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ABSTRACT 

This paper simulates fracture in notched mortar beams under three-point bending using extended finite 

element method (XFEM) and peridynamics. A three-phase microstructure (i.e., cement paste, aggregates, 

and paste-aggregate interface) is used for constitutive modeling of the mortar to obtain the elastic 

properties for simulation. In the XFEM approach, the simulated homogenized elastic modulus is used 

along with the total fracture energy of the cement mortar in a damage model to predict the fracture 

response of the mortar including crack propagation and its fracture parameters (Mode I stress intensity 

factor, KIC and critical crack tip opening displacement, CTODC). The damage model incorporates a 

maximum principal stress-based damage initiation criteria and a traction-separation law for damage 

evolution. In the peridynamics approach, a bond-based model involving a prototype microelastic brittle 

(PMB) material model is used. The elastic properties and fracture energy release rates are used as inputs 

in the PMB model, along with the choice of peridynamic horizon size. Comparison with experimental 

fracture properties (KIC, CTODC) as well as crack propagation paths from digital image correlation show 

that both the approaches yield satisfactory results, particularly for KIC and crack extension. Thus, both 

these methods can be adopted for fracture simulation of cement-based materials.  

Keywords: Numerical simulation; Fracture; Constitutive model; XFEM; Peridynamics; Concrete  
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1. INTRODUCTION  

Rapid progress is noted in the development and application of novel and sustainable binders as well as 

several types of inclusions (both stiff and compliant) for structural concrete applications. In the binder 

domain, high volume cement replacement materials and cement-free binders (e.g., alkali activated 

binders) are gaining prominence (Das et al. 2014b; Juenger et al. 2011; Ravikumar et al. 2010). The use of 

lightweight aggregates (LWAs) are being explored for internal curing and thermal and acoustic insulation 

(Al-Jabri et al. 2005; Cusson and Hoogeveen 2008; Kim et al. 2012; Nguyen et al. 2014).  In addition, 

microencapsulated phase change materials (PCMs) are being proposed for control of thermal cracking in 

pavements and bridge decks (Fernandes et al. 2014), and regulating internal environments in buildings 

(Hembade et al. 2013; Thiele et al. 2015), while soft inclusions such as rubber are used for energy 

absorption (Hernández-Olivares et al. 2002), and denser/stiffer aggregates for radiation shielding (Akkurt 

et al. 2006; Makarious et al. 1996). The changes in the binder phase and/or incorporation of novel 

inclusions influence the microstructural stress distribution and consequently the paths/mode of failure of 

the material (Das et al. 2016a). The bulk fracture response of these systems are thus dictated by the 

microstructure, even though macroscale descriptors are often used as fracture parameters.  

Numerical simulations of mechanical and fracture response of heterogeneous materials such as concrete 

complement the experimental studies to aid in material selection and optimizing proportions as well as in 

elucidating the mechanisms of failure. The microstructure-dependent elastic modulus is extracted in this 

study using a finite element (FE)-based micromechanical modeling scheme. This approach eliminates the 

shortcomings of typical analytical schemes (Das et al. 2015b; Hori and Nemat-Nasser 1993; Mori and 

Tanaka 1973) and yields a better solution. The modifications in the binder (paste) phase and the changes 

in inclusion properties can thus be adequately captured (Das et al. 2016a). The constitutive response thus 

generated and the experimentally obtained fracture energy data is used to predict crack propagation in 

macro-scale cementitious mortar beams. Several approaches are available to simulate fracture in 

cementitious materials, including those based on FE methods (Bobiński and Tejchman 2016; Ren et al. 

2017; Sancho et al. 2007) and lattice models (Bolander and Sukumar 2005; Qian and Schlangen 2013). FE 

models employing the cohesive zone approach (Park et al. 2010; Roesler et al. 2007; Song et al. 2006)  

have been often studied.  The fact that crack paths are highly sensitive to mesh alignment and refinement 

in a FE model has led to the use of extended finite element method (XFEM), where local enrichment 

functions with additional degrees of freedom are included in the standard FE approach (Eftekhari et al. 

2014; Golewski et al. 2012).  Recently, peridynamics has evolved as a modeling approach for solids with 
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discontinuities (Silling 2000). Here, crack initiation and propagation are represented through bonds 

between particles. In addition, coupled damage mechanics-peridynamics approach has also been applied 

(Azdoud et al. 2014; Han et al. 2016) where damage mechanics is implemented until localization beyond 

which peridynamics is used at localization points to dissipate the residual energy in a non-local manner. 

This paper adopts XFEM and bond-based peridynamics along with the elastic modulus predicted from the 

microstructural analysis to simulate the mesoscale fracture response, including the fracture parameters 

and crack paths in mortar beams.  

