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PLANTÐINSECT INTERACTIONS

Effects of Hemlock Woolly Adelgid and Elongate Hemlock Scale on
Eastern Hemlock Growth and Foliar Chemistry

MAILEA R. MILLER-PIERCE,1 DAVID A. ORWIG,2 AND EVAN PREISSER1,3

Environ. Entomol. 39(2): 513Ð519 (2010); DOI: 10.1603/EN09298

ABSTRACT In the eastern United States, two invasive specialist insects share a native host plant,
Eastern hemlock, Tsuga canadensis. In recent years, much research has focused on the impacts of the
hemlock woolly adelgid (Adelges tsugae) because of the detrimental effects it has on hemlock growth
and survival. In contrast, the invasive elongate hemlock scale (Fiorinia externa) is thought to have only
minor impacts on hemlock. We infested hemlock saplings with each insect and compared them with
control (i.e., neither insect herbivore) saplings to assess how early infestations impact Eastern hemlock
health (measured using new branch growth, foliar %N, and C:N ratio). Our study showed that, at equal
densities, the two insects differed in their effect on Eastern hemlock. F. externa did not impact plant
growth or foliar chemistry over the course of the 2-yr experiment.A. tsugae signiÞcantly reduced plant
growth and caused a reduction of %N in the Þrst year of the experiment. By the end of the experiment,
A. tsugae trees had the same %N in their foliage as control and F. externa trees but drastically reduced
growth patterns. The most likely explanation for this result is the greater growth in control and F.
externa saplings during the second year resulted in the dilution of available foliar N over a larger
amount of newly produced plant tissue. For early infestations of both insects, our study suggests that
management plans should focus on the more detrimental A. tsugae.

KEY WORDS Adelges tsugae, Fiorinia externa, Tsuga canadensis, herbivory

Many invasive herbivores have strong negative effects
on native host plants, via their effects on plant health,
apparent competition, or through their role as disease
vectors (Kenis et al. 2009). These phenomena are
often linked to the absence of coevolved defenses
capable of responding to the invasive species. Evolu-
tionary associations with a given species or group of
herbivorous insects increases the likelihood that
plants will respond quickly and appropriately to attack
(Mattson et al. 1988, Herms and Mattson 1992). Inva-
sive herbivores that impact the phloem/xylem can be
particularly damaging if they disrupt plant nutrient
transport or destroy conductive tissue faster than it
can be replaced (Mattson et al. 1988, Morewood et al.
2004).

The hemlock woolly adelgid,Adelges tsugaeAnnand
(Hemiptera: Adelgidae), was introduced to the east
coast of the United States from Asia in the 1950s
(Stoetzel 2002) and has quickly had a devastating
effect on populations of the Eastern hemlock, Tsuga
canadensis. A. tsugae has two generations per year and
feeds on xylem parenchyma cells, storage and transfer
sites for plant nutrients, by inserting their stylet bun-
dle at the base of hemlock needles (Young et al. 1995).
In its native range of Japan, Taiwan, and mainland

China, it occurs in low densities and seems to have few
detrimental effects on hemlocks found in these re-
gions (McClure and Cheah 1999, Havill et al. 2006). In
its invaded range, however, it sharply reduces hem-
lock growth and can kill mature hemlocks within 4Ð15
yr (McClure 1991, Orwig and Foster 1998).

In addition to the threat posed byA. tsugae,Eastern
hemlock is also the primary host of a second intro-
duced hemipteran, the elongate hemlock scale
Fiorinia externa Ferris (Hemiptera: Diaspidae). F. ex-
terna was introduced into New York City in 1908
(Sasscer 1912). Adults settle on the underside of nee-
dles where they feed on plant mesophyll; in New
England, they have one generation per year (McClure
1978). McClure (1980a) found that high densities of F.
externa are capable of reducing hemlock growth and
causing premature needle loss; plant mortality, how-
ever, rarely occurs (McClure 1980a). Other research
suggests the per capita effect of F. externa on plant
growth is less than that of A. tsugae (Preisser and
Elkinton 2008, Preisser et al. 2008).

