societal consequences of CO₂ emissions (as well as other 708 greenhouse gases) in the context of global warming. Investment in collaboration efforts 709 710 between social and natural scientists, development of outreach and public communication skills, and advocacy about the importance of individual actions are required to manage 711 712 margins effectively (Pidgeon and Fischhoff, 2011). A need to combine scientific with 713 traditional and local ecological knowledge, especially in settings such as the Arctic, 714 further argues for key social-natural science integration.

715

716 There is growing need for modeling of coupled human (social)-biogeochemical systems on margins. A pioneering example can be found for the surfclam fishery on the Middle 717 718 Atlantic Bight (MAB) continental shelf (McCay et al., 2011). This million-dollar fishery has been managed since the 1990s with transferable quotas, one of the first in the US to 719 720 do so. In recent decades the population has shifted to the north and overall abundance has 721 declined (Weinberg, 2005). Simulations of surfclam growth that use 50-year hindcasts of 722 bottom temperature obtained from an implementation of the Regional Ocean Modeling System for the MAB (Kang and Curchister, 2013) show that episodic warming events 723 724 increase surfclam mortality and limit animal size in the southern portion of its range (Narváez et al, this issue). The resulting northward movement of the stock has negative 725 726 economic consequences for the fishing fleet and processing plants. These studies point to 727 a key role for natural scientists in assessment of the socio-economic consequences of climate change (McCay et al., 2011). 728

729

730 *Disasters can sometimes serve as catalysts for action.* In the United States, several

disaster events have caught the attention of the scientific community and policy makers,

732 and have resulted in the development of large-scale monitoring efforts that seek to 733 mechanistically understand these events and mitigate their impacts by improving our 734 predicting capabilities. One example is the unexpected failure of the oyster aquaculture 735 fishery on the US Pacific coast due to upwelling of carbonate-undersaturated waters (Barton et al., 2012); this stimulated state-sponsored research programs on ocean 736 737 acidification (Adelsman and Binder, 2012). Highly destructive Superstorm Sandy 738 stimulated sea level rise preparedness, and massive fish kills resulting from hurricane-739 induced release of hog waste and sewage in North Carolina (Malin et al., 1999) have engendered public support for altered agricultural practices and backup treatment plants. 740 741 These types of events are not one-time occurrences, but are likely to become more frequent. For example, low bottom-water aragonite saturation values on shelves are 742 expected to have negative effects on shellfish in the Yellow Sea (Zhai et al., 2014) and 743 744 off California (Gruber et al., 2012). The costs required for building community, industry 745 and ecosystem resilience are now being weighed against the massive costs of disaster damage and disaster relief. 746

747

748 While continued and expanded time series measurements are essential to monitor status and trends, scientists often know enough to make strong policy recommendations 749 regarding CO₂, nutrients and human activities. In many instances adaptation to change is 750 required and distinguishing among drivers is not essential for policy decisions. Whether 751 reduced sediment inputs to the coastal zone result from damming or from drought, it will 752 753 still be necessary to prepare for climate-related sea level rise and associated consequences 754 of limited land-building and net loss of coastal wetlands. For anadromous fishes, loss of 755 freshwater inputs from damming versus drought will have similar consequences, as will loss of river-sea connectivity from eutrophication induced hypoxia versus upwelling-756 757 induced deoxygenation. For coastal shellfish, the corrosive effects of acidification may result from atmospheric CO₂ inputs, intensified upwelling, increased stratification, 758 anthropogenic nutrient loads, precipitation or sea ice melting. Acting to reduce CO₂ 759 760 emissions and limit the now-inevitable rise in ocean temperatures, acidification, and 761 deoxygenation is critical.

762

763 There is growing consensus that direct anthropogenic stressors such as overexploitation of natural resources (fisheries, mining), habitat destruction, land use/cover change, 764 alteration of river catchments, coastal construction, damming, species invasion and 765 pollution will lower the resilience of populations, species and ecosystems and make them 766 less able to cope with climate-induced stress (Bijma et al., 2013). For example, reducing 767 fishing mortality in exploited populations can also reduce total mortality and be 768 protective of declining populations, even where part of that total mortality was due to 769 hypoxia, disease or habitat degradation (Breitburg et al., 2009b). Thus policy, law and 770 management of margins must consider and address climate and direct human stressors 771 together. Relevant lessons can be drawn from regional, time series and case studies where 772 different combinations of stressors interact and their trends have been tracked over time. 773 Understanding system connectivities, seeking indicators of regime change, and 774 775 promoting adaptation-oriented policy to build functional resilience, are lessons from the 776 Arctic (Carmack et al., 2012) that apply well to most margin ecosystems. The recently released IPCC AR5 report emphasizes the overwhelming need for societal adaptation to 777

multiple stressors associated with climate change, especially in countries where poverty

- will exacerbate the consequences (Field et al. IPCC 2014).
- 780

781 The recognition of the importance of natural capital and ecosystem services to national

- wealth has come slowly to some nations. In the USA this is now evidenced by the
 generation of a National Ocean Policy (2004; http://ioc-
- 784 <u>unesco.org/images/stories/LawoftheSea/Documents/NationalOceanPolicy/nop.usa.pdf</u>).
- To a large extent this policy addresses the continental margins, where most of the keyservices and commercial resources are provided. The Marine Strategy Framework
- 787 Directive (Directive 2008/56/EC,
- http://ec.europa.eu/environment/water/marine/ges.htm), adopted by the European
 Commission in 2008, marks an important milestone in the development of the EU's
- marine environmental policy and is the first framework instrument aimed expressly at
- 791 protecting and preserving the marine environment with a holistic approach. In 2012 The
- 792 EU launched its Blue Growth initiative
- 793 (<u>http://ec.europa.eu/maritimeaffairs/policy/blue_growth/</u>) that addresses three crucial
- components of sustainable development of marine resources: gathering and channeling
- marine knowledge to improve access to information about the continental margins of
- Europe, maritime spatial planning to aid management of offshore resources, and
- 797 integrated maritime surveillance. Other nations have national ocean policies in review
- 798 (e.g., South Africa) or in early stages of formulation (Namibia).
- 799
- 800 Margin management strategies must move from mono- to multiple stressor
- 801 *considerations*. Most policies and research programs address only one or two factors 802 nutrients, oxygen, ocean acidification, fishing pressure, disease, or invasive species, (e.g., 803 Crain et al., 2008). We know that T, O_2 and CO_2 are changing simultaneously and 804 interacting (Bijma et al., 2013). There is need for scientific consensus on a) what the 805 multistressor questions are and b) how to approach the issues. How to integrate 806 laboratory studies, field observations, monitoring, modeling, and use of proxies to
- address these questions remains a major challenge.
- 808

809 To incorporate natural variability and climate change into our decision making and

- 810 management activities we need research that identifies, quantifies and confronts
- 811 *management tradeoffs*. Stakeholder identification and finding equitable solutions is
- critical as every decision has winners and losers. We must quantify the economic costs of
- nutrient reduction for agriculture, fishers, and ecosystem services. Margin researchers
 have only just begun to tackle the larger question of valuing ecosystem services and
- biodiversity on the continental slope beyond the shelf –this is especially critical in deep
- waters where resource extraction activities (energy, minerals and deep-water fishing) are
- on the rise (Levin and Dayton, 2009; Jobstvogt et al., 2013).
- 818
- As both top predators and guardians of the planet we face immense ocean policy
- challenges over the next 10-50 years. The mentality of many nations is of a land-based
- society. Managing a fluid -connected environment is fundamentally different than
- 822 managing land use where discrete boundaries between impacted and more pristine areas
- 823 can be maintained. There is a spatial disconnect between farm policies and their effects

on the coastal ocean and our margins. Even international climate negotiations 824 825 (Converence of Parties) involve remarkably little consideration of ocean processes, despite the large role the ocean plays in regulating climate. The concepts underlying 826 827 sustainability in ocean margins must involve an educational thrust that starts early, as well as strategies to communicate at national and international levels. We need to better 828 829 understand the process by which science is introduced to policy, and target and fast track 830 scientific approaches that meet those needs. End-to-end efforts are needed that first bring 831 together the natural and human component of socio-ecosystems; and then work with stakeholders and policy makers towards finding and implementing solutions. 832 833 This article focuses on the impacts of the 20th century; we recognize that the 21st century 834 may involve a different suite of primary stressors, some of which are as yet unknown. 835 The continental margins of the future will undergo further changes as the system is 836 837 continuously perturbed. As human populations grow, needs for fresh water, energy, space, and food will create new demands of the coastal ocean including coastal 838 839 aquaculture, wind farms, wave energy stations and desalinization plants, intensified 840 shipping activities, and seabed mineral exploration. 841 842 Holistic consideration of margins facing the confluence of human, climate and natural stressors highlights the need to integrate science with societal needs. Building on work of 843 others (e.g., Islam and Tanaka, 2004), we identify the need to: 844 • Formulate a clear understanding of the environmental, ecological and economic 845 value of margin ecosystems and how these vary under different climate regimes. 846 • Enact water quality management that recognizes land-ocean-atmosphere 847 exchanges controlled by climate and humans. 848 Enact comprehensive monitoring to link policy-based changes in drivers to 849 ecosystem responses 850 • Improve cooperation of stakeholders, regulators, scientists and civil society 851 • Scale and coordinate local, regional, national and international activities to 852 853 maximize knowledge and promote modeling efforts • Protect key services via ecosystem-based management 854 • Develop mechanisms to translate scientific knowledge into regulation and 855 856 legislation, and the political realities needed to achieve action. 857 Ultimately, we will need to set priorities, accept tradeoffs and motivate creative solutions. 858 These goals are very much in line with the approach of the Future Earth Initiative to meet 859 the grand challenge of global sustainability (Reid et al., 2010). Interactions among social 860

and natural scientists are nascent, but a growing number of national and international
programs recognize their importance. Achieving sufficient energy, water, food and
healthy margin ecosystems is a tall order, but a challenge that natural and social scientists
must work together to meet head on.

