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Key Points:  10 

• Globally, light availability in the water column is the most important parameter for 11 

phytoplankton size distribution  12 

• Regionally, phytoplankton size distributions vary, responding to variable light and modes 13 

of nutrient delivery 14 

• Cell size is increasing in the cold ocean and the dynamic regions in the warm ocean and 15 

declining in the warm ocean 16 

 17 

 18 
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 20 
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Abstract 22 

Phytoplankton play a key role as the base of the marine food web and a crucial component in the 23 

Earth’s carbon cycle.  There have been a few regional studies that have utilized satellite-estimated 24 

phytoplankton functional type products in conjunction with other environmental metrics.  Here we 25 

expand to a global perspective and ask, what are the physical drivers of phytoplankton composition 26 

variability? Using a variety of satellite observed ocean color products and physical properties 27 

spanning 1997-2015, we characterize spatial and temporal variability in phytoplankton community 28 

size structure in relation to satellite-based physical drivers.  We consider the relationships globally 29 

and by major thermal regimes (cold and warm), dominant size distribution, and chlorophyll 30 

concentration variability.  Globally, euphotic depth is the most important parameter driving 31 

phytoplankton size variability and also over the majority of the high latitude ocean and the central 32 

gyres.  In all other regions, size variability is driven by a balance of light and mode of nutrient 33 

delivery.  We investigated the relationship between size composition and chlorophyll 34 

concentration and the physical drivers through correlation analysis.  Changes in size composition 35 

over time are regionally varying and explained by temporal shifts in the varying physical 36 

conditions.  These changes in phytoplankton size composition and the varying underlaying 37 

physical drivers will ultimately impact carbon export and food web processes in our changing 38 

ocean.   39 

 40 

  41 
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1 Introduction 42 

Phytoplankton play a key role as the base of the marine food web and are a crucial 43 

component in the earth’s carbon cycle.  Given this importance, there have been many studies that 44 

have characterized phytoplankton distributions from field observations (Boyd et al., 2010; Brun et 45 

al., 2015), satellite estimates (McClain et al., 2009; Siegel et al., 2013; Mouw et al., 2017) and 46 

modeling (Dutkiewicz et al., 2013; Henson et al., 2017).  Previous investigations have suggested 47 

alterations in biomass, productivity, and community composition as a result of the changing 48 

environment (Bopp et al., 2005; Behrenfeld et al., 2006; Vantrepotte and Melin, 2009; Siegel et 49 

al., 2013; Gregg & Rousseaux, 2014; Rousseaux & Gregg, 2015; Dutkiewicz et al., 2013).  These 50 

changes are regionally variable and complex with multiple drivers at play at once, yet signatures 51 

of trends are being detected over the timeframes that satellites have observed (e.g. Henson et al., 52 

2017).   53 

Considering more than just abundance, phytoplankton community composition plays an 54 

important role in the intricacies of food web dynamics and their influence on carbon export flux 55 

(Guidi et al., 2015; Mouw et al., 2016).  It is well understood that small cells are more commonly 56 

dominant in stratified, high light conditions, while large cells dominate in well mixed, lower light 57 

conditions (Chisholm, 1992).  Now with a variety of approaches to estimate phytoplankton 58 

community structure from satellite (Mouw et al., 2017; IOCCG, 2014), we have the ability to take 59 

a broader look beyond abundance.  A variety of approaches have emerged that attempt to 60 

discriminate phytoplankton functional types (PFT), which include algorithms that retrieve 61 

phytoplankton size classes (PSC), phytoplankton taxonomic composition (PTC), or particle size 62 

distribution (PSD).  A PFT is an aggregation of phytoplankton, where irrespective of their 63 

phylogeny, they share similar biogeochemical or ecological roles.  The existing approaches vary 64 

in what phytoplankton groupings they retrieve and the underlying mechanisms in which they 65 

derive group information (Mouw et al., 2017).   66 

There have been a few studies that have utilized satellite PFT products in conjunction with 67 

other environmental metrics.  Thus far, these have been regional in scope.  In high latitudes, an 68 

increase in diatoms were observed during positive phases of local climate indices, suggesting the 69 

increases were driven by nutrient supply (Alvian et al., 2013).  Coccolithophore abundance was 70 

found to correspond to shallow mixed layer with, low wind speed, and increasing sea surface 71 

temperature (Sadeghi et al., 2012).  In the Indian Ocean, the variance in phytoplankton structure 72 

was explained by sea surface height, stratification and sea surface temperature (Brewin et al., 73 

2012).  Southern Ocean diatom phenology was found to be driven by the polar front, ice extent 74 

and oppositely correlated with El Niño Southern Oscillation and the Southern Annual Mode 75 

(Soppa et al., 2016).   76 

Here we expand to a global view to assess the physical drivers of phytoplankton 77 

composition variability from satellite products.  How have phytoplankton (i.e. chlorophyll 78 

concentration and composition) distributions changed over the satellite record?  What are the 79 

physical drivers of this variability?  Over the satellite record, we characterize the relationship 80 

between chlorophyll a concentration and phytoplankton composition and the variability of 81 

phytoplankton distributions to define regions based on persistent patterns.  We then determine the 82 

dominant physical processes that are responsible for the observed variability and change over time. 83 

http://sciences.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=29106
http://sciences.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=29106
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2 Materials and Methods 84 

2.1 Imagery and Reanalysis Products 85 

A summary of data products, descriptions and sources, including website links, can be found in 86 

Table 1. 87 

2.1.1 Ocean Color Imagery  88 

To allow the greatest length of time of continuous ocean color imagery, we utilized merged 89 

imagery products obtained from the Ocean Color Climate Change Initiative (OC-CCI, version 3.0, 90 

the latest version at the time of analysis, Grant et al., 2017).  OC-CCI has globally merged Sea-91 

Viewing Wide Field-of-View Sensor (SeaWiFS), Medium Resolution Imaging Spectrometer 92 

(MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared 93 

Imaging Radiometer Suite (VIIRS) imagery for a continuous record from 1997 through 2015 94 

(Sathyendranath et al., 2018).  We utilized monthly resolution, 4 km products.  The OC-CCI 95 

products used here include: chlorophyll a concentration ([Chl], mg m-3), spectral remote sensing 96 

reflectance (Rrs(λ), sr-1), spectral dissolved and detrital absorption (adg(λ), m-1), and the diffuse 97 

attenuation coefficient at 490 nm (Kd(490), m-1).  OC-CCI derives Kd(490) from the Lee et al. 98 

(2005) algorithm, which is independent of [Chl].  Here, Kd(490) was used to calculate euphotic 99 

depth (𝑧𝑒𝑢 = 4.6 𝐾𝑑(490)⁄ , Morel & Berthon 1989).  OC-CCI provides the spectral products at 100 

the SeaWiFS bands, by band-shifting the Rrs(λ) values from MERIS, MODIS and VIIRS to match 101 

those of SeaWiFS.  The OC-CCI [Chl] product is estimated by a blended combination of the 102 

empirical band ratio algorithm (OCx, O’Reilly et al., 1998), and the ocean color index algorithm 103 

(OCI) which itself blends the band ratio algorithm and color index (CI, Hu et al., 2012) (Jackson 104 

& Grant, 2016).  The OC-CCI adg(λ) product is calculated from the quasi semi-analytical algorithm 105 