Eastern hemlock has evolved largely in the absence
of sucking insects and its chemical defenses consist
largely of an isobornyl-acetate-dominated mixture of
terpenes. This mixture has been suggested as partic-
ularly effective in deterring chewing insects such as
the hemlock looper (Lambdina fiscellaria Guenee)
(Lagalante et al. 2007). Although Eastern hemlock
possesses a range of defenses against externally feed-
ing herbivores, it seems to be more susceptible to
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phloem/xylem feeding insects such as A. tsugae and F.
externa (Lagalante et al. 2007, Havill and Montgomery
2008). Studies have assessed the individual impacts of
each species on hemlock (McClure 1991, Stadler et al.
2005, Pontius et al. 2006), but no research has directly
compared the effects of these two invasive herbivores
beyond the branch level. Because both herbivores
continue to expand their range and increase their
densities, this information may have important impli-
cations for forest management.

We present the results of a 2-yr study assessing the
effects of either insect infestation on Eastern hemlock.
The goal of our research was to determine how various
measurements of plant health (growth, %N, and C:N
ratio) were affected byA. tsugae andF. externa feeding
over time. In addition to providing information about
the impacts of each species in early infestations, this
research should help guide Eastern hemlock manage-
ment programs.

Materials and Methods

In early April 2007, we collected 0.7- to 1-m hemlock
saplings from Cadwell Forest (Pelham, MA). This
research forest is managed by the University of
Massachusetts at Amherst and is located near the
northernmost range boundary for both insects. Af-
ter checking both saplings and the surrounding ma-
ture hemlocks to conÞrm the absence of F. externa
and/or A. tsugae infestations, we dug up the saplings
and covered their root systems with wet burlap to
prevent desiccation. We transplanted the saplings to
East Farm (Kingston, RI), a facility managed by the
University of Rhode Island. The trees were planted in
a rectangular grid in a ßat grassy Þeld surrounded by
a 3-m deer fence and randomly assigned a pest treat-
ment. Transplantation stress killed 16% of the trans-
planted trees within the Þrst few months, leaving us
with 18 A. tsugae trees, 14 F. externa trees, and 26
control (neither insect) trees. The lower numbers of
surviving F. externa trees reßects random mortality
due to abiotic factors caused by transplantation rather
than insect-related damage. To prevent cross-treat-
ment contamination (both insects disperse by wind in
their crawler phase), each spring we enclosed each
tree ina1by1by2-m(lengthbywidthbyheight)cage
constructed of mosquito netting (625 holes/in2 mesh
size) around a plastic PVC pipe frame. The ground
below each sapling was covered by 1 m2 of weed-block
fabric (Ben Meadows, Janesville, WI) to reduce weed
growth and provide ground shade. When the insects
reached diapause each fall, the cages were removed
from all trees to prevent winter storm-related damage.

Inoculations

Before A. tsugae crawler emergence each May, in-
fested hemlock branches were collected from Am-
herst, MA, in 2007 and in central RI in 2008. We used
standard inoculation protocols (Butin et al. 2007) to
attachA. tsugaeÐinfested branches to saplings in theA.
tsugae treatment. Before F. externa crawler emergence

each June, infested foliage was collected from East
Granby, CT, and applied as above to saplings in the F.
externa treatment.

Data Collection

Insect Density. In October 2007/2008 and March
2008/2009, we randomly selected one branch from
each of the four cardinal directions per tree for sam-
pling. Within each branch, 3 branchlets were chosen
for a total of 12 sampled branchlets per tree. For each
branchlet, we measured the length of the current and
previous yearÕs growth (cm) and the number of living
A. tsugae present. The F. externa density assessment
was determined by counting the number of settled
individuals per 50 needles on the most recently pro-
duced foliage and previous yearÕs foliage. We did not
differentiate between growth type for F. externa. In
cases where F. externa densities were extremely high,
we counted the number of needles necessary to Þnd
25 settled individuals. In both cases, the data were
used to calculate a mean number of settled individuals
per needle. To convert settled individuals per needle
into settled individuals per centimeter growth, we
collected one branchlet from each of 50 trees, counted
the number of needles per 5 cm of newest growth, and
used this information to determine a mean number of
needles per centimeter of growth: 10.32 � 0.384 (SE).
We then multiplied the number of settled individuals
per needle by 10.32 needles/cm to derive the number
of settled F. externa per centimeter growth.
Plant Growth. For all treatments, growth in centi-