865

866 **6. Acknowledgements**

867

We are grateful for the hospitality of the National Institute of Oceanography, Goa, India,which hosted the IMBIZO III. Support for the workshop was provided by IMBER (a core

873 IMBER. Levin's research support is from NOAA - California Sea Grant College Program Project # R/CC-04 and NSF OCE 0927445 and 1041062. Support for E. 874 Hofmann was provided by NSF grant GEO-0908939. Support for K.-K. Liu was 875 876 provided by the Ministry of Science and Technology, Taiwan, and SCOR. 877 878 7. References 879 880 Adelsman, H., and Binder, L. W. (Eds.) (2012) Washington State Blue Ribbon Panel on Ocean Acidification (2012): Ocean Acidification: From Knowledge to Action, 881 882 Washington State's Strategic Response, Washington Department of Ecology, Publication no. 12-01-015, Olympia, Washington. 883 Alheit, J. Licandro, P, Coombs, S., Garcia, A., Giráldez, A., Santamaría, M., Slotte, A., 884 885 Tsikliras, A. Atlantic Multidecadal Oscillation (AMO) modulates dynamics of 886 small pelagic fishes and ecosystem regime shifts in the eastern North and Central Atlantic, Journal of Marine Systems, Volume 131, March 2014, Pages 21-35, 887 ISSN 0924-7963, http://dx.doi.org/10.1016/j.jmarsys.2013.11.002. 888 889 Alin, S. R., Feely, R. A., Dickson, A. G., Hernandez-Ayon, J. M., Juranek, L. W., Ohman, M. D., and Goericke, R. (2012) Robust empirical relationships for estimating the 890 carbonate system in the southern California Current System and application to 891 892 CalCOFI hydrographic cruise data (2005-2011), Journal of Geophysical Research 117, C05033. 893 894 Andersson, A.J., Gledhill, D., (2013). Ocean acidification and coral reefs: Effects on 895 breakdown, dissolution, and net ecosystem calcification. Annual Review of Marine Science, 5: 321-348 896 Antia, Avan, Maaßen, J., Herman, P., Voß, M., Scholten, Jan, Groom, S. and Miller, 897 898 P. (2001) Spatial and Qualitative Patterns of Particle Flux at the European Continental Margin: The OMEX I Project Deep-Sea Research Part II-Topical 899 Studies in Oceanography, 48 (14-15). pp. 3083-3106. 900 Arntz, W.E., V.A. Gallardo, D. Guteierrez, E. Isla, L.A. Levin, J. Mendo, C. Neira, G. 901 Rowe, J. Tarazona and M. Wolff. (2006) ENSO and similar perturbation effects 902 on the benthos of the Humboldt, California and Benguela Current upwelling 903 904 ecosystems. Advances in Geosciences 6, 243-265. Astor, Y.M., Lorenzoni, L., Thunell, R., Varela, R., Muller-Karger, F., Troccoli, L., 905 Taylor, G.T., Scranton, M.I., Tappa, E., Rueda, D., (2013) Interannual variability 906 907 in sea surface temperature and fCO2 changes in the Cariaco Basin. Deep-Sea Res. 908 II, doi:10.1016/j.dsr2.2013.01.002. Banner, F.T., Collins, M.E., Massey, M.S. (Eds) (1980) The North-West European Shelf 909 Seas: The Sea Bed and the Sea in Motion II. Physical and Chemical 910 Oceanography, and Physical Resources. Elsevier Oceanography Series, Volume 911

project of IGBP), SCOR and a host of co-sponsors. We thank two anonymous reviewers

for their comments which have improved the manuscript. L. Levin's and D. Breitburg's attendance was supported by the US Ocean Carbon Biogeochemistry program and

912 24, Part B, 301-638.
913 Barnosky, A.D., Hadly, E.A., Bascompte, J., Berlow, E.L., Brown, J.H., Fortelius, M.,

870

871

872

914 Getz, W.M., Harte, J., Hastings, A., Marquet, P.A., Martinez, N.D., Mooers, A.,
915 Roopnarine, P., Vermeij, G., Williams, J.W., Gillespie, R., Kitzes, J., Marshall,

916	C., Matzke, N., Mindell, D.P., Revilla, E., Smith, A.B., 2012. Approaching a state
917	shift in Earth's biosphere. Nature, 486, 52-58, doi:10.1038/nature11018.
918	Barton, A., Hales, B., Waldbusser, G.G., Langdon, C., and Feely, R.A. (2012) The
919	Pacific oyster <i>Crassostrea gigas</i> , shows negative correlation to naturally elevated
920	carbon dioxide levels: implications for near-term ocean acidification effects.
921	Limnol. Oceanogr.57, 698–710
922	Beaugrand, G. (2004) The North Sea regime shift: evidence, causes, mechanisms and
923	consequences, Progress in Oceanography 60, 245-262.
924	Behrenfeld, M. J., R. T. O'Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C.
925	Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier and E. S. Boss (2006)
926	"Climate-driven trends in contemporary ocean productivity." <i>Nature</i> 444, 752-
927	755.
928	Bernardi Aubry, F., Cossarini, G., Acri, F., Bastianini, M., Bianchi, F., Camatti, E., De
929	Lazzari, A., Pugnetti, A., Solidoro, C., Socal, G. (2012) Plankton communities in
930	the northern Adriatic Sea: patterns and changes over the last 30 years. <i>Estuarine</i> ,
931	Coastal and Shelf Science 115, 125-137
932	Bianchi, T. S., Dimarco, S. F., Allison, M. A., Chapman, P., Cowan, J. H., Hetland, R. D.,
933	& Rowe, G. (2008) Controlling hypoxia on the US Louisiana shelf: Beyond the
934	nutrient- centric view. Eos, Transactions American Geophysical Union, 89(26),
935	236-237.
936	Biastoch, A., Treude, T., Rupke, L. H., Riebesell, U., Roth, C., Burwicz, E. B., Park, W.,
930 937	Latif, M., Boning, C. W., and Madec, G. (2011) Rising Arctic Ocean
938	temperatures cause gas hydrate destabilization and ocean acidification,
938 939	Geophysical Research Letters 38.
939 940	Bijma, J., Portner, HO., Yesson, C., and Rogers, A. D. (2013) Climate change and the
940 941	oceans-What does the future hold?, <i>Marine Pollution Bulletin</i> 74, 495-505.
941 942	Billen G., Garnier J., (2007) River basin nutrient delivery to the coastal sea: Assessing its
943	potential to sustain new production of non-siliceous algae. <i>Marine Chemistry</i> 106, 148, 160
944	148-160 Bissour P. F. Flagg C. N. and Falkowski P. C. (1004) The shalf adapt evolutions
945	Biscaye, P. E., Flagg, C. N., and Falkowski, P. G. (1994) The shelf edge exchange
946	processes experiment, SEEP-II: an introduction to hypotheses, results and
947	conclusions, Deep Sea Research Part II: Topical Studies in Oceanography 41, 221 252
948	231-252. Black B.A. C.W. Boohlart and M. Vaklavich (2008) Establishing alimate growth
949	Black, B.A., G.W. Boehlert, and M. Yoklavich. (2008) Establishing climate–growth
950	relationships for yelloweye rockfish (Sebastes ruberrimus) in the northeast Pacific
951	using a dendrochronological approach. <i>Fisheries Oceanography</i> 17, 368-379.
952	Black, D., R. Thunell, K. Wejnert, and Y. Astor (2011) Carbon isotope composition of
953	Caribbean Sea surface waters: Response to the uptake of anthropogenic CO_2 ,
954	<i>Geophys. Res. Lett.</i> , 38, L16609, doi:10.1029/2011GL048538.
955	Boesch, DF, RB Brinsfield and RE Magnien. (2001) Chesapeake Bay eutrophication.
956	Journal of Environmental Quality 30, 303-320
957	Bograd, S. J., Castro, C. G., Di Lorenzo, E., Palacios, D. M., Bailey, H., Gilly, W., and
958	Chavez, F. P. (2008) Oxygen declines and the shoaling of the hypoxic boundary
959	in the California Current, Geophysical Research Letters 35.

