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ABSTRACT
Immunoinformatics tools were used to predict human leukocyte antigen (HLA) class II-restricted T cell
epitopes within the envelope glycoproteins and nucleocapsid proteins of Ebola virus (EBOV) and Sudan virus
(SUDV) and the structural proteins of Venezuelan equine encephalitis virus (VEEV). Selected epitopes were
tested for binding to soluble HLA molecules representing 5 class II alleles (DRB1�0101, DRB1�0301,
DRB1�0401, DRB1�0701, and DRB1�1501). All but one of the 25 tested peptides bound to at least one of the
DRB1 alleles, and 4 of the peptides bound at least moderately or weakly to all 5 DRB1 alleles. Additional
algorithms were used to design a single “string-of-beads” expression construct with 44 selected epitopes
arranged to avoid creation of spurious junctional epitopes. Seventeen of these 44 predicted epitopes were
conserved between the major histocompatibility complex (MHC) of humans and mice, allowing initial testing
in mice. BALB/c mice vaccinated with the multi-epitope construct developed statistically significant cellular
immune responses to EBOV, SUDV, and VEEV peptides as measured by interferon (IFN)-g ELISpot assays.
Significant levels of antibodies to VEEV, but not EBOV, were also detected in vaccinated BALB/c mice. To
assess immunogenicity in the context of a human MHC, HLA-DR3 transgenic mice were vaccinated with the
multi-epitope construct and boosted with a mixture of the 25 peptides used in the binding assays. The
vaccinated HLA-DR3 mice developed significant cellular immune responses to 4 of the 25 (16%) tested
individual class II peptides as measured by IFN-g ELISpot assays. In addition, these mice developed
antibodies against EBOV and VEEV as measured by ELISA. While a low but significant level of protection was
observed in vaccinated transgenic mice after aerosol exposure to VEEV, no protection was observed after
intraperitoneal challenge with mouse-adapted EBOV. These studies provide proof of concept for the use of
an informatics approach to design a multi-agent, multi-epitope immunogen and provide a basis for further
testing aimed at focusing immune responses toward desired protective T cell epitopes.

KEYWORDS
DNA vaccine; epitope-based
vaccine; Ebola virus; EBOV;
genome-derived vaccine;
mice; peptide vaccine; Sudan
virus; SUDV; T cell epitope;
Venezuelan equine
encephalitis virus; VEEV

Introduction

Vaccines that can safely and effectively protect against aerosol
exposure to the alphavirus Venezuelan equine encephalitis
virus (VEEV) and filoviruses such as Ebola virus (EBOV) and
Sudan virus (SUDV) are of great importance for biodefense.
We previously developed and tested DNA vaccines expressing
the envelope glycoproteins of these viruses in mice and nonhu-
man primates (NHPs) and demonstrated protection against
both peripheral and aerosol challenges with VEEV1-4 and
peripheral challenges with EBOV.5-7 Ideally, it would be possi-
ble to confer protection against all 3 viruses with a single vac-
cine formulation, but this raises the concern of non-protective,
immunodominant epitopes limiting the generation of beneficial
immune responses to each pathogen. For VEEV, a strong neu-
tralizing antibody response is generally correlated with protec-
tive immunity; however, a role for CD4C T cells in controlling
VEEV infection of the central nervous system has also been

demonstrated.8-11 Although both humoral and cellular immune
responses have been shown to be required for protection from
EBOV peripheral challenge, the immune responses required
for aerosol protection remain unclear.12-15

Acute viral infection results in the generation of antigen-
specific CD4C T cells with various effector functions. In partic-
ular, it has long been recognized that a robust CD4C T cell
response is critical for optimal B cell antibody production. One
subset of CD4C T cells, the T follicular helper cells (TFH), is a
specialized CD4C T cell subset that migrates to the B cell follicle
and provides the proper signals for antibody production. In the
follicle, TFH cells activate B cells to form germinal centers (GC),
which are required for isotype class switching, affinity matura-
tion, and B cell memory. Additionally, it has been demon-
strated that specific subsets of the TFH cells migrate to sites of
peripheral infection where they provide potent memory
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responses.16,17,18 These 2� effector CD4C T cells, which were
found to have different gene profiles than their na€ıve counter-
parts, are able to respond much more quickly than central 1�

CD4C effector T cells to a viral infection; thus, they are a highly
desirable outcome of a preventive vaccine.18