meters was measured for 3 branchlets on four
branches for a total of 12 branchlets per tree. We
measured branchlet length for both the previous
yearÕs growth and the current yearÕs growth. For trees
in both insect treatments, the same branchlets were
used for growth and insect density measurements.
Foliar Chemistry. Each sampling period, we ran-

domly selected 1 of the 12 sampled branchlets per tree
for chemical analysis. After using a dissecting micro-
scope and pin to remove any visible F. externa and A.
tsugae, we cut the new- and old-growth needles from
each branchlet (one new-growth and one old-growth
sample per tree). Excised needle samples were oven
dried at 65�C and carefully chopped into a Þne pow-
der. We analyzed �2 mg of each sample for total
percent C and N by dry combustion with a CHNOS
analyzer (vario Micro cube; Elementar Americas, Mt.
Laurel, NJ).
Statistical Analysis. Response variables for all anal-

yses were calculated as the mean response per tree per
sampling date for each treatment. Data were trans-
formed when necessary to meet the assumptions of
normality; variances were homogenous between
treatments. We used repeated-measures analysis of
variance (ANOVA) to test for the main effects of
treatment, foliage age (old versus new growth), time,
and column (location within the rectangular grid; in-
cluded as a blocking variable), as well as all of the
potential two-way interactions between the main ef-
fects. After the initial analysis, all nonsigniÞcant two-

514 ENVIRONMENTAL ENTOMOLOGY Vol. 39, no. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/ee/article-abstract/39/2/513/483471 by U

niversity of R
hode Island Library user on 22 M

ay 2019



way interactions were removed, and the analysis was
rerun. We performed means separation tests, where
appropriate, using TukeyÕs honestly signiÞcant differ-
ence (HSD). Statistical analyses were performed us-
ing JMP 6.0.2 (SAS Institute 2007).

Results

Insect Densities. A. tsugae densities varied depend-
ing on sampling date (F3,55 � 14.60, P� 0.001; Fig. 1);
densities were higher after settlement in the fall and
lower after winter mortality. Densities did not differ
between October sampling dates, nor did they differ
between March dates (TukeyÕs HSD, P � 0.05). F.
externa densities also varied over time (F3,58 � 8.20,
P � 0.001; Fig. 1). The population dynamics of F.
externa differed from that of A. tsugae; after an initial
decrease from October 2007 to March 2008, F. externa
densities steadily increased (Fig. 1). In addition,
March 2008 densities were signiÞcantly lower than
October 2008 and March 2009 levels (TukeyÕs HSD,
P � 0.05). Overall, A. tsugae densities were approxi-
mately equal toF. externadensities, with the exception
of March 2009 (Fig. 1). For both insects, these num-
bers fell well within the range of densities found in
naturally occurring hemlock populations in southern
New England (McClure 1980a, McClure 1991; A. Para-
dis, unpublished data).
PlantGrowth.Length of newest-growth foliage dif-

fered signiÞcantly between treatments (F2,96 � 19.9,
P� 0.001; Fig. 2A). Although there was no difference
between the F. externa and control treatments, trees in
the A. tsugae treatment had signiÞcantly less new
growth than trees in the control (TukeyÕs HSD, P �
0.05; Fig. 2B). Foliage growth increased over the
course of the experiment (F3,94 � 54.5, P � 0.001);
however, growth increased less in the A. tsugae treat-
ment than in the other treatments (time � treatment
interaction: F3,95 � 17.9, P� 0.001; Fig. 2A). All other
two-way interactions were nonsigniÞcant (P� 0.05).

