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Abstract 33 

Rotavirus is the most common cause of diarrheal disease among children under five. Especially in 34 

South Asia, rotavirus remains the leading cause of mortality in children due to diarrhea. As climatic 35 

extremes and safe water availability significantly influence diarrheal disease impacts in human 36 

populations, hydroclimatic information can be a potential tool for disease preparedness. In this 37 

study, we conducted a multivariate temporal and spatial assessment of thirty-four (34) climate 38 

indices calculated from ground and satellite earth observations to examine the role of temperature 39 

and rainfall extremes on the seasonality of rotavirus transmission in Bangladesh. We extracted 40 

rainfall data from the Global Precipitation Measurement (GPM) and temperature data from the 41 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to validate the analyses and 42 

explore the potential of a satellite-based seasonal forecasting model. Our analyses found that the 43 

number of rainy days and nighttime temperature range from 16°C to 21°C are particularly 44 

influential on the winter transmission cycle of rotavirus. The lower number of wet days with 45 

suitable cold temperatures for an extended time accelerates the onset and intensity of the outbreaks. 46 

Temporal analysis over Dhaka also suggested that water logging during monsoon precipitation 47 

influences rotavirus outbreaks during a summer transmission cycle. The proposed model shows 48 

lag components, which allowed us to forecast the disease outbreaks one to two-months in advance. 49 

The earth observations-driven forecasts also effectively captured the increased vulnerability of 50 

dry-cold regions of the country, compared to the wet-warm regions.   51 

 52 

1 Introduction 53 

Living in the age of satellites and nanotechnology, a significant fraction of the human 54 

population is still threatened by diarrheal diseases throughout the globe. Diarrheal diseases remain 55 

a major contributor to global mortality and morbidity, accounting for an estimated 3.1% of the 56 

total burden of disease in terms of Disability-Adjusted Life Year (DALY) and 1.3 million deaths 57 

annually, including a majority of children under five years (Troeger et al., 2017; WHO, 2014). 58 

Two of the most infectious and fatal diarrheal diseases, Rotavirus and Cholera, comprise more 59 

than one-third of the diarrheal burden in the developing countries of South Asia (Siddique et al., 60 

2011). Yet, there is much room for improvement in understanding the underlying processes and 61 

the assessment of diarrheal disease risk over vulnerable regions (Akanda et al. 2014).      62 

The transmissions of these diseases both at endemic and epidemic scales are primarily due 63 

to insufficient safe water access, inadequate sanitation and drainage infrastructures, and poor 64 

access to health care compounded by natural disasters or social upheavals. However, the 65 

development of water, sanitation and health infrastructures as a solution to intervene in the disease 66 

pathway requires a long timeframe and continuous financial commitment (Hutton and Bartram, 67 

2008). Many developing countries failed to meet the 2015 Millennium Development Goals set by 68 

United Nations in 2000, predominantly in the sanitation sectors. As the global community 69 

transitions from the Millennium Development Goals (MDGs) to the Agenda 2030 Sustainable 70 

Development Goals (SDGs), the need to monitor and track the impact and progress of the global 71 

prevention efforts has become vital (H. Wang et al., 2016). Recent studies indicate that hydrologic 72 

processes and climatic variability strongly influence the outbreak of these diseases (Gurarie and 73 

Seto 2009; Remais, Liang, and Spear 2008; Bandyopadhyay, Kanji, and Wang 2012; Jutla, Huq, 74 

and Colwell 2015; Akanda and Jutla 2013). Moreover, the risk posed of the diarrheal diseases and 75 

uncertainty of the impacts are increasing under ongoing climate change (Maantay & Becker, 76 
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2012). Thus, innovative ways of advancing surveillance efforts to assess baseline conditions and 77 

strengthening health efforts through identifying disease hotspots in vulnerable regions is a critical 78 

need ( Akanda, Jutla, and Colwell 2014). Here, we focus on rotavirus diarrhea as it has one of the 79 

highest number of diarrhea-related mortalities in children younger than five years of age, globally 80 

(WHO, 2011). 81 

Most studies have explored the influence on rotavirus transmission for particular climatic 82 

extreme or related natural disasters, but the integration of multiple variables with disease cases has 83 

been limited. Martinez et al. (2016) explored the effect of flood and rainfall on rotavirus 84 

transmission of Dhaka, where the importance of multiple extremes was pointed out. Moors et al. 85 

(2013) integrated several climatic effects to explain the pattern of diarrheal disease outbreaks over 86 

India; however, a deterministic quantification of the diseases based on the climatic effects was 87 

absent. Jagai et al. (2012) as conducted a meta-analysis of rotavirus over south asia, but did not 88 

considered the climate extremes.  Accurate identification of climatic events is also important for 89 

disease modeling. For example, water-logging causes diarrheal outbreaks in many parts of the 90 

world after consecutive rainfall for several days. Due to the combined effect of heavy intensive 91 

rainfall runoff and inefficient drainage systems, flood waters flow into low lying areas, thus 92 

causing water logging (Tawhid 2004). This areas help to connect the fecal-oral route of the disease 93 

transmission cycle through continued use of these interconnected and infected water bodies. As a 94 

result, diarrheal outbreaks spread from one locality to another (Bhavnani et al., 2014) Thus, 95 

evaluating the disease outbreak with extreme rainfall intensity but without considering the 96 

cumulative impact of consecutive rainy days left gaps in the understanding. Moreover, specific 97 

temperature conditions during daytime or nighttime could have potential to influence pathogen 98 

survivability (Lambrechts et al., 2011). Therefore, the relationships of specific climate phenomena 99 

with rotavirus diarrhea need to be explored in more detail.    100 

The development of satellite technologies and proliferation of earth observation datasets in recent 101 

years has enabled collection and analyses of hydro-climatic information from all over the globe in 102 

unprecedented time (Emamifar, Rahimikhoob, and Noroozi 2013; Hou et al. 2014; Brown et al., 103 

2011). The satellites not only provide advanced knowledge of environmental variables, but also 104 

high-resolution spatial and temporal information. Most of these data products are available freely 105 

within the six hours to one-week intervals after their acquisition. For  example, the Global 106 

Precipitation Measuring (GPM) mission can provide rainfall information in every 30 minutes with 107 

0.1° spatial resolution, globally (Huffman et al., 2015). The Tropical Rainfall Measuring Mission 108 

(TRMM) data is another widely evaluated satellite data and the dataset has shown better 109 

performance in detecting rainfall in various applications (Kummerow et al., 1998). Similarly, in 110 

case of temperature, the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface 111 

data product can provide temperature data up at 1km spatial resolution in daily temporal scale 112 