2. MICROSTRUCTURE-GUIDED MODELING OF ELASTIC PROPERTIES 

This section describes the microstructure-guided constitutive modeling framework for cement mortar. 

The linear constitutive response of cement mortar predicted in this section through microstructural stress 

analysis is used later as an input to the homogenized damage model for prediction of fracture properties.  

2.1 Elastic Properties of Component Phases  

The constitutive relationships for all the components of the mortar: cement paste, quartz aggregates and 

the paste-inclusion interface are considered in their respective linear elastic regimes so as to obtain the 

effective Young’s modulus. The default Young’s modulus of the components, extracted from available 

literature (Grondin and Matallah 2014; Hashin and Monteiro 2002; Ke et al. 2009; Lutz et al. 1997; Nilsen 

et al. 1995; Yang 1998; Zanjani Zadeh and Bobko 2014), are presented in Table 1.  

 

Table 1. Young’s modulus of the components of the mortar for FE simulations 

Elastic property 

Component phases 

Hardened 
Cement paste 

Quartz inclusion 
Quartz-cement paste 

interface 

Young's Modulus, E (GPa) 20 70 15 

2.2 Effective Elastic Property Prediction 

This section describes the numerical simulation framework for prediction of effective Young’s modulus of 

cement mortar. The effective Young’s modulus of cement mortar is obtained in a three-step process - (1) 

generation of a unit cell or representative volume element (RVE) based on known inclusion size 

distributions, (2) meshing of the unit cell and application of appropriate boundary conditions, and (3) 

microstructural stress analysis. 

The RVE is generated using the Lubachhevsky-Stillinger algorithm (Lubachevsky 1991; Lubachevsky et al. 

1991; Lubachevsky and Stillinger 1990; Meier et al. 2008), which employs a hard, non-overlapping particle 
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model in a cubical RVE.  The desired number of particles (having an initial radius of zero) are randomly 

distributed inside the periodic bounding box with random initial velocities of the particles. The radius of 

ith particle (ri) in the next event is a function of growth rate (gi) such that: 

𝑑𝑟𝑖

𝑑𝑡
= 𝑔𝑖                                                                                      (1) 

The growth rate of different particles is controlled so as to attain the desired particle size distribution, and 

is computed using finite difference scheme as follows: 

𝑔𝑖 =  
(𝑟𝑖

𝑛+1 − 𝑟𝑖
𝑛)

∆𝑡
                                                                          (2) 

The particle radii are updated using the growth rate and time increment. The position of particle ‘i’ is 

updated considering a constant velocity between the time nodes as: 

tvxx n

i

n

i

n

i 1                                                                          (3) 

All the particle positions 1n

ix  are updated using forward Euler scheme as shown in Equation 3 and a new 

search for next collision is started. The post-contact velocities are computed as follows: 
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  ),min{ 111                                                          (4a) 
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n
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n

n

n gvvv
jij


  ),max{ 111                                                         (4b) 

During each time step, checks for particle contacts and post-contact velocities are made. These steps are 

repeated, and in this process, the particles change their position in the RVE, collide, and grow to attain 

the desired volume fraction.  

In the current work, the RVE is generated based on a uniform particle size of 0.6 mm although the 

microstructure generation algorithm can handle any type of particle size distribution. Once the RVE 

geometry is generated, periodic boundary conditions (Das et al. 2016b; a; Li 2008; van der Sluis et al. 2000; 

Xia et al. 2006) are employed in the representative volume element (RVE) as shown in Figure 1. Periodic 

boundary conditions make the RVE-based approach beneficial as they minimize the boundary effects and 

stress concentrations near the edges of RVE while using a small problem domain. Figure 1(a) shows 

periodic arrays of repetitive unit cells and Figure 1(b) shows the periodic boundary conditions applied on 

a typical unit cell. The periodic boundary conditions ensure two continuity criteria – displacement 

continuity and traction continuity, at the boundaries of neighboring unit cells (Suquet 1987). The former 
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ensures that the neighboring unit cells cannot be separated or they cannot penetrate each other and the 

latter implies that traction distributions at the opposite parallel boundaries of the RVE must be the same. 

The displacement field in the periodic microstructure is given as: 

),(),( 21

*0

21 xxvxxxv ijiji                                                                     (5) 

where 
0

ij  is the applied strain tensor, and 
*

iv  is a periodic function representing the modification of linear 

displacement field due to the heterogeneous microstructure.  

 

 

 

 

 

 

 

 
 
 

Figure 1: Schematic of the RVEs with periodic boundary conditions under applied strain ( 0

22 ) (Das et al. 

2016a; Suquet 1987). 