Factors leading to the generation of 2� tissue-resident memory
CD4C T cells are not well defined; however, a recent study of influ-
enza A virus in mice demonstrated that most activated CD4C T
cells undergo contraction within 4 weeks of infection, but that it is
possible to prevent CD4C apoptosis and direct them into the
memory pool by providing a second exposure to activated antigen
presenting cells (APCs) and the induction of high levels of IL-2
within 5–7 d of the initial priming dose of a subunit vaccine.19 It
was further suggested that a second vaccination during this time
more closely mirrors antigen exposure to the immune system dur-
ing an actual infection, and could drive an improved CD4C mem-
ory response. Logically, it follows that it should be possible to
stimulate a specific memory pool of CD4C effector cells by expo-
sure to selected class II-restricted epitopes.

DNA vaccines offer a convenient means to present the
immune system with tailored antigens or epitopes for immune
focusing. DNA constructs can be designed to not only present
desirable epitopes for memory responses, but to also avoid
undesirable immunodominant epitopes or to broaden the
response by including epitopes from multiple viral variants or
diverse viruses. With the development of new immunoinfor-
matics tools, it has become possible to accurately predict
human class I- and class II–restricted T cell epitopes, avoid
epitopes that resemble “self-antigens,” and design a construct
with epitopes arranged for optimal presentation by APC proc-
essing machinery. This approach has been tested for
creating immunogens for several pathogens to include HIV,
influenza virus, variola virus, M. tuberculosis, F. tularensis, and
H. pylori.20-26 In the study reported here, we used in silico pre-
diction algorithms to design a DNA construct consisting of
human leukocyte antigen (HLA) class II-restricted T cell epito-
pes derived from the envelope glycoproteins (GP) and nucleo-
capsid proteins (NP) of EBOV and SUDV and the structural
proteins (C-E3-E2–6K-E1) of VEEV. We then vaccinated mice
with the multi-epitope DNA vaccine and assessed their
immune responses. This proof-of-concept work provides a
foundation for further studies using such constructs for
immune focusing, enhancing memory responses, or for broad-
ening vaccine responses against multiple pathogens.

Results

Immunoinformatic identification of putative class II T cell
epitopes of EBOV, SUDV, and VEEV

The amino acid sequences derived from the GP and NP
genes of EBOV and SUDV and the structural proteins of
VEEV were downloaded in GenPept format, where the
accession number and corresponding amino acid sequence
of each of the 5 antigens were exported and then uploaded
to an in-house database. Per antigen, the amino acid
sequence was parsed into 9-mer peptides overlapping by 8
amino acids and analyzed using the EpiMatrix 1.2 algorithm
to identify putative T cell epitopes.27 9-mer sequences were

used for the analysis, because they represent the minimal
peptide length required for HLA binding. The matrix coeffi-
cients were then summed to produce a raw score for each
9-mer and then normalized. Peptides scoring � 1.64 on the
EpiMatrix “Z” scale, typically the top 5% of any given sam-
ple, are likely to be HLA ligands and were considered “hits”
(Table 1). Class II epitopes were identified for 8 supertype
alleles (DRB1�0101, DRB1�0301, DRB1�0401, DRB1�0701,
DRB1�0801, DRB1�1101, DRB1�1301 and DRB1�1501) that
cover >90% of the human population.28 The ClustiMer
algorithm generated an initial list of 84 class II T cell epi-
tope clusters, which are regions of high epitope density
characteristic of ‘promiscuous’ epitopes.29 These epitopes
were manually reviewed to confirm properly centered puta-
tive binding motifs, and several of the algorithm-generated
peptides were either split or trimmed to facilitate synthesis
and in vitro testing. A few peptides were rejected at this
point based on extreme hydrophobicity and/or low score
profiles. The selected epitopes were rescored and BLASTed
against the non-redundant database of human sequences on
file at Genbank. Additional sequences were rejected because
they were derived from a signal sequence, homologous to
human protein sequences, or duplicated within the input
sequences. Forty-four sequences were selected for further
analysis based on the criteria described above, and 4 of the
selected epitopes identified were conserved between SUDV
GP and EBOV GP (Fig. 1).