There were no consistent within-treatment correla-
tions between growth and insect density within either
insect treatment. When A. tsugae densities had reached
theirpeak inOctober2008,however,adelgiddensitywas

negativelycorrelatedwithhemlockgrowth(F1,17 �9.53,
P� 0.0067). This correlation was not signiÞcant during
the other three sampling periods, when A. tsugae den-
sities were lower (P� 0.05; Fig. 1).F. externadensity was
not correlated with growth for any sampling period.
Foliar Chemistry. New-growth foliage had signiÞ-

cantly higher levels of N than did old-growth foliage
(2.00 � 0.019 and 1.69 � 0.019, respectively; F1,96 �
76.5, P � 0.001), and there was a signiÞcant time �
foliage age interaction (F3,94 � 6.28, P � 0.001). Be-
cause the foliage age � treatment interaction was not
signiÞcant, hereafter we present and discuss the global
means. Although %N in A. tsugae trees was signiÞ-
cantly lower than in controls in both October 2007 and
March 2008 (Fig. 2C), treatments did not differ sig-
niÞcantly in foliar N by the end of the 2-yr experiment
(F2,96 � 0.95, P � 0.39; Figs. 2C and D). Foliar N
declined over time (F3,94 � 23.0, P � 0.001; Fig. 2C),
and there was a signiÞcant time � treatment interac-
tion (F3,95 � 4.43, P � 0.001).

New-growth foliage had lower C:N ratios than did
old-growth foliage (3.25 � 0.010 and 3.42 � 0.010, re-
spectively; F1,96 � 95.6, P� 0.001), and there was also a
signiÞcant time � foliage age interaction (F3,94 � 13.9,
P � 0.001). There were no signiÞcant between-treat-
mentdifferences inmeanC:Nratiosat theendofthe2-yr
experiment (F2,96 � 0.79, P � 0.45; Fig. 2E); however,
C:N ratios did differ between October 2007 and March
2008(A. tsugae treeratioswerehigher thancontrol trees;
Fig. 2E).C:Nratios increasedover time(F3,94 �25.2,P�
0.001; Fig. 2E), and there was a signiÞcant time � treat-
ment interaction (F3,95 � 3.30, P � 0.001).

There were no consistent within-treatment rela-
tionships between insect density and chemical con-
centration. There was no relationship between %N or
C:N ratio in new foliage and A. tsugae or F. externa
density for any of the four sampling periods (all P �
0.05).

Discussion

Our study showed that elongate hemlock scale and
hemlock woolly adelgid, two invasive herbivores that
share a native host plant, differed in their effect on

Fig. 1. Mean densities of A. tsugae (number of individuals/cm branch growth) and F. externa (number of individuals/cm
branch growth) across all sampling dates.
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Eastern hemlock. F. externa did not signiÞcantly de-
crease plant growth and did not affect foliar chemistry
(Fig. 2B, D, and F). In contrast, A. tsugae infestation
sharply reduced plant growth over a 2-yr period (Fig.
2A). Although A. tsugae had no overall effect on foliar
N across our entire study (Fig. 2C and D), it did affect
N levels during the Þrst year. From October 2007 to
March 2008, foliar N was signiÞcantly lower in the A.
tsugae treatment relative to the control (Fig. 2C). This
difference disappeared during the second year, when
foliar N in both the control and F. externa treatments
appeared to decrease while remaining constant in A.
tsugae trees.

One potential explanation for the lack of an A.
tsugae effect on foliar chemistry may involve the fact
that plant growth in the second year of the experiment
increased sharply in the control and F. externa treat-
ments while remaining low in the A. tsugae treatment
(Fig. 2A). Because nutrients in plants typically move
to the greatest “sinks,” which include the most re-
cently produced foliage (Herms and Mattson 1992,
Inbar et al. 1995), the large amount of new growth in

the F. externa and control treatments may have caused
the plants to dilute (sensu van den Driessche and
Rieche 1974) foliar N concentrations by spreading it
out over a much larger area. Because the A. tsugae
treatment differed from the others in growth and the
lack of a difference in N concentration seems to be
caused by this dilution effect, we conclude that A.
tsugae infestation is more damaging to Eastern hem-
lock than F. externa infestation. Interestingly, if N was
not coupled with plant growth as a health indicator,
differences in tree health would not have been de-
tected. If this fact is generally true, it may be an
important consideration for future studies assessing
the effects of sap-sucking insects on plant health.