(Lee et al., 2002; 2007).   106 

Satellite PFT algorithms have a variety of phytoplankton product outputs and units (Mouw 107 

et al., 2017; IOCCG, 2014).  This presents an additional layer of challenge, precluding direct 108 

comparison of algorithm performance.  Instead, metrics such as phenological cycle, have been 109 

used as a way to inter-compare PFT algorithms (Kostadinov et al., 2017).  This intercomparison 110 

revealed that while PFT algorithms agree across broad scales, they do not all agree under all 111 

circumstances.  Here we sought to utilize a PFT product that performed near the mean of the 112 

phenological metrics (phenological shape, magnitude and month of maximum) that Kostadinov et 113 

al. (2017) assessed, as well as that with high validation metrics reported from the original 114 

publication (compiled by Mouw et al., 2017).  Further, phytoplankton size is one of the best 115 

characterized traits structuring food webs due to many ecosystem and physiological processes that 116 

are mediated by size such as: nutrient acquisition and utilization, light acquisition, sinking, and 117 

grazer interactions (Finkel, 2007; Litchman & Klausmeier, 2008; Finkel et al., 2009; Litchman et 118 

al., 2010; Wirtz, 2012).  We selected the satellite output from Mouw and Yoder (2010) that 119 

estimates phytoplankton size class as percent microplankton (Sfm, > 20 μm).  The uncertainty 120 

metrics of this product are one of the best performing of the PFT algorithms reviewed by Mouw 121 

et al. (2017) with r2=0.6 and RMSE of 12.64.  The calculation of Sfm requires satellite Rrs(λ), [Chl], 122 

and adg(λ).  These are taken from the OC-CCI products described above.  This is an absorption-123 

based approach where the chlorophyll-specific absorption spectra for phytoplankton size class 124 

extremes, pico- (0.2–2 μm) and microplankton (> 20 μm), are weighted by Sfm (Ciotti et al., 2002; 125 

Ciotti & Bricaud, 2006).  Sfm is estimated from a look-up table containing simulated [Chl], 126 

adg(443), Rrs(λ), and Sfm.  For a given pixel, satellite-estimated [Chl] and adg(443), are used to 127 

narrow the search space within the look-up table.  Of the remaining options, the closest simulated 128 
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Rrs(λ) to the satellite-observed Rrs(λ) is selected and the associated Sfm is assigned.  The Sfm product 129 

processed from OC-CCI imagery is available on PANGAEA: 130 

https://doi.pangaea.de/10.1594/PANGAEA.892211. 131 

We utilized the vertically generalized primary production model (VGPM) as the net 132 

primary productivity (NPP) product (Behrenfeld & Falkowski, 1997).  NPP is a function of 133 

chlorophyll, available light, and temperature-dependent photosynthetic efficiency.  We accessed 134 

the monthly, 9 km VGPM NPP imagery for SeaWiFS and MODIS (derived from R2014 135 

processing).  Following the recommendations of Mélin (2016) to prevent the introduction of long-136 

term anomalous trends from cross-mission differences, SeaWiFS and MODIS data were merged 137 

from a bias-corrected signal.  Briefly, monthly climatologies for each pixel were created from 138 

years with mission overlap (2003-2007) for SeaWiFS and MODIS records.  Gaps of less than two 139 

months in the climatology were filled using a spline interpolation.  The entire MODIS record was 140 

then adjusted by the difference between SeaWiFS and MODIS climatologies: 141 

𝑥𝑎,𝑐𝑜𝑟𝑟(𝑝,𝑚) = 𝑥𝑎(𝑝,𝑚) + 𝑥𝑠,𝑐𝑙𝑖𝑚(𝑝,𝑚) − 𝑥𝑎,𝑐𝑙𝑖𝑚(𝑝,𝑚) 142 

where xa,corr is the corrected MODIS signal for a given pixel and month, xa is the original MODIS 143 

signal, and xs,clim and xa,clim are the SeaWiFS and MODIS climatologies, respectively.  The final 144 

combined record was created by averaging SeaWiFS with the bias-corrected MODIS signal.  The 145 

pre-MODIS time period includes data from SeaWiFS alone and the post-SeaWiFS time period 146 

comprises xa,corr alone.  147 

 148 

2.1.2 Physical Data Sets:  149 

Several physical products were utilized to diagnose the drivers of phytoplankton 150 

community variability.  Satellite and blended products were used to characterize 151 

photosynthetically active radiation (PAR, mol quanta m-2 s-1), sea surface temperature (SST, C) 152 

and sea-level anomaly (SLA, m).  PAR is the quantum energy flux from the sun between 400 and 153 

700 nm and is a standard product hosted on the NASA Ocean Color web 154 

(https://oceancolor.gsfc.nasa.gov/) at monthly, 9 km resolution.  PAR from SeaWiFS and MODIS 155 

missions (R2014 processing) were merged following Mélin (2016) as described above.  The Group 156 

for High Resolution Sea Surface Temperature (GHRSST) retrieves SST products that are hosted 157 

by the National Oceanographic Data Center (NODC).  We utilized the Level 4 global product, 158 

which provides gap-free data at quarter-degree, daily resolution by combining in situ sensors with 159 

satellite products from the Advanced Very High-Resolution Radiometer (AVHRR) Pathfinder 160 

missions (Version 5 processing) (www.ghrsst.org).  SLA represents the difference in sea-level 161 

height from a reference period.  The SSALTO/Data Unification and Altimeter Combination 162 

System (DUACS) hosted by Archiving, Validation and Interpretation of Satellite Oceanographic 163 

data (AVISO) is a multi-sensor satellite product derived from seven international satellite missions 164 

(Saral/AltiKa, Jason-1 and -2, Cryosat-2, Envisat, ERS-1 and -2, GFO and HY-2A).  SLA is 165 

retrieved in quarter-degree, monthly resolution relative to the twenty-year mean profile from 1993-166 

2012.  The seasonal cycle is not removed from the dataset.  167 

Reanalysis data products were used to retrieve net total heat flux (Qnet, W m-2), mixed layer 168 

depth (MLD, m) and stratification index (200, kg m-3).  Net total heat flux is used to determine 169 

if the ocean is a source or sink for heat energy.  The National Centers for Environmental Prediction 170 

(NCEP) and the National Center for Atmospheric Research (NCAR) provide reanalysis products 171 

generated from a variety of satellite, airborne and in situ platforms, for latent and sensible heat 172 

fluxes on a T62 Gaussian grid with monthly resolution (Kalnay et al., 1996).  Surface fluxes for 173 

net latent heat flux, net longwave radiation, net shortwave radiation and sensible heat flux were 174 

https://doi.pangaea.de/10.1594/PANGAEA.892211
https://oceancolor.gsfc.nasa.gov/
https://www.ghrsst.org/
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summed to retrieve Qnet.  We utilized MLD and potential density (𝜎𝜃, kg m-3) from the Simple 175 

Ocean Data Assimilation (SODA, version 3.3.1, Carton, et al., 2018), which is forced by the 176 

Modern-Era Retrospective analysis for Research and Applications (MERRA-2) dataset.  SODA 177 

assimilates a variety of in situ and satellite observations with a model framework to reconstruct 178 

the 3-D physical history of the ocean on a half-degree grid with 50 depth levels ranging from 5 m 179 

to 5000 m.  For the density-based MLD product, the mixed layer is defined as the depth were 180 

density exceeds surface density by 0.03 kg m-3.  We retrieved the stratification index from 𝜎𝜃 as 181 

the difference in density between the surface and 200 m (Behrenfeld et al., 2006; Brewin et al., 182 

2012).  We also considered bathymetry and wind speed, but did not find compelling relationships, 183 

thus they were left out of further analysis and not reported here.   184 

 185 

2.2 Data Processing Procedures:  186 

The original downloaded satellite and modeled data products described above have a 187 

variety of gridding, spatial resolution and time scales.  In order to directly relate one product to 188 

another, we created a uniform 1 x 1 degree, gap-free time series for each data product based on the 189 

processing steps of Yoder and Kennelly (2003).  First, derived products were retrieved from the 190 

original dataset (Step 1).  Next, data were spatially smoothed or re-gridded to a 1 x 1 degree product 191 

(Steps 2 and 3) followed by log transformation where appropriate (Step 4).  Finally, data were 192 

temporally smoothed and filled in an attempt to produce a gap-free time series (Steps 5 and 6) and 193 

quality controlled (Step 7).  Details of these processing steps are as follows:  194 

1) Derived products (Sfm, zeu, and 200) were retrieved, or SeaWiFS and MODIS signals 195 

were combined for NPP and PAR products following Mélin (2016). 196 

2) Data were spatially smoothed to 1/4 degree via geometric mean for 4 km and 9 km 197 

products, or daily images for SST were combined to create a monthly mean product. 198 

