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Abstract 

The hyperiid amphipod Phronima sedentaria experiences a temperature change of 15°C during 

diel migration in the Eastern Tropical North Pacific (ETNP) from 8-10°C at depth to 25-27°C at 

night in the surface waters. The aim of this study was to determine if the natural temperature 

gradient experienced by Phronima sedentaria results in a thermal stress response. Individuals 

were initially exposed to their night time temperatures (23°C) and subsequently subjected to 

temperatures within and above the range they typically experience. In the Eastern Tropical North 

Pacific P. sedentaria tolerates its normal night-time temperature (~23°C), but only for the 

duration of its stay there (~9 hours). Longer exposures (24 hours) result in elevated heat shock 

© 2015. This manuscript version is made available under the Elsevier user license
http://www.elsevier.com/open-access/userlicense/1.0/
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protein (hsp) expression. 29°C results in hsp expression, increased lactate production and 50% 

mortality at all exposure durations. This represents an upper critical temperature. Understanding 

the adaptations of pelagic amphipods to their current environment will help predict the 

physiological impacts of global warming for amphipods and their predators.  

 

Keywords: Phronima, hsp70, thermal stress, hyperiid amphipod, diel vertical migration, critical 

temperature, oxygen limited thermal tolerance 

 

1. Introduction 

 

Environmental changes that cause a reduction in performance or fitness are known as stress 

factors (sometimes referred to as stressors) (Schulte, 2014). Abiotic stress factors include 

hypoxia, acidification, and thermal extremes to name a few. Stress factors vary in temporal scale 

and level of intensity; from gradual seasonal changes, to drastic tidal or migratory variation. 

When one of these stress factors is impacting biological function of an organism (fitness) it is 

referred to as stressful or a stress (Schulte, 2014; Sørensen et al., 2003). The stress response of an 

organism is the behavioral and physiological adjustments to attempt to maintain fitness (Schulte, 

2014). During thermal stress enzymatic and structural proteins denature (unfold) which impacts 

their stability and kinetic properties (Somero, 1995). The stress response to thermal stress 

includes expressing heat shock proteins (hsps) (DuBeau et al., 1998) as well as antioxidases, 

proteases and DNA repairs systems (Sørensen et al., 2003). Hsps act as molecular chaperones 

that are able to prevent/reduce denaturing of proteins and target those that are irreversibly 

denatured for removal from the cell via the ubiquitin-proteosome pathway. Hsp 70 is one of the 
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most highly conserved heat shock proteins expressed in response to hypoxia and osmotic stress 

and is especially noted for its role in recovery from thermal stress (Feder and Hofmann, 1999).  

During stress the amount of denatured proteins increases, which requires hsp 70 to chaperone 

these proteins to prevent damage to the cell. In response to thermal stress there is an upregulation 

of hsp 70 concentrations proportional to the amount of denatured proteins. Therefore Hsp 70 is a 

biochemical indicator for the degree of protein unfolding in a cell and an indirect gauge of 

protein damage (Hofmann, 2005). At a certain upper temperature beyond optimal conditions, 

referred to as the critical temperature, organisms are not able to perform normally. At this critical 

temperature there is an increase in hsp expression and a failure of ventilatory or circulatory 

systems which results in reduced aerobic scope. This reduction in aerobic scope occurs even in 

oxygenated conditions and results in the transition to anaerobic metabolism in an attempt to 

continue ATP production (Pörtner, 2010).  

The thermal stress response is especially important for aquatic ectotherms since their body 

temperature fluctuates over the full range of their habitat temperatures (Sokolova and Portner, 

2003). Diel migrators experience large temperature changes in their natural environment, 

spending the day in deeper colder waters and nighttime foraging near the surface. Phronima 

sedentaria (Forskål, 1775) is an abundant species of diel migrating hyperiid amphipod found 

throughout the world oceans (Shih, 1969; Shulenberger, 1977; Vinogradov et al., 1996; 

Voznesensky et al., 2004). P. sedentaria exhibits no apparent differences among age classes in 

its patterns of diel migration (Diebel, 1988). 