 

For the unit cell shown in Figure 1(b), the displacements on a pair of parallel opposite boundary edges are 

given as: 

*0

i

s

jij

s

i vxv 


                                                                      (6a) 

*0

i

s

jij

s
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

                                                                     (6b) 

 

Here, s  and s are sth pair of two opposite parallel boundary surfaces of the unit cell as shown in Figure 

1(b). The periodic function *v  is the same for both the parallel opposite edges due to periodicity. The 

difference between the displacement fields of the two opposite parallel boundary edges is given as: 

s

jij

s

j

s

jij

s

i

s

i xxxvv 
 00 )(                                                             (7) 
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For a pair of opposite parallel boundary edges, s

jx is constant for a specified 0

ij . Such equations are 

applied as nodal displacement constraints in the FE analysis. A specific strain is applied on the RVE and 

the analysis is implemented through ABAQUSTM solver. Thus this approach simulates a strain- (or 

displacement) controlled test scenario.  

To facilitate construction of the FE model, a Python script is used to create the input for ABAQUSTM to 

mesh the RVE and to create the appropriate boundary conditions, thus creating a complete FE model. 

Free quad-dominated 4-noded bilinear plane strain quadrilateral elements (CPE4R element implemented 

in ABAQUSTM) are used in the FE models. A homogenization module is developed to obtain effective 

(averaged) RVE stresses/strains. A RVE-size sensitivity study was performed and the edge length of RVE is 

chosen as 4.15 mm, beyond which any increment in size of unit cell results in insignificant change in the 

composite property. Similar size of RVE, relative to the size of inclusions has been successfully 

implemented for cementitious composites in (Das et al. 2015b, 2016b).  A concurrent mesh convergence 

study determined that for an RVE 4.15 mm in size, a seed size of 0.0175 mm yielded converging responses. 

Figure 2(a) shows a representative 2D periodic microstructure (showing all particles of uniform size; 

please see (Das et al. 2015b, 2016b) for the same algorithm in which a broader particle size distribution is 

simulated, in both 2D and 3D). The inclusion volume fraction is 50%. Figure 2(b) shows the stress 

distributions obtained after analysis under the application of an imposed strain of 0.12% (which is well 

within the linear elastic range of cementitious systems) in microstructures containing a stiff inclusion (i.e., 

quartz). In order to determine the Young’s modulus, the microstructural stress analysis is performed for 

different externally applied strains (up to 0.25%). The stress-strain response thus generated through 

numerical simulation is shown in Figure 2(c). The average elastic modulus obtained for the mortar with 

quartz inclusions from three representative microstructures is 31.37 ± 0.12 GPa, and the value for one 

representative homogenization analysis (31.4 GPa) is used in the fracture simulations reported later in 

this paper. The obtained homogenized Young’s modulus correlates well with our experimental value (30.8 

± 1.46 GPa) obtained using three-point-bending test on four replicate prismatic beams of size 100 mm 

(span) x 25 mm (width) x 25 mm (depth).  
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Figure 2: (a) 2D FE model showing the inclusions, matrix, and the interface, (b) microstructural stress 
distribution, and (c) linear constitutive relationship for mortar with quartz inclusion 

 

3. PREDICTION OF CRACK PROPAGATION AND FRACTURE RESPONSE OF MORTARS 

Two different methods, i.e., XFEM and peridynamics are used to predict crack propagation and fracture 

properties of mortars. Brief discussions of theoretical formulations associated with these methods are 

provided in the respective sub-sections. The predicted values from the simulation schemes are verified 

against values obtained experimentally using closed-loop crack mouth opening displacement (CMOD)-

controlled testing (CMOD acting as the feedback signal) of notched mortar beams under three-point-

bending. For experimental evaluation of fracture behavior, four replicate beams were tested. The notch 

depth was 19 mm (corresponding to a notch depth-to-beam depth ratio of 0.25). The beams were tested 

in a CMOD-controlled mode during the loading cycles and in a load-controlled mode during the unloading 

cycles.  

3.1 Simulation using Extended Finite Element Method (XFEM)  

3.1.1 XFEM Formulation for Damage Prediction in Mortars/Concrete 

XFEM has been used extensively in modeling the fracture behavior of different classes of materials 

(Bayesteh and Mohammadi 2013; Curiel Sosa and Karapurath 2012; Eftekhari et al. 2014; Feerick et al. 