Theeventualbetween-treatment similarity inN lev-
els could also be explained by a compensatory re-
sponse inA. tsugae trees. If there were decreased rates
of photosynthesis, infested trees may have shifted
their allocation of N in response to herbivory
(Trumble et al. 1993, Frost and Hunter 2008). Other
trees have been known to do this to maintain N
levels for photosynthesis (Herms and Mattson 1992,

Fig. 2. (A) Mean new foliage growth at each sampling date during the experiment and (B) across all sampling dates. (C)
Total %N at each sampling date and (D) across all sampling dates. (E) Log 10 C:N at each sampling date and (F) across all
sampling dates. NS, between-treatment differences not signiÞcant at P � 0.05.
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Trumble et al. 1993). The presence of secondary me-
tabolites for defense might also explain the lack of an
overall decrease in foliar N over time. If this was the
case, A. tsugae-infested foliage might show gradual
increases in foliar N concentrations. This hypothesis is
supported by the fact that mature hemlocks with long-
term A. tsugae infestations have higher foliar N in
infested versus uninfested foliage (Stadler et al. 2005,
Cobb et al. 2006, Pontius et al. 2006). There is also strong
evidence for higher foliar N and lower C/N ratios in
decomposing infested foliage (Cobb et al. 2006). In N
cycling comparisons, total net nitriÞcation and N min-
eralization were higher in infested stands, although dif-
ferenceswerenotabletobedetecteduntil2and3yr into
the study, respectively (Orwig et al. 2008).

Although the physiological basis of the A. tsugaeÐ
hemlock interaction has not yet been established,
some researchers have hypothesized that A. tsugae
may induce a type of phytotoxic response in hemlock
(Ryan et al. 1990, McClure 1991, Young et al. 1995,
Preisser and Elkinton 2008). Although the response to
herbivore damage is generally conÞned to plant tissue
near where feeding has occurred, feeding by phyto-
toxic herbivores can induce a stress response through-
out the plant (Ryan et al. 1990). Such herbivores
manipulate plant phytochemistry and the induction of
secondary compounds (Stadler et al. 2006) to modify
plant resource allocation to their beneÞt at the ex-
pense of the host. While locally beneÞcial to the her-
bivore, such manipulations can substantially decrease
overall plant growth and suppress plant defenses
(Bruce and Pickett 2007, Goggin 2007, Pieterse and
Dicke 2007). For example, another introduced adel-
gid, the balsam woolly adelgid, Adelges piceae (Ratz.),
initiates a nonspeciÞc hypersensitive response in its
native host, the Fraser Þr (Arthur and Hain 1987). A.
piceae saliva stimulates phloem parenchyma cell
growth and subsequently reduces sapwood area and
water ßow (Arthur and Hain 1986). Loss of sapwood
decreases tree defense and food storage capabilities
and increases susceptibility to secondary pathogens
(Hollingsworth and Hain 1991). Heavy A. piceae in-
festations can kill trees in 2Ð7 yr (Arthur and Hain
1986), a mortality rate comparable to that produced by
A. tsugae.

Although many members of the Hemipteran family
Adelgidae possess the ability to locally increase plant
nutrient concentrations while decreasing defenses
(Rohfritsch 1990), similar processes have not yet been
documented in the A. tsugaeÐhemlock system. Many
adelgids are specialized feeders that have evolved to
exploit the phytochemistry and metabolic pathways of
their native hosts (Rohfritsch 1988); this exploitation
may be especially harmful for hosts that lack a coevo-
lutionary history with this herbivore. Additionally, the
feeding mechanism of many adelgids may cause a
disadvantageous sink dynamic in which the insect
removes solutes and nutrients from developing bud
tissue faster than they can be replaced (Rohfritsch
1988). Insect feeding in general can alter nutrient
allocation within a plant (Trumble et al. 1993), and
many insects exploit this to their beneÞt. For example,

aphids are capable of manipulating plant allocation
patterns by diverting nutrients and assimilates from
other plant tissue to locally increase nutrient levels (In-
bar et al. 1995, Burd 2002, Denno and Kaplan 2007,
Goggin 2007). If A. tsugae alters resource allocation and
subsequently manipulates sink strength in the tree, mul-
tiple years without recovery may explain the observed
decreases in plant growth and health over time.