(Pagano & Durham, 1993). These data sets, not only improves data acquisition intervals compared 113 

to station data, but also provide more spatial information in a near-real-time basis.  114 

With establishment of the links between diarrheal diseases and new generation earth data, 115 

including satellite observations, there is a great potential to develop models for disease prediction 116 

at higher spatial and temporal resolutions. Such a system is especially crucial in the developing 117 

countries, where the population faces a massive burden of rotavirus related mortality and morbidity 118 

each year. Bangladesh, a South Asian country, with an emerging economy still suffers a heavy toll 119 

due to rotavirus. In this study, we have explored the effect of climatic extremes on the rotavirus 120 

infection cycle in Bangladesh both spatially and temporally. We have evaluated rotavirus patterns 121 
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over several cities inside Bangladesh and across South Asia to understand the larger context in 122 

relation to regional hydroclimatic processes. We also implemented a deterministic multivariate 123 

modeling for risk assessment and integrating near real-time satellite products in the proposed 124 

model (with GPM for rainfall and MODIS for temperature). 125 

2 Methodology  126 

2.1 Study Area:  127 

A robust epidemiologic assessment of rotavirus diarrheal outbreak with climate requires a 128 

sufficiently long time series and good spatial coverage of disease data. Unfortunately, only few 129 

places in South Asia have such information. Located in the fast growing megacity of Dhaka, the 130 

International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B) has published 131 

surveillance data of rotavirus since 2003, thus providing a window to explore the relationship 132 

between the diseases and climate. As ICDDR,B conducts surveillance over the metropolitan city 133 

of Dhaka, we have selected the city as our primary study area. Dhaka is the capital city of 134 

Bangladesh has a population of nearly 14 million, and immensely vulnerable to rotavirus diarrhea. 135 

Situated in the tropical zone, the city has a warm climate dominated by monsoon dynamics. The 136 

average temperature of city is usually high (~28°C-30°C) during April through October and 137 

relatively low (~20°C-22°C) from November through February. We have also incorporated data 138 

from five other cities of Bangladesh namely; Rajshahi, Kishorganj, Sylhet, Barishal and 139 

Chittagong for this study. In addition, we have included data from four more cities of South Asia 140 

namely; Delhi, Kathmundu, Thimpu, Karachi for a wider spatial assessment. The cities are all 141 

located in the tropical monsoon region and rotavirus is endemic is all of the cities (Mullick et al., 142 

2014; Sherchand et al., 2009; Shetty et al., 2016; Wangchuk et al., 2015). 143 

 144 

Figure 1. The location of the rotavirus prevalent cities of South Asia. The cities with green dots 145 

were selected for the spatial analysis. 146 

.    147 

2.2 Disease Data:  148 

The cases of rotavirus incidences over Dhaka were obtained from the hospital-based 149 

surveillance system of ICDDR,B over a period from January 2003 to May 2015. The ICDDR,B 150 

Centre for Health and Population Research runs an urban hospital situated in Kamalapur, Dhaka, 151 

where, more than 100,000 patients are treated for diarrhea each year. At the hospital, cholera as 152 

well as rotavirus surveillance are conducted regularly; stool samples are collected to determine the 153 

presence of enteric pathogens in every 50th (2%) patient attending the hospital for treatment of 154 

diarrhea. From the hospital surveillance reports, information on monthly rotavirus isolates were 155 

summarized and a time series was formulated. 156 

The rotavirus data from other cities within Bangladesh were collected from the national 157 

surveillance campaign of the Institute of Epidemiology, Disease Control and Research (IEDCR). 158 

The cities within Bangladesh resemble similar demographic and climatic patterns. Bangladesh, 159 

this is only available spatial data set with the same temporal length, to the best of our knowledge. 160 

Therefore, we have selected the surveillance data (January 2013 to December 2015) of these cities 161 



Confidential manuscript submitted to GeoHealth 

 

in the analysis. The rotavirus information for Delhi, Kathmandu and Thimpu were gathered from 162 

secondary literature, where the datasets range from 2005 to 2013 (Mullick et al., 2014; Sherchand 163 

et al., 2009; Shetty et al., 2016; Wangchuk et al., 2015). However, each city has only about two 164 

years of reliable data and distributed over different time periods. Thus, the disease outbreak 165 

information of these cities avoided in the main analysis and was only utilized to validate the larger 166 

spatio-temporal rotavirus pattern in South Asia. 167 

 168 

2.3 Weather Data:  169 

We obtained daily maximum (TMax) and minimum temperatures (TMin), and 170 

precipitation (PR) data for Dhaka from the Bangladesh Meteorological Department (BMD) from 171 

2000 to 2014.  We collected climatologic records for other cities from The Global Historical 172 

Climatology Network - Daily (GHCN-Daily), version 3 from January, 2013 to December, 2016 173 

(Menne et al., 2012) . Homogeneity and quality control tests were conducted to ensure the removal 174 

of outliers. The tests were carried out using the RHtestsV4 software package which was developed 175 

by the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices 176 

(ETCCDI) (X. L. Wang & Feng, 2013).  177 

For detecting spatial variability, we utilized two types of satellites data products in this 178 

study. The Global Precipitation Measurement (GPM) data were used as the source of the satellite 179 

precipitation, collected from March 2015 to December 2015. The GPM mission is an international 180 

network of satellites that provide the next-generation global observations of rain and snow (Hou 181 

et al., 2014). The satellite temperatures for both day and night were collected from Moderate 182 

Resolution Imaging Spectroradiometer (MODIS)-Aqua satellite. Satellite-derived temperatures 183 

for both day and night were collected from Moderate Resolution Imaging Spectroradiometer 184 

(MODIS)-Aqua satellite. The global Land Surface Temperature (LST) product were made 185 

available from the MYD11A1.005 version of MODIS data at a 1-km spatial resolution. 186 

2.4 Method  187 

Our study approach can be separated into three sections: temporal assessment, spatial 188 

analysis, and multi-variate modeling and validation with satellite data. 189 

A robust analysis of the hydro-climatic influence on the transmission cycle of a disease 190 

requires specific climate realizations. For example, the mean or maximum state of a monthly 191 

temperature might not directly influence a disease outbreak, but a specific temperature range or 192 

consecutive rainfall events can trigger an epidemic. Therefore, for a comprehensive examination 193 

of environmental drivers on rotavirus diarrhoea, we selected 36 climate indices based on various 194 

properties of weather events (Table 1). We either applied or adopted the climate indices from the 195 

Expert Team on Climate Change Detection and Indices (ETCCDI)(WMO, 2007). These indices 196 

were used in various climate studies to analyze the extremity of the climatic phenomenon 197 