2013; Ye et al. 2012). In the XFEM framework, the displacement field consists of two parts – one 

continuous and the other discontinuous. The former is the standard displacement field corresponding to 

an uncracked situation. Local enrichment functions are incorporated in the FE approximation in order to 

model the crack (discontinuities) in an efficient manner. The enriched functions have additional degrees 

of freedom and simulate path-independent crack initiation and propagation based on the damage criteria 
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provided. The approximation of displacement vector function with the partition of unity enrichment is 

given as (Belytschko and Black 1999; Motamedi et al. 2013): 

 
 


N

I

IIII bxFaxHuxNu
1

4

1

])()()[(





                                                    (8) 

where, )(xN I
  are the conventional nodal shape functions at node I, Iu is the nodal displacement vector 

associated with the continuous part of the finite element solution; Ia  is the nodal enriched degree of 

freedom vector, )(xH  is the Heaviside function; 

Ib is the product of nodal enriched degree of freedom 

vector, and )(xF
  are the associated elastic asymptotic crack-tip functions. )(xH  is given as: 

1)( xH  if 0).( *  nxx                                                              (9) 

If Equation 9 is not satisfied, it is equal to -1. Here, x is a sample Gauss point, x* is the point on the crack 

closest to x, and n is the unit outward normal to the crack at x*. The asymptotic crack tip functions F are 

given as (Belytschko and Black 1999): 

]
2

.,
2

.,
2

,
2

[)(








 CosSinrSinSinrCosrSinrxF                               (10) 

where the crack tip is at the origin of the polar coordinate system and =0 is the tangent to the crack tip. 

The XFEM damage model requires appropriate damage initiation criteria. The maximum principal stress 

criteria is adopted in this study and the crack is considered to be initiated if the maximum principal stress 

exceeds the tensile strength of the mortar. A bilinear traction-separation law (Bažant 2002; Roesler et 

al. 2007) is used for damage propagation, as shown in Equations 11a and 11b. The fracture energy (GF) 

is the area under the entire traction-separation curve, given as: 

𝐺𝐹 = ∫ 𝑓(𝑤)𝑑𝑤
∞

0
                                                                   (11a) 

𝑓(𝑤) = {𝑓𝑡 − (𝑓𝑡 − 𝑓1)
𝑤

𝑤1
 𝑓𝑜𝑟 𝑤 ≤ 𝑤1   𝑎𝑛𝑑 |𝑓1 − 𝑓1

(𝑤−𝑤1)

(𝑤𝑐−𝑤1)
 𝑓𝑜𝑟 𝑤1 > 𝑤}     (11b) 

where ft is the tensile strength of the material, wc is the critical crack tip opening displacement, and f1 and 

w1 are the stress and opening displacement corresponding to the kink in the bilinear traction-separation 

curve.  

The numerical simulation framework incorporates the Concrete Damage-Plasticity (CDP) model 

(Jankowiak and Lodygowski 2005; Voyiadjis et al. 2008) beyond the linear elastic regime for fracture 

simulation. CDP is a material model based on a combination of damage and plasticity theory. The plasticity 
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theory is used to describe both the compressive and tensile response of concrete, while the damage 

theory is used for the cyclic and unloading characteristics. In this model, isotropic damage is represented 

as: 

)(:)(:)1( 0

plelplel DDd                                          (12) 

where  is the Cauchy stress tensor, d is the scalar stiffness degradation variable,  is the strain tensor, 

pl is the plastic strain, elD0
 is the initial elastic stiffness of the material, and 

elD is the degraded elastic 

stiffness tensor. The effective stress tensor   is given as: 

)(:0

plelD                                                              (13) 

Damage states in tension and compression are characterized independently by two hardening variables 

which are the equivalent plastic strains in compression and tension respectively. The plastic flow is given 

as (Jankowiak and Lodygowski 2005): 

𝜀̇𝑝𝑙 = 𝜆̇
𝜕𝐺(𝜎̅)

𝑑𝜎̅
                                                                     (14) 

where, the flow potential, G is given using a Drucker-Prager hyperbolic function as: 

  tan.)tan..( 22 pqfmfG tc                                               (15) 

Here, tf is the tensile strength and cf is the compressive strength,  is the dilation angle and m is the 

eccentricity of the plastic potential surface, p is the effective hydrostatic stress and q is the Mises 

equivalent effective stress. The CDP model uses a yield condition based on loading function:  

)())(..3(
1

1
maxmax

pl

c

plpqF 





                                 (16) 

where the function )( pl is given as: 

 )1()1(
)(

)(
)( 




 

pl

tt

pl

ccpl
                                                       (17) 

The parameter , which is based on the ratio of biaxial compressive strength (fb0) to uniaxial compressive 

strength (fc), is defined as: 

1)(2

1)(

0

0






cb

cb

ff

ff
                                                                      (18) 
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3.1.2 Numerical Simulation of Three Point Bending Test for Mortar Beams using XFEM in ABAQUS  

A 2D XFEM model is used to simulate three-point bending of a notched mortar beam. The beam has a 

span of 100 mm, and a cross section of 25 mm x 25 mm. Experimental details were mentioned earlier in 

this paper. The meshed beam model is shown in Figure 3.  

