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Abstract

Objective—To evaluate whether Nrf2-deficiency impacts insulin resistance and lipid 

accumulation in liver and white adipose tissue.

Design and Methods—Lepob/ob mice (OB) targeted with Nrf2 deletion (OB-Nrf2KO) were 

generated. Pathogenesis of obesity and Type-2 Diabetes were measured in C57BL/6J, Nrf2KO, 

OB, and OB-Nrf2KO mice. Hepatic lipid content, lipid clearance and VLDL secretion were 

determined between OB and OB-Nrf2KO mice.

Results—OB-Nrf2KO mice exhibited decreased white adipose tissue mass, and decreased 

adipogenic and lipogenic gene expression compared to OB mice. Nrf2-deficiency prolonged 

hyperglycemia in response to glucose challenge, which was paralleled by reduced insulin-

stimulated Akt phosphorylation. In OB mice, Nrf2-deficiency decreased hepatic lipid 

accumulation, decreased Peroxisome proliferator-activated receptor γ expression and NADPH 

content, and enhanced VLDL secretion. However, this observation was opposite in lean mice. 

Additionally, OB-Nrf2KO mice exhibited increased plasma triglyceride content, decreased HDL-

cholesterol content, and enhanced Apolipoprotein B expression, suggesting Nrf2-deficiency 

caused dyslipidemia in these mice.

Conclusions—Nrf2-deficiency in Lepob/ob mice reduced white adipose tissue mass, prevented 

hepatic lipid accumulation, but induced insulin resistance and dyslipidemia. The current study 

indicates a dual role of Nrf2 during metabolic dysregulation — increasing lipid accumulation in 

liver and white adipose tissue, but preventing lipid accumulation in obese mice.
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Introduction

Obesity increases risk of developing metabolic syndrome, which encompasses insulin 

resistance (IR), Type 2 Diabetes (T2D) and Non-alcoholic fatty liver disease (NAFLD). 

During the past 20 years, there has been a marked increase of obesity in US, with more than 

33% of adults and almost 17% of youths reported as obese (BMI≥30 kg/m2) (1). Obesity is 

an enlargement of adipose tissue to store excess energy in the form of triglycerides (TG). 

Multiple transcription regulators, including CCAAT/enhancer-binding proteins (Cebp) α, 

Cebpβ and Peroxisome proliferator-activated receptor (Ppar) γ have been reported involved 

in inducing adipogenic programming (2). Activation of Pparγ2 in fibroblasts is known to 

induce adipogenesis and stimulate adipocyte differentiation (3). Maintenance of normal 

adipogenesis and having adequate mature adipocytes is important for lipid storage, energy 

homeostasis, and whole-body insulin sensitivity. Impaired adipogenesis is associated with 

IR (4). Failure of adipocytes to differentiate caused IR and T2D (5). Dyslipidemia in IR is 

characterized by increased plasma VLDL-triglycerides, and increased hepatic 

Apolipoprotein B (ApoB) expression (6). Impaired lipid clearance in familial combined 

hyperlipidemia has been associated with higher serum TG, cholesterol, and ApoB content 

than present in normal patients (7).

Nuclear Factor E2-related factor 2 (Nrf2) function in adipocyte differentiation, lipid 

metabolism, IR and dyslipidemia has been examined, but many gaps in knowledge still 

remain. Nrf2-null mice have been described as resistant to high-fat diet (HFD)-induced 

obesity and hepatic steatosis, in association with suppressed adipogenesis, as well as, 

decreased expression of Pparγ (8), Srebp1c, Fatty acid synthase (Fas), and Stearoyl-CoA 

desaturase-1 (Scd1), and Fibroblast growth factor 21 (9). Constitutive activation of Nrf2 via 

Kelch-like ECH-associated protein 1-knockdown (Keap1-KD), predisposes mice to fatty 

liver with long-term HFD challenge (10) or with leptin-deficiency (11). In contrast, Nrf2 

activation by Keap1-KD in fibroblasts suppressed adipogenesis (12) and treatment with the 

Nrf2 activator, CDDO-imidazolide (CDDO-Im) reduced HFD-induced adipose expansion 

concomitant with decreased hepatic lipid accumulation and expression of genes encoding 

fatty acid synthesis enzyme (13), indicating a protective function of Nrf2 activation against 

obesity. Thus, a clear role for Nrf2 activation and impact on metabolic disease has yet to 

emerge.

The purpose of this study was to explore whether Nrf2 impacts lipid metabolism in a model 

of obesity-induced dyslipidemia and IR, targeted deletion of Nrf2 in Lepob/ob background. 