(Alexander, 2015; Hasan et al., 2013; Keggenhoff et al., 2015). The selections of the indices in 198 

those studies were conducted based on particular objectives of individual studies. In this case, we 199 

selected the indices that are most relevant to rotavirus transmission dynamics. In Table 1, we have 200 

defined the indices based on extremity, intensity, duration and magnitude of climate variables to 201 

capture the whole spectrum of short scale weather phenomenon. The average day or night 202 

temperatures and their variations in a month were defined by TMax, Tmin and DTR indices. For 203 

TxijGE and TnijGE, we categorized the mean monthly range of TMax and Tmin into 3°C intervals 204 
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to understand the seasonal effects of various temperature range on rotavirus infections. During an 205 

annual cycle, the mean (monthly) TMax and TMin varies about 9°C over the region (Islam & 206 

Hasan, 2012). Therefore, we selected 3°C as threshold interval to classify 9°C temperature range 207 

for developing TxijGE and TnijGE indices. As the minimum monthly DTR of  Bangladesh is 6°C, 208 

we selected half of that (which is 3°C ) to capture the temperature effect in both day and night 209 

(Islam & Hasan, 2012). Any threshold interval lower than 3°C will result in redundant indices. On 210 

the other hand, any threshold interval higher than 3°C will plausibly miss the variation of 211 

temperature that can influence rotavirus. The duration of hot or cold days based on a particular 212 

threshold were described by the rest of temperature indices (i.e. Tn10, Tx90, etc.). In case of 213 

rainfall, intensity and amount were characterized with SDII and PRECIPTOT. The magnitude of 214 

rainfall was described with Rx1and Rx5 indices. The duration of various kind of storms were 215 

classified using the rest of the precipitation indices. However, among all the indices, many are 216 

season specific and have interdependency among them. On this ground, we categorized the indices 217 

into two seasons; October to April as the dry winter season and July to September as the wet 218 

monsoon season. The indices that have 60% or more zero values were dropped and eventually we 219 

concluded with 22 and 28 indices among 36 indices for winter and monsoon seasons, respectively. 220 

For example, we did not select Tn1618GE for the monsoon season. As days with minimum 221 

temperature range of 16 to 18 degree will be zero for monsoon months, any correlation value 222 

between rotavirus and Tn1618 will result in misleading information. Therefore, some indices were 223 

dropped from the pool of 36 indices, when we conducted the season specific analysis. All the 224 

indices for temporal and spatial analysis are generated from BMD observed data, where the 225 

validation analysis of the indices is generated with daily satellite data.   226 

Evaluating spatial risk of a disease can be modeled with existing stochastic methods like 227 

the Bayesian approach (Cheng & Berry, 2013), Monte Carlo simulations (Prosser et al., 2016) or 228 

Susceptible-Infectious-Recovered (SIR) (Grassly & Fraser, 2008) models. While the stochastic 229 

methods are useful to capture probable spatial patterns of a diseases transmission, the complexity 230 

of the methods sometimes miss the deterministic influence of a particular driver on disease 231 

transmission. As the goal of our paper is to evaluate the influence of climate indices on rotavirus 232 

diarrhea, we utilized a deterministic model to formulate the risk of the disease and avoided the 233 

population effect. In the process to eliminate the influence of population, we standardized and 234 

scaled the disease cases for each of the selected cities and combined the disease cases into a single 235 

series of the same time frame (January 2013 to June 2015) to conduct spatial analysis. The 236 

standardization method were adopted from Jagai et al. (2012), where we considered our scaled 237 

values as z-scores of rotavirus. As a result of removing the effect of population, the analysis thus 238 

represents the severity of disease cycle rather than actual cases of diseases. Any values that exceed 239 

one (1) were considered as an outbreak.  240 

From selected climate indices, we conducted a univariate correlation analysis considering 241 

three levels of relationships in each season. In the first level, we considered lag relationships of 242 

indices with rotavirus cases. In the next level, we considered one and two-months moving average 243 

of rotavirus infections, and in the final level, we considered a cross-correlation of moving average 244 

and lags. In all three levels, we examined the two seasonal periods both temporally and spatially. 245 

As rotavirus outbreaks are more prevalent during winter seasons (supportive analyses related to 246 

the phenomenon are provide in the results section), we have examined the winter cycle in detail. 247 

For the winter season, the evaluation of the transmission cycle was conducted into three phases; 248 

the rising, the peak and the falling phase. A descriptive definition of the phases is presented in the 249 



Confidential manuscript submitted to GeoHealth 

 

results section. From the spatial and temporal correlations, the most influential climate 250 

relationships were identified and utilized in multivariate regression modeling.  251 

From the correlation assessment, we generated a deterministic model that can project the 252 

risk of rotavirus based on climate indices. The model was comprised of the selected three phase 253 

winter cycle, that can quantify the rotavirus outbreak from the influence of climatic factors. 254 

Finally, the model was utilized to forecast disease outbreak from the precipitation data from GPM 255 

and temperature data from MODIS sensors. As the data of GPM satellite are available from 2015, 256 

we performed validation of the model for October 2015 and November 2015, during the dominant 257 

winter transmission cycle. In the results section, we explored that the climate indices influences 258 

only winter cycle significantly in all selected cities of Bangladesh. Therefore, we selected winter 259 

cycle for validation purpose. On the other hand, the disease data for all cities are available up to 260 

December 2015 (during the time of this study). Therefore, we were only able to validate the rising 261 

phase of the winter transmission cycle using satellite data.  As Rotavirus data from several spatial 262 

regions were available for 2 years only, we were unable to utilize new data before 2013 or beyond 263 

2015 for spatial validation. However, to demonstrate the spatial capability of our model, we 264 

utilized TRMM data in conjunction with MODIS for formulating spatial risk maps of rotavirus for 265 

the 2014 winter season.  266 

  267 

Table 1. Description of climate indices parameters. 268 
 269 

3 Results 270 

3.1 Seasonal characteristics of Rotavirus in South Asia:   271 

In this section, we discuss the general spatio-temporal pattern of rotavirus outbreaks in seen 272 

in South Asian cities. Annual rotavirus cycles over South Asia are presented in Figure 2(a). 273 

December-January are the peak months of the outbreak for the Bangladeshi cities, with the 274 

exception of Sylhet. Thimpu of Bhutan experiences the peak in a post-winter month (March) where 275 

Delhi experiences the peak earlier than Bangladeshi cities. Among the cities of South Asia, a 276 

monsoon outbreak observed (smaller relative to winter outbreak) in Delhi (population ~19 million) 277 

and Dhaka (population ~ 14 million), where both cities have a massive population compared to 278 

other cities of South Asia (World Population Review, 2017).    279 

The rotavirus endemic cycle exhibits significant seasonal variability over South Asia 280 