 

Figure 3: Meshed notched beam for 2D XFEM simulation 

 

The beam has an initial notch, which is 1 mm wide and 3.75 mm deep, at the mid-span. The two pin 

supports and the loading head at the top are defined as rigid bodies. The displacement is applied at a 

reference point tied to the loading head. Traction-separation behavior is quantified using data on the 

cement mortar made using the same materials and proportions, reported in an earlier publication (Das et 

al. 2015a). The values for the concrete damage plasticity (CDP) variables, i.e.,   which is the dilation angle 

at high confining pressure, m which is the eccentricity of the plastic potential surface,  which is the 

parameter that determines the shape of the loading surface in the deviatoric plane, and s, the ratio of 

biaxial compressive strength to uniaxial compressive strength of concrete, are adopted from (Jankowiak 

and Lodygowski 2005). While these parameters are provided for concrete in (Jankowiak and Lodygowski 

2005), they are used in this study for mortars also, for lack of better experimental data on these 

parameters. The material parameters for XFEM simulation are shown in Table 2 (Das et al. 2015a; Kim and 

Abu Al-Rub 2011 p.; Yang 1998). While numerically homogenized value of Young’s modulus is implemented 

in XFEM simulation, a constant Poisson's ratio of 0.22 was used since the effect of variation of Poisson's 

ratio in the range of 0.17-0.22 has been reported to be insignificant for cementitious materials (Das et al. 

2015b, 2016b; da Silva et al. 2013). 

Table 2: Properties of the mortar and parameters for XFEM simulation 

E(GPa)   
Max. principal 
stress (MPa) 

GF 
(N/mm) 

CDP model parameters 
  m    f 

31.4 0.22 3.0 0.035 38o 1.0 0.67 1.12 
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The uniaxial tension and compression behavior of cement mortar for CDP model, adopted from (Kim and 

Abu Al-Rub 2011), are shown in Figure 4. Figure 5 shows the generated load-crack mouth opening 

displacement (CMOD) response obtained from the XFEM simulation.  

 

Figure 4: Representative: (a) uniaxial tension, and (b) uniaxial compression behavior implemented in the 

concrete damage plasticity (CDP) model. Data from (Jankowiak and Lodygowski 2005).  

 

Figure 5: Simulated Load-CMOD response of the mortar beam using XFEM 

The maximum principal stress contours at three different stages in the load-CMOD response obtained 

through the implementation of the CDP model in the XFEM framework are shown in Figure 6.  Point P-1 

in Figure 6 corresponds to 85% of the peak load in the pre-peak regime whereas point P-2 corresponds to 

95% of the peak load in the post-peak regime. Point P-3 is chosen at a CMOD value of 0.16 mm, which 

corresponds to a CMOD very close to ultimate failure. Figure 6(a) does not show the formation of a crack 

since the maximum principal stress (2.62 MPa) is smaller than the considered tensile strength (3 MPa) of 
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cement mortar. The crack is observed to initiate close to the peak load when the maximum principal stress 

equals the tensile strength. Figure 6(b) shows the stress contour corresponding to 95% of the peak load 

in the post peak regime. The crack has begun to propagate at this stage and is roughly at the mid-height 

of the specimen at this load level. The stress concentration near the tip of the crack is also visible as 

expected. Figure 6(c) shows almost complete propagation of the crack near failure.  

Crack extension-related values at 95% of the peak load in the post-peak regime can be used to calculate 

the Mode I stress intensity fracture (fracture toughness), KIC, of the cement mortar using the two-

parameter fracture model (TPFM) as follows (Gdoutos 2006; Nunes and Reis 2012): 

3/2
[ ]

eff

IC

aPL
K F

bd d
                                                                   (19a) 

1/2 3/2 5/2 7/2 9/2[ ] [2.9( ) 4.6( ) 21.8( ) 37.6( ) 38.7( ) ]
eff eff eff eff eff effa a a a a a

F
d d d d d d

                        (19b) 

where the effective crack length, 
0effa a a  . The critical crack tip opening displacement (CTODC), which 

is another fracture parameter in the TPFM is computed as the CTOD value at 95% of the peak load in the 

post-peak regime (P-2 in Figure 5). The values of KIC and CTODC are 27.4 MPa.mm0.5 and 0.012 mm 

respectively. There is a very good correlation between the KIC and CTODc values obtained from the XFEM 

simulation and the experimental measurements [41] (26.4 MPa.mm0.5 and 0.0125 mm from experimental 

load-CMOD data, by employing TPFM). 

 



13 

 

 

Figure 6: Maximum principal stress contours: (a) P-1 (85% of the peak load in pre-peak regime); (b) P-2 

(95% of the peak load in post-peak regime) and (c) P-3 (near failure: CMOD of 0.16 mm)  

  

 

 

Figure 7: Images processed using digital image correlation (DIC), with the crack corresponding to the 

three locations P-1 to P-3 in the load-CMOD plot: (a) 85% of the peak load in pre-peak regime, (b) 95% of 

the peak load in post-peak regime, and (c) near failure: CMOD of 0.16 mm.  