The data herein illustrates that whole body Nrf2-deficiency modulates lipid metabolism in 

WAT and liver, as well as, glucose metabolism in Lepob/ob mice.
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Material and Methods

Mouse breeding

C57BL/6J and Lepob/+ (C57BL/6J background) mice were purchased from Jackson 

Laboratory (Bar Harbor, ME). Nrf2-null mice (Nrf2−/−, Nrf2KO) (14) were bred with 

Lepob/+ mice to create compound heterozygotes — Lepob/+;Nrf2+/−, then bred with Nrf2KO 

mice to produce Lepob/+;Nrf2−/− mice. Male and female Lepob/+;Nrf2−/− mice were crossed 

to obtain homozygous with Nrf2/leptin-deficiency (OB-Nrf2KO) and Nrf2KO mice. Wild 

type (WT) and Lepob/ob (OB) mice were produced by crossing male and female Lepob/+ 

mice. Male age-matched littermates were used and maintained under a 12h light/dark cycle 

freely access to water and diet (LM485, Harlan Laboratories, Madison, WI).

Food intake

Mice (8-week-old) of the four experimental genotypes were housed individually. Food 

intake for each mouse was measured every day for at least one week.

Glucose and insulin tolerance tests (GTT and ITT)

Mice (8-week-old) were fasted (16h for GTT, 6h for ITT). A single injection of glucose (2 

g/kg) or insulin (1 U/kg) was administered ip. Blood glucose was determined at 0, 15, 30, 

60, and 120 mins post glucose or insulin administration.

Pyruvate tolerance test

Male Nrf2KO (24-week-old) or Keap1-KD (16-week-old) mice (15) fasted overnight were 

administered 10% sodium pyruvate in PBS (2 g/kg, ip). Blood glucose was determined at 0, 

15, 30, 60, and 120 mins after.

Acute insulin treatment

Mice (15-week-old) fasted overnight were anesthetized (ketamine, 150 mg/kg and xylazine, 

5 mg/kg) and administered insulin (5 U/kg, ip) (Sigma-Aldrich, St. Louis, MO). 

Gastrocnemius and epididymal WAT were collected 5 mins after injection and immediately 

stored in liquid nitrogen. Samples were collected from 10:00 to 11:00am.

Histopathology

Formalin-fixed WAT and liver sections were embedded in paraffin; sections were cut and 

stained with hematoxylin/eosin. Four fields from each WAT section were analyzed to obtain 

the mean cell-area (n=4 per genotype). For Oil Red O staining, frozen sections were fixed 

and incubated with Oil Red O solution for 15 min, then counterstained with hematoxylin and 

mounted in glycerin jelly.

Glucose and insulin measurement

Serum glucose levels were analyzed using a glucose assay kit (Cayman Chemical Company, 

Ann Arbor, MI). Serum insulin was measured using a rat/mouse insulin ELISA kit 

(Millipore, Billerica, MA).
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TG, and FFA, cholesterol, HDL-cholesterol, and LDL-cholesterol measurement

Serum TG, cholesterol, HDL- and LDL-cholesterol content was measured with reagent kits 

(Pointe Scientific, Ann Arbor, MI). FFA concentration was measured with a reagent kit 

(Wako Chemicals USA, Richmond, VA). The hepatic TG, FFA and cholesterol content was 

normalized with tissue weight.

VLDL secretion measurement

Mice (8-week-old) fasted 5h were injected with Tyloxapol via tail vein (Triton WR-1339, 

Sigma-Aldrich) (0.5 g/kg) in 0.9% NaCl solution containing 10% Triton-X. Blood samples 

were collected at 0, 60, and 120 min after injection and TG content was measured.

Exogenous lipid clearance measurement

Mice (8-week-old) fasted overnight were administered olive oil via oral gavage (15 ml/kg, 

Sigma-Aldrich). Blood samples were collected at 0, 1, 3, and 6h after oil administration. 

Serum was extracted from whole blood and TG content was measured.

Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) assay

Hepatic NADPH content was measured using a commercial kit (Biovision, Milpitas, CA). 

The hepatic NADPH content was normalized with tissue weight.

RNA isolation and quantitative real-time PCR

Total RNA isolation was performed using TRIzol reagent (Life Technologies, Grand Island, 

NY) and converted to cDNA. Relative mRNA levels were quantified by SYBR green 

chemistry using a LightCycler 480 system. The sequences of primers used are listed in Table 

S1.

Western blot analysis

Proteins (40 μg) were electrophoretically transferred to PVDF membrane, and then 

incubated with primary antibodies against Akt, Akt-S473 (Cell Signaling Technology, 

Danvers, MA), and Glut4 (Sigma-Aldrich) overnight at 4 °C. Chemiluminescence using 

ECL detection kit (GE Healthcare, Piscataway, NJ) was detected on autoradiography film.