While most pelagic species of  amphipods “hitch-hike” on gelatinous zooplankton that serve as 

physical and metabolic substrate (Gasca and Haddock, 2004; Harbison et al., 1977; Madin and 

Harbison, 1977), the relationship between P. sedentaria and its parasitized host is unique in that 
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the host is transformed by the parasite (Land, 1992). Phronimids eat the internal tissue of their 

siphonphore or tunicate host leaving the remaining gelatinous matrix in a barrel shape brood 

chamber (Diebel, 1988; Hirose et al., 2005; Laval, 1978) that is propelled through the water with 

the urosoma (tail) (Land, 1992).   

P. sedentaria may encounter a temperature change of 15°C during its diel vertical migrations, 

experiencing surface temperatures approaching 30°C in some regions. Such wide temperature 

variation within the natural range of a species can induce a stress response (Hofmann and 

Somero, 1995). Furthermore, the maximum habitat temperatures of many warm-adapted 

organisms (such as those found in the tropics) are near their upper critical temperature. 

Additional increases in temperature due to climate change may not be tolerated by such 

organisms (Somero, 2010). Oceanic temperatures have increased over the past century as a likely 

result of anthropogenic carbon dioxide emissions (Trenberth et al., 2007). Increasing 

environmental temperatures are predicted to affect the physiological performance, and 

consequently the vertical distribution and ecology of marine organisms (Doney et al., 2012; 

Saltzman and Wishner, 1997; Seibel, 2011; Somero, 2002). If existing night time temperatures 

are stressful for diel migrators and they are not able to adapt, their depth range will not be 

sustainable at current latitudes in the future. Determining how close to thermal limits 

zooplankton are currently living is an important step to project ecosystem response to climate 

change. 

We determined the critical temperature for a tropical population of Phronima sedentaria from 

the Eastern Tropical North Pacific. The expression of hsp 70 and the production of the anaerobic 

end product, lactate, were quantified at temperatures spanning the range experienced by 

Phronima sedentaria across their vertical distribution to determine what temperatures induce a 
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stress response. Individuals were exposed to these temperatures for durations equivalent to the 

approximate time they are at the surface (9 hours) as well as shorter and longer time frames. We 

tested the hypothesis that the highest temperatures experienced within the natural range can 

induce a stress response that would result in an increase in synthesis in heat shock protein 70, 

and a shift to anaerobic metabolism.  

 

2. Materials and methods 

 

2.1.Collection 

Phronima sedentaria (Figure 1) were collected in the Eastern Tropical North Pacific (ETNP) at 

the Costa Rica Dome (8.5°N; 90°W; Figure 1). The research cruise on the R/V Knorr (Woods 

Hole Oceanographic Institute) was from 8 December 2008 - 6 January 2009. Collection was 

done using a tucker trawl with a thermally insulated cod end (Childress et al., 1978). Individuals 

were identified according to published taxonomic keys (Shih, 1991; Vinogradov et al., 1996). 

Physical vouchers to confirm the identification were preserved in formaldehyde and housed in 

the Seibel lab at the University of Rhode Island. 

Individuals were collected from two separate trawls on January 1
st
 and 2

nd
 2009 in discrete tows 

between the depths of 250 and 300m with a speed of 1.5- 2 knots. The first trawl was opened at 

depth at 1509 local time (2109 GMT) at 09 º 10.4370 N, 89 º 56.5019 W and closed at 1539 

(2139 GMT). The second tow was opened at depth at 1525 local time (2125 GMT) at  09 º 

01.6328 N,  89 º 59.1241 W and closed at 1614 local time (2214 GMT). The shipboard CTD was 

SBE9+ (Sea-Bird electronics, USA) and included sensors for oxygen (SBE 43), temperature 

(SBE 3T), conductivity (SBE 4C), pressure (Digiquartz) and a SBE 5 pump. CTD data from the 
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same day show that the ambient temperature where these individuals were collected was 

approximately 12° Celsius (Figure 2). Sightings from blue water SCUBA diving, and other 

trawls have shown that this species can be found near the surface at night in water at 

temperatures of 23-25° Celsius (personal observations). Collection at depth provided control of 

the duration individuals were exposed to surface temperatures.  