3) Data were spatially smoothed to 1 degree via median filter, or data were re-gridded to 1 199 

degree for Qnet product via bi-linear interpolation, or data were re-gridded to 1 degree for 200 

MLD and 200 products via geometric mean.  201 

4) Products with non-normal distributions were base-10 log transformed (Sfm, [Chl], NPP, 202 

MLD and 200). Normality was assessed by comparing the skewness of the original 203 

dataset to log transformed values.  204 

5) Data were temporally smoothed via a 3-month moving average. 205 

6) Gaps of 6 months or less were filled via spline interpolation.  Gaps ranging from 5 to 6 206 

months existed in, at most, 5% of global pixels for any given variable and were 207 

concentrated at the very northern and southern most edges of the dataset. 208 

7) Outliers greater than 5 standard deviations from the mean were removed. 209 

The final data are 1º by 1º latitude/longitude bins with monthly resolution from January 1998 to 210 

March 2015.  Only those pixels with 100% data coverage for all data products were used in further 211 

analysis; this includes almost all pixels between 50ºN and 50ºS. 212 

 213 

2.3 Analysis  214 

Long-term trends and correlation are used to understand temporal and spatial variability of 215 

the dataset.  To determine the long-term trend, the monthly climatological cycle for each pixel is 216 

first removed from the dataset.  The remaining linear trend was calculated using the Theil-Sen 217 

approach, which is a non-parametric method insensitive to outliers where slope is retrieved as the 218 

median of the distribution of slopes between every pair of points in the data set (Barton, Lozier & 219 
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William, 2015).  Bayes factors (BF10, unitless) were calculated to assess fit significance (Wetzels 220 

& Wagenmakers, 2012).  Bayes factors represent the likelihood that a slope should be included in 221 

the model (slope is non-zero) versus that it should not (slope is zero).  For example, BF10=10 222 

means the retrieved slope is ten times more likely to exist than a slope of zero.  Here, we only 223 

present results with a BF10>3, which is considered the cutoff for “substantial evidence” that a slope 224 

exists (Wetzels & Wagenmakers, 2012).  Correlation between Sfm and each of the parameters was 225 

determined with Kendall’s rank correlation coefficient.  Prior to retrieving correlation, products 226 

were standardized by subtracting the mean and dividing by the standard deviation to express them 227 

on the same scale.  Again, only significant correlations, BF10>3, are reported, with BF10 228 

representing the likelihood that a correlation exists versus that it does not.  229 

Partial least squares regression (PLSR) with 10-fold cross validation is used to determine 230 

the relative importance of each parameter to Sfm (Wold et al., 2001).  Again, data are standardized 231 

prior to analysis to express them on the same scale. PLSR combines predictor variables into 232 

principle components that are then regressed with Sfm.  The method allows co-linearity between 233 

predictors since they all contribute to forming principle components.  VIP (variable influence on 234 

projection) scores represent the relative importance of each predictor to Sfm variability, while 235 

regression coefficients indicate the magnitude and direction of the relationship with Sfm.  For a 236 

given predictor, the VIP score quantifies the cumulative contribution of that predictor to each 237 

principle component weighted by the proportion of variance in Sfm explained by that component 238 

(Mehmood et al., 2012).  Here, we consider results with VIP>0.5 to be significant (Wold et al., 239 

2001).  Since data were standardized, the relative magnitude of regression coefficients also reflects 240 

the importance of each predictor to Sfm.  241 

With PLSR, there is the possibility of finding significant correlation by chance, although 242 

this likelihood decreases as the dataset gets larger (Clark & Cramer, 1993).  We performed a 243 

bootstrap test with the global dataset, where the rows of each predictor variable (i.e. 244 

latitude/longitude locations and times) were randomly paired with Sfm estimates prior to 245 

performing a PLSR.  We repeated this process 1000 times and none of these cases explained a 246 

significant portion of the variance in Sfm or had significant VIP scores for any of the randomly 247 

ordered predictors.  Thus, we are confident that our results with the ordered dataset are more than 248 

chance.  249 

To assess confidence in parameter importance, we applied leave-one-predictor-out 250 

validation (Martens & Martens, 2000).  This method repeats the PLSR analysis n+1 times, where 251 

n is the number of predictor variables.  The first run includes all predictor variables and subsequent 252 

runs remove a single predictor from the dataset each time.  Results are presented as the mean 253 

coefficients and VIP scores from the resulting distribution with error bars representing minimum 254 

and maximum values in the leave-one-predictor-out analysis.  This is more appropriate for our 255 

large dataset than a jack-knife leave-one-replicate-out approach, where each data point is 256 

successively removed from the repeated analysis, as single measurements are not likely to alter 257 

final relationships in large data sets (Wold et al., 2001). 258 

 259 

3 Results 260 

3.1 Global Analysis: 261 

The great advantage of using satellite products and merging them over time is the ability 262 

to explore temporal and spatial variability and the interrelation of these trends.  Which parameters 263 
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display the greatest change over the satellite record and which show significant correlation with 264 

Sfm?  We first explore these relationships at the global scale.  The long-term linear trend of the 265 

parameters considered is variable across the globe (Figure 1 a-j2).  Only Sfm and the parameters 266 

that have a significant relationship with Sfm are presented in Figure 1.  The long-term trend of Sfm, 267 

[Chl], and NPP are nuanced.  These parameters are increasing at high latitudes and portions of the 268 

subtropics; Zeu is broadly the inverse of these parameters.  PAR is decreasing at high latitudes and 269 

equatorial regions and increasing in the subtropics.  SST is predominately increasing over the 270 

majority of the ocean with the exception of some regions of the central gyres and the southern tip 271 

of South America.  200 generally follows the same spatial patters of zeu with the inverse 272 

relationships found for MLD. SLA is increasing over the majority of the ocean.  Qnet is primarily 273 

variable in the equatorial region.  The variability of the long-term trends of these parameters will 274 

be explored in greater detail in the regional analysis.  The correlation between these parameters 275 

and Sfm is less variable (Figure 1 b-j3).  Overwhelmingly, [Chl] and NPP are positively correlated 276 

with Sfm.  However, there are regions where [Chl] and Sfm are non- and anti-correlated that will be 277 

explored in more detail in subsequent sections.  Likewise, Zeu is predominately negatively 278 

correlated with Sfm, with the non- and anti- correlated regions inverse those of [Chl].  PAR is 279 

generally positively correlated at high latitude and equatorial regions and anti-correlated in gyre 280 

regions.  SST is generally anti-correlated in the warm regions of the ocean and correlated at cold, 281 

high latitude regions.  200 generally follows the same patters as SST, while MLD and Qnet display 282 

an inverse relationship to SST.  SLA also follows a similar correlation pattern to SST but with 283 

weaker correlative relationships.   284 

Globally, which parameters are most important to describing the variability in Sfm?  We 285 

applied PLSR to the global ocean to explore this question.  Light availability in the water column, 286 

indicated as euphotic depth, is most important to the size distribution of phytoplankton, followed 287 

by [Chl], NPP, SST, and PAR (Figure 2).  Probability density plots reveal, larger cells are 288 

associated with higher [Chl] and NPP, shallower zeu, colder SST and lower PAR.  Conversely, 289 

smaller cells are associated with deeper zeu, warmer surface waters and higher PAR (Figure S1).   290 

 291 

3.2 Regional Analysis: 292 

3.2.1 Size Relationship with Chlorophyll: 293 

 Are Sfm and [Chl] changing in synchrony?  This is an important question to understand as 294 

a subset of the satellite PFT algorithms are abundance-based, meaning they estimate PFTs directly 295 

from empirical relationships with [Chl] (Mouw et al., 2017).  Thus, the relationships used by these 296 

approaches should only hold up where [Chl] and phytoplankton composition are strongly 297 

correlated.  It is therefore of interest to further explore regions of the ocean where strong positive 298 

correlation between Sfm and [Chl] are not found.  From the global analysis above, we identified 299 

that Sfm and [Chl] are correlated over the majority of the ocean, but there are regions of the ocean 300 

where there is little or no correlation between these parameters.  How do the physical drivers of 301 