Statistical Analysis

Quantitative data were presented as average ± SE. Statistic differences were determined by a 

one-way ANOVA followed by a Duncan’s Multiple Range post hoc test or two different 

genotypes were calculated by one-tailed Student’s t-test. All statistical tests with P<0.05 

were considered significant.

Results

Adipose tissue mass is decreased in OB-Nrf2KO mice, but is increased in Nrf2KO mice

BW was similar between WT and Nrf2KO littermates, but BW of OB-Nrf2KO was 8% 

lower than OB mice at 8-weeks (Figure 1A). Food consumption was similar between WT 

and Nrf2KO or OB and OB-Nrf2KO mice (Figure 1B). The total WAT mass was 38% 
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higher in Nrf2KO than WT mice, but decreased by 22% in OB-Nrf2KO than OB mice 

(Figure 1C). Epididymal mass was similar between Nrf2KO and WT mice, but 26% lower 

in OB-Nrf2KO than OB mice (Figure. 1D). Visceral fat was increased in Nrf2KO mice (by 

65%), but decreased in OB-Nrf2KO mice (by 21%) (Figure S1A). Perirenal fat mass also 

tended to be higher in Nrf2KO than WT mice (P=0.077) (Figure S1B). Relative liver weight 

was 15% and 32% lower in Nrf2KO and OB-Nrf2KO than WT and OB mice, respectively 

(Figure 1E). Relative heart and kidney weight (Figure. 1F, 1G) were less in obese than lean 

mice, but similar between WT and Nrf2KO mice, or between OB and OB-Nrf2KO mice.

Adipocyte cell size is decreased in OB-Nrf2KO mice, but is increased in Nrf2KO mice

Histomorphometric analysis of WAT revealed that Nrf2KO mice have bigger adipocytes 

than WT mice, but OB-Nrf2KO mice had smaller adipocytes than OB mice (Figure 2A, 2B). 

Adipocyte differentiation, or adipogenesis, is a critical determinant for the amount of WAT 

and is regulated by sequential expression of genes, such as Cebp, Pparγ, and Lipoprotein 

lipase (Lpl) (16). Nrf2 and (NAD(P)H:quinone oxidoreductase 1 (Nqo1), Glutamate-

cysteine ligase catalytic subunit (Gclc), and Heme oxygenase-1 (Ho1)), Nrf2-target genes 

were decreased in Nrf2KO and OB-Nrf2KO mice (Figure S2). Pparγ and Fabp4 were 

induced in Nrf2KO mice (Figure. 1). However, the expression of most genes associated with 

adipocyte differentiation, including Cebpα, Cebpβ, Pparγ, and Lpl, was down-regulated in 

OB-Nrf2KO compared to OB mice (Figure 2C). Srebp1c was down-regulated in OB-

Nrf2KO mice, along with decreased expression of Acetyl-CoA carboxylase (Acc)-1, Scd1, 

and Fas (Figure 2D, 2E). Furthermore, Pparγ was positively correlated with Nrf2 expression 

from human study, which is consistent with the study by Pi. et al (8), confirming the 

previous observation from animal work (Table S2).

Nrf2-deficiency impairs glucose tolerance and induces IR

Nrf2KO and OB-Nrf2KO mice had similar non-fasting blood glucose levels compared to 

WT and OB mice. Serum TG content was increased in OB-Nrf2KO mice (143% higher than 

OB mice). FFA content was similar between WT and Nrf2KO or between OB and OB-

Nrf2KO mice. Insulin levels were similar between WT and Nrf2KO mice, and 16% higher 

in OB-Nrf2KO than OB mice. Total cholesterol content was reduced in Nrf2KO and OB-

Nrf2KO compared to WT and OB mice (by 16% and 26%, respectively); accompanied by a 

lower HDL- and LDL-cholesterol content in OB-Nrf2KO than OB mice, suggesting a 

disturbance in lipid metabolism in OB-Nrf2KO mice (Table 1).

Nrf2KO and OB-Nrf2KO mice exhibited increased glucose levels and significant higher 

AUCglucose upon acute glucose challenge (24% and 50% higher than WT and OB mice, 

respectively) (Figure 3A–3D). No difference for ITT was observed between WT and 

Nrf2KO mice (Figure 3E, 3F). Compared to OB mice, OB-Nrf2KO had lower glucose levels 

after 6h-fasting, and exhibited enhanced glucose levels upon insulin administration (120 

min), suggesting Nrf2 deficiency may induce resistance of glucose removal and IR in 

Lepob/ob mice (Figure 3G, 3H).

p-Akt and Glut4 protein levels were determined in skeletal muscle. Nrf2-deficiency 

decreased p-Akt and Glut4 expression in lean mice (Figure 3I). Under basal conditions, p-
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Akt and Glut4 were similar between OB and OB-Nrf2KO mice (Figure 3J). However, after 

insulin challenge, more p-Akt was decreased in OB-Nrf2KO than OB mice (Figure 3K). 