960	Bograd, S. J., Checkley, Jr, D. A., and Wooster, W. S. (2003) CalCOFI: A half century of
961	physical, chemical, and biological research in the California Current System,
962	Deep Sea Research Part II: Topical Studies in Oceanography 50, 2349-2353.
963	Bopp, L., Le Quere, C., Heimann, M., Manning, A.C., Monfray, P., 2002. Climate-
964	induced oceanic oxygen fluxes: Implications for the contemporary carbon budget.
965	Global Biogeochemical Cycles, 16(2) 10.1029/2001gb001445
966	Borges, A. V. and N. Gypens (2010). "Carbonate chemistry in the coastal zone responds
967	more strongly to eutrophication than to ocean acidification." Limnology and
968	Oceanography 55(1): 346-353.
969	Borkman, D., H. Barreta-Bekker and P. Henriksen eds. (2009) Long-term phytoplankton
970	time series. Journal of Sea Research 61, (1 & 2).
971	Borkman, D.G., Smayda, T. (2009) Multidecadal (1959-1997) changes in Skeletonema
972	abundance and seasonal bloom patterns in Narragansett Bay, Rhode Island, USA.
973	Journal of Sea Research 61, 84-94.
974	Breitburg, D. L., Adamack, A., Rose, K. A., Kolesar, S. E., Decker, B., Purcell, J. E.,
975	Keister, J. E., and Cowan, J. H. (2003) The pattern and influence of low dissolved
976	oxygen in the Patuxent River, a seasonally hypoxic estuary, <i>Estuaries</i> 26, 280-297.
977	Breitburg, D. L., Hondorp, D. W., Davias, L. A., and Diaz, R. J. (2009b) Hypoxia,
978	nitrogen, and fisheries: integrating effects across local and global landscapes,
979	Annual Review of Marine Science 1, 329-349.
980	Breitburg, DL, JK Craig, RS Fulford, KA Rose, WR Boynton, DC Brady, BJ Ciotti, RJ
981	Diaz, KD Friedland JD Hagy 111, DR Hart, AH Hines, ED Houde, SE Kolesar,
982	SW Nixon, JA Rice, DH Secor and TE Targett. (2009a) Nutrient enrichment and
983	fisheries exploitation: interactive effects on estuarine living resources and their
984	management. Hydrobiologia 2009, 31-47
985	Caballero-Alfonso, A. et al. (2013) Regional variability of hypoxia in the coastal Baltic
986	Sea. This volume
987	Cai, W.J. et al., (2011). Acidification of subsurface coastal waters enhanced by
988	eutrophication. Nature Geoscience, 4(11): 766-770
989	Canals, M., Puig, P., Durrieu de Madron, X., Heussner, S., Palanques, A., Fabres, J.,
990	(2006). Flushing submarine canyons. Nature 444, doi:10.1038/nature05271.
991	Cargo, D.G. and King, D. R. (1990) Forecasting the abundance of the sea nettle,
992	Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13, 486–491.
993	Carmack, E., McLaughlin, F., Whiteman, G., Homer-Dixon, T. (2012) Detecting and
994	coping with disruptive shocks in Arctic marine systems: a resilience approach to
995	place and people. AMBIO (2012) 41:56-65 DOI 10.1007/s13280-011-0225
996	Carstensen J, Weydmann A. (2012) Tipping points in the arctic: eyeballing or statistical
997	significance? <u>Ambio.</u> 2012 Feb;41(1):34-43. doi: 10.1007/s13280-011-0223-8.
998	Carstensen, J., Conley, D.J., Andersen, J.H., Ærtebjerg, G., (2006) Coastal eutrophication
999	and trend reversal: a Danish case study. Limnology and Oceanography 51 (1e2),
1000	398e408.
1001	Carstensen, J., et al. (2014). "Hypoxia in the Baltic Sea: Biogeochemical Cycles, Benthic
1002	Fauna, and Management." AMBIO 43(1): 26-36.
1003	Cathalot, C., Rabouille, C., Pastor, L., Deflandre, B., Viollier, E., Buscail, R., Gremare,
1004	A., Treignier, C., Pruski, A., (2010). Temporal variability of carbon recycling in

1005	coastal sediments influenced by rivers: assessing the impact of flood inputs in
1006	the Rhone River prodelta. <i>Biogeosciences</i> 7, 1187-1205.
1007	Chan, F., Barth, J., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W., and Menge, B.
1008	(2008) Emergence of anoxia in the California Current large marine ecosystem,
1009	Science 319, 920-920.
1010	Chauvaud L., Dunbar R., Lorrain A., Paulet YM., Thouzeau G., Jean F., Guarini JM.,
1011	Mucciarone D. (2005) The shell of the great scallop <i>Pecten maximus</i> as a high
1012	frequency archive of paleoenvironmental change. Geochemistry Geophysics
1013	Geosystems 6, Q08001
1014	Chauvaud L., Patry Y., Jolivet A., Cam E., Le Goff C., Strand Ø., Charrier G., Thébault
1015	J., Lazure P., Gotthard K., Clavier J. (2012) Variation in size and growth of the
1016	great scallop Pecten maximus along the latitudinal gradient. PLoS ONE 7,e37717
1017	Chavez, F. P., Messie, M., and Pennington, J. T. (2011) Marine primary production in
1018	relation to climate variability and change, Annual Review of Marine Science 3,
1019	227-260.
1020	Chavez, F.P., Ryan, J., Lluch-Cota, S.E., Ñiquen C., M., (2003) From Anchovies to
1021	Sardines and Back: Multidecadal Change in the Pacific Ocean. Science
1022	299,(5604), 217-221.
1023	Checkley Jr., D. M., and Barth, J. A. (2009) Patterns and processes in the California
1024	Current System, Progress in Oceanography 83, 49-64.
1025	Church, M. J., M. W. Lomas, and F. E. Muller-Karger. (2013) Sea Change: Charting the
1026	course for biogeochemical ocean time series research in a new millennium. Deep-
1027	Sea Research, Part II: Topical Studies in Oceanography 93, 2-15.
1028	Cloern, J.E. (1982) Does the benthos control phytoplankton biomass in South San
1029	Francisco Bay (USA)?: Marine Ecology-Progress Series 9,191-202
1030	Cloern, J. E., and Jassby, A. D. (2012) Drivers of change in estuarine-coastal ecosystems:
1031	Discoveries from four decades of study in San Francisco Bay, Reviews of
1032	Geophysics 50.
1033	Cloern, J.E., (1996) Phytoplankton bloom dynamics in coastal ecosystems : a review with
1034	some general lessons from sustained investigation of San Francisco Bay,
1035	California. Reviews of Geophysics 34, 127-168.
1036	Conley, D.J. and 18 others. (2011) Hypoxia is increasing in the coastal zone of the Baltic
1037	Sea. Env. Sci. and Technol. Lett. 45, 6777-6783.
1038	Conversi, A., Fonda-Umani, S., Peluso, T., Molinero, J.C., Santojanni, A., Edward, M.
1039	(2010) The Mediterranean Sea regime shift at the end of the 1980s, and intriguing
1040	parallelisms with other European Basins. PLoS ONE 5 (5), e10633. http://
1041	dx.doi.org/10.1371/journal.pone.0010633.
1042	Conversi, A., Peluso, T., Fonda-Umani, S. (2009) Gulf of Trieste: A changing ecosystem.
1043	Journal of Geophysical Research, 114, C03S90, doi:10.1029/2008JC004763,
1044	2009
1045	Cooper, S. R., and Brush, G. S. (1993) A 2,500-year history of anoxia and eutrophication
1046	in Chesapeake Bay, Estuaries 16, 617-626.
1047	Craig, J. K. (2012) Aggregation on the edge: effects of hypoxia avoidance on the spatial
1048	distribution of brown shrimp and demersal fishes in the Northern Gulf of Mexico.
1049	Marine Ecology Progress Series 445, 75-95.)

1050 Crain, C. M., Kroeker, K., and Halpern, B. S. (2008) Interactive and cumulative effects of 1051 multiple human stressors in marine systems, *Ecology Letters* 11, 1304-1315. 1052 Dähnke, K., E. Bahlmann and K.-C. Emeis (2008) A nitrate sink in estuaries? An 1053 assessment by means of stable nitrate isotopes in the Elbe estuary. Limnol. Ocean. **53**(4), 1504-1511. 1054 1055 Dame, R. (2012) Bivalve Filter Feeders: in Estuarine and Coastal Ecosystem Processes. 1056 Springer Publishing Co. 1057 Dame, R. (2011). Ecology of Marine Bivalves: An Ecosystem Approach. CRC Press, 1058 Boca Raton, FL. 1059 Deutsch, C., Brix, H., Ito, T., Frenzel, H., and Thompson, L. (2011) Climate-forced variability of ocean hypoxia, Science 333, 336-339. 1060 deYoung, B., Barange, M., Beaugrand, G., Harris, R., Perry, R. I., Scheffer, M., and 1061 1062 Werner, F. (2008) Regime shifts in marine ecosystems: detection, prediction and 1063 management, Trends in Ecology & Evolution 23, 402-409. 1064 Diaz, R.J., Rosenberg, R., (2008) Spreading dead zones and consequences for marine 1065 ecosystems. Science 321, 926-929. Doney, S., Ruckelshaus, M., Duffy, J.E., Barry, J.P., F. Chan, C.A. English, H.M. Galindo, 1066 J.M. grebmeier, A. B. Hollowed, N. Knowlton, J. Polovina, N. Rabalais, 1067 W.Sydeman and L. Talley. 2012. Climate change impacts on marine ecosystems. 1068 1069 Annu. Rev. Mar. Sci. 2012. 4:11–37 Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A., (2009) Ocean Acidification: The 1070 1071 Other CO₂ Problem. Annual Review of Marine Science, 1: 169-192 Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., 1072 1073 Carstensen, J., Trotter, J. A., and McCulloch, M. (2013) Is ocean acidification an 1074 open-ocean syndrome? Understanding anthropogenic impacts on seawater pH, 1075 Estuaries and Coasts, 1-16. Duarte, C.M., Agustí, S., Kennedy, H., Vaqué, D. (1999) The Mediterranean climate as a 1076 template for Mediterranean marine ecosystems: the example of the NE Spanish 1077 1078 littoral. Progress in Oceanography 44, 245-270. Duarte, C.M., Agusti, S., Wassmann, P., Arrieta, J.M, Alcaraz, M., Coello, A., Marba, N., 1079 Hendriks, I.E., Holding, J., Garcia-Zarandona, I., Kritzberg, E., Vaque, D. (2012) 1080 1081 Tipping elements in the Arctic marine ecosystem, Ambio 41, 44-55. Durell, EQ and C Weedon. (2011) Striped bass seine survey juvenile index web page. 1082 http://www.dnr.state.md.us/fisheries/juvindex/index.html. Maryland Department 1083 1084 of Natural Resources, Fisheries Service Emeis, K., J. van Beusekom, U. Callies, R. Ebinghaus, A. Kannen, G. Kraus, I. Kröncke, 1085 H. Lenhart, I. Lorkowski, V. Matthias, C. Möllmann, J. Pätsch, M. Scharfe, H. 1086 1087 Thomas, R. Weisse and E. Zorita (submitted) The North Sea - a shelf sea in the 1088 Anthropocene. Journal of Marine Systems (this volume). Emeis, K.-C., Struck, U., Leipe, T., Pollehne, F., Kunzendorf, H., Christiansen, C. (2000) 1089 1090 Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 years — relevance to P regeneration rates and the phosphorus cycle. Marine 1091 Geology, 167, (1–2), 43-59 1092 Feely, R.A., Sabine, C.L., Hernandez-Ayon, J.M., Ianson, D., Hales, B. (2008) Evidence 1093 1094 for upwelling of corrosive "acidified" water onto the continental shelf. Science 320, 1490-1492. 1095