Because the foliage of Eastern hemlock and other
evergreens functions as the storage site for most of
their carbon and nutrients, these host plants may be
especially susceptible to depletion of foliar reserves by
introduced herbivores (Tuomi et al. 1984, Wagner
1988). Members of the Pinaceae, speciÞcally Abies,
Tsuga, andCedrus, lack a constitutive network of resin
canals to deter and combat herbivores and thus rely
primarily on induced rather than constitutive defenses
(Wagner 1988, Raffa 1991). While this may make this
group particularly vulnerable to introduced herbi-
vores, Eastern hemlock is additionally hampered by
the fact that its inducible chemical defenses seem
specialized to defend against folivorous rather than
sap-feeding insects (Lagalante et al. 2007).

Our Þndings conÞrm that A. tsugae is a virulent
insect pest capable of reducing growth and overall
health in eastern hemlock at low densities in early
stages of infestation. This is in line with other pub-
lishedresearch(McClure1991) showing thathemlock
health begins to decline immediately after A. tsugae
infestation and that this insect rapidly reaches high
population densities (Figs. 1 and 2A). In contrast,
early-stage infestations of F. externa, comparable in
density to A. tsugae (Fig. 1), had only a negligible
impact on plant growth and foliar chemistry. Because
F. externa densities seem to increase steadily over time
(McClure 1980a, b), however, it seems likely that F.
externa will eventually have some effect on hemlock
growth and health. It is also important to consider
interspeciÞc differences in life-history characteristics
of each insect: A. tsugae has two generations per year
on Eastern hemlock, whereas F. externa only has one.
As a result, the trees were exposed to two generations
of F. externa infestation and four generations of A.
tsugae infestation. This additional factor may also help
explain the strong impact ofA. tsugae on plant growth.

When faced with management decisions in regard
to early infestations of either insect, our results suggest
the focus should be on managing the more detrimental
A. tsugae.Research assessing the implications for East-
ern hemlock growth and survival of the co-occurrence
of both species is currently in progress (unpublished
data). Although heavy F. externa infestations can
clearly be harmful to tree health, our results suggest
that pest management efforts should primarily em-
phasize the detection and control of early-stage A.
tsugae infestations.

Acknowledgments

This research would not have been possible without the
help of J. Backer, D. Cox, J. Elkinton, L. Ingwell, G. Miller-
Pierce, and J. Turner. R. Casagrande, S. Gomez, C. Orians, C.

April 2010 MILLER-PIERCE ET AL.: IMPACT OF HEMLOCK PESTS 517

D
ow

nloaded from
 https://academ

ic.oup.com
/ee/article-abstract/39/2/513/483471 by U

niversity of R
hode Island Library user on 22 M

ay 2019



Thornber, H. Lux, S. Petit, and two reviewers made helpful
comments on previous versions of this manuscript. Funding
for this work came from an AES Hatch grant and NSF
DEB0715504 to E.P.

References Cited

Arthur, F., and F. Hain. 1986. Water potential of Fraser Þr
infested with balsam woolly adelgid (Homoptera: Adel-
gidae). Environ. Entomol. 15: 911Ð913.

Arthur, F., and F. Hain. 1987. Inßuence of balsam woolly
adelgid (Homoptera: Adelgidae) on monoterpenes found
in bark and sapwood of Fraser Þr. Environ. Entomol. 16:
712Ð715.

Bruce, T. J., and J. A. Pickett. 2007. Plant defence signalling
induced by biotic attacks. Curr. Opin. Plant Biol. 10:
387Ð392.

Burd, J. D. 2002. Physiological modiÞcation of the host
feeding site by cereal aphids (Homoptera: Aphididae). J.
Econ. Entomol. 95: 463Ð468.

Butin, E., E. Preisser, and J. Elkinton. 2007. Factors affect-
ing settlement rate of the hemlock woolly adelgid, Ad-
elges tsugae, on eastern hemlock, Tsuga canadensis.Agric.
Forest Entomol. 9: 215Ð219.

Cobb, R., D. Orwig, and S. Currie. 2006. Decomposition of
green foliage in eastern hemlock forests of southern New
England impacted by hemlock woolly adelgid popula-
tions. Can. J. Forest Res. 36: 1331Ð1341.