This demonstrated Nrf2-deficiency impaired Akt activation in response to insulin, which 

could explain impaired insulin signaling and induction IR in Lepob/ob mice.

Nrf2-deficiency impairs insulin signaling in WAT

In unchallenged tissue, p-Akt levels were similar between OB and OB-Nrf2KO mice (Figure 

4A). However, upon insulin challenge, p-Akt levels were decreased in OB-Nrf2KO 

compared to OB mice (Figure 4B). Genes related to insulin signaling, such as Insr were 

decreased, along with a slight decrease of Glut4 and Insulin receptor substrate (Irs)-1 

expression in OB-Nrf2KO mice (Figure 4C).

Nrf2-deficiency lessens hepatic steatosis in Lepob/ob mice

Large vacuoles were observed in liver sections of OB mice, but not in OB-Nrf2KO mice, 

suggesting decreased hepatic triglyceride content (Figure 5A). The results were further 

confirmed by Oil red O staining (Figure 5B) and lipid extract quantification (29%, 9% and 

35% lower than OB mice for TG, FFA, and cholesterol content, respectively) (Figure 5C–

5E). In contrast, neutral lipid staining near the central vein was observed in Nrf2KO mice, 

but not in WT mice (Figure 5B), and further evidence from lipid quantification 

demonstrated increased lipid content in Nrf2KO mice (46% of TG and 29% of cholesterol 

higher than WT mice) (Figure 5C, 5E), suggesting Nrf2-deficiency promotes steatosis in 

lean mice.

Nrf2, Nqo1, and Gclc were reduced in Nrf2KO and OB-Nrf2KO mice (Figure S2). Pparγ 

and Fabp4 were decreased in OB-Nrf2KO mice (Figure 6A). Nrf2-deficiency reduced SHP 

slightly in lean mice, but induced the expression in obese mice. Fgf21 was increased in 

Nrf2KO mice, but this increase was attenuated in OB-Nrf2KO mice. Nrf2KO and OB-

Nrf2KO mice showed marked induction of Srebp1c, in coordination with downstreams 

(Acc1, Acc2, and Fas), despite lower hepatic lipid content in OB-Nrf2KO mice (Figure S3).

Nrf2-deficiency increases VLDL secretion, but impairs lipid clearance in OB-Nrf2KO mice

After administration of WR-1339, an inhibitor of lipoprotein lipase, OB-Nrf2KO mice 

exhibited higher serum TG/lipids than OB mice, suggesting Nrf2-deficiency may enhance 

VLDL secretion (Figure 6B). Additionally, hepatic MTTP and ApoB were markedly 

induced in OB-Nrf2KO mice, which are responsible for lipoprotein assembly and VLDL 

secretion, further suggesting enhanced VLDL secretion in OB-Nrf2KO mice (Figure 6C). 

When mice were challenged with a high amount of exogenous lipid, OB-Nrf2KO mice 

exhibited higher serum TG content than OB mice, suggesting a lower lipid clearance rate in 

OB-Nrf2KO mice (Figure 6D). The current data suggest that Nrf2-deficiency enhanced the 

assembly and secretion of VLDL, but impaired serum lipid clearance, which in combination 

could explain the observed decrease in hepatic lipid accumulation and increase in serum TG 

levels in OB-Nrf2KO mice (Table 1).
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Nrf2-deficiency reduces hepatic NADPH content and glucose production

OB-Nrf2KO mice had decreased serum glucose and cholesterol levels. It was hypothesized 

that Nrf2 might participate in pathways that support glucose and co-factor production. 

NADPH is a necessary reducing equivalent needed for the synthesis of triglycerides and 

cholesterol in liver. Hepatic NADPH content was decreased by 9% and 11% in Nrf2KO and 

OB-Nrf2KO in comparison to WT and OB mice, respectively (Figure 7A). Malic enzyme 1 

(Me1), encoding one of the key synthetic enzymes for NADPH generation, was decreased in 

Nrf2KO and OB-Nrf2KO mice (Figure 7B). Additionally, Nrf2KO mice exhibited 

decreased glucose levels and decreased AUCPTT following intraperitoneal injection of 

pyruvate, suggesting impaired glucose generation initiated by Nrf2-deficiency (Figure 7C). 

Moreover, Keap1-KD mice exhibited increased glucose levels and increased AUCPTT after 

pyruvate administration, further indicating that increased Nrf2 activity can increase the 

gluconeogenesis process and glucose generation from a non-glucose substrate (Figure 7D).