1096	Frieder, C., Nam, S., Martz, T., and Levin, L. (2012) High temporal and spatial
1097	variability of dissolved oxygen and pH in a nearshore California kelp forest,
1098	Biogeosciences 9, 3917-3930.
1099	Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonne, P., Cigliano, M., Diaz,
1100	D., Harmelin, J. G., Gambi, M., and Kersting, D. (2009) Mass mortality in
1101	Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat
1102	wave, Global Change Biology 15, 1090-1103.
1103	Giani, M., Djakovac, T., Degobbis, D., Cozzi, S., Solidoro, C., and Umani, S. F. (2012)
1104	Recent changes in the marine ecosystems of the northern Adriatic Sea, <i>Estuarine</i> ,
1105	Coastal and Shelf Science 115, 1-13.
1106	Gilly, W.F., Beman, J.M., Litvin, S.Y. and B.H. Robison. (2013) Oceanographhic and
1107	biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5,
1108	21.1-21.28
1109	Glavovic, B.C. et al., 2014. Living on the Margin in the Anthropocene: Engagement
1110	Arena for Global Sustainability Research and Action. Science: (Submitted).
1111	Goffart, A., Hecq, J. H., and Legendre, L. (submitted) Drivers of phytoplankton bloom in
1112	the oligotrophic Bay of Calvi (NW Mediterranean) : results from a long-term
1113	study (1979-2011), Progress in Oceanography.
1114	Goffart, A., Hecq, JH., and Legendre, L. (2002) Changes in the development of the
1115	winter-spring phytoplankton bloom in the Bay of Calvi (NW Mediterranean) over
1116	the last two decades: a response to changing climate?, <i>Marine Ecology Progress</i>
1117	Series 236, 45-60.
1118	Gooday, A.J., Jorissen, F., Levin, L.A., Middelburg, J.J, Naqvi, W., Rabalais, N.,
1110	Scranton, M., Zhang, J. (2009) Historical records of coastal eutrophication and
1120	hypoxia Biogeosciences 6, 1-39.
1120	Grall, J; Chauvaud, L (2002) Marine eutrophication and benthos: the need for new
1122	approaches and concepts. <i>Global Change Biology</i> , 8: 813-830
1122	Grantham, B. A., F. Chan, K. J. Nielsen, D. S. Fox, J. A. Barth, A. Huyer, J. Lubchenco,
1123	and B. A. Menge (2004), Upwelling-driven nearshore hypoxia signals ecosystem
1125	and oceanographic changes in the northeast Pacific, <i>Nature</i> 429(6993), 749–754,
1125	doi:10.1038/nature02605.
1127	Gren, IM., 2013. The economic value of coastal waters as nutrient filters for the Baltic
1127	Sea. Reg Environ Change, 13: 695–703.
1129	Gruber, N., and Sarmiento, J. L. (1997) Global patterns of marine nitrogen fixation and
1130	denitrification, <i>Global Biogeochemical Cycles</i> 11, 235-266.
1130	Gruber, N., Hauri, C., Lachkar, Z., Loher, D., Frolicher, T. L., and Plattner, GK. (2012),
1132	Rapid progression of ocean acidification in the California Current System,
1132	Science 337, 220-223.
1134	Han, H., and Allan, J. D. (2008), Estimation of nitrogen inputs to catchments: comparison
1134	of methods and consequences for riverine export prediction, <i>Biogeochemistry</i> 91,
1135	177-199.
1137	Harrison, P., A. Zingone and E. Phlips ed. (2010) Phytoplankton time series. <i>Estuaries</i>
1137	and Coastal Ecosystems, vol. 33,
1138	Hofmann, E.E., B. Cahill, K. Fennel, MAM Friedrichs, K Hyde, C Lee, A. Mannino, RG
1140	Najjar, JE O'Reilly, J Wilkin, J Xue, (2011) Modeling the dynamics of
1140	continental shelf carbon. Annual Review of Marine Science 3, 93-122.
TT#T	continential shen carbon. Annual Review of marine science 5, 75-122.

1142	Hofmann, G.E., T. G. Evans, M. W. Kelly, J. L. Padilla-Gamiño, C. A. Blanchette,
1143	L.Washburn, F. Chan, M. A. McManus, B. A. Menge, B. Gaylord, T. M. Hill, E.
1144	Sanford, M. LaVigne, J. M. Rose, L. Kapsenberg, and J. M. Dutton. 2014.
1145	Exploring local adaptation and the ocean acidification seascape – studies in the
1146	California Current large marine ecosystem. Biogeosciences, 11, 1053–1064
1147	Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K.,
1148	Downing, J., Elmgren, R., Caraco, N., and Jordan, T. (1996) Regional nitrogen
1149	budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean:
1150	Natural and human influences, <i>Biogeochemistry</i> 35, 75-139.
1151	Howarth, R., Swaney, D., Billen, G., Garnier, J., Hong, B., Humborg, C., Johnes, P.,
1152	Morth, CM., and Marino, R. (2012) Nitrogen fluxes from the landscape are
1153	controlled by net anthropogenic nitrogen inputs and by climate, Frontiers in
1154	Ecology and the Environment 10, 37-43.
1155	Howarth, R., Swaney, D., Boyer, E., Marino, R., Jaworski, N., and Goodale, C. (2006)
1156	The influence of climate on average nitrogen export from large watersheds in the
1157	Northeastern United States, <i>Biogeochemistry</i> 79, 163-186.
1158	Hsieh, C. H., Glaser, S. M., Lucas, A. J., Sugihara, G. (2005) Distinguishing random
1159	environmental fluctuations from ecological catastrophes for the North Pacific
1160	Ocean. Nature 435, 336-340.
1161	Hughes, TP. (1994) Catastrophes, phase shifts, and large-scale degradation of a
1162	Caribbean coral reef. Science 265, 1547-1551
1163	Humborg C, Ittekkot V, Cociasu A, Von Bodungen B (1997) Effect of Danube River
1164	dam on Black Sea biogeochemistry and ecosystem structure. Nature 386, 385-388
1165	IPCC (2014). Field et al. Climate Change 2014 : Impacts Adaptation and Vulnerability.
1166	Summary for Policymakers (Copyright Pending).
1167	Islam, S., and Tanaka, M. (2004) Impacts of pollution on coastal and marine ecosystems
1168	including coastal and marine fisheries and approach for management: a review
1169	and synthesis, Marine Pollution Bulletin 48, 624-649.
1170	Jahnke, R. (2010), Global synthesis, in Carbon and Nutrient Fluxes in Continental
1171	Margins: A Global Synthesis, edited by KK. Liu, L. Atkinson, R. Quinones and
1172	L. Talaue-McManus, pp. 597–616.
1173	Jayakumar, A., Peng, N., and Ward, B. (2013) Denitrifying communities in oceanic
1174	oxygen deficient zones using microarray analyses, IMBIZO III: The future of
1175	marine biogeochemistry, ecosystems and societies, IMBER, Goa, India.
1176	Jobstvogt, N., Hanley, N., Hynes, S., Kenter, J., and Witte, U. (2013) Twenty thousand
1177	sterling under the sea: Estimating the value of protecting deep-sea biodiversity,
1178	Ecological Economics 97, 10-19.
1179	Kennedy, V.S., 1984. The estuary as a filter. ????
1180	Kennett, J. P., Cannariato, K. G., Hendy, I. L., and Behl, R. J. (2003) Methane hydrates
1181	in Quaternary climate change: The clathrate gun hypothesis, American
1182	Geophysical Union.
1183	Koslow, J. A., and Couture, J. (2013) Ocean science: Follow the fish, Nature 502, 163-
1184	164.
1185	Lachkar, Z. (2014) Effects of upwelling increase on ocean acidification in the California
1186	and Canary Current systems, Geophys. Res. Lett., 40,
1187	doi:10.1002/2013GL058726.