2.2. Thermal stress 

We employed a unique experimental protocol designed to test both the time-relative tolerance to, 

and recovery from, the natural night-time temperatures experienced by Phronima sedentaria. 

Individuals were sorted immediately after retrieval and identified quickly under a microscope to 

reduce stress. Individuals in good condition (intact with no injuries) were separated into chilled 

filtered seawater until experimentation and held for a maximum of a half hour before initial 

treatments. For the initial exposure treatment (I-exposure) individuals were placed in plastic 

containers with 0.2 micron filtered sea water at their approximate nighttime temperature (23°C) 

for 3, 9 or 24 hours. The 9 hour exposure is similar to the duration diel migrators spend in 

surface waters.  

For the subsequent exposure (S-exposure) individuals were then transferred to open scintillation 

vials (25ml volume) containing 0.2 micron filtered seawater at 23°C and placed in separate wells 

of an aluminum thermal gradient block (Figure 3, (Henkel and Hofmann, 2008). The vials took 

~15 minutes to get to the desired temperature. S-exposures lasted five hours at temperatures: 10, 

15, 20, 23, 25 and 29 ± 1 °C.  

The thermal block consisted of a piece of aluminum with holes drilled through each end fitted 

with brass inlet and outlet ports to accommodate heating and chilling lines. The heating and 

chilling lines were connected to temperature controlled water baths (Lauda, Germany). Water 
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flowed directly against the aluminum for optimal thermal transfer. Evenly spaced wells were 

drilled in the top of the block in rows of four to allow up to four replicated experiments at each 

temperature. Prior to experiments the wells were filled with fresh water and allowed to come to 

temperature. Once the wells were at the appropriate temperature the scintillation vials with 

filtered seawater and the individual P. sedentaria were floated in the well.   

Table 1 outlines the number of individuals for each treatment. During the experiment the thermal 

block was loosely covered by black plastic bags to block light. Oxygen concentrations of the 

water in experimental vials was checked using a Clark-type oxygen electrode (1302 Strathkelvin 

Instruments, United Kingdom; (Clark, 1956)) to make sure water remained well above the 

published critical oxygen partial pressure of 2.11 kPa (28 µM at 10°C (Childress, 1975). For this 

study 24 hour I-exposure specimens were frozen at 0100, 9 hour I-exposure specimens were 

frozen at 1300 and 3 hour I-exposure specimens were frozen at 0700. No significant differences 

were found between individuals run at different times of day and results are combined for all 

analyses. Following S-exposure, individuals were then taken out of the vial with feather forceps 

and blotted dry before being immersed in liquid nitrogen and stored at -80 degrees Celsius. 

 

2.3. Lactate 

Individual whole frozen individuals were ground on ice in a prechilled glass tissue homogenizer 

(Kimble Chase, USA) using a 1/3 dilution with grinding buffer, 465mm NaCl, 19mm KCl, 20 

mm Tris, 1mM EDTA, containing a 1 x protease inhibitor cocktail (Sigma p2714) and 0.1%  

detergent (IGEPAL Sigma 18896). The homogenate was centrifuged at 2000 rpm for five 

minutes at 4°C and the supernatant removed. L-lactate concentrations were measured on the 

Accutrend lactate meter using a 25 µl sample of supernatant. All samples were assayed in 
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duplicate and compared to a lactate standard curve (sodium lactate, L7022, Sigma- Aldrich, MO, 

USA) which was run daily. Remaining supernatant was flash frozen in liquid nitrogen and stored 

at -80 until needed for western blots. 