(Figure 2(a)). The dominant cycle starts in October, reaches its peak in January and is followed by 281 

a recession phase in February and March. The autocorrelation analysis over Dhaka for the original 282 

monthly time series validates the presence of the dominant winter cycle. In Figure 2(c), the 283 

monthly autocorrelation function shows the presence of the strong annual winter peak. The auto-284 

correlation figure also suggests a weaker outbreak during the monsoon season, typically during 285 

July, August and September. The z-score of the rotavirus over Dhaka also supports similar 286 

findings, where, as in 2004, the monsoon magnitude of rotavirus was higher than that of the winter 287 

(Figure 2(b)).  288 

 Characteristics of rotavirus incidences over Dhaka were analyzed following a 13-year time 289 

series data set (2003-2015) (Figure 2(b)). Rotavirus outbreak during the winter of 2008, 2011 and 290 

2012 were the most intense outbreaks in recent history. Typically, rotavirus incidence becomes the 291 
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highest during January, but some exceptions were observed during March 2009 and July 2004. In 292 

most years, the lowest incident rate of rotavirus diarrhea was observed during May. However, in 293 

2012 and 2014, the lowest incidences were observed in August.   294 

 295 

Figure 2. (a) Annual monthly rotavirus outbreaks over South Asian cities. (b) Z-score of 296 

rotavirus over Dhaka from 2003 to 2015 (c) Auto-correlation function of rotavirus in the city of 297 

Dhaka from 2003 to 2015. 298 

 299 

In this analysis, we calculated temporal correlation only over Dhaka than other cities due 300 

to lack of data availability (the disease data of other cities starts from 2012). Among the 301 

precipitation indicators over the city, RR1 was found to be one of the influential indicators on 302 

rotavirus. The correlation analysis suggests (Figure 3 (a)) that a decrease in RR1 in September 303 

affects the winter rotavirus cycle especially for the month of November. The secondary outbreak 304 

during the July, August and September is affected by the number of days with rainfall events of 305 

70mm or more (RR70) (Figure 3 (b)). However, both the rotavirus cases and RR70 were higher 306 

during the 2007 flood over the city.  307 

 308 

Figure 3. (a) Rotavirus incidence for the month of November with RR1 of September (the y-axis 309 

is plotted in reverse order); (b) rotavirus of June-July-August with RR70 of June-July-August; 310 

(c) Rotavirus incidence for the month of December with Tmin (left) and (d) Tn1621GE (right) of 311 

same month (the y-axis of the indices are plotted in reverse order).   312 

 313 

3.2 Univariate correlation between climate indices and rotavirus  314 

To assess the effect of individual climate variables and indices on rotavirus transmission, 315 

we conducted univariate analysis considering moving average and lag of related variables. The 316 

correlations for the winter and monsoon seasons are presented in Figure 4.     317 

 318 

Figure 4. (a) Temporal correlation of rotavirus in winter months over Dhaka from January 2003 319 

to May 2015 and (b) Spatial correlation of rotavirus in winter months over six cites of 320 

Bangladesh from July 2012 to May 2015. (c) Temporal correlation of rotavirus in monsoon 321 

months over Dhaka from January 2003 to May 2015 and (d) Spatial correlation of rotavirus in 322 

monsoon months over six cites of Bangladesh from July 2012 to May 2015. 323 

 324 

During the winter season, rotavirus outbreak in Dhaka shows a strong negative lag relation 325 

(1-month) with the selected rainfall-related indices (Figure 4(a)). In case of other cities (Figure 326 

4(b)), the same indices show significant but lower correlation values. Unlike Dhaka, the 327 

correlations of indices in other cities do not exhibit any substantial lag effect. Thus, we can say 328 

that the low duration of rainfall events seems to an influential driver for the season, where the 329 

effects comes in delay (1-month) over Dhaka compared to other places. The temperature indices 330 
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related to the colder spells strongly impact the winter epidemics in both spatial and temporal 331 

analysis. However, the spatial correlations are weaker than the temporal values in both type of 332 

indices, probable due to the varying rainfall pattern between six locations.  The temperature indices 333 

that display the strongest correlation (0.5 or more) are Tmax, Tmin, Tn1621GE and Tn1921GE. 334 

All these indicators confirm the effect of colder temperature on the rotavirus cycle similar to 335 

Atchison et al. (2010). 336 

 337 

During the monsoon season, the temporal investigation of rotavirus indicates significant 338 

correlation with all rainfall indices where such relationships are absent in the spatial assessment 339 

(Figure 4(c-d)). The outcome is expected, as the secondary monsoon outbreak and its impacts are 340 

most profound in Dhaka among the six selected cities of Bangladesh (Figure 4a). Tn2225GE 341 

significantly correlates with 2-month lag rotavirus outbreak, which is the strongest relationship 342 

among the indices during the seasons. The relationship suggests that a night temperature range of 343 

22°C to 25°C has a potent role to in the monsoon cycle of rotavirus over Dhaka.     344 

 345 

From Figure 2 and 4, it is evident that the winter cycle of rotavirus is more prominent than 346 

the monsoon cycle over the study region and is strongly influenced by climatic factors. Thus, we 347 

focused the investigation on the winter epidemic for the rest of the study. For a detailed 348 

understanding of the winter cycle, we characterized it into three phases; rising, peak and falling 349 

phases. The rotavirus outbreak starts to appear during the months of October and November, thus 350 

can be classified as the ‘rising’ phase. As the cycle, typically reaches its ‘peak’ during the months 351 

of December, January and February, we considered it as the ‘peak’ phase. From February to April, 352 

the cycle enters in its recession phase, therefore, this phase was defined as the ‘falling’ phase. 353 

Based on the three phases, we conducted two levels of correlation analysis as described previously 354 

between rotavirus cases and climate indices. As temperature and precipitation indices have 355 

dependency among them, many indices show similar correlation in particular phases. Therefore, 356 

to make a concise judgment, we presented only the most significant correlation for each phase of 357 

the epidemic cycle in Table 2.     358 

 359 

Table 2. The spatial and temporal correlations between climatic indices and the three phases of 360 

the winter rotavirus epidemic. 361 

The rising phase of rotavirus cycle has significant influence by the night temperature as 362 

Tn1621GE shows spatial and temporal correlation of 0.61 and 0.51 respectively. The lower 363 

number of 25 degree days (SU) were found to be influential on the spatial scale, where Tx2932GE 364 

also represented a similar message in the temporal scale. Number of rainy days (RR1) are strongly 365 

correlated (negatively) with rotavirus cases in both tests, more so for the onset of the epidemics in 366 