Verification of HLA binding of the predicted epitopes

To confirm that the in silico predictions resulted in epitopes
able to bind to HLA molecules, in vitro binding assays were
performed on the top 5 scoring peptides from each of the
input sequences and HLA alleles DRB1�0101, DRB1�0301,
DRB1�0401, DRB1�0701, and DRB1�1501 as described in the
Methods. The peptides were previously selected for predicted
binding to more than one HLA DR allele. Twenty-one of the
25 peptides bound strongly or very strongly to at least one allele
in the binding assay (Fig. 2). All the peptides tested except
VEEV_1029–1045 bound at least moderately or weakly to at
least one of the 5 alleles. This peptide contains a single relatively
low-scoring binding motif for alleles �0301, �0401, and �0701
and 2 low-scoring motifs for allele �1501. Fifteen of the 25 pep-
tides bound strongly or very strongly to at least 2 alleles. Apart
from VEEV_1029–1045, all peptides bound at least moderately
or weakly to at least 2 alleles. In addition, 5 of the 25 peptides
bound strongly or very strongly to at least 3 alleles and 22 of
the 25 peptides bound at least moderately or weakly to at least
3 alleles. EBOLA-SUDAN-GP_566–583 was the only peptide

Table 1. EpiMatrix analysis of amino acid sequences.

Input Sequence
GenBank

Accession #
Amino
Acids

EpiMatrix
Hits

EpiMatrix
Score

EBOV GP AAB37095.1 676 277 ¡6.45
EBOV NP AAQ55045 758 273 ¡17.41
SUDV GP ACR33190 676 283 ¡1.4
SUDV NP AAU43883 738 298 ¡9.36
VEEV C-E3-E2–6K-E1 AAC19322.1 1255 509 ¡9.6
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to bind strongly or very strongly to 4 alleles, while 15 of the 25
peptides bound at least moderately or weakly to at least 4
alleles. Although none of the peptides bound strongly or very
strongly to all 5 alleles, 4 of the 25 peptides bound at least mod-
erately or weakly to all 5 alleles. Overall, 96% percent of these
predicted peptides were validated as ligands for at least one
tested allele.

Immune responses of BALB/c mice vaccinated with the
multi-epitope DNA construct

To create the multi-epitope construct, the 44 selected epitopes
were initially arranged in order by EpiMatrix score and then
were reordered using the VaccineCAD algorithm to eliminate
the formation of junctional epitopes. The final multi-epitope
open reading frame was codon-optimized for expression in
Homo sapiens and synthesized along with a tissue plasminogen
activator (tPA) leader sequence and a C-terminal 3X FLAG tag

for protein detection. The synthesized gene was cloned into
the pWRG7077 mammalian expression plasmid,30 and gene
expression resulting in a polypeptide of the expected size of
89 kDa was confirmed by Western blot using an anti-FLAG
M2 monoclonal antibody (data not shown).

Because the predicted epitopes were selected based on
binding to HLA class II molecules, we expected that immu-
nogenicity studies would require the use of HLA-transgenic
mice. However, analysis of the selected peptides revealed 17
epitopes that were predicted to also bind to the class II major
histocompatibility complex (MHC) alleles of wild-type
BALB/c mice (Table 2). Therefore, we were able to initially
assess the immunogenicity of the multi-epitope DNA con-
struct in an immunocompetent and cost-effective animal
model that is routinely used for studying vaccines against
EBOV or VEEV. The 17 predicted 9-mer epitopes included 2
from SUDV GP, 1 from SUDV NP, 2 from EBOV GP, 4
from EBOV NP, and 8 from the VEEV structural proteins.

Figure 1. Peptides selected for inclusion in the class II DNA vaccine construct. Input sequence describes the antigen from which each peptide was derived and Cluster
Address describes the location of each peptide within its source antigen. Under Cluster Sequence, the core peptide (underscored middle amino acids in bold) defines the
actual cluster that was identified during the analysis. The stabilizing flanks (N-terminal and C-terminal, not bold) are included for use with the core sequence. Flanks are
necessary stabilizing factors in any peptide synthesized for analysis in immunoassays. Hydrophobicity relates the grand average of hydropathy (GRAVY) score for each
complete peptide. Peptides with hydrophobicity scores above C2 tend to be difficult to synthesize. HLA alleles considered in cluster analysis are the supertype
representatives DRB1�0101, DRB1�0301, DRB1�0401, DRB1�0701, DRB1�0801, DRB1�1101, DRB1�1301, and DRB1�1501. The number of hits is the number of significant
9mer-to-allele assessments (EpiMatrix Z scores above 1.64, or the top 5% of random peptides, shaded medium blue) found within the sequence. The top 1% of random
peptides is shaded dark blue, while top 10% assessments are shaded light blue. The EpiMatrix Cluster Score is derived from the number of hits normalized for the length
of the cluster. Thus, Cluster Score is the excess or shortfall in predicted aggregate immunogenicity relative to a random peptide standard. Cluster Scores above C10 indi-
cate significant potential for promiscuous response. Selected peptides each contain between 6 and 15 EpiMatrix hits and register Cluster Scores between 12.22 and 32.89.