Discussion

The work herein reports that Nrf2-deficiency decreased WAT mass and hepatic lipid 

accumulation in OB-Nrf2KO mice, which was associated with enhanced VLDL secretion 

and impaired NADPH generation. Our work confirms the work by Xue et al. and provides 

additional mechanistic insight into these observations (17). It is consistent with observations 

in which Nrf2KO mice were resistant to HFD-feeding (8) and increased WAT mass in 

Keap1-KD mice after prolonged HFD-feeding (10).

Our observation that Nrf2-deficiency attenuates hepatic lipid accumulation in OB-Nrf2KO 

mice also supports others published work (Table S3), in which Nrf2-deficieny results in 

decreased hepatic lipids upon HFD-feeding (17, 18, 19). Nrf2-deficiency prevented HFD-

induced obesity via repressing Fgf21 expression (9). In the current study, Nrf2-deficiency 

induced Fgf21 expression in lean mice, but the induction was repressed in OB-Nrf2KO 

mice, suggesting Nrf2 might regulate Fgf21 transcription levels by leptin-dependent 

mechanism. Nrf2 deficiency also increased hepatic VLDL secretion, which may overcome 

the effect of de novo lipogenesis to reduce hepatic lipids in Lepob/ob mice. MTTP was 

induced, and Pparγ and Fabp4 were reduced, supporting the notion of decreased lipid influx 

and increased efflux in OB-Nrf2KO mice. Last, lipid synthetic enzymes, such as Acc, Fas, 

and Scd-1, require reduced NADPH to function at the enzymatic level and carry out the 

conversion from acetyl-CoA to cholesterol or TG (20). Decreased hepatic lipid content 

could be explained through alteration of reducing equivalent, which was reduced in Nrf2KO 

and OB-Nrf2KO mice. Limited NADPH content in leptin-deficient mice may be of 

significant consequence because although lipogenic gene expression is increased, there is 

significantly reduced cofactor present to drive the subsequent lipid synthesis reactions. 

Reduced NADPH observed in Nrf2KO mice may be of lesser consequence, because in lean 

mice the systemic lipid load is low, with adequate NADPH to sustain lipid production.

Nrf2-deficiency also induced dyslipidemia in Lepob/ob mice, consistent with previous 

observations in obesity models (Tables S3, S4). Reduced HDL-cholesterol is an additional 

characteristic of atherogenic dyslipidemia associated with abdominal obesity (21). HDL-

cholesterol content was decreased in OB-Nrf2KO mice, accompanied by a high 
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concentration of plasma TG. MTTP and ApoB are essential for the assembly and secretion 

of VLDL to blood. Obesity associated with plasma lipid abnormalities was due to 

overproduction of VLDL-ApoB particles and decreased catabolism of ApoB containing 

particles (22). Moreover, overexpression of mouse ApoB increased plasma TG content (23). 

We reported that MTTP and ApoB expression was increased in OB-Nrf2KO mice and 

promoted VLDL/TG secretion, which is consistent with a previous report (24). Additionally, 

the lipid clearance was impaired in OB-Nrf2KO mice, which attenuated lipid removal from 

blood and eventually increased plasma TG content, as well as induced dyslimidemia in OB-

Nrf2KO mice. Together, these data suggest that Nrf2 play an important role in regulating 

plasma lipid content. It can be concluded that enhanced Nrf2 activity reduced plasma lipid 

content under basal conditions (25, 26, 27). In contrast, Nrf2-deficiency increased serum 

lipid content at the basal level, displaying a trend of increased lipid content by Nrf2-

deficiency (17, 29).

Nrf2-deficiency impaired glucose tolerance and induced IR in Lepob/ob mice, consistent with 

work by Xue et al. (17) and Aleksunes et al. (30). This was further supported by decreased 

Akt phosphorylation in skeletal muscle after insulin challenge and suppressed Insr 

expression. However, these results do not entirely agree with Chartoumpekis et al. (9) and 

Zhang et al. (31), whose data demonstrated that Nrf2-deficiency decreased the glucose 

content upon acute glucose challenge, which improved glucose tolerance. The possible 

reason for the inconsistency was that the glucose content of Nrf2KO mice at time zero for 

the test was lower than the control mice for these two studies, which may affect the data 

analysis of the later experimental points. Normalization of the glucose content with baseline 

may be helpful to obtain unbiased conclusions.

Nrf2KO mice displayed impaired gluconeogenesis, exhibited by the decreased glucose 

generation upon pyruvate perfusion. We observed the opposite observation in Keap1-KD 

mice. Fasting decreases plasma glucose levels, but increases pyruvate content, this increases 

NAD+/NADH ratio and gluconeogenesis. Nrf2KO mice displayed a lower NAD+/NADH 

ratio than control group (32), which will reduce the process of gluconeogenesis and glucose 

generation from pyruvate.