(a) (b)

(c)
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Digital image correlation (DIC), which is a non-contact optical method that can be used to analyze digital 

images to extract the full displacement field on a specimen’s surface (Chu et al. 1985; Pan et al. 2009), 

was used along with the experimental determination of fracture parameters. The time series information 

from the data acquisition system connected to the loading frame was matched with that from the 

photographs of the analysis region (images were taken by a CCD camera every 5 seconds) and image 

correlation was carried out. Figure 7 shows the 2D horizontal displacement fields for the mortar beam 

corresponding to points P-1 to P-3 in Figure 5. The jump in the horizontal displacement above the notch 

indicates crack initiation and propagation (Das et al. 2014a). The displacement jump and the visible crack 

in the images are well correlated, indicated by the dark lines in the images shown in Figures 7(a)-(c). CTOD 

and crack extension can also be directly measured using DIC (Das et al. 2014a), from which the determined 

KIC and CTODC values were 30.1 MPa.mm0.5 and 0.017 mm respectively, which agrees well with those 

determined using the TPFM method and XFEM simulations. Moreover, a comparison of Figures 6 and 7 

shows that the crack paths as a function of load are also captured adequately by the XFEM simulations. 

Importantly, the application of CDP parameters to mortar does not seem to inhibit the predictive capacity 

of XFEM simulations.  

3.2 Simulation using Peridynamics 

3.2.1 Peridynamic Theory 

The peridynamic theory was developed by Silling (Silling and Askari 2005; Silling and Bobaru 2005) to 

include damage and fracture into the formulation without the use of special mathematical techniques to 

account for points at which discontinuities occur. It is envisaged as a theory to unify the mathematical 

and computational modeling of continuous media, crack growth, and discrete particles (Silling and Cox 

2014). In peridynamics, every material point interacts directly with other points within a distance of , 

called the horizon, through peridynamic bonds. This is schematically shown in Figure 8(a). The horizon 

represents the maximum interaction distance for material points, and is generally an effective material 

length scale. The vector from x to any point in its family ℋ(𝑥) in the reference configuration is called a 

bond. Figure 8(b) shows the bond forces that allows for discontinuity. The micro-elastic moduli of each 

bond are different, denoted by cx. The horizon, though shown as a circle here, can have any arbitrary 

shape as long as the micro-modulus function satisfies the linear and angular momentum criteria (Hu 

2012).  
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Figure 8: (a) Horizon and family, and (b) bond forces in peridynamics 

The equation of motion represented in the bond-based theory of peridynamics defines the acceleration 

of any particle at x in the reference configuration at time t as (Silling and Lehoucq 2010): 

𝜌(𝒙)𝒖̈(𝒙, 𝑡) =  ∫ 𝒇(𝒖(𝒙′, 𝑡) − 𝒖(𝒙, 𝑡), 𝒙′ − 𝒙)𝑑𝑉𝑥′ℋ𝑥
+ 𝒃(𝒙, 𝑡)                                (20) 

where ℋ𝐱 is  a neighborhood of x in a body ℬ, u is the displacement vector field, b is a prescribed body 

force density field, ρ is mass density field in the reference configuration, and the function f is a pairwise 

bond force density field whose value is the force vector (per unit square of the volume) that the particle 

𝐱′ exerts on the particle x (Silling and Askari 2005).  

The relative position of two particles (ξ ) and the relative displacement vector at their end points (η) are 

represented as: 

  ξ x x    (21) 

 ( , ) ( , )t t η u x u x   (22) 

where η + ξ represents the current relative position vector between the particles.   If the bond responses 

are considered to be independent of others, as is the case in bond-based peridynamics, the resulting 

material model is a relationship between the bond force density and the bond strain. Assuming the bond-

based material to be linearly elastic, the bond force density field and the bond strain are related as: 

𝑓 = 𝑐(𝝃)𝑠𝑴                                                                         (23) 

(b) 

(a) 
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In the above equation, s is the bond strain and M is the deformed bond direction unit vector.  

Damage is implemented in bond-based peridynamic models using bond breakage. At a certain critical 

bond stretch, εc, the bond is considered to fail irreversibly. The progression of cracking is determined by 

the field equations and the constitutive model at the bond level. In other words, the idea of stress intensity 

factor is not used in peridynamics.  

The bond-based peridynamic theory, which is a continuum extension of molecular dynamics, is limited 

because of the fact that the response of a material at a point is determined by the deformation of each 

individual bond independently. The Poisson’s ratio is always 0.25 in this case (Ren et al. 2017). To 

overcome this limitation, a more general peridynamic framework was developed, where each bond force 

depends on the collective deformation of all the bonds within the horizon (Silling and Lehoucq 2010). This 

is the basis of state-based peridynamics because the mathematical objects that convey information about 

the collective deformation of bonds are called peridynamic states (Silling et al. 2007). This approach 

allows the response of a material at a point to depend on the deformation of all bonds connected to the 

point.  The bond-based theory then becomes a special case of the state-based theory.  