Sfm variability vary between correlated, non-correlated, and anti-correlated cases?  To explore 302 

these relationships further, we partition the ocean into regions where Sfm and [Chl] are correlated, 303 

non-correlated, and anti-correlated.  To isolate the impact of temperature, we further differentiate 304 

the ocean by warm (18ºC) and cold regions (<18ºC), resulting in a total of six regions (Figure 305 

3a).  We refer to these as the correlation regions.   306 

 In the correlated regions, only zeu, [Chl] and NPP are significant in explaining the variance 307 

in Sfm (Figure 3 b, c).  In these regions, [Chl], Sfm and NPP vary together and inversely to zeu 308 

(Figure S2).  In the anti-correlated regions, zeu, [Chl] and NPP, PAR and Qnet are important.  309 
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Additionally, in the warm, anti-correlated region, MLD is also important (Figure 3 d, e).  In the 310 

cold, anti-correlated region, Sfm, NPP, PAR and zeu vary together and inversely to [Chl], Qnet and 311 

MLD, while in the warm anti-correlated region, Sfm, varies together with, PAR and zeu, but [Chl], 312 

Qnet, and NPP vary together with a slight time lag (Figure S2).  It should be noted that the cold 313 

ocean anti-correlated region is very small and immediately adjacent to the anti- and un-correlated 314 

regions found in the southern portion of the South Pacific Ocean.  In the uncorrelated regions, zeu, 315 

[Chl] and NPP are still significant with the addition of SST and 200 in the cold ocean and Qnet in 316 

the warm ocean.  In the uncorrelated cold ocean, Sfm, [Chl] and NPP are varying in opposition with 317 

each other, while zeu is the inverse of [Chl], and SST and MLD track each other identically.  In the 318 

warm uncorrelated region, Sfm, [Chl], NPP and Qnet display a similar temporal pattern offset from 319 

each other in time and inverse to zeu (Figure S2).  To sum up these relationships, in all regions, zeu, 320 

[Chl] and NPP are important and in addition, A) in the correlated regions [Chl], Sfm and NPP vary 321 

together and inversely to ze; B) in the anti-correlated regions, Qnet and PAR are important factors 322 

with addition of MLD in the cold ocean, and C) in the non-correlated regions, Qnet is important in 323 

the warm ocean and SST and 200 in the cold ocean.   324 

 325 

3.2.2 Physical Drivers of Phytoplankton Size: 326 

 For the majority of our analysis we focus on regions that were determined from a 327 

combination of SST, Sfm dominance and [Chl] variability (Figure 4).  We refer to these as the Sfm 328 

and [Chl] regions.  Within these regions we ask, what are the important physical drivers of Sfm 329 

variability?  To isolate the impact of temperature, mean SST over the time series was used to 330 

partition the ocean into warm (18ºC) and cold regions (<18ºC).  Other studies have used the 15ºC 331 

isotherm to delineate warm and cold regions (Behrenfeld et al., 2006; Siegel et al., 2013).  332 

However, the 18ºC isotherm corresponded better to the boundaries of Sfm dominance (Figure 1f1 333 

and 4a).  Sfm dominance was determined by assessing the percentage of time spent above the global 334 

mean for a given pixel; microplankton were considered dominant if Sfm was greater than the global 335 

mean for at least 50% of the record (Figure 1a3).  The standard deviation of [Chl] ([Chl], g L-1) 336 

was used to characterize [Chl] variability.  Regions were partitioned from the distribution of [Chl] 337 

as greater than the 75th percentile (high variability), between the 25th and 75th percentiles (moderate 338 

variability), and less than the 25th percentile (low variability).  This results in the possibility of 339 

twelve regions.  However, not all combinations contained enough pixels to proceed with analysis.  340 

We proceeded with nine regions (Figure 4a).  These included the low and moderate [Chl] 341 

percentiles (<25th and 25th – 75th) when the phytoplankton community was dominated by small 342 

cells for both the warm and cold ocean, the moderate and high [Chl] percentiles (25th – 75th and 343 

>75th) when the phytoplankton community was dominated by large cells for both the warm and 344 

cold ocean, and the warm, large-dominated low [Chl] percentiles (<25th).   345 

PLSR was run on all nine of the Sfm and [Chl] regions (Figure 4).  To help simplify the 346 

variability of the primary drivers of Sfm across these regions as determined from the PLSR, we 347 

have color coded a map of the regions by the dominant physical drivers (Figure 5), which are 348 

referred to as environmental regions, and to view the importance of the parameters driving Sfm 349 

variability in each of these regions, we have mapped the VIP scores for each parameter considered 350 

(Figure 6).  The six environmental regions represented in figure 5 correspond to the nine Sfm and 351 

[Chl] regions in Figure 4 as +SST, MLD, 200 – NPP = small, cold, moderate [Chl]; +SST and 352 

MLD = large, warm, low [Chl]; +SLA = large, warm, moderate [Chl]; +Qnet and MLD = small, 353 

warm, moderate [Chl]; +Qnet, MLD, PAR – zeu = small, cold, low [Chl]; and zeu, [Chl] and NPP = 354 
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4 Sfm and [Chl] regions including 1) large, cold, high [Chl], 2) large, cold, moderate [Chl], 3) large, 355 

warm, high [Chl], and 4) small, warm, low [Chl]. 356 

For the majority of the high latitude ocean and the central gyres, Sfm variability is well 357 

explained by only variability in zeu, [Chl], and NPP (Figures 4d, 4e, 4g, 4h, and 5).  The importance 358 

of zeu points to light availability in the water column being the most important factor in describing 359 

the variability of phytoplankton community size composition in these regions.  These three 360 

parameters have importance across the majority of the ocean, with zeu and [Chl] having the greatest 361 

and NPP the least importance at high latitudes (Figure 6).  The four regions where only zeu, [Chl] 362 

and NPP are significant in explaining Sfm variance include, 1-2) cold, large-dominated, high 363 

(Figure 4d) and moderate [Chl] (Figure 4e); 3) warm, small-dominated, low [Chl] (Figure 4g) and 364 

4) warm, large dominated, high [Chl] (Figure 4h).  In these regions, Sfm, [Chl], and NPP varied 365 

together and inversely with zeu (Figure S3c, d, f,g).  These regions represent the extremes of size 366 

and chlorophyll variability: large-dominated with the greatest [Chl] variability in the warm and 367 

cold ocean and small-dominated with the lowest [Chl] variability in the warm ocean.  (The other 368 

region that small-dominated with the lowest [Chl] variability found in the cold ocean, is more 369 

complex and discussed later.)  The only regions where one of these parameters is not significant 370 

in describing Sfm variability are found in a small section of the Southern Ocean (Figure 5).  NPP 371 

is excluded from the cold, small dominated, moderate [Chl] region where instead just zeu and [Chl], 372 

in addition to 200, SST and MLD are important (Figure 4b).  In this region, SST and 200 vary 373 

together but inversely from MLD, while [Chl] and zeu vary inversely and Sfm and [Chl] are 374 

uncorrelted (Figure S3a).  Euphotic depth is non-significant in the cold, small dominated, low [Chl] 375 

region with [Chl] and NPP, in addition to PAR, Qnet and MLD remaining important (Figure 4c).  376 

Here, Sfm, NPP and PAR vary together and inversely to [Chl], MLD and Qnet (Figure S3b).  Overall, 377 

PAR and 200 are only important in these Southern Ocean regions as well (Figure 6). 378 

All other regions have a balance of the importance of light (indicated by zeu and/or PAR) 379 

and a mode of nutrient delivery to the surface ocean (MLD, Qnet, SLA and 200) beyond zeu, [Chl] 380 

and NPP alone (Figure 5).  The VIP scores of all other variables are much lower than the ones for 381 

zeu, [Chl] and NPP (Figure 6).  These include the upwelling and transition regions (adjacent to the 382 

gyres or subpolar regions).  The only region where one physical parameter is significant, in 383 

addition to zeu, [Chl] and NPP, is the warm, large-dominated, moderate [Chl] region, where SLA 384 

is significant (Figure 4i).  SLA varies with Sfm, [Chl] and NPP and inversely to zeu (Figure S3h).  385 