Dhaka. The rising phase of Dhaka is influenced by 2-month prior RR1 where the same index in 367 

other cities exhibits a no-lag relation. This analysis suggests that the dry and cold days in fall are 368 

potential drivers for the start of outbreak, where the timing of rainfall deviates the timing of 369 

outbreak from place to place. During the peak phase, both the number of hot days (SU) and Tmax 370 

shows negative correlation spatially. Therefore, the relationship suggests that the upper 371 

temperature threshold of cold days or nights affects the rotavirus magnitude in the peek phase. The 372 

values of the rainfall indices (except PRECIPTOT) during the peak are close to zero, thus any 373 
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significant correlation of these indices will be misleading. Hence, we avoided such values in 374 

conferring our results. During the falling phase as well, RR1 plays an influential negative role in 375 

rotavirus cycle. Both temporal and spatial time series exhibits correlation of -0.61 and -0.69 376 

respectively. However, the temporal correlations show no lag compared to the spatial correlations 377 

of the six cities during the phase. Tx10 and DTR demonstrated the strongest affinity with rotavirus 378 

in the temporal and spatial scales, respectively. Similar to the rising phase, the falling phase shows 379 

convincing connections towards dryness and demonstrate variability in the timing of the infections 380 

depending on the location.   381 

The synthesis of the analysis revealed that the Tn1621GE and RR1 are commonly 382 

correlated during the rising and falling phase both temporally and spatially (Table 2). The temporal 383 

time series or Dhaka cases also disclose the significant relationship of Tn1621GE at the winter 384 

peak. On that account, we can say that a specified night temperature range with dry weather is a 385 

prominent force to the spread of the disease during the winter.    386 

 387 

The assessment between three selected phases of the rotavirus winter cycle confers the 388 

effect of climate more strongly in the rising and falling phases rather than peak phase. Therefore, 389 

to achieve more clarity, we have conducted the moving average analysis of one, two and three 390 

months between indices and rotavirus. The month-wise temporal analysis indicates a strong 391 

correlation of -0.81 between Tn1621GE and rotavirus cases during the peak month (December). 392 

Tmin also showed a robust correlation (-0.84) with same month’s epidemic cycle (Figure 3). The 393 

matching pattern of the two indices with rotavirus cycle from 2003-2014 confirms the relationship 394 

in Figure 3. It should be noted here that, the values of Tmin during the period varied between 395 

14.5°C and 16.5°C (only 2°C). Such small changes in temperature variation can be misleading 396 

regarding the effect of a minimum temperature.    397 

 398 

The month-wise correlation analysis for the individual cities would be statistically 399 

insignificant, as a common data period between the six cities are only available for approximately 400 

3 years (in a monthly scale, it will generate 3 points in three years). In this case, we considered 401 

two of the most influential variables of winter cycle; Tn1621GE and RR1, and compared them 402 

with rotavirus proportions of these cities in Figure 5. Both of the indices reflect an ensuing pattern 403 

with rotavirus cases in six selected cities of South Asia. Between the observed dual cycles of 404 

Tn1621GE, the first cycle tends to trigger the rotavirus peak in same month in the Sylhet area.  405 

Similarly, the same cycle of Tn1621GE of Mymensingh have influence in the rotavirus cases of 406 

one-month delayed. In case of Rajshahi, the same cycle shows a two-month lag relation instead of 407 

one. On the other hand, the rotavirus peak also follows distinct pattern with RR1 or rainy days. In 408 

case of Barisal and Sylhet, the peak of rotavirus occurs during the driest month (or lowest RR1) 409 

without showing any lag. Over Rajshahi, this relationship extends for two-months lag. This 410 

variation in lag for both indices explains why there is no significant relationship found during the 411 

peak phase (Table 2) in the spatial analysis. In each city, only three or fewer rotavirus cycle were 412 

observed; thus, it is difficult to draw a generality from the data. Upon availability of more 413 

surveillance data in future, such analysis can be explored in more detail.     414 

  415 
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Figure 5. The rotavirus cycle in the six selected cities with compared to RR1 and Tn1621GE from 416 

June 2012 to May 2015.    417 

 418 

3.3 Multivariate assessment  419 

From the univariate analysis, we identified the RR1 and Tn1621GE as the most influencing 420 

variables on the winter rotavirus cycle. Using these climatic indices, we developed a multivariate 421 

regression model for evaluating the winter cycle. As the indices poses different correlation values 422 

in explaining the transmission process in different phases, we conducted three separate 423 

multivariate models for three phases of the cycle and combined them into a single model. As we 424 

explored the spearman rank correlation values, we also incorporated non-linear relationship 425 

between the indices and rotavirus cases. For checking the distribution of the response (response 426 

here is z-score of rotavirus) variable of the model, we conducted Shapiro-Wilk (Shapiro & Wilk, 427 

1972) and Kolmogrorov-Sminov (Massey, 1951) tests. The tests confirms that the response 428 

variable follow a gamma distribution and rejects the null hypothesis of normality. Considering the 429 

gamma distribution, we generated optimized models with the most dominant climate indices by 430 

utilizing both linear and non-linear regression. We selected the best model for each phase of the 431 

cycle by evaluating the Akaike information criterion (AIC). The combined model from three 432 

individual phase models are presented in Eq. 1.  433 

 434 

 435 

𝑋𝑡 = −0.1 ∗ 𝑅𝑅1𝑚−1 + 0.04 ∗ 𝑇𝑛1621𝐺𝐸𝑚−0.07 ∗ 𝑅𝑅1𝑛−1 + 0.07 ∗ 𝑇𝑛1621𝐺𝐸𝑛−1 −0.03 ∗436 

          𝑅𝑅1𝑜−1 + 0.02 ∗ (𝑇𝑛1621𝐺𝐸𝑜−1 + 𝑇𝑛1621𝐺𝐸𝑜) +  7.47                  (1) 437 

 438 

The subscript of RR1 and Tn1621GE refers their respective month’s value in the equation. 439 

‘m’, ‘n’ and ‘o’ represent the values for month of October-November, December and January-440 

February-March, respectively. X is the scaled z-score of rotavirus for any selected month of the 441 

winter cycle. The R value of the equation is 0.67, referring to one-third of the explained variance 442 

for the whole transmission cycle. The result is higher than the previously reported climatic 443 

influence on rotavirus over South Asia (Jagai et al., 2012).     444 

 445 

Using the formulated model, we can forecast rotavirus prevalence all over Bangladesh with 446 

localized climatic indices. In this context, based on the reported results of this study, reliable real 447 

time information of RR1 and Tn1621GE can give advance information one-to-two months prior 448 

to the occurrence of an impending outbreak. To calculate near real-time RR1 and Tn1621GE, we 449 

utilized the GPM daily precipitation data and MODIS temperature data. Magnitude of GPM 450 

rainfall products poses a magnitude bias with observed daily rainfall. However, for 1mm rainy 451 

days in a month (RR1), the GPM data provide same value as in-site observed (BMD) data from 452 