2826 C. E. BOUNDS ET AL.



For this, groups of mice (N D 4) were vaccinated by intra-
muscular (IM) electroporation (EP) 3 times at 3-week inter-
vals with either 20, 35, or 50 mg of the multi-epitope DNA
construct, and splenocytes were isolated one week after the

third and final vaccination (day 49). Splenocytes from mice
receiving 20 mg (Fig. 3A) or 35 mg (Fig. 3B) of the multi-epi-
tope DNA construct produced statistically significant cellular
responses (p D 0.0322 and p D 0.0003, respectively) when
stimulated with pooled peptides representing the identified
class II EBOV and SUDV epitopes as measured by interferon
(IFN)-g ELISpot assay. Splenocytes from mice in the 20 mg
dose group also demonstrated a significant cellular response
(p D 0.031) to pooled peptides representing the VEEV E1
protein as compared with the no peptide controls (Fig. 3A).
Although cellular responses to the class II EBOV and SUDV
and VEEV E1 peptides were detected in some of the mice
receiving 50 mg of the multi-epitope construct, statistical sig-
nificance was not achieved for any of the peptide pools at
this dose level (Fig. 3C).

To determine if the multi-epitope DNA construct also has
the potential to elicit humoral immune responses in mice,
serum samples obtained 3 weeks after the first and second vac-
cination (days 21 and 42) were assayed by ELISA for anti-
VEEV and anti-EBOV total IgG antibodies. Although antibody
responses to EBOV were not detected in any of the mice (data
not shown), half of the mice receiving either 35 or 50 mg of the
multi-epitope DNA vaccine had detectable antibody responses

Figure 2. In vitro HLA binding of peptides representing identified putative epitopes. The binding affinities of the peptides were calculated in competitive binding assays.
The input protein, location of the epitope cluster in its source antigen, HLA DR allele tested, and calculated IC50 value in mM units are listed, respectively. Peptide binding
affinity is shown according to the following: IC50 < 1 mM (Black), IC50 1 mM-10 mM (Dark Blue), IC50 10 mM-50 mM (Light Blue), IC50 50 mM-100 mM (Gray). Non-binders
(White) are those peptides with IC50 values too high to accurately measure under binding conditions.

Table 2. Murine T cell epitopes contained within the class II multi-epitope construct.

Peptide Sequence EpiMatrix Score Source Cluster

1 IHLHQQLSN 2.12 (I-Ad) SUDV-GP-259
2 LCLHHAYQG 2.29 (I-Ad) SUDV-NP-70
3* IHNSTLQVS 2.19 (I-Ad) EBOV95-GP-32
4* PLGVIHNST 2.14 (I-Ad) EBOV95-GP-32
5 KNEVNSFKA 2.02 (I-Ad) EBOV95-NP-273
6* HRTIHHASA 2.77 (I-Ad) EBOV95-NP-534
7* IHHASAPLT 2.15 (I-Ad) EBOV95-NP-534
8 YSASKSGKC 1.98 (I-Ad) VEEV-1128
9* IHFSTANIH 2.75 (I-Ad) VEEV-1164
10* SATIHFSTA 2.12 (I-Ad) VEEV-1164
11 KTAWTWLTS 2.25 (I-Ad) VEEV-1217
12 VQELTRSMA 2.02 (I-Ad) VEEV-30
13 YKLTRPYMA 2.89 (I-Ad) VEEV-340
14 DGYVRLQTS 2.00 (I-Ad) VEEV-375
15 WAFWENKKN 2.33 (I-Ed) SUDV-GP-287
16 HHAYQGDYK 2.13 (I-Ed) EBOV95-NP-80
17 ATVKYSASK 2.00 (I-Ed) VEEV-1128

�Peptides found in the same source cluster.
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against VEEV after a single vaccination, and the mean log10
titers were statistically significant compared with pre-vaccina-
tion sera (p D 0.0492 and p D 0.0356, respectively) after 2 vac-
cinations (Fig. 4).