This region is found across the equatorial Pacific and Atlantic indicating a connection to El Niño 386 

dynamics, regions of western boundary currents, and fringing some sub-polar regions (Figure 4, 387 

5, and 6).  SLA has some of the lowest VIP scores of all parameters (Figure 6).  The warm, large-388 

dominated, low [Chl] region is also found in the equatorial Pacific (Figure 4j and 5).  Here MLD 389 

and SST are significant in addition to zeu, [Chl] and NPP.  Sfm variability here is driven by the 390 

deepening of MLD, leading to cooling SST, associated with equatorial counter-current dynamics 391 

(Figure 4j) that drives the seasonal timing of Sfm, [Chl] and NPP peaks (Figure S3i).  The mixed 392 

layer depth remains an important driver in the remaining region (warm, small-dominated, 393 

moderate [Chl] region) in addition to Qnet (Figure 4f), which is found around the outer edges of the 394 

gyres (Figures 4 and 5).  Here Qnet leads the seasonal succession of MLD, Sfm, [Chl], NPP, with 395 

zeu varying inversely (Figure S3f). 396 

 397 

3.3 Temporal Variability: 398 

At the regional scale, which parameters show the greatest change over the satellite record?  399 

To answer this, we considered how parameters change over time (Figure 1) within the regions 400 
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defined in Figure 4a (Figure 7).  On average, [Chl] and NPP show similar trends across the various 401 

region, increasing nearly everywhere, except the warm, small-dominated, moderate [Chl] region 402 

that captures the equatorial counter current dynamics and additionally for NPP the warm, small-403 

dominated, low [Chl] region which covers the central gyres.  Euphotic depth shows the inverse 404 

relationship with NPP.  Qnet and PAR are mostly neutral across the globe.  For PAR the only 405 

exceptions are found in the Southern Ocean were the cold, small-dominated, low [Chl] region show 406 

increases and the cold, small-dominated, moderate [Chl] region showing decreases.  These same 407 

two regions are slightly decreasing for Qnet while; warm, small-dominated low and moderate [Chl] 408 

region is slightly increasing.  SST and SLA are increasing across the globe.  MLD is increasing 409 

across all regions in the cold ocean and slightly decreasing in the warm ocean with the exception 410 

of the equatorial counter current region.  Likewise, 200 is decreasing in the cold ocean and only 411 

slightly decreasing in the warm ocean, with the exception of the equatorial counter current region, 412 

which is slightly increasing.  Changes in Sfm are more nuanced.  Sfm is increasing in the cold ocean, 413 

and the dynamic regions in the warm ocean (large-dominated, high and moderate [Chl]).  However, 414 

Sfm is declining in the warm ocean where small cells dominate and [Chl] is low.  Merging these 415 

aspects together, in the warm small-dominated ocean, MLD is decreasing, while Sfm is decreasing 416 

but [Chl] is increasing.  This suggests a shift toward greater prevalence of small cells, which are 417 

less dependent on nutrients introduced from mixing.  In the equatorial counter current region, Sfm 418 

and [Chl] are decreasing while MLD is increasing suggesting a possible dilution effect.  419 

 To provide an example of temporal changes, we selected a transect in the Pacific Ocean 420 

(from 8S to 22S, along 100W) (location displayed in Figures 1,3 and 4) that transverses regions 421 

that are declining in Sfm and [Chl] in the north and increasing in both of these parameters in the 422 

south (Figures 1a2, b2).  Over the length of the transect from north to south, zeu and MLD deepen 423 

and cooling occurs (Figures 1e2, 1i2).  The transect transverses three small-dominated, warm 424 

ocean regions across all three [Chl] percentiles (Figure 4).  We use Hovmöller plots of the transect 425 

(Figure 8) to show the transition over time of these and the other parameters with statistically 426 

significant relationships from the PLSR analysis (Figure 4).  Interannual variability is evident with 427 

an increase in both Sfm and [Chl] in the northern reaches of the transect in 2004 and the boundary 428 

of smallest percent microplankton contribution and low [Chl] to the south of the transect (Figure 429 

8a, b).  To allow comparison between percent microplankton and [Chl] simultaneously, we have 430 

coded them on a pixel-by-pixel basis, where if the given value was above the mean it was coded 431 

“high” and conversely for “low.”  In this way, we are able to visualize where size and [Chl] are 432 

changing concurrently or oppositely.  The period of time that Sfm and [Chl] are changing in the 433 

same direction (either both increasing or both decreasing) declines over time.  Over the timeseries, 434 

predominately, [Chl] is remaining above the mean, but the phytoplankton community is shifting 435 

toward smaller cells (Figure 8c).  NPP, which is a function of [Chl], available light (PAR) and 436 

photosynthetic efficiency (which in turn is temperature-dependent) increases over the timeseries 437 

(Figures 1c2, 8d), even though the change in [Chl] is variable between north and south (Figures 438 

1b2, 8b), PAR is neutral (Figures 1d2) and SST is cooling (Figures 1f2, 8e).  Euphotic depth is 439 

deeper to the south and is shallowing over the timeseries (Figures 1e2, 8f), particularly to the south, 440 

which is expected with the noted increase in [Chl] in the south.  The overall change in heat flux is 441 

neutral over the transect with minor interannual variability (Figures 1j2, 8g).  MLD is slightly 442 

deepening over the timeseries (Figures 1i2, 8h) consistent with the noted SST cooling (Figures 443 

1f2, 8e).  Merging these together, at the beginning of the transect we observe conditions where Sfm 444 

and [Chl] are changing together (either both high or both low, relative to the mean).  Over time, 445 
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there are greater instances of Sfm and [Chl] changing on the opposite directions (one is increasing 446 

while the other is decreasing and vice versa).    447 

 448 

4 Discussion 449 

4.1 Importance of Light Availability  450 

Satellite radiometers sample from roughly the first attenuation length of the water column 451 

(1/Kd) (Kirk, 1994), which often is much shallower than the mixed layer depth, consequently they 452 

are not able to fully capture water column processes associated with mixing.  Thus, observing the 453 

ocean from satellite biases to a portion of the water column that is most responsive to variable light 454 

availability.  To some extent, the finding of euphotic depth being the most important parameter is 455 

not surprising when considering the sampling method.  That being said, it should be noted that 456 

light penetration in the water column (euphotic depth) rather than absolute incident light level 457 

(PAR) is consistently the more important parameter, with PAR only playing a significant role in a 458 

small part of the Southern Ocean.  459 

Cell size is also highly influenced by how pigments are packaged within the cell, known 460 

as the packaging effect (Morel & Bricaud, 1981).  Small cells have little cellular material between 461 

the chloroplast and cell wall making them highly efficient absorbers, resulting in higher magnitude 462 

and more peaked absorption.  With large cells, light has to penetrate more cellular material to reach 463 

the chloroplast after passing through the cell wall, resulting in muted absorption affinity and in 464 

some cases shelf-shading (see Figure 7E in Ciotti et al., 2002).  The results of the primary 465 

importance of euphotic depth in predicting changes in Sfm is also not surprising considering these 466 

direct relationships between light and pigment packaging within various sized phytoplankton cells.  467 

 468 

4.2 Modes of Nutrient Delivery 469 

While the physics of the ocean are highly dynamic and cannot be characterized by one 470 

parameter alone, our analysis treats each parameter independently but allows co-variability.  Here 471 

we aim to describe the possible modes of nutrient delivery from each parameter and also where 472 

multiple parameters are coincidently important.  First, we revisit the relationship between nutrient 473 

delivery and each physical parameter.  Relatively cold expressions of SST are indicative of 474 

upwelling or wind mixing strong enough to bring deep, cold, nutrient rich water to the surface.  475 