June 2015 to December 2015. In case of MODIS land surface temperature data; there are some 453 

missing values in the night temperature of the selected period. We replaced the missing values 454 

with GHCN data to formulate a complete Tn1621GE time series over the selected cities.  455 

 456 

The calculated indices from GPM and MODIS are inserted in Eq. 1 to validate the model 457 

results for October and November, 2015. Figure 6 shows the spatial prevalence of observed and 458 

model estimated rotavirus over Bangladesh. For October, the eastern parts of the country largely 459 

agree with the observed disease incidences, where magnitude slightly deviates. In case of 460 
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November, the observed patterns are well captured by the model; however, magnitude deviates 461 

over the Barisal and Rajshahi regions. We also presented the potential of using TRMM satellite 462 

with MODIS datasets (Figure 7) to predict the disease over the region. Figure 7 shows the October 463 

and November outbreaks from model and observed data during 2014. The TRMM derived disease 464 

map is able to capture better than GPM derived product. However, it should be noted that 2014 465 

winter data are also utilized in model formulation, thus it cannot be considered as a validation 466 

result.  467 

 468 

 469 

Figure 6. Spatial distribution of the observed (left) and model-estimated (right, GPM + MODIS) 470 

z-score of rotavirus incidence for (a-b) October and (c-d) November, 2015.  471 

 472 

Figure 7. Spatial distribution of the observed (left) and model-estimated (right, TRMM + MODIS) 473 

z-score of rotavirus incidence for (a-b) October and (c-d) November, 2014.  474 

 475 

 476 

4 Discussion 477 

 478 

 479 

Our initial assessment infers that the rotavirus cycle is strongly influenced by the dry and 480 

cold seasonal climate in the city of Dhaka. In Great Britain, Atchison et al. (2010) explored the 481 

temperature dependence of rotavirus and conferred that above the 5°C threshold, an increase of 482 

the average temperature decreased the infection rate of the disease. A similar understanding was 483 

also found in Australia (D’Souza et al., 2008), where rotavirus diarrhoea admissions are associated 484 

with lower temperatures and lower humidity. Although these two studies were conducted in 485 

different climatic zones altogether, we believe that the dearth of overall number of studies linking 486 

rotavirus with climatic indices, their findings are still important evidences towards the influence 487 

of temperature on rotavirus incidence. In South Asia, Jagai et al. (2012) also showed that the 488 

reduction in annual temperature and precipitation increases the level of infections of rotavirus, 489 

supporting our findings.  490 

As our assessment separated the timeframe into two seasonal cycles, the correlation from 491 

winter cycle over all six selected cities strengthens the findings of previous studies. However, we 492 

also found significant positive association of rotavirus infections during monsoon over Dhaka. 493 

Dhaka is a densely populated city with a high number of informal settlements, or slums, with poor 494 

water and sanitation conditions (Akanda and Hossain, 2012). As rotavirus pathogens can be 495 

transmitted through the fecal oral route, high precipitation events can create waterlogging and 496 

eventually connects to the pathogen transmission pathways (Dennehy, 2000). Thus, Dhaka 497 

experienced an extra monsoon outbreak compared to other cities and the outbreak may be 498 

influenced by the heavy rainfall events. Such phenomenon also clarify why the monsoon indicators 499 

showed insignificant relationship with rotavirus in cities other than Dhaka. The city typically 500 

observes the annual highest rotavirus incidence during January, but some exceptions were 501 

observed during March 2009 and July 2004 (Figure 2b). The 2004 flood event was one of the most 502 

devastating floods of the last decade in Bangladesh (Schwartz et al., 2006). Two-thirds of the 503 

country was under water including a large portion of Dhaka during the month of July (flooding 504 

started on 8 July and reached its peak on 23 July). Floods connect the fecal oral transmission route 505 

of the disease thus results unusual outbreak (Levy et al., 2009). In many years, the lowest incident 506 
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rate of rotavirus diarrhea was observed during May. However, in 2012 and 2014, the cycle reached 507 

its lowest crest during August. In 2012 and 2014, medium flooding happened in outskirts of Dhaka, 508 

which might act as the hindering phenomenon of rotavirus outbreaks (FFWC, 2012, 2014). Dhaka 509 

experienced one of the highest rotavirus outbreaks during the flood of 2007 (Figure 2(b)). Our 510 

analysis showed that the outbreak was correlated to extreme rainfall events (RR70), a potential 511 

indicator of floods. During the floods of 2007, there was a massive outbreak of diarrheal diseases 512 

in Dhaka including cholera, rotavirus, and dysentery (Harris et al. 2008,Cash et al. 2014)).    513 

 514 

Our detailed assessment of the winter cycle provides some insight about the winter 515 

rotavirus cycle. We found that the rising phase of rotavirus is negatively correlated with SU or 516 

Tx2532GE, which represents the amount of warm days in month. Because rotavirus favored low 517 

temperatures, the lower number of warm days eventually helps to initiate the spread of the disease. 518 

Previous studies indicated that the rotavirus can be active for up to 4 weeks or one month without 519 

a host body (Levy, Hubbard, and Eisenberg, 2009). Therefore, reduction of warm days may 520 

increase the rotavirus sensitivity and the effect can be delayed up to one month. Our findings also 521 

suggest that the beginning of winter cycle (October-November) is highly correlated with RR1 and 522 

Tn1621GE both spatially and temporally. Average night temperature during September-October 523 

are 25°C. As Tn1621GE represents the night temperature of 16°C to 21°C, some nights in 524 

September starts to experience temperatures below 21°C. Therefore, the index can be reflected as 525 

colder nights of that month. In a laboratory test, the rotavirus found to be active for several days 526 

in 4°C and 20°C temperatures without human contact (Moe & SHIRLEY, 1987). In aerosol, the 527 

virus is also infectious in low temperatures (Moe & Harper, 1983). Therefore, higher values of 528 

Tn1621GE, which act as cold nights during September-October, may promote the infectivity of 529 

the rotavirus up to a 4-week delay. On the other hand, the RR1 index represents the number of wet 530 

days in a month rather than magnitude or intensity of rainfall events. As rotavirus transmission can 531 

be driven with air, reduction of rainfall may raise the propensity of aerial transport (Ansari et al., 532 