An opposite effect of lipid accumulation was observed when comparing WT with Nrf2KO 

mice. On standard chow diet, enhanced Nrf2 activity via genetically (27, 33) or 

pharmacologically (13, 34) lessened hepatic lipid accumulation and suppressed lipogenic 

gene expression, suggesting Nrf2 plays negative roles in hepatic lipid modulation (Table 

S4). Enhanced Nrf2 activity via Keap1-KD inhibited lipogenic gene expression, such as Fas, 

Acc1, and finally reduced hepatic lipid accumulation. Moreover, Nrf2-deficiency increased 

lipogenic gene expression (Srebp1c and Scd1) and free-fatty acid accumulation in liver (19), 

also confirming a negative role of Nrf2 function in lipid modulation.

It is hard to come to a “big picture” conclusion regarding Nrf2 activation and metabolic 

disease because conflicting reports exist (Tables S3, S4). There were not dramatic 

differences between Nrf2-expressing and -deficient mice fed standard chow. This is perhaps 

due to housing conditions and lack of use of littermate congenic controls. Consistently 

among studies, Nrf2KO mice appeared to have higher serum lipids. Our observations were 
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supported by others, indicating that Nrf2-deficient mice have a slight increase in hepatic 

lipids.

A relevant, intriguing question to the field is whether Nrf2 should be targeted to alleviate 

metabolic-related symptoms/disease. First, the change in body weight observed was slight 

and may not be substantial enough to develop as a therapeutic target to treat obesity. Second, 

the decreased body weight likely comes at the expense of glucose tolerance, which is also 

observed by others (Tables S3, S4). When Nrf2 expression is knocked out in obese mice, 

there is an observed increase of hepatic lipids, but this is at the expense of impaired response 

to glucose challenge and an altered lipid profile. So, it might pose metabolic risks to 

modulate Nrf2 activation in multiple metabolic tissues, as might occur with a drug that 

targets Nrf2 activation.

The current study provides in vivo evidence that Nrf2 participates in the conversion of 

pyruvate to glucose and drives NAPDH generation. This has been observed in Keap1-KD 

mice (35). This has implications for cancer and lipid synthesis, as the pentose phosphate 

pathway is implicated in the “Warburg Effect”. For the Warburg effect, excess glucose is 

diverted through the pentose phosphate shunt (PPS) to create nucleotides. Fatty acids are 

critical for new membrane production and are synthesized from citrate in the cytosol through 

the action of ATP-citrate lyase (ACL) to generate acetyl-CoA. This process requires 

NADPH reducing equivalents, which is generated through the actions of malic enzyme. 

Nrf2 has recently been implicated in cancer research to participate in the Warburg Effect 

(36). As obesity and cancer are co-morbid risk factors (37), this observation is highly 

significant and provides an interesting link between Nrf2 and perhaps obesity-induced 

cancer.

Overall, the data illustrate that Nrf2-deficiency modestly decreased adipose tissue 

expandability, but appreciably decreased hepatic steatosis in leptin-deficient mice, which is 

consistent with other observations (9, 17). Nrf2-deficiency impaired response to acute 

glucose and insulin administration, suggesting IR existing in OB-Nrf2KO mice. The current 

data point to a complex role for Nrf2 in regulating lipid and glucose homeostasis and leptin 

interactions should be considered when evaluating Nrf2 function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is already known about this subject?

• Nrf2-deficiency impaired glucose tolerance and induced insulin resistance

• Nrf2-deficiency induced dyslipidemia in Lepob/ob mice

• Nrf2-deficiency reduced white adipose tissue mass and decreased Pparγ and 

Glut4 expression in Lepob/ob mice

• Enhanced Nrf2 activity via Keap1-KD increased hepatic lipid accumulation 

with high-fat diet challenge and in Lepob/ob mice

What this study adds?

• Nrf2-deficiency decreased hepatic lipid accumulation in Lepob/ob mice

• Nrf2-deficiency enhanced VLDL/TG secretion, accompanied by enhanced 

MTTP and ApoB expression in Lepob/ob mice

• Nrf2-deficiency impaired exogenous lipid clearance in Lepob/ob mice

• Nrf2-deficiency decreased hepatic NADPH content and Malic enzyme-1 mRNA 

levels

• Nrf2-deficiency decreased glucose synthesis from pyruvate
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Figure 1. Adipose tissue mass is decreased in OB-Nrf2KO mice, but is increased in Nrf2KO mice
(A) Body Weight (BW) of WT, Nrf2KO, OB, and OB-Nrf2KO mice at 4-, 8- and 12-weeks 

(n=5 to 9 per group). (B) Food intake from male mice at 12-weeks (n=5 to 7 per group). (C) 
Total fat and (D) epididymal fat in WT, Nrf2KO, OB, and OB-Nrf2KO mice at 12-weeks. 