When the MLD is deeper than the nutricline, nutrient rich water is mixed into the euphotic zone, 476 

impacting phytoplankton growth and composition.  SLA is indicative of major upwelling and eddy 477 

features.  There is also an inverse relationship between sea surface height and nutricline depth 478 

where a negative SLA is indicative of isopycnal uplift, and a positive SLA is indicative of 479 

deepening of the thermocline and nutricline.  The 200 is the difference in density between the 480 

surface and 200 m and indicative of the stability of the water column.  When the ocean is highly 481 

stratified, there is reduced vertical mixing, thus a lower likelihood of the entrainment of deep, 482 

nutrient rich water into the euphotic zone.  There are many fluxes that are summed to total Qnet 483 

including net latent heat flux, net longwave radiation, net shortwave radiation and sensible heat 484 

flux.  Thus Qnet, is indicative of the magnitude of the temperature differential between the surface 485 

ocean and the atmosphere.  A higher Qnet represents a greater temperature differential indicative 486 

of a source of deep, cool, nutrient-rich water.   487 

Many studies have pointed to the importance of stratification in controlling phytoplankton 488 

communities (Behrenfeld et al., 2006; Polovina et al., 2008).  These studies suggest that with 489 

greater warming, stratification will increase, resulting in a decrease in overall production and a 490 
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shift toward smaller cells.  However, this simple explanation cannot be expected to work across 491 

the whole ocean and other studies have concluded interannual stratification variability is not large 492 

enough to drive a coherent phytoplankton response (Dave & Lozier, 2010).  The relationships 493 

between phytoplankton response and physical drivers are complicated and depend on a host of 494 

variables (Lozier et al., 2011; Barton et al., 2014).   495 

Studies that have considered a host of environmental variables have concluded differing 496 

mechanisms of phytoplankton control.  Using a global-scale dataset including [Chl], PAR, 497 

nutrients, MLD, SST, latitude, longitude and month of the year, Irwin and Finkel (2008) found 498 

that SST was the best parameter for explaining [Chl] variability (51%) and that light and nitrate 499 

concentration explain 47% of the variation in [Chl].  Further, MLD, surface nitrate, SST, latitude 500 

and longitude explain 83% of this variation, thus concluding that either light or macronutrients are 501 

often limiting.  Thus, most of the variation in [Chl] is explained by bottom-up mechanisms.  502 

Conversely, when examining a much longer data record for just the North Atlantic, Barton et al. 503 

(2014) found strong seasonal relationships in the physical drivers of various phytoplankton 504 

communities, but on interannual to multidecadal timescales, the links to physical changes were 505 

much weaker.  They attribute this to the year-to-year variability in phytoplankton assemblages 506 

being greater than that of the physical drivers, suggesting that top-down controls and/or perhaps 507 

changes in ocean circulation may be more important than the physical parameters that they 508 

considered (wind speed, heat flux, turbulent kinetic energy generation, SST, stratification, and 509 

MLD).  Wilson & Coles (2005) conducted a global analysis of [Chl], SST, MLD, thermocline 510 

depth, and nutricline depth and identified three regional mechanisms of nutrient delivery to the 511 

euphotic zone that were controlling phytoplankton distributions.  These include, 1) dynamic 512 

thermocline uplift in the tropics, 2) nutrient entrainment at mid-latitudes, and 3) seasonal light 513 

limitation at high latitudes.  Here we expand this debate to include consideration of satellite-514 

estimated phytoplankton size structure at global scales.  We find that our results generally follow 515 

the Wilson and Coles (2005) framework, but our regions are less latitudinally bound. 516 

Beginning with the equatorial regions, we find these regions are driven by SST and MLD 517 

or SLA.  SLA was only found to be significant in the large-dominated, moderate [Chl], warm ocean 518 

which is found in regions primarily impacted by upwelling and El Niño dynamics.  Previous 519 

studies have documented [Chl] variability in the eastern subtropical Atlantic to be highly correlated 520 

to sea surface height variability caused by divergent surface currents leading to vertical upwelling 521 

and a shallower thermocline and nutricline (Pastor et al., 2013).  Negative SLA (found during La 522 

Niña) results in higher [Chl] due to isopycnal uplift, and positive SLA (found during El Niño) 523 

results in lower [Chl] due to deepening of the thermocline and nutricline.  These dynamics resulting 524 

in off-equator [Chl] variability was also described by Wilson and Adamec (2001).  [Chl] and Sfm 525 

are strongly positively corelated in this region, thus driven by the same mechanisms.  SST and 526 

MLD are the driving parameters in the equatorial counter current region that is large-dominated 527 

with low [Chl] variability.  Here SST and MLD are proxies to the vertical advection of nutrients 528 

to the surface ocean with the dominant nutrient delivery mode in this region (Pastor et al., 2013).  529 

SST is indicative of cool, nutrient rich water being brought to the surface and MLD is important 530 

due to the variability imposed by El Niño.    531 

Moving to the subtropical ocean, Signorini et al. (2015) investigated the physical drivers 532 

of the change in [Chl] and NPP in the subtropical gyres from a satellite perspective.  They found 533 

downward trends in NPP for all gyres and a downward trend in [Chl] for all gyres except the South 534 

Pacific which had a non-significant weak upward trend.  They found seasonality in [Chl] was 535 

tightly coupled with variability in the MLD confirming vertical mixing is the major driver of 536 
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phytoplankton photosynthesis in the gyres.  In our study, the subtropical gyres correspond to the 537 

warm, small-dominated, low [Chl] region where our results indicate that Sfm is driven by zeu, [Chl] 538 

and NPP.  Our results did not indicate the importance of MLD as in the Signorini et al. (2015) 539 

study.  However, Signorini et al. (2015) regressed each of the parameters that they considered only 540 

against time.  Their results suggesting [Chl] and MLD are tightly coupled were deduced from 541 

comparing the trend of [Chl] over time with that of the MLD over time.  We also find that MLD 542 

is generally decreasing over time in the gyres, with the exception of the North Atlantic sub-tropical 543 

gyre, but the [Chl] trends over time in these regions are more nuanced.  Our analysis considers a 544 

longer period of time and simultaneously compares each parameter considered to Sfm, therefore 545 

reporting the statistical significance of each parameter to predicting Sfm rather than only 546 

considering which parameters had statistically significant trends over time. 547 

 In the mid-latitudes outside of the gyres, we find a variety of different drivers of Sfm.  There 548 

are regions dominated by MLD, SLA, and Qnet.  We isolated the impact of SST by dividing the 549 

ocean into warm and cold regions.  Thus, the impact of changing thermal regimes within the warm 550 

ocean are now evidenced by heat flux which is indicative of the changing seasonal heating/cooling 551 

patterns.  In agreement with Wilson and Coles (2005), we would expect MLD to impact the 552 

phytoplankton response due to seasonally variable mixing.  SLA is found to impact the mid-553 

latitudes in upwelling and western boundary current regions and the dynamical impact of these 554 

processes on phytoplankton response have been well documented (Schollart et al., 2004; Clayton 555 

et al., 2014).    556 

In agreement with other studies of high latitudes and Wilson and Coles (2005), we find Sfm 557 

to be driven by light availability in the water column.  However, we also find SST, MLD, 200, 558 

Qnet, and PAR to be important in sub-regions of the Southern Ocean indicating phytoplankton 559 

composition in this region is not simply light driven.  Ardyna et al. (2017) also found the Southern 560 

Ocean to be latitudinally and regionally divided.  At the coarse latitudinal scale, variability is 561 

driven by seasonally varying light availability.  At the regional scale, phytoplankton variability is 562 

driven by iron supply and local advection processes.   563 

 564 

4.3 Relationship between Sfm and [Chl] 565 

Overwhelmingly, Sfm and [Chl] are changing together driven by zeu and SST in the warm 566 

ocean and zeu, SST, 200, and MLD in the cold ocean.  However, for the regions where Sfm and 567 