1188	Lachkar, Z., and Gruber, N. (2013), Response of biological production and air-sea CO2
1189	fluxes to upwelling intensification in the California and Canary Current Systems,
1190	Journal of Marine Systems 109, 149-160.
1191	Lassaletta, L., Romero, E., Billen, G., Garnier, J., Garcia-Gomez, H., and Rovira, J.
1192	(2012), Spatialized N budgets in a large agricultural Mediterranean watershed:
1193	high loading and low transfer, Biogeosciences 9, 57-70.
1194	Lee, YJ, WR Boynton, M Li and Y Li. (2013) Role of late wnter-spring wind influencing
1195	summer hypoxia in Chesapeake Bay. Estuaries and Coasts 36, 683-696
1196	Lejeusne, C., Chevaldonne, P., Pergent-Martini, C., Boudouresque, C. F., and Perez, T.
1197	(2010) Climate change effects on a miniature ocean: the highly diverse, highly
1198	impacted Mediterranean Sea, Trends in Ecology & Evolution 25, 250-260.
1199	Levin, L. A. (2003) Oxygen minimum zone benthos: adaptation and community response
1200	to hypoxia, in Oceanography and Marine Biology, an Annual Review, Volume 41:
1201	An Annual Review, edited by R. Gibson and R. Atkinson, pp. 1-45.
1202	Levin, L. A., and Dayton, P. K. (2009) Ecological theory and continental margins: where
1203	shallow meets deep, Trends in Ecology & Evolution 24, 606-617.
1204	Levin, L. A., and Sibuet, M. (2012) Understanding continental margin biodiversity: a
1205	new imperative, Annual Review of Marine Science 4, 79-112.
1206	Levin, L. A., Boesch, D. F., Covich, A., Dahm, C., Erseus, C., Ewel, K. C., Kneib, R. T.,
1207	Moldenke, A., Palmer, M. A., and Snelgrove, P. (2001) The function of marine
1208	critical transition zones and the importance of sediment biodiversity, Ecosystems
1209	4, 430-451.
1210	Levin, L., Ekau, W., Gooday, A., Jorissen, F., Middelburg, J., Naqvi, W., Neira, C.,
1211	Rabalais, N., and Zhang, J. (2009) Effects of natural and human-induced hypoxia
1212	on coastal benthos, Biogeosciences Discussions 6, 3563-3654.
1213	Levin, L.A., C. Frieder, M. Navarro, J. Gonzalez, T. Martz. (2013) Hypoxia, hypercapnia
1214	and homosapiens on upwelling margins. Oral Presentation, IMBER IMBIZO III,
1215	Goa, India, Jan. 2013.
1216	Limburg, K.E., C. Olson, Y. Walther, D. Dale, C. Slomp, and H. Høie (2011) Tracking
1217	Baltic hypoxia and cod migration over millennia with natural tags. Proceedings
1218	of the National Academy of Sciences of the U.S. doi:10.1073/pnas.1100684108.
1219	Limburg, K.E., B.D. Walther, Z. Lu, G. Jackman, J. Mohan, Y. Walther, A. Nissling,
1220	P.K. Weber, and A.K. Schmitt (2014) In search of the dead zone: use of otoliths
1221	for tracking fish exposure to hypoxia. Journal of Marine Systems. DOI:
1222	10.1016/j.jmarsys.2014.02.014
1223	Limburg, K. E., Walther, B. D., Lu, Z., Jackman, G., Mohan, J., Walther, Y., Nissling, A.,
1224	Weber, P. K., and Schmitt, A. K. (submitted), In search of the dead zone: use of
1225	otoliths for tracking fish exposure to hypoxia.
1226	Liu, KK., Yan, W., Lee, HJ., Chao, SY., Gong, GC., Yeh, TY. (this issue) Impacts
1227	of increasing dissolved inorganic nitrogen discharge from Changjiang on primary
1228	production and sediment oxygen consumption in the East China Sea from 1970 to
1229	2002. J. Mar. Syst.
1230	Liu, K.K., Atknison, L., Quinones, R., Talaue-McManus, L. (Eds) (2010) Carbon and
1231	nutrient fluxes in continental margins: A global synthesis. Springer, Heidelberg
1232	Germany, 744 pp.

1233	Liu, S. M. (submitted, this issue) Response of nutrient transports to human activities in
1234	the ecosystem of the Bohai: under the influence of artificial floods.
1235	Liu, S., Zhang, J., Gao, H., and Liu, Z. (2008) Historic changes in flux of materials and
1236	nutrient budgets in the Bohai, Acta Oceanologica Sinica 27, 1-17.
1237	Mallin, M. A., Posey, M. H., Shank, G. C., McIver, M. R., Ensign, S. H., and Alphin, T.
1238	D. (1999) Hurricane effects on water quality and benthos in the Cape Fear
1239	watershed: natural and anthropogenic impacts, Ecological Applications 9, 350-
1240	362.
1241	Marba, N. and C.M. Duarte (2010) Mediterranean warming triggers seagrass (Posidonia
1242	oceanica) shoot mortality. Global Change Biology, 16, 2366–2375.
1243	Marchesiello, P., and P. Estrade (2009) Eddy activity and mixing in upwelling systems:
1244	A comparative study of Northwest Africa and California regions, Int. J. Earth
1245	Sci., 98, 299–308, doi:10.1007/s00531-007-02356.
1246	Marić, D., Kraus, R., Godrijan, J., Supić, N., Djakovac, T., Precali, R. (2012)
1247	Phytoplankton response to climatic and anthropogenic influence in the north-
1248	eastern Adriatic during the last four decades. Estuarine, Coastal and Shelf Science
1249	115, 98-112.
1250	McCay, BJ, S. Brandt, C. Creed (2011) Human dimensions of climate change and
1251	fisheries in a coupled system: the Atlantic surfclam case. ICES J. Mar. Sci.
1252	(2011) 68 (6): 1354-1367. doi: 10.1093/icesjms/fsr044
1253	McClatchie, S., Goericke, R., Cosgrove, R., Auad, G., and Vetter, R. (2010) Oxygen in
1254	the Southern California Bight: multidecadal trends and implications for demersal
1255	fisheries, Geophysical Research Letters 37, L19602.
1256	McFarlane, G. A., Smith, P. E., Baumgartner, T. R., and Hunter, J. R. (2002) Climate
1257	variability and Pacific sardine populations and fisheries, American Fisheries
1258	Society Symposium 32, 195-214.
1259	McQuatter-Gollop, A., Gilberrt, A.J., Mee, L.D., Vermaat, J.E., Artioli, Y., Humborg, C.,
1260	Wulff, F., (2009) How well do ecosystem indicators communicate the effects of
1261	anthropogenic eutrophication? Estuarine, Coastal and Shelf Science 82, 583e596.
1262	Mee, L. D., Friedrich, J., and Gomoiu, M. T. (2005) Restoring the Black Sea in times of
1263	uncertainty, Oceanography, 18, 100–111
1264	Möllmann, C., Conversi A., Edwards M. (2011) Comparative analysis of European wide
1265	marine ecosystem shifts: a large-scale approach for developing the basis for
1266	ecosystem-based management. Biology Letters 7, 484-486.
1267	Montes, E., Lomas, M., Muller-Karger, F. E., and Lorenzoni, L. (in prep) Responses of
1268	the N cycle in the Tropical and Sub-tropical North Atlantic to modern climate
1269	variability, Global Biogeochemical Cycles.
1270	Mora, C., Wei, CL., Rollo, A., Amaro, T., Baco, A. R., Billett, D., Bopp, L., Chen, Q.,
1271	Collier, M., and Danovaro, R. (2013) Biotic and Human Vulnerability to
1272	Projected Changes in Ocean Biogeochemistry over the 21st Century, <i>PLoS</i>
1273	<i>Biology</i> 11, e1001682.
1274	Morat, F., Letourneur, Y., Dierking, J., Pecheyran, C., Bareille, G., Blamart, D.,
1275	Harmelin-Vivien, M.L., (2014). The great melting pot. Common sole population
1276	connectivity assessed by otolith and water fingerprints. <i>PlosOne</i> 9, e86585.
1277	doi:86510.81371/journal.pone.0086585.