Epitope-specific cellular and humoral immune responses in
vaccinated HLA-DR3 mice

To evaluate the immune responses generated by the multi-
epitope DNA construct in the context of an HLA class II mole-
cule, an additional study was performed using HLA-DR3 trans-
genic mice. These mice lack murine MHC class II and express
both the HLA DRB1�0301a and the HLA DRB1�0301b genes.31

A group of HLA-DR3 mice (N D 6) received 2 priming doses of
20 mg of the multi-epitope DNA construct administered by IM
EP 2 weeks apart (days 0 and 14). To further augment the
immune responses to the class II-restricted T cell epitopes elicited
by the multi-epitope DNA vaccine, we also gave 2 boosting doses
each consisting of a total of 50 mg of the 25 peptides representing
the class II-restricted T cell epitopes used in the HLA binding
studies formulated with incomplete Freund’s adjuvant (IFA) and
10 mg each of immunostimulatory CpG oligodeoxynucleotide
1826, muramyl dipeptide (MDP) and CL097 adjuvants adminis-
tered by subcutaneous injection on days 28 and 42. Of these 25
peptides, 3 VEEV peptides and 11 EBOV and SUDV peptides
bound strongly or moderately to the DRB1�0301 allele in the in
vitro binding assays (Fig. 2). A negative control group received 2
vaccinations with 20 mg of the pWRG7077 empty vector fol-
lowed by 2 injections with the adjuvants alone following the
same schedule as for the experimental vaccine. An additional
group received 2 vaccinations of 20 mg of a mixture of the
whole-antigen DNA plasmids expressing the codon-optimized
EBOV or SUDV GP or VEEV E3-E2–6K-E1 genes administered
by IM EP on days 0 and 14, but did not receive peptide/adjuvant
boosts.

Two weeks following the final vaccination (day 56), spleno-
cytes were isolated from the mice in all groups and cellular
immune responses to individual peptides and peptide pools were
measured by IFN-g ELISpot assays. Mice receiving the multi-epi-
tope DNA prime and peptide boost had statistically-significant
responses to 4 of the 25 (16%) individual class II peptides tested,
which included Sudan GP 249–260 (p < 0.0001), Sudan GP

Figure 3. IFN-g ELISpot responses elicited in BALB/c mice vaccinated with the class
II multi-epitope DNA vaccine. Splenocytes isolated on day 49 from individual mice
vaccinated on days 0, 21, and 42 by IM EP with 20 (A), 35 (B), or 50 mg (C) of the
class II multi-epitope DNA vaccine were stimulated for 48 h with a pool of peptides
representing the identified class II VEEV epitopes, a pool of peptides representing
the identified class II EBOV and SUDV epitopes, pools of overlapping peptides
spanning the E1 or E2 envelope glycoprotein of VEEV, a pool of overlapping pepti-
des spanning the GP of EBOV, or no peptide. Data are presented as the spot form-
ing cells (SFC) per million splenocytes for individual mice with black horizontal
bars representing the means for each group. Statistically significant responses
(�, p � 0.05) are indicated.

Figure 4. VEEV-specific antibody responses elicited by class II multi-epitope DNA
construct in BALB/c mice. Serum samples obtained on days 0, 21, and 42 from
mice (ND 4) vaccinated by IM EP with 20, 35, or 50 mg of the class II multi-epitope
DNA vaccine were assayed for total IgG anti-VEEV antibodies by ELISA. The log10
mean titers for each dose group at each time point are represented by the black
bars. Total IgG anti-VEEV responses were detected on day 42 from mice receiving
35 (�, p D 0.049) or 50 mg (�, p D 0.036) of the multi-epitope DNA vaccine as com-
pared with day 0.
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579–595 (p D 0.0274), Sudan NP 195–212 (p D 0.0263), and
EBOV GP 32–49 (p D 0.0011) (Fig. 5). These mice also devel-
oped significant responses against the peptide pool consisting of
all 25 class II peptides (p < 0.0001) and against the pooled
15-mer peptides spanning VEEV E2 (p D 0.0246). For mice
receiving the whole-antigen DNA vaccines, significant responses
were detected against the pools of overlapping 15-mer peptides
spanning the E2 (p < 0.0001) or E1 (p D 0.0442) envelope gly-
coprotein of VEEV (data not shown).