[Chl] are not positively correlated, heat flux is an important variable.  When Sfm and [Chl] are anti-568 

correlated, PAR is additionally important.  Heat flux indicates a temperature differential between 569 

the ocean and atmosphere, leading to greater cloud formation and less PAR.  Heat flux is a potential 570 

indicator of nutrient delivery to the surface ocean, as deep nutrient-rich water would be cold when 571 

brought to the surface ocean.  In the anticorrelated regions, we see [Chl] increasing when Sfm is 572 

small.  In the uncorrelated regions, we see a timing offset with [Chl] tending to increase prior to 573 

an increase in cell size.  Physiological compensation is a likely cause.  When PAR decreases due 574 

to a thermal gradient, leading to cloud formation and when nutrients remain replete, phytoplankton 575 

increase their chlorophyll content to more efficiently capture light.  Siegel et al. (2013) found 576 

biomass changes dominate [Chl] at high latitudes, while physiological processes dominate [Chl] 577 

variability in the tropical and sub-tropical regions.  However, they also note [Chl] changes in 578 

coastal and equatorial upwelling areas within the tropical and sub-tropical regions were dominated 579 

by biomass.  The majority of the anticorrelated and uncorrelated regions fell in these upwelling 580 

dominated areas not identified by Siegel et al. (2013) to be dominated by physiological 581 

compensation.  However, their study considered annual climatology of the whole SeaWiFS 582 
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mission, while we investigate at monthly timescales.  Thus, we are capturing physiological 583 

compensation occurring at seasonal timescales.   584 

 585 

4.4 Relation to Other Observational Methods 586 

Field studies have reported mixed results as to the most important drivers of phytoplankton 587 

composition.  Acevedo-Trejos et al. (2013), using the Atlantic Meridional dataset found 588 

temperature and nitrite+nitrate to be the most important variables, with light not playing a 589 

significant role in structuring the community.  Conversely, Brun et al. (2015), using a globally 590 

distributed dataset, found MLD to be the most important environmental parameter followed by 591 

temperature and PAR within the mixed layer.  In a review of many phytoplankton groups 592 

considered separately, Boyd et al. (2010) found that nitrogen was most important for diatoms, PAR 593 

was most important for Phaeocystis antarctica and picocyanobacteria, and temperature was most 594 

important for coccolithophores, nitrogen-fixers and Prochlorococcus.  Across all of these studies, 595 

temperature is a common driving parameter.  When running our analysis on the whole globe (i.e. 596 

Figure 2), we found SST to be the fourth most important parameter behind, zeu, [Chl] and NPP.  597 

The field studies were not using [Chl] and NPP as environmental variables, thus our results are 598 

consistent after taking this into account.  Yet, light in the water column still remains the most 599 

important, most likely due to the sampling method and packaging effects discussed above.  We 600 

would have liked to include varying nutrients in our study, however, such a product does not exist 601 

that is global and varying at monthly timescales.  We opted not to use monthly climatology of 602 

nutrients as this would have biased the interannual relationships.  Instead, we have focused on 603 

physical drivers that are indicative of nutrient delivery. 604 

Modeling studies that have the luxury of full depth resolution predict globally integrated 605 

primary production will decrease (Bopp et al. 2013) as a result of reduced supply of macro-606 

nutrients to the euphotic zone.  However, the response is not uniform across the globe, rather some 607 

regions have an increase in productivity due to reduction in light limitation due to increased 608 

stratification, and higher growth rates due to increased temperatures (Taucher & Oschlies, 2011; 609 

Dutkiewicz et al., 2013).  Models also suggest geographical shifts in temperature structure will 610 

dramatically change local community composition with a shift toward greater abundance of small 611 

cells (Bopp et al., 2005; Marinov et al., 2013; Dutkiewicz et al., 2013), since they require less 612 

nutrients than larger cells.  In modeling results, reduced nutrient supply was most pronounced on 613 

biomass and primary productivity at lower latitudes, with increased growth rates playing a stronger 614 

role in nutrient-rich higher latitudes (Dutkiewicz et al., 2013).  Our results suggest similar 615 

latitudinal variations in productivity and community size shifts, with each increasing at high 616 

latitudes and decreasing at low latitudes.   617 

 618 

4.5 Temporal Trends 619 

Many studies have been aimed at predicting how phytoplankton has changed over our 620 

observational record and how it will change in the future.  What is clear is that the ocean has 621 

changed and will continue to change (Barton et al., 2016) and this change may be more rapid than 622 

estimated just a few years ago (Henson et al., 2017).  There will be winners and losers with shifts 623 

in geographical temperature structure dramatically changing local phytoplankton community 624 

composition (Dutkiewicz et al., 2013).  Our analysis shows regional increase and decline in the 625 

size of phytoplankton over our observational record.  Sfm is increasing in the cold ocean, and the 626 

dynamic regions of the warm ocean where MLD is increasing.  However, Sfm is declining in the 627 

warm ocean where small cells dominate, [Chl] is increasing but has low variability, and MLD is 628 
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decreasing.  These changes will ultimately impact food web processes (Litchman et al., 2008; 629 

2010) and carbon export (Mouw et al., 2016). 630 

 631 

5 Conclusions 632 

Light availability in the water column is the most important parameter for the size 633 

distribution of phytoplankton as sampled from a satellite platform.  As expected, larger cells are 634 

associated with higher [Chl] and NPP, shallower zeu, colder SST and lower PAR.  When 635 

considering the ocean by major thermal regimes (cold and warm), dominant size distribution, and 636 

[Chl] variability, for the majority of the high latitude ocean and the central gyres, Sfm variability is 637 

well explained by only variability in zeu, [Chl], and NPP indicating light availability drives the 638 

phytoplankton community.  In all other regions of the ocean there is a balance of the importance 639 

of light (indicated by zeu and/or PAR) and mode of nutrient delivery to the surface ocean (MLD, 640 

Qnet, SLA and 200).  These results point to regionally varying phytoplankton distributions, 641 

responding to variable light and mixing regimes.  For the majority of the ocean, Sfm and [Chl] are 642 

correlated and vary together with NPP and inversely to SST and zeu.  There are regions of the ocean 643 

where phytoplankton size distribution and [Chl] are not positively correlated.  In these regions, 644 

Qnet becomes important, in addition to zeu, [Chl], NPP.  PAR is also important in anti-correlated 645 

regions and various modes of mixing (as indicated by MLD, SST and 200) are important in the 646 

cold ocean.   647 

Sfm is increasing in the cold ocean, and the dynamic regions in the warm ocean (large-648 

dominated, high/moderate [Chl]) where MLD is increasing.  However, Sfm is declining in the warm 649 

ocean where small cells dominate, [Chl] is low, [Chl] is increasing, and MLD is decreasing; 650 

suggesting a shift toward greater prevalence of small cells, which are less dependent on nutrients 651 

introduced from mixing.  In the equatorial counter current region, Sfm and [Chl] are decreasing 652 

while MLD is increasing, suggesting a possible dilution effect.  Temporal change suggests the 653 

vulnerability of phytoplankton size distributions in a changing ocean will be regionally varying, 654 

ultimately impacting carbon export and food web processes.   655 
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 878 

Table 1.  List of satellite imagery and reanalysis products and sources.   879 

Parameter Description and source Use 

adg() (m-1) Spectral absorption of dissolved and detrital matter  

Ocean Colour Climate Change Initiative (OC-CCI) 

www.esa-oceancolour-cci.org 

QAA (Lee et al., 2002; 2007) 

Sfm 

calculation 

[Chl] (ug L-1) Chlorophyll a concentration 

Ocean Colour Climate Change Initiative (OC-CCI) 

www.esa-oceancolour-cci.org 

Sfm 

calculation & 

overall 

analysis 

Kd(490) (m-1) Diffuse attenuation coefficient at 490 nm 

Ocean Colour Climate Change Initiative (OC-CCI) 

www.esa-oceancolour-cci.org 

(Lee et al., 2007) 

zeu calculation 

MLD (m) Mixed layer depth 

Simple Ocean Data Assimilation (SODA) 

www.atmos.umd.edu/~ocean/ 

Overall 

analysis 

NPP  

(mg C m-2 d-1) 