 

2.4. Western blots for hsp70 concentration 

Lysate was thawed on ice and centrifuged at 13400 rpm for 2 minutes. Protein concentration was 

determined using the Pierce BCA protein assay (Bio-Rad, USA). Thirty µg total protein of each 

sample lysate was mixed with 1/3 lysate volume of 4x NuPAGE LDS buffer containing 10% β-

mercaptoethanol and then boiled for 10 minutes at 95ºC. Lysate was loaded on to 4-12% bis tris 

gels (Invitrogen). Heat shocked HeLa cells (Enzo, USA, ADI-LYC-HL101) were added as a 

control between gels by using their protein band for comparison of relative intensities between 

samples. Proteins were electrophoresed at 120V for 15 minutes, and 150V for approximately 2 

hours in 1X MOPS running buffer. Gels were soaked in transfer buffer (5.82g Tris, 2.93g 

Glycine, 2x 940 µl 20% SDS, 100mL Methanol, q.s. to 1000ml with deionized water) for 20 

minutes and electroblotted (Bio Rad, Trans-blot 170-3940) for 30 minutes at 25 volts onto a 

polyvinylidene difluoride (PVDF) membranes (Fisher IPVH00010). The membrane was washed 

twice in 10X TBST (Tris Buffered Saline: 400g NaCl, 10g KCl, 150g Tris, 5mL tween into 4.5L 

of DI water, pH of 7.4. quantum satis DI water for 5L total). The membrane was then blocked in 

5% milk powder (diluted in TBST) for one hour at room temperature. This was followed by 3 

five minute TBST washes. The membrane was then incubated in a 1:1,000 dilution of hsp 70 

antiserum (Stressgen SPA-822) overnight at 4 ºC. After washing, the secondary antibody (anti-

mouse Igc:HRP-Linked, GE Healthcare Biosciences NA931) was added for one hour at room 

temperature. 
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Immunoreactive proteins were then visualized with Chemiluminecent substrate Western 

lightening (Perkin Elmer, NEL102001EA) for 2 minutes. Following a one minute exposure, on 

kodak biomax XAR film (Sigma, F5388-50EA) the film was developed and HSP 70 expression 

was determined semi-quantitatively using Image J software. 

 

2.5. Statistical analysis 

Statistics were performed using the software SAS version 9.3 (SAS institute inc. USA). One-way 

Analysis of Variance (ANOVA), with between subjects design were conducted to compare 

differences in lactate accumulation or hsp 70 concentration between treatments. 

 

3. Results 

3.1 Collection 

At the time of collection surface temperatures of the ETNP were between 23 and 25°C. The 

maximum surface temperature recorded in the ETNP during this cruise was 27°C. Based on 

published distribution for Phronima sedentaria, temperatures at the deepest range of daily 

migrations are between 8 and 10°C. This indicates Phronima sedentaria may experience a 

temperature change of 13-17°C in the ETNP during diel migration in the ETNP (Figure 2). 

 

3.2 Thermal stress, and Lactate concentrations 

There was no significant difference in mortality or lactate accumulation (ANOVA: p>0.1) for 3, 

9 or 24 h I-exposure to nighttime temperature (23°C). Data for those exposure times are averaged 

within each temperature for subsequent analyses of lactate concentrations. There was no 
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significant difference in any parameter between experiments conducted at different times of the 

day. No further evaluation of diel rhythms was conducted. 

There was no mortality of individuals between 10 and 20°C.  At 23°C, 1 of 7 individuals died 

(13%) and at 25°C, 2 of 8 individuals died (30%); Table 1). The most significant mortality 

occurred at 29°C, at which temperature 50% of the experimental individuals died (4 out of 8 total 

individuals; Table 1). Dead individuals had a significantly higher accumulation of lactate, and so 

are not included further. 

Exposure to 29°C resulted in a significant increase in lactate accumulation relative to all other 

temperatures (Figure 4; one way ANOVA, F(5,15)=8.26; p=0.0025). At 29°C the average L-

lactate production in live individuals was 20.5 ±4.52 µmol g
-1

. For all other S-exposure 

temperatures (10-25°C) there was no significant difference in lactate accumulation. The average 

lactate accumulation after S-exposure to 10, 15, 20, 23 or 25 °C was 2.89±0.797 µmol g
-1

.  A 

previous study on P. sedentaria found that individuals frozen immediately after collection had 

very high levels of lactate (≥20 µmol g
-1

) indicating use of anaerobic metabolism in oxygenated 

conditions, which is thought to be a result of capture stress (Elder and Seibel, In Revision). The 

low values measured here at temperatures below 29°C indicated that acclimation time was 

sufficient to recover from collection stress. 