Denno, R. F., and I. Kaplan. 2007. Plant-mediated interac-
tions in herbivorous insects: mechanisms, symmetry, and
challenging the paradigms of competition past, pp. 19Ð
50. In T. Ohgushi, T. Craig, and P. Price (eds.), Eco-
logical communities: plant mediation in indirect inter-
action webs. Cambridge University Press, Cambridge,
United Kingdom.

Frost, C., andM. Hunter. 2008. Herbivore-induced shifts in
carbon and nitrogen allocation in red oak seedlings. New
Phytol. 178: 835Ð845.

Goggin, F. L. 2007. Plant-aphid interactions: molecular and
ecological perspectives. Curr. Opin. Plant Biol. 10: 399Ð408.

Havill, N. P., and M. E. Montgomery. 2008. The role of
arboreta in studying the evolution of host resistance to
the hemlock woolly adelgid. Arnoldia 65: 2Ð9.

Havill, N. P., M. Montgomery, G. Yu, S. Shiyake, and A.
Caccone. 2006. Mitochondrial DNA from hemlock
woolly adelgid (Hemiptera: Adelgidae) suggests cryptic
speciation and pinpoints the source of the introduction to
eastern North America. Ann. Entomol. Soc. Am. 99: 195Ð
203.

Herms, D. A., and W. J. Mattson. 1992. The dilemma of
plants: to grow or defend. Qrtly. Rev. Biol. 67: 283Ð335.

Hollingsworth,R., andF.Hain. 1991. Balsam woolly adelgid
(Homoptera: Adelgidae) and Spruce-Fir decline in the
southern Appalachians: assessing pest relevance in a dam-
aged ecosystem. Fla. Entomol. 74: 179Ð187.

Inbar, M., A. Eshel, and D. Wool. 1995. InterspeciÞc com-
petition among phloem-feeding insects mediated by in-
duced host-plant sinks. Ecology 75: 1506Ð1515.

Kenis, M., M. Auger-Rozenberg, A. Roques, L. Timms, C.
Pere, M. Cock, J. Settele, S. Augustin, and C. Lopez-
Vaamonde. 2009. Ecological effects of invasive alien in-
sects. Biol. Invasions 11: 21Ð45.

Lagalante, A., M. Montgomery, F. Calvosa, and M. Mirza-
beigi. 2007. Characterization of terpenoid volatiles from
cultivars of eastern hemlock (Tsuga canadensis). J. Agric.
Food Chem. 55: 1085Ð1056.

Mattson, W. J., R. K. Lawrence, R. A. Haack, D. A. Herms,
and P. J. Charles. 1988. Defensive strategies of woody

plants against different insect-feeding guilds in relation
to plant ecological strategies and intimacy of associa-
tion with insects, pp. 3Ð38. InW. J. Mattson, J. Levieux,
and C. Bernard-Dagan (eds.), Mechanisms of woody
plant defenses against insects: search for pattern.
Springer, New York.

McClure, M. 1978. Seasonal development of Fiorinia ex-
terna, Tsugaspidiotus tsugae (Homoptera: Diaspididae),
and their parasite, Aspidiotiphagus citrinus (Hymenop-
tera: Aphelinidae): importance of parasite-host synchro-
nism to the population dynamics of two scale pests of
hemlock. Environ. Entomol. 7: 863Ð870.

McClure, M. 1980a. Competition between exotic species:
scale insects on hemlock. Ecology 61: 1391Ð1401.

McClure, M. 1980b. Foliar nitrogen: a basis for host suit-
ability for elongate hemlock scale Fiorinia externa (Ho-
moptera: Diaspididae). Ecology 61: 72Ð79.

McClure, M. 1991. Density-dependent feedback and pop-
ulation cycles in Adelges tsugae (Homoptera: Adelgidae)
on Tsuga canadensis. Environ. Entomol. 20: 258Ð264.

McClure,M., andC.Cheah. 1999. Reshaping the ecology of
invading populations of hemlock woolly adelgid, Adelges
tsugae (Homoptera: Adelgidae), in Eastern North Amer-
ica. Biol. Invasions 1: 241Ð254.

Morewood,W.D., K. Hoover, P. R. Neiner, J. R.McNeil, and
J. C. Sellmer. 2004. Host tree resistance against the
polyphagous wood-boring beetle Anoplophora glabripen-
nis. Entomol. Exp. Applic. 110: 79Ð86.