1278	Mozetič, P., Francé, J., Kogovšek, T.; Talaber, I., Malej, A. (2012) Plankton trends and
1279	community changes in a coastal sea: bottom-up vs. top-down control in relation to
1280	local-scale and large-scale drivers. Estuarine, Coastal and Shelf Science 115, 138-
1281	148.
1282	Muller-Karger, F, R. Varela, R, Thunell, R. Luerssen, C. Hu and J. Walsh. 2005) The
1283	importance of continental margins in the global carbon cycle. Geophys. Res.
1284	Letters, 32, DOI: 10.1029/2004GL021346
1285	Muller-Karger, F., et al. (2013) The CARIACO Ocean Time-Series: 18 years of
1286	international collaboration in ocean biogeochemistry and ecological research,
1287	Ocean Carbon and Biogeochemistry Newsletter, Woods Hole Oceanographic
1288	Institution fall edition.
1289	Mumby, P. J.; Hastings, A.; Edwards, H.J. (2007) Thresholds and the resilience of
1290	Caribbean coral reefs". Nature 450, 98-101.
1291	doi:10.1038/nature06252 PMID 17972885.
1292	Naam, R., (2012) Arctic Sea ice: What, why and what next. Scientific American,
1293	http://blogs.scientificamerican.com/guest-blog/2012/09/21/arctic-sea-ice-what-
1294	why-and-what-next/
1295	Naha Biswas, S., Godhantaraman, N., Sarangi, R.K., B.D. Bhattacharya, B.D., Sarkar,
1296	S.K., Satpathy, K.K. (2013) Bloom of the centric diatom Hemidiscus
1297	hardmannianus (Bacillariophyceae) and its impact on water quality characteristics
1298	and plankton community structure in Indian Sundarban mangrove wetland-
1299	CLEAN - Soil, Air and Water Pollution, 41 (4), 333-339.
1300	Nam, S., Kim, HJ., and Send, U. (2011) Amplification of hypoxic and acidic events by
1301	La Nina conditions on the continental shelf off California, Geophysical Research
1302	Letters 38, L22602.
1303	Narváez, D., et al., (submitted) Long-term dynamics in Atlantic surfclam (Spisula
1304	Solidissima) populations: The role of bottom water temperature. J. Mar. Systems
1305	(this volume).
1306	Ninčević Gladan, Ž., Marasović, I., Grbec, B., Skejić, S., Bužančić, M., Kušpilić, G.,
1307	Matijević, S., Matić, F., (2010) Inter-decadal Variability in Phytoplankton
1308	Community in the Middle Adriatic (Kaštela Bay) in Relation to the North Atlantic
1309	Oscillation. Estuaries and Coasts 33, 376-383.
1310	Nixon, S. W., and Buckley, B. A. (2002) "A strikingly rich zone"-nutrient enrichment
1311	and secondary production in coastal marine ecosystems, Estuaries 25, 782-796.
1312	O'Brien, T.D. et al. (Ed.) (2012) ICES Phytoplankton and Microbial Plankton Status
1313	Report 2009/2010. ICES Cooperative Research Report, 313. ICES: Denmark.
1314	ISBN 978-87-7482-115-1. 196 pp
1315	Paerl, H. W., Bales, J. D., Ausley, L. W., Buzzelli, C. P., Crowder, L. B., Eby, L. A., Fear,
1316	J. M., Go, M., Peierls, B. L., and Richardson, T. L. (2001) Ecosystem impacts of
1317	three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest
1318	lagoonal estuary, Pamlico Sound, NC, Proceedings of the National Academy of
1319	<i>Sciences</i> 98, 5655-5660.
1320	Paulmier, A., Ruiz-Pino, D., and Garçon, V. (2011) CO ₂ maximum in the oxygen
1321	minimum zone (OMZ), Biogeosciences 8, 239-252.
1322	Phrampus, B. J., and Hornbach, M. J. (2012) Recent changes to the Gulf Stream causing
1323	widespread gas hydrate destabilization, Nature 490, 527-530.

1324	Pidgeon, N., and Fischhoff, B. (2011) The role of social and decision sciences in
1325	communicating uncertain climate risks, Nature Climate Change 1, 35-41.
1326	Pätsch, J., Lenhart, HJ. (2011) Daily nutrient loads of Nutrients, Total Alkalinity,
1327	Dissolved Inorganic Carbon and Dissolved Organic Carbon of the European
1328	continental rivers for the years 1977-2009. Berichte aus dem Zentrum fur Meeres-
1329	und Klimaforschung, Reihe B: Ozeanographie, 50, Zentrum für Meeres- und
1330	Klimaforschung, Hamburg, 159 pp.
1331	Prince, E. D., and Goodyear, C. P. (2006) Hypoxia-based habitat compression of tropical
1332	pelagic fishes, Fisheries Oceanography 15, 451-464.
1333	Prince, E.D., Luo, J., Goodyear, C.P., Hoolihan, J.P., Snodgrass, D., Orbesen, E.S.,
1334	Serafy, J.E., Ortiz, M., Schirripa, M.J. (2010) Ocean scale hypoxia-based habitat
1335	compression of Atlantic istiophorid billfishes. Fish. Oceanogr. 19, 448-462.
1336	Rabalais, N. N. (2004), Eutrophication, in: The Global Coastal Ocean Multiscale
1337	Interdisciplinary Processes, edited by: Robinson, A. R., McCarthy, J., and
1338	Rothschild, B. J., The Sea, Vol. 13, Harvard University Press, 819–865, 2004.
1339	Rabalais, N. N., R. J. Diaz, L. A. Levin, R. E. Turner, D. Gilbert and J. Zhang. (2010)
1340	Dynamics and distribution of natural and human-caused coastal hypoxia.
1341	Biogeosciences 7: 585-619.
1342	Rabalais, N.N., WJ. Cai, J. Carstensen, D.J. Conley, B. Fry, X. Hu, Z. Quiñones-Rivera,
1343	R. Rosenberg, C.P. Slomp, R.E. Turner, M. Voss, B. Wissel, and J. Zhang. 2014.
1344	Eutrophication-driven deoxygenation in the coastal ocean. Oceanography
1345	27(1):172–183, http://dx.doi.org/10.5670/oceanog.2014.21.
1346	Rabouille, C., Conley, D.J., Dai, M.H., Cai, W.J., Chen, C.T.A., Lansard, B., Green, R.,
1347	Yin, K., Harrison, P.J., Dagg, M., McKee, B., (2008). Comparison of hypoxia
1348	among four river-dominated ocean margins: The Changjiang (Yangtze),
1349	Mississippi, Pearl, and Rhone rivers. Continental Shelf Research 28, 1527-1537.
1350	Rabouille, O., O. Radakovitch, C. Estournel, X. Durrieu de Maron, C. Guieu, and R.
1351	Sempere. (2013) The Fate of Rhone River carbon on the mediterranean
1352	continental margin, its export to the open sea and its relation to climatic
1353	parameters. Oral Presentation, IMBER IMBIZO, Jan. 2013, Goa, India.
1354	Ragueneau, O., Chauvaud, L., Moriceau, B., Leynaert, A., Thouzeau, G., Donval, A., Le
1355	Loc'h, F. and Jean, F., (2005) Biodeposition by an invasive suspension feeder
1356	impacts the biogeochemical cycle of Si in a coastal ecosystem (Bay of Brest,
1357	France). Biogeochemistry, DOI 10.1007/s10533-004-5677-3.
1358	Ragueneau, O., Conley, D.J., Ni Longphuirt, S., Slomp, C. et Leynaert, A., (2006) A
1359	review of the Si biogeochemical cycle in coastal waters, II: anthropogenic
1360	perturbation of the Si cycle and responses of coastal ecosystems. Dans: Land-
1361	Ocean nutrient fluxes: silica cycle. Ittekkot, V., Humborg, C., Garnier, J. (Eds.),
1362	SCOPE Book, Island Press, pp. 197-213.
1363	Raimonet, M., Ragueneau, O, Jacques, V. Corvaisier, R, Moriceau, B., Khripounoff, A.,
1364	Rabouille, C. (submitted) Rapid transport and high accumulation of riverine Si in
1365	the Congo deep sea fan (this volume).
1366	Reid,W. V., Chen,D., Goldfarb,L., Hackmann, H., Lee,Y. T., Mokhele,K., Ostrom, E.,
1367	Raivio, K.,Rockström, J.,Schellnhuber, H. J., Whyte,A. (2010) Earth System
1368	Science for Global Sustainability: Grand Challenges. Science 330, 916-917.
1000	Science for Grobal Sustainability. Grand Chantenges. Science 550, 710-717.

1369	Ribera d'Alcalà, M., Conversano, F., Corato, F., Licandro, P., Mangoni, O., Marino, D.,
1370	Mazzocchi, M. G., Modigh, M., Montresor, M., Nardella, M., Saggiomo, V.,
1371	Sarno, D., Zingone, A. (2004) Seasonal patterns in planktonic communities in a
1372	pluriannual time series at a coastal Meditrranean site (Gulf of Naples): an attempt
1373	to discern recurrences and trends, Scientia Marina, 68(Suppl.1), 65-83,
1374	Robbins LL, Wynn JG, Lisle JT, Yates KK, Knorr PO, et al. (2013) Baseline monitoring
1375	of the Western Arctic Ocean estimates 20% of Canadian Basin surface waters Are
1376	undersaturated with respect to aragonite. PLoS ONE 8(9), e73796.
1377	doi:10.1371/journal.pone.0073796
1378	Sattar, M.A., C.Kroeze, and M. STrokal. 2014. The increasing impact of food production
1379	on nutrient export by rivers to the Bay of Bengal 1970-2050. Mar. Poll. Bull. 80:
1380	168-178.
1381	Schuur, E.A.G., (2013) High risk of permafrost thaw. Lawrence Berkeley National
1382	Laboratory. http://dx.doi.org/doi: 10.1038/480032a
1383	Send, U., and Nam, S. (2012) Relaxation from upwelling: The effect on dissolved oxygen
1384	on the continental shelf, Journal of Geophysical Research: Oceans (1978, Äi2012)
1385	117.
1386	Soetaert, K., Middelburg, J.J., Heip, C., Meire, P., Van Damme, S., Maris, T., (2006)
1387	Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt
1388	estuary (Belgium, The Netherlands). Limnology and Oceanography 51 (1, Part 2),
1389	409e423.
1390	Srinivas, B., Sarin, M.M. and Sarma, S.S.V.V. (submitted) Atmospheric outflow of
1391	nutrients to the Bay of Bengal: Impact of continental sources. Journal of Marine
1392	Systems (this volume)
1393	Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace,
1394	D. W., Brandt, P., and Kortzinger, A. (2011) Expansion of oxygen minimum
1395	zones may reduce available habitat for tropical pelagic fishes, Nature Climate
1396	Change 2, 33-37.
1397	Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C. (2010) Ocean oxygen
1398	minima expansions and their biological impacts, Deep Sea Research Part I:
1399	Oceanographic Research Papers 57, 587-595.
1400	Swaney, D. P., Hong, B., Selvam, P., Howarth, R.W., Ramesh, R., Ramachandran, P.,
1401	(2013) Net anthropogenic nitrogen inputs and nitrogen fluxes from Indian
1402	watersheds: a preliminary assessment, Journal of Marine Systems, submitted.
1403	Swaney, D. P., Hong, B., Ti, C., Howarth, R. W., and Humborg, C. (2012) Net
1404	anthropogenic nitrogen inputs to watersheds and riverine N export to coastal
1405	waters: a brief overview, Current Opinion in Environmental Sustainability 4, 203-
1406	211.
1407	Taylor, G.T., Muller-Karger, F.E., Thunell, R.C., Scranton, M.I., Astor, Y., Varela, R.,
1408	Ghinaglia, L.T., Lorenzoni, L., Fanning, K.A., Hameed, S., Doherty, O., (2012)
1409	Ecosystem responses in the southern Caribbean Sea to global climate change. P.
1410	Natl. A. Sci. USA, doi:10.1073/pnas.1207514109
1411	Thomas, P., Rahman, M. S., Kummer, J. A., and Lawson, S. (2006) Reproductive
1412	endocrine dysfunction in Atlantic croaker exposed to hypoxia, Marine
1413	environmental research 62, S249-S252.