 

3.3 Western blots 

Western blot analysis using an antibody for hsp 70 revealed one band occurring at approximately 

70kDa (Figure 5). Due to low sample size, no significant differences were found between 

individuals S-exposed to 23 or 25°C following I-exposure at 23°C. These individuals were 

combined and are designated 24°C S-exposure in Figure 6. Individuals I-exposed to 23°C for 
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only 3 hours had significantly lower hsp70 levels than either 9 or 24 hour I-exposed individuals 

at all S- exposure temperatures (ANOVA: F(2,47)=7.82; p<0.0012; Figure 6). There was no 

difference in hsp70 expression between the 9 and 24 h I-exposures at 10-20°C S-exposure. For 

individuals in the 24 h I-exposure, hsp70 levels were elevated at 29°C compared to lower 

temperatures for that I-exposure duration (Figure 6, ANOVA: F(5,24)=2.57, P<0.0535). 

Elevated temperature (29°C) did not induce hsp70 expression in individuals I-exposed for 3 

hours at 23°C (Figure 6). There were no significant differences in hsp expression within a single 

temperature for the S-exposures other than 29C. At 10°C (one-way ANOVA f(2,8)=1.63, 

P>0.2548) and 15°C (one-way ANOVA f(2,8)=1.85, p>0.1675) there were nearly significant 

differences. 

 

4. Discussion  

During daily migrations Phronima sedentaria experiences a temperature change of ~15°C 

(Figure 2) with sustained upper temperatures near 23°C at night. P. sedentaria migrates between 

the surface and 200-350m during diel migration (Shih, 1991; Shulenberger, 1977). This 

temperature change when migrating through the thermocline would be rapid, with a change of up 

10°C degrees across 50m (Figure 2). For this study we assessed mortality, lactate and hsp 70 

accumulations in individuals initially exposed to nighttime temperature (23°C) for varying 

durations to assess both the time-sensitive stress response and required recovery temperature. 

The stress response consists of physiological adjustments to attempt to maintain fitness. We 

predicted that the temperatures routinely experienced by P. sedentaria within its natural range 

would induce a stress response. If this stress response occurred, it would result in a shift to 

anaerobic metabolism due to oxygen-limitation (discussed below; Pörtner, 2002) that can be 
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measured as an increase in lactate production under oxygenated conditions. In addition, a stress 

response would result in an increase in hsp 70 concentrations. Three hour initial exposure 

individuals had consistently lower hsp 70 levels than individuals with 9 and 24 hour initial 

exposures (Figure 6). This indicates that longer durations did induce some stress response. There 

was an increase in both lactate and hsp70 at 29°C. Although this temperature was not experience 

during our expedition (January), surface temperatures in the Eastern North Tropical Pacific can 

reach 29°C (Pennington et al., 2006). It is possible that P. sedentaria adjusts their physiological 

temperature tolerance seasonally, a follow up study in this region in the summer would 

determine that. At the S-exposure temperatures other than 29°C, there was no significant 

difference in hsp expression when comparing the I-exposure duration. This is in part because of 

large variation in hsp expression for the 9 and 24 hour individuals. At 10 and 15°C at least one 

individual at 9 and 24 hours had a low hsp expression similar to the 3 hour individuals. 