1991) of contaminated fecal matter. Therefore, RR1 can be considered a barrier to air-borne 533 

transport of rotavirus. Consequentially, the joined effect of RR1 and Tn1621GE trigger the one 534 

month delayed outbreak during the rising phase of the winter cycle. During the peak month of 535 

rotavirus in December, RR1 becomes nearly zero over Dhaka thus allows aerial transport of the 536 

virus to its highest potential. In this phase, the correlation of Tn1621GE shifts from positive to 537 

negative.  During the month of December, the average nighttime temperature also drops below 538 

21°C. Such a drop of night temperature, transforms the Tn1621GE index to a representative of 539 

warm night, as temperature can be higher than 21°C during this month. As Atchison et al. (2010) 540 

and Cunliffe et al. (1998) both referred, the lower temperature can increase of infection rate of 541 

rotavirus, higher number of Tn1621GE inversely affects the rotavirus incidence during December. 542 

Similarly, understanding also supported by Tmin over Dhaka. Therefore, as the number of warm 543 

nights increase, the magnitude of rotavirus cases decrease in the peak month. During the falling 544 

phase, when it starts to rain again from February, the air transport of the virus starts to be limited 545 

again and alongside the temperature remain under 21°C, until March. Thus, Tn1621GE serves as 546 

an indicator of warm nights during winter and lower rotavirus infection.  547 

 548 

In other cities of Bangladesh, the timing of the cycles did not match in the same way, thus 549 

correlation values decreased. In spatial cases, the rising and falling phase still showed a significant 550 

correlation with RR1 and Tn1621GE but values of the correlation coefficient are lower than the 551 

values of the temporal analysis. During September, Tn1621GE acts as an indication of cold night. 552 

In Sylhet and Barishal, as the increase of cold and dry nights coincide together, rotavirus infection 553 
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experiences a sharp rise, thus no lag relationship is observed. However, in places like Dhaka and 554 

Mymensingh, where dryness comes early but temperature suitability comes in a delayed manner, 555 

the places experience a one-month delay in an outbreak. If these two phenomena have a much 556 

wider gap, it can result in up to a two month delay, which was observed in Rajshahi. Therefore, 557 

our findings suggest that the timing of coldness and dryness can locally affect the spread of a 558 

rotavirus epidemic. This finding increases the potential of using a high-resolution satellite data 559 

product in forecasting the local onset of the outbreaks.   560 

 561 

From the multivariate analysis, we are also able to confirm our hypothesis through the 562 

models selection process. All the components of equation 1 significantly influence corresponding 563 

prevalence values of the rotavirus cycle and confirm the role of environmental factors on the total 564 

rotavirus transmission cycle. The forecasted prevalence matched some spatial areas of observed 565 

value during November but not in October. As we conducted a detail analysis of the climate 566 

extremes that are able to explain about 44% variance, such discrepancy was expected in spatial 567 

mapping. Due to the lack of spatial diseases data and climate data, the spatial signature was not 568 

captured properly, thus accuracy of the model suffers. Moreover, there are other factors like 569 

population dynamics, social behavior or environmental factors like flood and soil moisture can be 570 

important in the modeling accuracy. In addition to that, the accuracy of satellite datasets can also 571 

be a possible reason for the less than satisfactory performance of the spatial mapping. However, 572 

the satellite products such as GPM, TRMM and MODIS not only give real time information but 573 

also great spatial coverage, and have great potential to improve the resolution of the risk maps for 574 

such infectious diseases.  575 

 576 

Understanding the role of climatic extremes can contribute to several pre- outbreak and 577 

post-outbreak solutions. As the developed disease model suggests, with the knowledge of an 578 

imminent outbreak one month ahead, the health management organizations can implement extra 579 

vaccination efforts as well as awareness in the most vulnerable communities. In the developing 580 

world, where preventive resources are limited, prioritizing vaccination efforts and locations by 581 

public heath authorities could save significant morbidity and mortality. During the epidemic, 582 

further outbreaks can be prevented by implementing disinfectant byproducts in water sources, 583 

solving drainage issue in the most vulnerable areas, and ensuring potable water in the infected 584 

communities. The post-outbreak measures can be improvement of the sanitation situations by 585 

developing sewage structures, or educating the high-risk communities about the transmission 586 

pathways of rotavirus. Structural solutions such as dikes, canals or sewage networks can also be 587 

constructed to reduce water logging and improve sanitary and drainage conditions.  588 

 589 

Immunization efforts targeting vulnerable communities would be another preventive 590 

measure to reduce the spread of rotavirus diarrhea. The efficacy of the vaccination is found to be 591 

51% effective in reducing morbidity and mortality in recent trials in developing countries (Jiang 592 

et al., 2010). Two primary rotavirus vaccines have been certified (RotaTeq, Merck & Co and 593 

Rotarix, GSK Biologicals) in major countries of the world and are slated to be incorporated across 594 

the developing world (Ruiz-Palacios et al., 2006; Vesikari et al., 2006). The vaccination is usually 595 

administered to childrenunder one year of age and typically costs from $1 to $7 per dose (Atherly 596 

et al., 2009).  597 
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5 Conclusions 598 

In this study, we have analyzed the relationship of various climate variables and indices with 599 

rotavirus outbreaks in South Asia, formulated epidemic models and proposed a forecast 600 

mechanism. In the validation process, we have utilized satellite driven climate products, which 601 

have the capacity to provide climatic information within a 24-hour latency period after the 602 

acquisition of data. To quantify the disease outbreaks, we used a spatial risk indicator to show the 603 

spatial pattern of rotavirus outbreaks throughout Bangladesh and South Asia, and validated 604 

forecasted values with observed number of cases for October 2015 to November 2015.  605 

The study strongly distinguished the effect of night and day time temperatures on the 606 

epidemiology of rotavirus. Previously, Hashizume et al. (2008) pointed out that the cold and dry 607 

climate is favorable for rotavirus spread, whereas the role of day and night temperature was 608 

unexplored. Our analyses found that the number of colder nights one month before an epidemic 609 

dictates the magnitude of the rotavirus outbreak in subsequent months. This effect also matches 610 

with the number of 1 mm rainy days, as fewer numbers of rainy days or drier winters facilitate the 611 

transmission of the disease. Higher number of cold nights with less amount of rainfall during 612 