1414 Thomsen, J., Gutowska, M., Saphorster, J., Heinemann, A., Trubenbach, K., Fietzke, J., 1415 Hiebenthal, C., Eisenhauer, A., Kortzinger, A., and Wahl, M. (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by 1416 1417 high levels of future acidification, Biogeosciences 7, 3879-3891. 1418 Trenberth, K.E., Jones, P.D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., 1419 Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B., Zhai, P., 1420 (2007) Observations: Surface and Atmospheric Climate Change. In: Climate 1421 Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 1422 1423 [eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.I.]. Cambridge University Press, Cambridge, United 1424 Kingdom and New York, NY, USA. 1425 1426 Waldbusser, G.G., E.N. Powell and R. Mann. (2013) Ecosystem effects of shell 1427 aggregatioins and cycling in coastal waters: an example of Chesapeake Bay oyster 1428 reefs. Ecology 94, 895-903. 1429 Walsh, J. J., Biscaye, P. E., and Csanady, G. T. (1988) The 1983-1984 shelf edge 1430 exchange processes (SEEP)-I experiment: hypotheses and highlights, *Continental* Shelf Research 8, 435-456. 1431 Wassmann, P. (2011) Arctic Marine ecosystems in an era of rapid climate change. 1432 1433 Progress in Oceanography 90: 1-17. Wassmann, P., Lenton, T., (2012) Arctic tipping points in the Earth System perspective. 1434 AMBIO 41(1), 1-9. 1435 1436 Weinberg, J. (2005) Bathymetric shift in the distribution of Atlantic surfclams: response to warmer ocean temperature. ICES Journal of Marine Science, 62: 1444-1453. 1437 1438 Whiteman, G., Hope, C., Wadhams, P., (2013) Vast costs of Arctic change. Nature, 499: 1439 401-403, doi:10.1038/499401a. Wiltshire, K. H., Malzahn, A. M., Wirtz, K., Greve, W., Janisch, S., Mangelsdorf, P., 1440 1441 Manly, B. F., Boersma, M. (2008) Resilience of North Sea phytoplankton spring 1442 bloom dynamics: An analysis of long-term data at Helgoland Roads. *Limnology* 1443 and Oceanography 54(4), 1294-1302. Wishner, K.F., Outram, D. M., Seibel, B. A., Daly, K., and Williams, R. L. (2013) 1444 1445 Zooplankton in the Eastern Tropical North Pacific: Boundary effects of oxygen 1446 minimum zone expansion. Deep-Sea Research I 79, 122-140. Wooster, W. S., and Zhang, C. I. (2004) Regime shifts in the North Pacific: early 1447 1448 indications of the 1976-1977 event, Progress in Oceanography 60, 183-200. World Resources Institute, (2013) Interactive map of eutrophication & hypoxia. 1449 Available online: http://www.wri.org/resource/interactive-map-eutrophication-1450 hypoxia (accessed 1 January, 2014). 1451 Yan, W.J., Mayorga, E., Li, X.Y., Seitzinger, S.P., Bouwman, A.F., (2010) Increasing 1452 anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang 1453 River basin under changing human pressures. Global Biogeochemical Cycles, 1454 24 Gb0a06, doi: 10.1029/2009gb003575. 1455 Yasuhara, M., Hunt, G., Breitburg, D., Tsujimoto, A., and Katsuki, K. (2012) Human-1456 induced marine ecological degradation: micropaleontological perspectives, 1457 1458 Ecology and Evolution 2, 3242-3268.

1459	Yu, P. C., Matson, P. G., Martz, T. R., and Hofmann, G. E. (2011) The ocean
1460	acidification seascape and its relationship to the performance of calcifying marine
1461	invertebrates: Laboratory experiments on the development of urchin larvae
1462	framed by environmentally-relevant pCO2/pH, Journal of Experimental Marine
1463	Biology and Ecology 400, 288-295.
1464	Zhai, WD., Zheng, N., Huo, C., Xu, Y., Zhao, HD., Li, YW., Zang, KP., Wang, J
1465	Y., and Xu, XM. (2013) Subsurface low pH and carbonate saturation state of
1466	aragonite on China side of the North Yellow Sea: combined effects of global
1467	atmospheric CO2 increase, regional environmental changes, and local
1468	biogeochemical processes, Biogeosciences Discussions 10, 3079-3120.
1469	Zhai, W.D., Dai, M.H., Chen, B.S., Guo, X.H., Li, Q., Shang, S.L., Zhang, C.Y., Cai, W.J.,
1470	Wang, D.X., 2013b. Seasonal variations of sea-air CO2 fluxes in the largest
1471	tropical marginal sea (South China Sea) based on multiple-year underway
1472	measurements. Biogeosciences, 10(11): 7775-7791
1473	Zhang, C. I., and Gong, Y. (2005) Effect of ocean climate changes on the Korean stock of
1474	Pacific saury, Cololabis saira (Brevoort), Journal of Oceanography 61, 313-325.
1475	Zhang, J., Yu, Z., Raabe, T., Liu, S., Starke, A., Zou, L., Gao, H., and Brockmann, U.
1476	(2004) Dynamics of inorganic nutrient species in the Bohai seawaters, Journal of
1477	Marine Systems 44, 189-212.
1478	Zhu, ZY., Zhang, J., Wu, Y., Zhang, YY., Lin, J., Liu, SM., (2011) Hypoxia off
1479	the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter
1480	decomposition. Marine Chemistry 125, 108–116.
1481	Zillén, L., D.J. Conley, T.Andren, E. Andren, S. Bjorck (2008) Past occurrences of
1482	hypoxia in the Baltic Sea and the role of climate variability, environmental
1483	change and human impact. Earth-Science Reviews 91, 77-92.
1484	Zingone, A., Dubroca, L., Iudicone, D., Margiotta, F., Corato, F., Ribera d'Alcalà, M.,
1485	Saggiomo, V., Sarno, D., (2010) Coastal phytoplankton do not rest in winter.
1486	Estuaries and Coasts 33, 342-361.
1487	

1488Table 1. Environmental drivers and ecosystem responses on continental margins: Case studies1489Consequences &

Consequences & regional responses		Drivers of environmental change on continental margins from regional to global scale									
(Supplements*)	Land use change	Damming, diking, water diversion	Alien species	Anthropogenic nutrients & pollutants	Energy & mineral extractions from the sea	Overfishing	Changes in water cycle	Rising sea level	Warming	Climate change & oscillation	Actions taken
General consequences	Changes in soil qual. & erosion in watershed	Sed. retention, decr. runoff	Change in ecosystem structure	Eutrophication, change in nutrient ratios & plankton community, HAB, hypoxia	Change in seascape & marine environments	Decr. fish stock, trophic cascades	Extreme weather, flooding, drought	Lowland flooding, salt water intrusion	Incr. stratification, drop in O ₂ , incr. vulnerability	Change in ocean circulation, upwelling,	
					America	n margins					
Cariaco Basin (B1)						Collapse of Spanish sardine (<i>Sardinella</i> <i>aurita</i>)	Freshening of surface waters due to higher regional precipitation		>1°C incr. since 1995	Decr. upwelling, PP and phytoplankton biomass; incr. N* ., change in ecosystem structure; Increasing zooplankton biomass	
Chesapeake Bay (B2)	Degrading water qual. & clarity	Blocked migratory pathways for anadromous fish	Decreased oyster populations and increased piscivory	Seasonal hypoxia, decline of SAV, fish advisories		extirpation of sturgeon, collapse of oyster fishery	Salinity drop following Tropical Storm Agnes	Rate of sea level rise much higher than average		Change in water exchange rate	Acts for reducing nutrients & restoring SAV, oysters; removing blockages to fish
San Francisco Bay (B3)		Decreased sediment supply, shrinking mudflats, incr. salinity	Decreased phytopl. PP due to Asian clams	Degrading water quality			Drought and water diversion trigger invasion			Change in bio-community	1972 Clean Water Act
					Asian	margins					
Bohai Sea (B4)	Changes in tidal regime	Massive drop in water discharge and sediment load, fishery collapse in 1990s		High N, Iow P and Si, decrease in diatom/ dinoflagellate ratio		Decrease in fish biomass; dominant fish species changed from bottom to pelagic fish			0.011oC per year increase during the 1960s-1990s		Artificially controll water discharge ir Yellow River
European margins							1				
Mediterranean - N. Adriatic Sea (B5)				N/P increase, anoxic events (1970s-1980s), loss of macrobenthos; trend reversed recently.		Loss of demersal fish, small pelagic fish and top predators		Reduced river flow, salinity rise			Mandates of reduction in P loading
North Sea (B6)		Altered mudflat		Massive coastal environment deterioration in 1980s	Massive wind farming				Temporally and regionally faster than global mean, provoked ecosystem shift	NAO state determines circulation mode and nutrient inventories	EU wide mitigatio Marine Strategy Framework Directive

*Note: More descriptions and references about the case studies are presented in electronic supplements listed under each case heading.