The 13% mortality at 23°C and 30% mortality at 25°C (Table 1) may indicate some amount of 

stress at night time temperatures (although sample sizes are too low to place much confidence in 

the mortality analysis). The modest heat-shock response observed may be necessary for these 

amphipods to survive the 8 hours typically spent in near-surface waters. In all initial exposure 

treatments, including 3-hour individuals, subsequent exposure to 24°C for five hours did not 

result in additional significant hsp70 expression. The less than 30% mortality and lack of an 

increase in lactate or hsp 70 suggests that P. sedentaria is tolerant of nighttime temperatures for 

at least 8 hours, equivalent to its nightly exposure duration before returning to cooler depths. 

Pörtner (2002) has suggested that upper critical temperatures are related to a mismatch between 

oxygen supply and demand. This is supported by an elevation in lactate at 29°C. However, 

lactate levels did not increase at temperatures below 29°C at any initial exposure duration. This 



13 

 

suggests that the heat-shock response in the 9 and 24-hour initial exposures is independent of 

oxygen stress.  In addition temperatures below 23°C did not result in a reduced amount of lactate 

production or hsp70 concentrations (Figures 5 and 7), indicating that the low lactate levels 

measured were a true “basal” level. There was no significant mortality at temperatures below 

23°C (Table 1). This suggests that the modest heat-shock response at temperatures below 29°C 

was successful at protecting the individual from detrimental effects of thermal stress. 

At 29°C P. sedentaria had a significant increase in lactate production (Figure 4), hsp 70 

concentrations (Figure 6), and mortality (Table 1). This indicates that the critical temperature 

range for Phronima sedentaria in the ETNP is between 26 and 29°C, which is slightly higher 

than the ambient surface temperatures during our winter expedition. Summer temperatures can 

surpass 29°C in the ETNP (Pennington et al., 2006). 

The increase in lactate production at 29°C represents the onset of anaerobic metabolism. At their 

critical temperature, individuals may experience a failure of ventilatory or circulatory systems to 

meet elevated oxygen demand, which results in reduced aerobic scope and a transition to 

anaerobic metabolism under oxygenated conditions. This loss of system function is thought to 

reflect the earliest level of thermal stress and is known as oxygen and capacity limited thermal 

tolerance (Pörtner, 2010). Our measurements suggest that thermal stress begins earlier than this 

critical or “pejus” (Latin for 'turning worse') temperature but protective mechanisms are 

effective, at least for finite periods of time. Although we did not test heart or ventilatory function 

directly, the onset of anaerobic metabolism in aerobic conditions is consistent with this mismatch 

in oxygen supply and an inability to deliver enough oxygen to the body (Pörtner, 2010). Survival 

beyond the critical temperature leads to a decline in performance and is time limited due to low 

ATP yield from anaerobic glycolysis (Pörtner, 2002; Pörtner, 2010). 
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The pejus range is the range when individuals are past optimum conditions but can still survive 

with reduced aerobic activity (Jost et al., 2012). During the pejus range, there is an increase in 

ventilation rate with temperature to compensate for increasing oxygen demand with temperature. 

At the upper pejus temperature ventilation rate reaches a maximum level and haemolymph Po2 

begins to decrease (Frederich and Pörtner, 2000). Oxygen supply to tissues and overall aerobic 

scope, is obviously linked to fitness and functioning at the ecosystem level (Clark et al., 2013; 

Pörtner, 2010). 

Lactate accumulation at 29° C in this study (20.5 ±4.52 µmol g
-1

, Figure
 
4) is similar to the 

lactate level of 17.15±4.75 µmol g
-1 

in the same species subjected to five hours of environmental 

hypoxia (1% oxygen) at the intermediate temperature of 20°C. Lactate concentrations at 25°C 

and below were comparable to levels in the previous study when exposed to normoxic conditions 

2.85±0.40 µmol g
-1 

(Elder and Seibel, In Revision). This indicates that individuals were 

experiencing tissue level hypoxia at 29°C despite access to high seawater oxygen levels. This 

tissue level hypoxia could be due in part to failure of ventilatory or circulatory systems. 

However, factors other than oxygen transport can also be thermally limited and potentially cause 

decline in performance and temperature tolerance. These factors could include cell damage, 

membrane fluidity, enzyme function, and neural function (Clark et al., 2013). 