September and October may trigger the outbreak and the relationship was significant in all six 613 

cities of Bangladesh. Metropolitan areas of Dhaka and Chittagong experience similar, but smaller 614 

outbreaks during the monsoon season due to the number of heavy rainfall events. As the cities 615 

have poor water supply, sanitation and drainage systems, the heavy rainfall events eventually 616 

connect the fecal-oral route of rotavirus transmission pathway. Our analysis also showed that the 617 

rainfall and temperature product from GPM and MODIS, respectively, could be utilized to predict 618 

the occurrence and magnitude of rotavirus outbreak. The forecasted spatial patterns from satellite 619 

products matched with observed progression of rotavirus over Bangladesh.       620 

The proposed disease forecasting mechanism provides great potential to improve the 621 

existing disease preparedness and vaccination strategies. The detection of risky hotspots can 622 

facilitate the vaccination programs in a similar climate. As our model deterministically explained 623 

the environmental variability of the disease, future investigations can incorporate population-based 624 

disease models to improve the performance of the forecasts. As shown in our study, satellite-based 625 

forecasting has great potential to improve the health and well-being and contribute towards 626 

sustainable development of the growing population of the planet.         627 
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Table 1. Description of climate indices parameters. 839 

 840 

Name  

(Number of indices 

that represented) 

Description  
Types of 

indices  

Tmin (1) Average daily minimum temperature of a month. Temperature  

Tmax (1) Average daily maximum temperature of a month. Temperature  

Tx10 / Tx90 (2) 
Number of days in a month when TMax < 10th 

percentile* / when Tmax > 90th percentile*. 
Temperature  

Tn10 / Tn90 (2) 
Number of days in a month when TMin < 10th 

percentile* / when TMin > 90th percentile*. 
Temperature 

SU (1) Number of days in a month when TMax > 25°C. Temperature  

TR (1) Number of days in a month when TMin > 20°C. Temperature  

DTR (1) Monthly mean difference between TX and TN. Temperature 

TxijGE (4) 

Number of days in a month when TMax is in between 

i °C and j °C., where, i = {26,29,33,26} and j = 

{28,32,35,32}i 

Temperature 

TnijGE (4) 

Number of days in a month when TMin is in between 

i and j  °C., where, i = {16,19,22,16} and j = 

{18,21,25,21}ii 

Temperature 

SDII (1) Intensity of rainfall in a month (in mm/day) Precipitation 

CRm  (4) 
Highest number of consecutive m mm rainfall events 

in a month, where, m = 1, 5, 10, 20 iii  
Precipitation 

CRnS3 (2) 
Number of 3-days or more storm with rainfall > n mm  

where, n=1,5 iv  
Precipitation 

CRnDf (4) 
Number of rainfall events in a month with rainfall > n 

mm  for f days  where, n=1,5 and f=4,5 v  
Precipitation 

PRECIPTOT (1) Total amount of rainfall in a month. ( in mm) Precipitation 

RRj (5) 
Number of rainy days with j mm or more rainfall, 

where,  j = 1, 5, 10, 20,70. vi  
Precipitation 

Rx1 / Rx5 (2) Maximum amount of 1-day / 5- day rainfall in a month Precipitation 
* Percentile are calculated based on 10-year baseline period of 2003 to 2013.   841 
i For example, when i=26 and j=28, name of index would be Tx2628GE: The Number of days in a month when Tmax is between 26 °C to 28 °C.  842 
ii For example, when i=16 and j=18, name of index would be Tn1618GE: The Number of days in a month when Tmin is between 16 °C to 18 °C. 843 
iii For example, when m=1 and j=28, name of index would be CR1: Highest number of 1 mm rainfall events in a month.  844 
iv For example, when n=1, name of index would be CR1S3: Number of 3-days or more storm with rainfall greater than 1 mm.  845 
v For example, when n=1 and f=4, name of index would be CR1D4: Number of rainfall in a month that greater than 1 mm  for 4 days.  846 

vi For example, when j=1, name of index would be RR1: Number of rainy days with 1 mm or more rainfall. 847 
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Table 2. The spatial and temporal correlations between climatic indices and the three phases of 851 

the winter rotavirus epidemic.  852 

 853 
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SU -0.58 2 1 SU -0.64 0 2 Tn1621GE -0.45 1 2 

RR1 -0.48 1 2 Tmax -0.57 0 2 Tx10 0.62 0 1 

Tn1621GE 0.61 1 1 Tx10 -0.52 2 2 RR1 -0.61 1 2 

Tn1921GE 0.68 1 1 Rx1 -0.47 0 2 Tmin -0.62 0 1 

T
em

p
o
ra

l 

Tn1621GE 0.51 1 1 Tn1621GE -0.44 0 2 RR5 -0.7 0 2 

RR1 -0.69 2 2 Tn1621GE  -0.43 0 1 RR1 -0.69 0 2 

RR5 -0.69 2 2 
    

PRECIPTOT -0.66 0 2 

Tx2932GE -0.61 2 1 
    

DTR 0.73 0 2 

*The bold indices are common in all three phases. 854 
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The captions of the figures: 870 

 871 

Figure 1. The location of the rotavirus prevalent cities of South Asia. The cities with green dots 872 

were selected for the spatial analysis. 873 

Figure 2. (a) Annual monthly rotavirus outbreaks over South Asian cities. (b) Z-score of 874 

rotavirus over Dhaka from 2003 to 2015 (c) Auto-correlation function of rotavirus in the city of 875 

Dhaka from 2003 to 2015. 876 

Figure 3. (a) Rotavirus incidence for the month of November with RR1 of September (the y-axis 877 

is plotted in reverse order); (b) rotavirus of June-July-August with RR70 of June-July-August; 878 

(c) Rotavirus incidence for the month of December with Tmin (left) and (d) Tn1621GE (right) of 879 

same month (the y-axis of the indices are plotted in reverse order).   880 

Figure 4. (a) Temporal correlation of rotavirus in winter months over Dhaka from January 2003 881 

to May 2015 and (b) Spatial correlation of rotavirus in winter months over six cites of 882 

Bangladesh from July 2012 to May 2015. (c) Temporal correlation of rotavirus in monsoon 883 

months over Dhaka from January 2003 to May 2015 and (d) Spatial correlation of rotavirus in 884 

monsoon months over six cites of Bangladesh from July 2012 to May 2015. 885 

Figure 5. The rotavirus cycle in the six selected cities with compared to RR1 and Tn1621GE from 886 

June 2012 to May 2015.    887 

 888 

Figure 6. Spatial distribution of the observed (left) and model-estimated (right, GPM + MODIS) 889 

z-score of rotavirus incidence for (a-b) October and (c-d) November, 2015.  890 

 891 

Figure 7. Spatial distribution of the observed (left) and model-estimated (right, TRMM + MODIS) 892 

z-score of rotavirus incidence for (a-b) October and (c-d) November, 2014.  893 
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