Net primary production 

Ocean Productivity 

www.science.oregonstate.edu/ocean.productivity/ 

SeaWiFS and MODIS R2014 merged following Mélin (2016) 

Overall 

analysis 

PAR (mol 

quanta m-2 d-1) 

Photosynthetically active radiation 

NASA Ocean Color Web 

oceancolor.gsfc.nasa.gov/ 

SeaWiFS and MODIS R2014 merged following Mélin (2016) 

Overall 

analysis 

Qnet (W m-2) Net total heat flux 

NCEP/NCAR reanalysis 

www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.deri

ved.surfaceflux.html 

Overall 

analysis 

Rrs() (sr-1) Spectral remote sensing reflectance 

Ocean Colour Climate Change Initiative (OC-CCI) 

www.esa-oceancolour-cci.org 

Sfm 

calculation 

Sfm (%) Percent microplankton 

Calculated using OC-CCI Rrs(), [Chl], and aCDM() products 

https://doi.pangaea.de/10.1594/PANGAEA.892211   

Overall 

analysis 

SLA (m) Sea level anomaly 

AVISO 

www.aviso.altimetry.fr/en/data/products/sea-surface-height-

products/global/msla-mean-climatology.html - c10358 

Overall 

analysis 

SST (C) Sea Surface Temperature 

Group for High Resolution SST (GHRSST)  

data.nodc.noaa.gov/ghrsst/ 

Overall 

analysis 

zeu (m) Euphotic depth 

Calculated from OC-CCI Kd(490) as 𝑧𝑒𝑢 = 4.6 𝐾𝑑(490)⁄   

(Morel & Berthon, 1989) 

Overall 

analysis 

http://www.esa-oceancolour-cci.org/
http://www.esa-oceancolour-cci.org/
http://www.esa-oceancolour-cci.org/
http://www.atmos.umd.edu/~ocean/
https://www.science.oregonstate.edu/ocean.productivity/
https://oceancolor.gsfc.nasa.gov/
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surfaceflux.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surfaceflux.html
http://www.esa-oceancolour-cci.org/
https://doi.pangaea.de/10.1594/PANGAEA.892211
https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/msla-mean-climatology.html#c10358
https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/msla-mean-climatology.html#c10358
http://data.nodc.noaa.gov/ghrsst/
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Parameter Description and source Use 

200 (kg m-3) Stratification index 

Simple Ocean Data Assimilation (SODA) 

Derived 𝜎𝜃 as the difference in density between the surface 

and 200 m 

www.atmos.umd.edu/~ocean/ 

Overall 

analysis 

𝜎𝜃 (kg m-3) Potential density 

Simple Ocean Data Assimilation (SODA) 

www.atmos.umd.edu/~ocean/ 

200 

calculation 

 880 

  881 

http://www.atmos.umd.edu/~ocean/
http://www.atmos.umd.edu/~ocean/
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FIGURE CAPTIONS 882 

 883 

Figure 1. Phytoplankton size, represented as percent microplankton (a), and relationships with 884 

environmental parameters, chlorophyll concentration (b), net primary production (c), 885 

photosynthetically available radiation (d), euphotic depth (e), sea surface temperature (f), sea level 886 

anomaly (g), stratification index (h), mixed layer depth (i), and heat flux (j). Data are 1ºx1º, 887 

monthly resolution for pixels with 100% data coverage across all variables. See Table 1 for 888 

parameter definitions and data sources. Column 1) Mean from 1998-2015. For mean SST (f1), the 889 

18ºC isotherm is outlined. Column 2) Long term linear trend from the Theil-Sen approach 890 

(significant results BF10>3 shown). The transect for Hovmoller plots in Figure 8 is highlighted. 891 

Column 3) Percentage of the Sfm time series above the global mean with 50% contour outlined 892 

(a3) or Kendall rank correlation coefficient with Sfm (b3-j3, significant results BF10>3 shown).   893 

 894 

Figure 2.  Global relationship of environmental variables with percent microplankton (Sfm).  We 895 

used partial least square regression (PLSR) which combines predictor variables into principle 896 

components that are then regressed with Sfm. The method allows co-linearity between predictors 897 

since they all contribute to forming principle components.  a) PLSR coefficients which represent 898 

the magnitude and direction of each predictor on Sfm response.  b) VIP scores (variable influence 899 

on projection) represent the relative importance of each predictor to Sfm variability. Euphotic depth, 900 

[Chl], NPP, SST, and PAR are the most important correlates with Sfm. Bars in grey are non-901 

significant.  902 

 903 

Figure 3.  Relationship between percent microplankton and chlorophyll.  a) Regions for PLSR 904 

analysis were defined by isolating the impact of temperature at the 18℃ isotherm (Fig. 1, f1) 905 

combined with the correlation of Sfm with [Chl] (Fig. 1, b3). b-g) PLSR coefficients and VIP scores 906 

for each region. Bars in grey are non-significant. 907 

 908 

Figure 4. Relationships between percent microplankton and chlorophyll variance. a) Regions for 909 

PLSR analysis were defined by isolating the impact of temperature at the 18℃ isotherm (Fig. 1, 910 

f1) combined with areas dominated by small or large phytoplankton (Fig. 1a3) and variance in 911 

[Chl] (data not shown). Variance in [Chl] was defined as regions falling greater than the 75th 912 

percentile, between the 25th and 75th percentiles and less than the 25th percentile. The transect for 913 

Hovmoller plots in Fig. 8 is also shown. b-j) PLSR coefficients and VIP scores for each region. 914 

Bars in grey are non-significant.  915 

 916 

Figure 5. Regions coded by significant driver of phytoplankton size variability.  With few 917 

exceptions, zeu, [Chl] and NPP were important in all regions.  Drivers with significant importance 918 

beyond these three base parameters are indicated with a “+”. A “-” indicates one of the base drivers 919 

is not statistically significant for that region.  The six environmental regions represented in this 920 

figure correspond to the nine Sfm and [Chl] regions in Figure 4 as +SST, MLD, 200 – NPP = 921 

small, cold, moderate [Chl]; +SST and MLD = large, warm, low [Chl]; +SLA = large, warm, 922 

moderate [Chl]; +Qnet and MLD = small, warm, moderate [Chl]; +Qnet, MLD, PAR – zeu = small, 923 

cold, low [Chl]; and zeu, [Chl] and NPP = 4 size and [Chl] regions including 1) large, cold, high 924 

[Chl], 2) large, cold, moderate [Chl], 3) large, warm, high [Chl], and 4) small, warm, low [Chl]. 925 
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 926 

Figure 6. Global maps of VIP scores for a) euphotic depth, b) chlorophyll concentration, c) net 927 

primary production, d) sea surface temperature, e) photosynthetically active radiation, f) 928 

stratification index, g) sea level anomaly, h) heat flux, and i) mixed layer depth.  Areas shaded 929 

grey are below the VIP threshold of significance (VIP<0.5).   930 

 931 

Figure 7. Frequency distribution of statistically significant (BF10>3) long term linear trends from 932 

the Theil-Sen approach (Figure 1, center column) of the regions defined in Figure 4a. 933 

 934 

Figure 8. Example of temporal change in percent microplankton and chlorophyll concentration.  935 

The transect traverses the South Equatorial Pacific Ocean (100°W) as displayed in Figure 1.  The 936 

parameters depicted are those that are statistically significant with phytoplankton size.  Size (a) 937 

and chlorophyll (b) is declining in the north and increasing in the south.  c) To compare these 938 

parameters simultaneously, we have coded them on a pixel-by-pixel basis, where if the given value 939 

was above the mean than it was coded “high” and conversely for “low.”  Net primary production 940 

(d) is increasing while SST (e) is cooling.  Euphotic depth is shallowing (e). Heat flux (g) varies 941 

significantly over the annual cycle, but is predominately neutral over the whole length of the 942 

record, with a decline near the northern reaches of the transect, while mixed layer depth (h) is 943 

slightly declining across the whole transect.  The white horizontal lines indicate the transitions 944 

between regions depicted in Figure 4a.   945 

 946 
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