Peridynamics is currently being implemented in commercially available FE analysis software. However, 

the current capabilities of these FEA suites are limited in scope. In this study, a beta version of 

peridynamics as implemented in LS-DYNA is used.  This version includes only brittle failure analysis based 

on a Galerkin finite element method with the bond-based peridynamics model. The discontinuous 

Galerkin approach is used within the context of classical peridynamics equations. As the examples in this 

section will show, this makes it possible to use traditional finite element approach including using the 

finite element mesh to construct the peridynamics numerical solution (Ren et al. 2017). This approach 

alleviates to some degree, the issue of non-uniform discretization and difficulties in prescribing boundary 

conditions and kinematic constraints that plague conventional applications of bond-based and state-

based peridynamics. The implementation utilizes the prototype microelastic brittle (PMB) material model, 

which is a linear isotropic material model where each bond is treated as a linear spring, resulting in an 

implied Poisson’s ratio of 0.25. With this, the micro-elastic modulus, cX , of each bond, is calculated using 

linear equations with respect to the classic elastic modulus, E, as: 

 
1

3
2

E c V   X X

ξ

ξ   (24) 

where V  X  is the change in volume of the surrounding point, X , and ξ  is the relative position between 

point X  and its neighbor X , similar to Equation 21.  However, the formulation of the peridynamic model 
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in LS-DYNA defines the relative positions and displacements using Gaussian points and shape functions, 

written as:  

                                             
'''

`)()()( AgAAgAg XXNXXNX                                            (25) 

                                                            
'''

)()()( AgAAgAg uXNuXNX                                      (26) 

where )( gA XN   and )(
'' gA XN are the shape functions of a Gaussian point g

X  and its neighbor 

Gaussian point g
X  within the horizon, respectively. Then a bond, , and the bond deformation, , are 

used in the Galerkin weak form as [18]: 

∫ 𝜌𝑢̈𝑖
𝐴𝑁𝐴(𝑿)𝑁𝐵(𝑿)𝑑𝑉𝑿

Ω

= ∫ (∫ 𝑓𝑖(𝜼, 𝝃)𝑑𝑉𝑿′

𝐻𝑋

)𝑁𝐵(𝑿)𝑑𝑉𝑿
Ω

+ ∫ 𝑏𝑖(𝑿)𝑁𝐵(𝑿)𝑑𝑉𝑿
Ω

                          (27) 

where ui
A denotes the nodal displacement ui of node A, and  is the computational domain of the 

peridynamics problem described. With this weak form, the computational domain is partitioned by a FEM 

mesh, and not by particles as is done in a typical mesh free type of peridynamic implementation.   

The critical bond stretch, cs , of each bond in the LS-DYNA implementation is calculated based on the idea 

that all bonds crossing a crack surface must be broken to completely form the crack surface, resulting in 

(Ren et al. 2017): 

 
5

10 c
c

G
s

c 
   (28) 

where cG  is the fracture energy release rate.  The critical bond stretch in Equation 28 is not a constant 

value for all bonds, as the microelastic modulus, c, calculated from Equation 24 depends on the level and 

nature of mesh discretization as well as the location.  This results in a non-standard conversion of the 

fracture energy release rate to critical bond stretch, which is mesh dependent.  Therefore, the value 

defined for the fracture energy release rate may not produce the expected results, as will be discussed 

later in this paper. 

3.2.2 Numerical Simulation of Three-point-bending Test of Mortar Beams using Peridynamics  

The 3D mortar beam with the peridynamic material model for use in LS-DYNA is shown in Figure 9 (note 

that, for XFEM, a 2D simulation was used).  

 



18 

 

 

 

 

 

 

 

Figure 9: Meshed notched beam for peridynamics simulations 

The necessary material input parameters are the mass density, elastic modulus (from the microstructure 

guided numerical method reported earlier) and fracture energy release rate as summarized in Table 3.  