Ratios of liver (E), heart (F), and kidney weight (G) to BW from WT, Nrf2KO, OB, and 

OB-Nrf2KO mice at 12-weeks (n=6 per group). $, P<0.05, Nrf2KO compared with WT 

mice; #, P<0.05, OB compared with WT mice; *, P<0.05, OB-Nrf2KO compared with OB 

mice.
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Figure 2. Adipocyte cell size is decreased in OB-Nrf2KO mice, but is increased in Nrf2KO mice
(A) Representative images of hematoxylin and eosin staining of epididymal pad from 12-

week-old male mice (n=4 per group, magnification: 100×, scale bar =100 μm). (B) 
Distribution of adipocyte diameter in epididymal pad from 12-week-old mice (n=4 per 

group). Nrf2-deficiency down-regulated gene expression related with adipogenesis (C) and 

lipogenesis (D) in OB-Nrf2KO mice (n=4 to 6 per group). The relative mRNA levels were 

measured by quantitative real-time PCR and normalized with Rpl13a levels. (E) 
Immunoblot analysis of Acetyl-CoA Carboxylase (Acc-1), Stearoyl-Coenzyme A 

Desaturase 1 (Scd-1), Fatty Acid Synthase (Fas) in epididymal WAT from 12-week-old 

mice. $, P<0.05, Nrf2KO compared with WT mice; #, P<0.05, OB compared with WT mice; 

*, P<0.05, OB-Nrf2KO compared with OB mice.
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Figure 3. Nrf2-deficiency impairs glucose tolerance and induces IR
Glucose tolerance test from WT and Nrf2KO (A, B) or OB and OB-Nrf2KO (C, D) mice at 

8-weeks (n=5 per group). Insulin tolerance test from WT and Nrf2KO (E, F) or OB and OB-

Nrf2KO (G, H) mice at 8-weeks (n=5 to 6 per group). The glucose content has been 

normalized to the average basal content. Immunoblot analysis of Ser473-phospholylated-

Akt (p-Akt), total-Akt (Akt), glucose transporter (Glut4) in skeletal muscle from WT and 

Nrf2KO (I) or OB and OB-Nrf2KO mice (J) at basal level. Immunoblot analysis of Ser473-

phospholylated-Akt (p-Akt), total-Akt (Akt) in response to insulin (5 U/kg) in skeletal 

muscle (gastrocnemius) (K). GAPDH was used as loading control. *, P<0.05, OB-Nrf2KO 

compared with OB mice.
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Figure 4. Nrf2-deficiency impairs insulin signaling in WAT
Immunoblot analysis of Ser473-phospholylated-Akt (p-Akt), total Akt (Akt) at basal level 

(A) or in response to insulin (5 U/kg) (B) in white adipose tissue from OB and OB-Nrf2KO 

mice at 12-weeks. GAPDH was used as loading control. (C) Real-time PCR was performed 

in white adipose tissue. The mRNA levels have been normalized with Rpl13a levels. *, 

P<0.05, OB-Nrf2KO compared with OB mice.
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Figure 5. Nrf2-deficiency lessens hepatic steatosis in Lepob/ob mice
(A) Representative images of hematoxylin and eosin staining from WT, Nrf2KO, OB, and 

OB-Nrf2KO mice at 12-weeks. Magnification: 200×. Scale bar=50 μm (n=4 per group). (B) 
Representative images of Oil Red O staining at 12-weeks. Magnification: 200×. Scale 

bar=100 μm. Hepatic (C) triglycerides (TG), (D) free fatty acid (FFA), and (E) cholesterol 

were measured to quantify hepatic lipid content. The triglycerides, free fatty acid, and 

cholesterol content were normalized to tissue weight (n=5 to 6 per group). $, P<0.05, 

Nrf2KO compared with WT mice; #, P<0.05, OB compared with WT mice; *, P<0.05, OB-

Nrf2KO compared with OB mice.
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Figure 6. Nrf2-deficiency increases VLDL secretion, but impairs lipid clearance in OB-Nrf2KO 
mice
(A) Hepatic mRNA levels were measured by quantitative real-time PCR; (B) Nrf2-

deficiency enhanced VLDL secretion in OB-Nrf2KO compared with OB mice (n=4 to 7 per 

group). (C) Nrf2-deficiency increased MTTP and ApoB mRNA levels in liver. The relative 

mRNA levels were measured by quantitative real-time PCR and normalized with 36b4 

levels. (D) Nrf2-deficiency impaired exogenous lipid clearance rate in OB-Nrf2KO mice 