Pooled sera from each of the vaccine groups collected on day
56 were analyzed for IgG antibody responses against the indi-
vidual class II peptides by ELISA. Significant peptide-specific
antibody responses as compared with the negative controls
were elicited against a single peptide, SUDV NP 70–87
(p D 0.0005), as well as the pool of 25 class II peptides
(p D 0.0019) for mice receiving the multi-epitope vaccine (data
not shown). Although they were not statistically significant,
antibody responses against some of the other class II peptides
were also observed for these mice (data not shown).

Virus-specific antibody responses in vaccinated HLA-DR3
mice

In 2 separate experiments, groups of HLA-DR3 mice (N D 10)
were vaccinated with empty vector and adjuvants, the whole-
antigen DNA vaccines, or the multi-epitope DNA prime and pep-
tide boost as described above. Sera were collected from all of the
mice on day 56 and EBOV GP- and VEEV-specific total IgG anti-
body responses were assessed by ELISA. Mice receiving the whole-
antigen DNA vaccines developed significant levels of antibodies
against EBOV (Fig. 6A) and VEEV (Fig. 6B) as compared with
the negative control mice (p < 0.0001). Six of the 10 mice

Figure 5. IFN-g ELISpot responses elicited against the class II epitopes in vacci-
nated HLA-DR3 mice. Splenocytes isolated from groups of HLA-DR3 mice (N D 6)
vaccinated with the multi-epitope construct followed by a peptide boost were
stimulated for 48 h with individual peptides representing each epitope in the class
II multi-epitope DNA vaccine, a pool of all the class II peptides, pools of overlap-
ping peptides spanning the E1 or E2 envelope glycoprotein of VEEV, a pool of
overlapping peptides spanning the GP of EBOV, or no peptide. Data are presented
as the mean SFC per million splenocytes and are the average of 3 groups of 2
mice. Individual epitope and pooled epitope responses in vaccinated mice show-
ing statistical significance when compared with the negative control group are
indicated (�, p � 0.05). A dotted line denotes the cutoff of 50 SFC over background
per million splenocytes.

Figure 6. Virus-specific antibody responses elicited in vaccinated HLA-DR3
mice. Serum samples obtained on day 56 from groups of HLA-DR3 mice (N
D 10) vaccinated as described in the Methods section were analyzed for anti-
EBOV or -VEEV total IgG antibodies by ELISA or for VEEV-neutralizing antibod-
ies by PRNT. Log10 ELISA titers for each mouse are indicated by symbols and
group mean log10 titers are represented by black horizontal bars. (A) Signifi-
cant total IgG anti-EBOV responses were detected in mice receiving the
whole-antigen DNA vaccines (�, p < 0.0001) and the multi-epitope DNA vac-
cine (p D 0.0055) as compared with the negative control vaccine. (B) Signifi-
cant total IgG anti-VEEV responses were detected in mice receiving the
whole-antigen DNA vaccines (�, p < 0.0001) or the multi-epitope DNA vac-
cine (�, p < 0.0001) as compared with mice receiving the negative control
vaccine. (C). Log10 PRNT80 titers for individual mice are indicated by symbols
and group mean log10 PRNT80 titers are represented by black horizontal bars.
Significant neutralizing antibody responses were generated in mice receiving
the whole-antigen DNA vaccines (�, p D 0.0002) or multi-epitope DNA vac-
cine (�, p D 0.0033) as compared with mice receiving the negative control
vaccine. The neutralizing antibody titers of mice that survived VEEV challenge
are shown as open symbols.
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receiving the multi-epitope prime and peptide boost regimen also
developed detectable levels of EBOV-specific antibodies, and the
mean log10 titer was also significantly above that of the negative
control samples (pD 0.001) (Fig. 6A). However, there was a signif-
icant difference in mean log10 titers of mice receiving the whole-
antigen DNA vaccines as compared with those that were given the
multi-epitope DNA prime and peptide boost (p < 0.0001). Mice
receiving the multi-epitope vaccine DNA developed similar levels
of VEEV-specific IgG antibodies as those receiving the whole-anti-
gen VEEV DNA vaccine and the mean log10 titer was also signifi-
cantly above that of the negative control samples (p< 0.0001).

Because neutralizing antibodies are generally thought to be
the main correlate of protection against VEEV infection, we
also measured the neutralizing antibody responses of the vacci-
nated mice by plaque reduction neutralization test (PRNT). All
mice receiving the whole-antigen DNA vaccines and 6 of the
10 mice receiving the multi-epitope DNA vaccine developed
significant neutralizing antibody responses to VEEV (p <

0.0001, p D 0.0378, respectively) (Fig. 6C).