Table 3: Summary of input parameters for LS-DYNA peridynamic model 

 

  (kN/mm3) 20*109 

E (MPa) 31400 

Gc (N/mm) 0.035 

DR1 (--) 0.81 

 

It is seen that the peridynamic method can simulate fracture using a fewer number of parameters, which 

is advantageous.  However, since the value of the critical bond strength (Equation 28), is not readily 

available, a calibration process was required. Note that the critical bond stretch (at which the bond fails, 

and cracking happens) is dependent on the horizon , micro-elastic modulus c, and the fracture energy 

release rate (Equation 28). In the PMB model, when the scale of modeling represents the material as a 

homogeneous continuum, as is the case here, the horizon is chosen as a matter of convenience (Silling 

and Cox 2014). In practice, for situations where a material length scale is not directly evident, the size of 

the horizon is sequentially reduced until convergence is obtained [64]. LS-DYNA uses a parameter termed 

DR, which is the ratio of the horizon radius and a characteristic length le (which is the diagonal length of 

the each element [18]). A DR value of 0.81 facilitated convergence in this study, and was used to 

determine the horizon size. The changes in horizon radius results in considerable changes in the critical 

                                                 
1 DR is an LS-DYNA parameter with a recommended value between 0.6 and 1.2, which is used to determine the 
size of the horizon based on the characteristic length of the element. 
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bond stretch values, and thus the predicted fracture parameters. In this work, a calibration exercise was 

performed in which all other parameters were kept the same, while the value of fracture energy was 

varied to match the simulated peak load with the experimental data.  The input fracture energy release 

rate obtained from this exercise was 0.035 N/mm, which is in line with the strain energy release rates 

determined experimentally for mortars (Das et al. 2014a). Figure 10 shows the stress states in the beam 

from peridynamic simulations corresponding to different load states, similar to those obtained from XFEM 

simulations (Figure 6). The load-CMOD response is shown in Figure 11. 

While the critical stress intensity factor (KIC) from the peridynamic simulation matched that from the 

experiment and XFEM simulation, the CMOD (computed at 95% of the peak load in the post-peak regime) 

was about half of the expected value.  This may be attributed, in addition to the other limitations stated 

earlier, to the type of FE simulation carried out in the LS-DYNA PMB material model framework. An explicit 

finite element simulation (which is the currently available method in LS-DYNA) was carried out instead of 

an implicit analysis and it is likely that, as the crack tip propagates near the boundary, the stress waves 

between the crack tip and boundary affects the displacement computations. The maximum principal 

stress contours in the peridynamic simulation, Figure 10, also match well with the XFEM simulation results 

shown in Figure 6 and the experimental DIC crack profiles shown in Figure 7. The final comparison of the 

numerically obtained values with experimental results is shown in Table 3. 

Table 3: Comparison of the KIC and CTODc values determined using XFEM, Peridynamics and experiments 
(both TPFM and DIC) 

 

Fracture toughness, KIC (MPa.mm0.5) Critical crack tip opening displacement, CTODc 
(mm) 

XFEM PD 
Experiments 

(TPFM) 
Experiments 

(DIC) 
XFEM PD 

Experiments 
(TPFM) 

Experiments 
(DIC) 

27.4 28.6 26.4 30.1 0.012 0.006 0.0125 0.017 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 10: Maximum principal stress contours for peridynamic simulation: (a) P-1 (85% of the peak load 

in pre-peak regime); (b) P-2 (95% of the peak load in post-peak regime) and (c) P-3 (near failure: CMOD: 

0.06 mm)  
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Figure 11: Load-CMOD response obtained from peridynamic simulations 

 

4. SUMMARY AND CONCLUSIONS 

The fracture response of notched cementitious mortar beams under three-point bending were simulated 

using two advantageous modeling and simulation frameworks – XFEM and peridynamics. The input elastic 

response of the mortar required for fracture modeling was obtained through a microstructure-guided 

constitutive modeling scheme using conventional finite element analysis. 

A 2D model was used for XFEM-based fracture modeling. The total fracture energy obtained from a 

bilinear traction-separation response was used in conjunction with the concrete damage plasticity (CDP) 

model in ABAQUS to simulate fracture. Due to lack of reported CDP parameters for mortars, the 

corresponding published parameters for concrete were used in this study. The maximum principal stress 

criteria was adopted in this study for damage initiation. The fracture parameters (KIC and CTODC) extracted 

from the XFEM-predicted load-CMOD response were found to be in very good agreement with those 

predicted by employing the two-parameter fracture model (TPFM) to the experimental load-CMOD 

response of the mortar. The fracture simulations were found to be not very sensitive to the CDP 

parameters.   

The bond-based peridynamic simulation of fracture was implemented in a 3D model in LS-DYNA. A 

prototype microelastic brittle (PMB) material model was used, which restricts the Poisson’s ratio to a 

constant value of 0.25. The peridynamic method was able to simulate fracture using a fewer number of 

parameters; however a calibration process was required since the critical bond strength could not be 

obtained.  The calibration was based on adjusting the fracture energy release rate so as to match the peak 
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load from experiments. The choice of the horizon value in the PMB model was also dictated by 

convergence necessities, which influenced the fracture parameters. Despite these approximations, KIC and 

crack extension were reasonably well-predicted by the peridynamics model. Both XFEM and peridynamics 

adequately predicted the crack extension at different loading and unloading stages, which were 

experimentally determined using DIC.  
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