A critical temperature of approximately 30°C is found in several other crustacean species. The 

spider crab Maja squinado from Roscoff France has a critical temperature close to 30°C, which 

was indicated by accumulation of anaerobic end products succinate and lactate. This coincided 

with very low arterial Po2 values (Frederich and Pörtner, 2000). The critical temperature range at 

which anaerobic metabolism begins in the intertidal crabs Carcinus maenas and Cancer 

irroratus is 34°C and 30°C, respectively. Interestingly, hsp70 was not detected in either of these 
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crabs, but it may be due to the experimental design, which included a rapid rate of temperature 

increase (Jost et al., 2012). Our results suggest at least an 8 hour lag (3 h initial exposure and 5 

hour subsequent exposure) in the onset of hsp70 expression following exposure to stressful 

temperatures. 

 

The majority of studies on heat shock response in ectothermic invertebrates have focused on 

intertidal organisms, especially mussels. A theme from these studies is the plasticity of hsp 

expression, where past thermal history has an impact on induction temperature (Hofmann, 2005; 

Hofmann et al., 2002). In the intertidal, thermal history can vary with season and tide level. In 

temperate regions of the pelagic realm, seasonal changes can have an effect on surface 

temperatures. In the tropics however, temperature gradients are steep but relatively stable 

(Fernández-Álamo and Färber-Lorda, 2006). Vertical migators experience drastic temperature 

changes during their transit between surface and deeper waters. The lack of a full stress response 

in Phronima sedentaria at 23°C indicates that this species is adapted to the current, relatively 

constant, surface temperatures of the region. 

Vertically migrating calanoid copepods (Calanus finmarchicus) from the temperate waters of the 

Gulf of Maine demonstrated a heat shock response when exposed to their maximum summer 

habitat temperature (20°C) (Voznesensky et al., 2004). After 30 minutes at 20°C individuals 

exhibited a ~ 4 fold increase in hsp 70 expression (Voznesensky et al., 2004). The heat shock 

response in these vertically migrating copepods may increase survival by allowing them to 

tolerate high temperatures while at the surface before migrating down to deep, cooler waters 

(Voznesensky et al., 2004). The individuals of P. sedentaria examined here were acclimated to 

their winter temperatures.  Summer temperatures may reach 30°C (Pennington et al., 2006). 
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High constitutive levels of hsp 70 are thought to provide a general protective mechanism against 

heat shock, and possibly other stresses, in freshwater amphipods (Bedulina et al., 2013). There 

was a stronger hsp response in intertidal amphipods from a variable habitat (sub-littoral) versus a 

less variable habitat (supra-littoral) (Bedulina et al., 2010). This may indicate that the heat-shock 

response is critical for tolerating natural temperature fluctuations, even below critical extremes. 

Rhythmic pre-synthesis of hsps to prepare for potential heat stress, such as prior to low tide, has 

not been found in rocky intertidal organisms (Hofmann et al., 2002). The dependable timing of 

diel migration compared to the variability of low tide levels, suggest that vertical migrators 

would be more likely to have an anticipatory increase in hsp production than intertidal 

organisms. For this study 24 hour I-exposure specimens were frozen at 0100, 9 hour I-exposure 

specimens were frozen at 1300 and 3 hour I-exposure specimens were frozen at 0700. At 0100 

diel migrators would have been at the surface for a few hours, while at 0700 they would have 

recently arrived at depth and at 1300 they would have arrived at depth several hours prior. If P. 

sedentaria were producing hsp in anticipation of vertical migration, one would expect lower 

levels of hsp in the group subjected to the same temperature frozen at 1300 compared to the 

group frozen at 0100. However, there was no significant difference in the hsp concentrations or 

level of mortality between the freezing times.  