EBOV and VEEV protective efficacy in vaccinated HLA-DR3
mice

Although a multi-epitope DNA construct such as the one we
developed would not likely be used as a stand-alone vaccine, but
rather as a means to focus or broaden an immune response, the
cellular and humoral immune responses that we observed in the
HLA-DR3 mice vaccinated with the multi-epitope vaccine sug-
gested that it may elicit some level of protective immunity against
viral challenge. Consequently, the vaccinated HLA-DR3 mice
described above were challenged with »1,000 LD50 of mouse
adapted (ma)-EBOV by intraperitoneal (IP) injection or with
»10,000 LD50 of aerosolized VEEV as described previously.3,4,6,7

Consistent with our earlier studies with the EBOV DNA vaccine
in BALB/c mice, the whole-antigen DNA vaccines provided sig-
nificant protection against ma-EBOV challenge (90%; p < 0.01)
(Fig. 7A).6 In contrast, the multi-epitope vaccinated mice and the
negative control mice all exhibited clinical signs of disease after
ma-EBOV challenge including ruffled fur, lethargy, and dehydra-
tion, and both groups had a 20% survival rate (Fig. 7A). All mice
in the vector/adjuvant only control group challenged with aero-
solized VEEV displayed visible signs of disease including ruffled
fur, inactivity and hunched posture, and all succumbed to disease
or were euthanized due to morbidity (Fig. 7B). Unlike our earlier
studies in BALB/c mice and nonhuman primates in which the
VEEV whole-antigen DNA vaccine elicited complete protective
immunity against aerosolized VEEV,4 only 30% of the HLA-
DR3 mice vaccinated with the whole-antigen DNA vaccines sur-
vived the aerosol VEEV challenge. Similarly, 20% of the multi-
epitope vaccinated mice survived aerosol VEEV challenge.
Although these survival rates are low, both the whole-antigen
DNA vaccines and the multi-epitope DNA vaccine provided sta-
tistically significant protection as compared with vector/adjuvant
only controls (p D 0.0095 and p D 0.0031, respectively).

Discussion

Antiviral effector CD4C T cells are produced when APCs take
up viruses or virus-infected cells and then process the viral

proteins to yield peptides that complex with MHC class II mol-
ecules for presentation to na€ıve CD4C T cells, which triggers
differentiation into subsets of antiviral effector cells.17 DNA
vaccines can generate MHC class II-restricted peptides either
by direct transfection of APCs or by transcription and transla-
tion in bystander cells before antigen uptake by APCs.32-35 It is
also possible to engineer DNA constructs to include lysosomal
targeting signals (e.g., lysosomal associated membrane protein,
LAMP), although in our experience with numerous DNA vac-
cines, this has not been necessary for eliciting protective
immune responses in animals or humans when the vaccines
are delivered to skin by electroporation or gene gun or to mus-
cle by electroporation.1,36-40 Despite the strong immunogenicity
that we have obtained with DNA vaccines encoding complete
viral proteins, we hypothesized that it might be possible to
improve and/or broaden the overall response by presenting the
immune system with a subset of epitopes that specifically stim-
ulate a particular arm of the immune system. This approach
would have the added benefit of allowing for a single DNA vac-
cine plasmid expressing epitopes of multiple antigenically dis-
tinct pathogens, thereby limiting production costs and shot

Figure 7. Survival of vaccinated HLA-DR3 mice after EBOV or VEEV challenge. Groups
of HLA-DR3 mice (N D 10) vaccinated as described in the Methods section were chal-
lenged 4 weeks after the final vaccination with 103 PFU of ma-EBOV by IP injection
or with 104 PFU of VEEV by aerosol. Kaplan-Meier survival curves indicating the per-
centage of surviving mice at each day of the 28-day observation period are shown.
(A) Significantly increased survival was observed for mice receiving the whole-antigen
DNA vaccines (�, p < 0.01). No significant protection against EBOV challenge was
observed for mice receiving the multi-epitope vaccine. (B) Significantly increased sur-
vival against VEEV challenge was observed for mice receiving the whole-antigen DNA
vaccine (�, p D 0.0095) or the multi-epitope vaccine (�, p D 0.0031) as compared
with those receiving the negative control vaccine.
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burden. Such a vaccine could be used either to provide a prim-
ing dose for a whole-antigen vaccine or as a boost following a
whole-antigen vaccine to stimulate specific host memory subset
populations.