(n=7 per group). $, P<0.05, Nrf2KO compared with WT mice; #, P<0.05, OB compared 

with WT mice; *, P<0.05, OB-Nrf2KO compared with OB mice.
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Figure 7. Nrf2-deficiency reduces hepatic NADPH content and glucose production
(A) NADPH content and (B) Malic enzyme 1 (Me1) mRNA levels were down-regulated in 

OB-Nrf2KO mice (n=5 to 6 per group). The relative mRNA levels were measured by 

quantitative real-time PCR and normalized with 36b4 levels. $, P<0.05, Nrf2KO compared 

with WT mice; #, P<0.05, OB compared with WT mice; *, P<0.05, OB-Nrf2KO compared 

with OB mice. (C) Pyruvate tolerance test (2 g/kg) was performed on WT and Nrf2KO mice 

(n=3 to 4 per group) (left) and AUC was determined (right). $, P<0.05, Nrf2KO compared 

with WT mice. (D) Pyruvate tolerance test (2 g/kg) was performed on WT and Keap1-KD 

mice (n=5 per group) (left) and AUC was determined (right). &, P<0.05, Keap1-KD 
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compared with WT mice. Proposed model of Nrf2 function in regulating lipid metabolism in 

(E) white adipose tissue and (F) liver.

Xu et al. Page 20

Obesity (Silver Spring). Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Xu et al. Page 21

T
ab

le
 1

Se
ru

m
 m

et
ab

ol
ic

 p
ar

am
et

er
s 

in
 W

T
, N

rf
2K

O
, O

B
 a

nd
 O

B
-N

rf
2K

O
 m

ic
e 

at
 1

2-
w

ee
ks

P
ar

am
et

er
s

U
ni

t
W

T
N

rf
2K

O
O

B
O

B
-N

rf
2K

O

G
lu

co
se

m
g/

dl
17

5.
52

±
8.

60
17

1.
57

±
4.

45
27

0.
05

±
27

.0
0#

23
6.

36
±

27
.5

6

T
G

m
g/

dl
79

.2
0±

8.
55

78
.8

3±
4.

92
55

.5
2±

3.
61

#
13

4.
94

±
11

.4
3 

*

F
F

A
μm

ol
/m

l
0.

89
±

0.
06

0.
83

±
0.

07
1.

14
±

0.
06

#
1.

13
±

0.
11

In
su

lin
ng

/m
l

1.
47

±
0.

26
1.

36
±

0.
13

47
.9

2±
3.

62
#

55
.7

6±
1.

77
*

C
ho

le
st

er
ol

m
g/

dl
12

2.
56

±
5.

08
10

3.
46

±
6.

81
$

18
1.

52
±

6.
21

#
13

3.
86

±
10

.1
3*

H
D

L
-c

ho
le

st
er

ol
m

g/
dl

27
.0

2±
0.

82
25

.6
2±

1.
65

42
.0

9±
0.

90
#

29
.0

7±
2.

58
*

L
D

L
-c

ho
le

st
er

ol
m

g/
dl

14
.2

5±
0.

88
7.

28
±

0.
51

$
79

.6
2±

6.
00

#
34

.7
9±

5.
03

*

Se
ru

m
 g

lu
co

se
, T

G
 a

nd
 F

FA
, i

ns
ul

in
, c

ho
le

st
er

ol
, H

D
L

-c
ho

le
st

er
ol

, L
D

L
-c

ho
le

st
er

ol
 le

ve
ls

 w
er

e 
m

ea
su

re
d 

in
 m

ic
e 

at
 1

2-
w

ee
ks

. D
at

a 
w

er
e 

re
pr

es
en

te
d 

as
 a

ve
ra

ge
 ±

S.
E

. (
n=

5 
to

 7
 p

er
 g

ro
up

).

$ P<
0.

05
, N

rf
2K

O
 c

om
pa

re
d 

w
ith

 W
T

 m
ic

e;

# P<
0.

05
, O

B
 c

om
pa

re
d 

w
ith

 W
T

 m
ic

e;

* P<
0.

05
, O

B
-N

rf
2K

O
 c

om
pa

re
d 

w
ith

 O
B

 m
ic

e.

Obesity (Silver Spring). Author manuscript; available in PMC 2016 February 01.


	University of Rhode Island
	DigitalCommons@URI
	2015

	Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin‐deficient mice
	Jialin Xu
	Ajay C. Donepudi
	See next page for additional authors
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use
	Authors


	tmp.1559235455.pdf.6K3ST