Increase in N*. Whether this is due to increased N fixation is being explored

1490

1491 Table 2. The temporal trends of the environmental variables presented in Fig. 3. All

trends are statistically significant except those shown in italics. (For more detailed

information on the linear regressions see Supplement A.)

1494

Site	SST (°C yr-1)	SSS (yr ⁻¹)	· · ·	DIN (Kt yr ⁻¹)	DIP (Kt yr ⁻¹)	Chl (mg m ⁻³ yr ⁻¹)	O ₂ saturation (% yr ⁻¹)
Bohai Sea	0.0022	0.0632	-0.75 ⁽¹⁾				
Cariaco Basin	0.0895	-0.0097				-0.0462	-0.105
East China Sea	0.0282		3.34	26.1		0.0135	-0.536
North Sea	0.0376 ⁽²⁾	0.0007	-7.44	-12.1	-2.3		
SF Bay	-0.0290 ⁽³⁾	0.0427				0.131	-0.290 ⁽³⁾

1495 Notes: (1) Water discharge of the Yellow River that empties into the Bohai Sea. (2) The
1496 mean temperature of the top 10 m in the North Sea in winter months (DJF). (3) The
1497 bottom temperature of the USGS Station 18 in the San Francisco Bay.

1498

1499

1501 Figure Captions

1502

1503 **Figure 1.** Map showing locations of time-series observations that exemplify the interplay 1504 of natural variability, CO₂-driven climate change and human activities to shape margin ecosystems. Each area is discussed in the manuscript or summarized in Table 1. 1505 1506 1. Arctic Sea; American margins: 2. Cariaco Basin, 3. Chesapeake Bay, 4. Gulf of 1507 Mexico off Louisiana, 5. San Francisco Bay, 6. Southern California Bight; African 1508 margins: 7. Canary Current System, 8. Congo River Submarine Canyon; Asian seas: 9. Bay of Bengal, 10. Bohai Sea, 11. East China Sea; European seas: 12. Baltic Sea, 13. 1509 1510 Black Sea, 14. Mediterranean - Corsica (Liguran Sea), 15. Mediterranean - N. Adriatic Sea, 16. North Sea. 1511

1512

Figure 2. Data plots of O_2 and pH illustrating time scales of natural hydrographic 1513 1514 variability in the nearshore southern California Bight, USA. (a) Decadal scale suggesting 1515 regime shifts (modified from McClatchie et al., 2010). (b) Interannual scale illustrating 1516 effects of ENSO at a site 6 km from Del Mar (from Nam et al., 2011) (c) Seasonal scale 1517 combining CalCOFI data at line 93 and continuous mooring measurements (from Send and Nam, 2012), (d) Event (week) scale illustrating upwelling (blue) and relaxation 1518 (green) phases (modified from Send and Nam, 2012), (e) semi-diurnal and diurnal scale 1519 variations in the La Jolla Kelp Forest during upwelling phase (blue) when there are strong 1520 semidiurnal signals and relaxation phase (green) when kelp influences the oxygen and pH 1521 1522 variability (Frieder et al., unpublished).

1523

1524 Figure 3. Time series of sea surface temperature (SST) (a), sea surface salinity (SSS) (b), 1525 nutrient loads (c), riverine discharge (d), chlorophyll-a (e), and saturation of dissolved 1526 oxygen (f) from the Cariaco Basin and San Francisco Bay (SF Bay) in the Americas, the 1527 East China Sea (ECS) and Bohai Sea (BH) in Asia, and the North Sea (NS) in Europe (See Fig. 1 for location of time-series stations). SST time series include values obtained 1528 1529 from satellite remote sensing monthly composites (lines without symbols) from NOAA's National Climatic Data Center (See Supplement A), and *in situ* observations (lines with 1530 symbols). Statistically significant regression (p < 0.1) results are shown as solid straight 1531 1532 lines; insignificant ones are shown as dashed lines. (See text).

1533

Figure 4. The relationship between nitrogen loading and fisheries landings as a function
of hypoxic area for mobile species in estuaries and semi-enclosed seas. Modified from
Breitburg et al., 2009b.

- 1537
- 1538
- 1539

Figure 1

Figure 4.

1642Table A1. Locations of margin time series observations and data sources.

Sites	Coordinates	Data sources	Remarks	
Bohai Sea $\begin{vmatrix} 3/-41^{\circ}N, 11/-\\121^{\circ}F \end{vmatrix}$		SSS: Lin et al. (2001) Discharge: Liu et al. (2012); Liu (this issue)	Domain for satellite SST data retrieval	
Cariaco Basin	10.2-11.0°N, - 64~66°W	SST: See text	Domain for satellite SST data retrieval	
CARIACO Sta	10° 30'N 64° 40'W	(http://imars.marine.usf.edu/car iaco/cariaco-ocean-time-series- program)	In situ observations	
East China Sea	28-32°N, 121- 125°E	SST: See text Discharge, DIN load: Liu et al. (this issue)	Domain for satellite SST data retrieval	
North Sea	53~57°N, 4~8.6°E	SST, SSS: (http://www.ices.dk/marine- data/dataset- collections/Pages/default.aspx) accessed on March 31, 2014 Discharge, nutrient loads: Pätsch and Lenhart (2011)	ICES data	
North Sea (L)	53-59°N, - 2~8°N	SST: See text	Larger domain for satellite SST data retrieval	
San Francisco Bay	38°50.8'N, 121°25.3'W	(<u>http://sfbay.wr.usgs.gov/access</u> /wqdata/index.html)	USGS Sta 18 (Point Blunt) Water depth = 43.0	
Coastal zone adjacent to SF Bay	36.2-38.1°N, 122.5- 124.7°W	SST: See text	Domain for satellite SST data retrieval	

Variables	Site	Period	Trend (per year)	n	\mathbb{R}^2	p
	Bohai Sea	1970-2012	0.0022	43	0.004	0.6830
	Cariaco Basin	1970-2012	0.0303	43	0.548	< 0.001
	Cariaco Basin	1995-2012	0.0351	18	0.168	0.0917
	CARIACO Sta	1995-2013	0.0895	198	0.058	< 0.001
SST (°C)	East China Sea	1970-2012	0.0282	43	0.438	< 0.001
	North Sea (winter)	1976-2013	0.0376	38	0.160	0.0129
	North Sea (L)	1970-2012	0.0301	43	0.493	< 0.001
	SF Bay	1990-2013	-0.0126	288	0.002	0.498
	Adj. SF Bay	1970-2012	-0.0087	43	0.053	0.138
	SF Bay bottom water	1990-2013	-0.0290	285	0.011	0.071
	CARIACO Sta	1995-2013	-0.0097	188	0.048	0.0025
SSS	North Sea (winter)	1976-2013	0.0007	38	0.001	0.846
	SF Bay	1990-2013	0.0427	287	0.004	0.300
	Bohai Sea	1960-1999	0.0632	40	0.287	< 0.001
Discharge	Changjiang	1970-2002	3.34	33	0.068	0.142
$(\mathrm{km}^3 \mathrm{yr}^{-1})$	Huanghe	1960-2009	-0.750	40	0.251	< 0.001
	North Sea	1977-2010	-7.43	34	0.103	0.064
DIN load	Changjiang	1970-2002	0.0261	33	0.671	< 0.001
(kt yr ⁻¹)	North Sea	1977-2010	-0.0121	31	0.601	< 0.001
DIP load (Kt yr ⁻¹)	North Sea	1981-2010	-2.28	30	0.596	< 0.001
Chl (mg m ⁻³)	CARIACO Sta	1995-2013	-0.0462	201	0.039	0.005
	East China Sea	1997-2010	0.0135	152	0.021	0.073
	SF Bay	1990-2013	0.131	279	0.151	< 0.001
	CARIACO Sta	1995-2013	-0.105	180	0.009	0.198
O2 satu. (%)	East China Sea	1981-2006	-0.536	9	0.390	0.072
	SF Bay bottom	1993-2013	-0.290	251	0.042	0.001

1646Table A2. Results of linear regression analysis of margin time series data. The1647statistically insignificant trends, defined as those with p > 0.1, are shown in italics.