 

5. Conclusions 

Upper thermal tolerance limits are correlated with the maximum habitat temperatures in 

intertidal organisms (Stillman and Somero, 2000). In the midwater environment Phronima 

sedentaria's critical temperature of 29°C may be reached in summer and, due to global warming 

(Deser et al., 2010), during future winters. The Eastern Tropical Pacific warms by approximately 
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0.8-1.0°C per century (Deser et al., 2010). If organisms are already close to their critical 

temperatures, global warming may cause some species to exceed their thermal limits and may 

affect their biogeographic range. Increasing temperature and decreasing oxygen supply (Keeling 

et al., 2010; Stramma et al., 2008) will compress the night time habitat of vertically migrating 

species (Elder and Seibel, In Revision; Seibel, 2011). This change will have important impacts 

on zooplankton physiology, ecology, and vertical distribution as well as carbon cycling 

(Vinogradov and Voronina 1962; Seibel 2011; Somero 2002).  
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Legends 

Figure 1. Eastern Tropical North Pacific sites. This map displays the station in the Eastern 

Tropical North Pacific (ETNP) during collection aboard the R/V Knorr in Dec 2008- Jan 2009. 

Individuals for these experiments were collected at the Costa Rica Dome (8.5°N, 90°W) using a 

tucker trawl. 

 

Figure 2. CTD profile for the Costa Rica Dome. The Costa Rica Dome CTD profile of oxygen 

(black line) and temperature (grey line). Boxes represent approximate day and night time 

distributions of Phronima sedentaria based on published distributions (Shih, 1991; Shulenberger, 

1977). 

 

Figure 3. Thermal gradient block. The thermal block consisted of a piece of aluminum with 

holes drilled through each end fitted with brass inlet and outlet ports to accommodate heating 
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and chilling lines. The heating lines are to the left side of the block and separate chilling lines are 

on the right side. Water flows from the water bath through the tubing and the block and back to 

the water bath. By having the two water baths at opposing extreme temperatures there is a 

temperature gradient in the wells on the top.  

 

Figure 4. Phronima sedentaria lactate accumulation from thermal stress experiments. 

Average accumulation of lactate in µmol g
-1

 for Phronima sedentaria at each subsequent 

exposure (S-exposure) temperature. All values are mean ±se. There was a significantly higher 

accumulation of lactate at 29°C. 

 

Figure 5. Western blot analysis of hsp 70 levels in Phronima sedentaria. Representative 

Western blot analysis of levels of hsp 70 in Phronima sedentaria relative to control (HELA cells 

first lane on the left). The marker from the protein ladder at 75 Kda is indicated in the figure, to 

show that the band is at 70 Kda. This gel consists of the samples with a  24 hours Initial exposure 

to 23°C and subsequent exposure to the designated temperatures. The last three lanes (samples 

that have been kept at 29°C) had significantly higher relative intensity than the other samples, 

indicating significantly higher hsp 70 concentration. 

 

Figure 6. Phronima sedentaria mean hsp70 concentrations following thermal stress 

experiments. Mean hsp 70 concentration ±se for individuals initially exposed to night time 

temperature of 23°C for 3(gray), 9 (black) or 24 hours (white) followed by subsequent exposure 

(S-exposure) to the designated temperatures. * indicates there was a significantly lower hsp 70 

concentration at 3 hours compared to 9 and 24 hours (p value < 0.05). ** indicates there was a 
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nearly significant increase in hsp 70 concentration in individuals acclimated to 23C for 24 hours 

before a five hour incubation at 29°C 
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Figure 6 
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Table 1. Experimental design for thermal stress experiments on Phronima sedentaria.  

I-exposure to 23°C 
S-exposure 

temperature 
°C 

n 
n dead at 

end 

3 hours 

10 4  

15 4  

20 4  

23 4  

29 4 3 

9 hour 

10 4  

15 4  

20 4  

23 3 1 

25 3 2 

29 1  

24 hour 

10 3  

15 3  

20 3  

25 3  

29 3 1 
 

Thermal stress experimental setup for initial exposure (I-exposure) to night time temperature of 

23°C for 3, 9 or 24 hours and subsequent exposure (S-exposure) for five hours to the designated 

S-exposure temperature. n is number of individuals kept at those conditions. n deceased at end is 

the number deceased at the end of each experiment. 
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