Orwig, D., and D. Foster. 1998. Forest response to the in-
troduced hemlock woolly adelgid in southern New En-
gland, USA. J. Torrey Bot. Soc. 125: 60Ð73.

Orwig,D.A.,R.C.Cobb,A.W.D’Amato,M.L.Kizlinski, and
D. R. Foster. 2008. Multi-year ecosystem response to
hemlock woolly adelgid infestation in southern New En-
gland forests. Can. J. Forest Res. 38: 834Ð843.

Pieterse, C. M., and M. Dicke. 2007. Plant interactions with
microbes and insects: from molecular mechanisms to
ecology. Trends Plant Sci. 12: 564Ð569.

Pontius, J., R. Hallett, and J. Jenkins. 2006. Foliar chemistry
linked to infestation and susceptibility to hemlock woolly
adelgid (Homoptera: Adelgidae). Environ. Entomol. 35:
112Ð120.

Preisser, E., A. Lodge, D. Orwig, and J. Elkinton. 2008.
Range expansion and population dynamics of co-occur-
ring invasive herbivores. Biol. Invasions 10: 201Ð213.

Preisser, E. L., and J. Elkinton. 2008. Exploitative compe-
tition between invasive herbivores beneÞts a native host
plant. Ecology 89: 2671Ð2677.

Raffa, K. F. 1991. Induced defensive reactions in conifer-
bark beetle systems, pp. 245Ð276. In D. W. Tallamy and
M. J. Raupp (eds.), Phytochemical induction by herbi-
vores. Wiley, New York.

Rohfritsch,O. 1988. A resistance response ofPicea excelsa to
the aphid, Adelges abietis (Homoptera: Aphidoidea), pp.
253Ð266. In W. J. Mattson, J. Levieux, and C. Bernard-
Dagan (eds.), Mechanisms of woody plant defenses
against insects: search for pattern. Springer, New York.

Rohfritsch, O. 1990. Aphid stylet movement and host-
plant reaction in the case of Adelgidae on spruce, pp.
101Ð116. In R. Campbell and R. Eikenbary (eds.),
Aphid-plant genotype interactions. Elsevier, New
York.

Ryan, J., A. Morgham, P. Richardson, R. Johnson, A. Mort,
and R. Eikenbary. 1990. Greenbugs on wheat: a model
system for the study of phtotoxic Homoptera, pp. 171Ð
186. InR. Campbell and R. Eikenbary (eds.), Aphid-plant
genotype interactions. Elsevier, New York.

518 ENVIRONMENTAL ENTOMOLOGY Vol. 39, no. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/ee/article-abstract/39/2/513/483471 by U

niversity of R
hode Island Library user on 22 M

ay 2019



SAS Institute. 2007. JMP userÕs guide, version 7.0.2 com-
puter program. SAS Institute, Cary, NC.

Sasscer, E. R. 1912. The genus Fiorinia in the United
States. U.S. Dep. Agric., Bureau of Entomology Tech-
nical Series, Washington, DC.

Stadler, B., T. Müller, D. Orwig, and R. Cobb. 2005. Hem-
lock woolly adelgid in New England forests: canopy im-
pacts transforming ecosystem processes and landscapes.
Ecosystems 8: 233Ð247.

Stadler, B., T.Muller, andD.Orwig. 2006. The ecology of
energy and nutrient ßuxes in hemlock forests invaded
by the hemlock woolly adelgid. Ecology 87: 1792Ð1804.

Stoetzel, M. B. 2002. History of the introduction of Adelges
tsugae based on voucher specimens in the Smithsonian
InstituteNationalCollectionof Insects, p. 12. InB.Onken,
R. Reardon, and J. Lashomb (eds.), Proceedings: Hem-
lock Woolly Adelgid in the Eastern United States Sym-
posium, 5Ð7 Feb. 2002. New Jersey Agricultural Experi-
ment Station and Rutgers University, New Brunswick, NJ.

Trumble, J., D. Kolodny-Hirsch, and I. Ting. 1993. Plant
compensation for arthropod herbivory. Annu. Rev. En-
tomol. 38: 93Ð119.
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