As an initial test of this hypothesis, we used EpiMatrix in
silico prediction tools to identify MHC class II-restricted epito-
pes in genes that we previously tested as whole-antigen DNA
vaccines, namely the GP and NP genes of EBOV and SUDV
and the structural proteins of VEEV. To assess the validity of
the EpiMatrix algorithm binding predictions, we evaluated the
top 5 scoring epitopes from each viral protein in HLA-binding
studies with 5 of the 8 supertype class II alleles. We found that
96% of the predicted peptides bound at least moderately to one
allele, thus demonstrating the accuracy of the EpiMatrix algo-
rithm. Consequently, we constructed the multi-epitope DNA
vaccine to span all 44 epitopes predicted to bind well, and
assembled the vaccine coding region with the VaccineCAD
algorithm to generate an optimal polypeptide, which did not
have spurious junctional epitopes or similarity to self-antigens.

To confirm the immunogenicity of our multi-epitope DNA
vaccine, we initially vaccinated a small cohort of immunocom-
petent, wild-type BALB/c mice. In silico analysis predicted that
the MHC class II alleles expressed in BALB/c mice would over-
lap with 17 of our 44 EpiMatrix-identified peptides. Vaccina-
tion of BALB/c mice via IM EP with the class II multi-epitope
DNA vaccine alone elicited low but measureable antigen-spe-
cific IFN-gC T cell responses at all tested doses. It is not sur-
prising that these epitope-specific responses were modest given
the very limited number of epitopes contained in the construct
that were predicted to bind mouse MHC. Comparing the
responses of the BALB/c mice receiving 20 mg to those receiv-
ing 35 mg of the multi-epitope construct appeared to show a
dose response. However, mice in the group receiving 50 mg did
not show a similarly increased response. As our previous stud-
ies have demonstrated that the VEEV DNA vaccine is highly
immunogenic in mice, it is possible that the increased dose of
the multi-epitope vaccine skewed the response toward immu-
nodominant VEEV epitopes and limited the immune response
to the filovirus epitopes. This is supported by the fact that there
was no change in VEEV-specific T cell numbers between the
20 mg and 35 mg groups, but there was a trend toward
increased responses in the 50 mg group. Furthermore, the
multi-epitope vaccinated mice developed humoral responses
only to the VEEV antigens, suggesting that either the develop-
ment of EBOV- and SUDV-specific B cell responses was also
impaired by immunodominant VEEV epitopes or that the
selected EBOV and SUDV T cell epitopes don’t overlap with B
cell epitopes to the same degree as those for VEEV. Further
experiments are necessary to determine the possible effects of
VEEV epitopes on immune responses to the filovirus epitopes
encoded within the multi-epitope DNA vaccine.

Of particular interest, while some mice in all 3 vaccine dose
groups generated detectable immune responses to the MHC
class II EBOV peptide pool, no cellular immune responses were
detected for the peptide pool representing the MHC class II-
restricted VEEV epitopes. However, cellular responses to pepti-
des contained within the VEEV E1 overlapping peptide pool
were detected in all of the multi-epitope vaccine groups. One
possible explanation for these data are that the breadth of the

cellular response generated in wild-type BALB/c mice through
vaccination with the class II multi-epitope DNA vaccine is
underrepresented by our in silico prediction algorithm, suggest-
ing that multi-epitope DNA vaccines have the potential to
induce broader cellular immune responses than previously
expected. Although the mechanism behind this result is still
unclear, it is conceivable that the MHC class II-restricted epito-
pes encoded within our vaccine are also capable of priming
MHC class I-dependent responses. Thus, stimulation with a
more diverse peptide pool may elicit stronger T cell responses
than those seen in pools containing only the encoded MHC
class II peptides. Such an effect would greatly increase the util-
ity of multi-epitope vaccines by allowing for the priming of
non-dominant or cryptic epitope-specific immune populations
without sacrificing the ability of the host to respond to the
whole antigen. Transient in vivo depletion of CD8C T cells with
a monoclonal antibody may allow for greater understanding of
the ability of our MHC class II-restricted vaccine to stimulate
MHC class I-dependent responses. Alternatively, the VEEV E1
overlapping peptide pool may have bound to BALB/c MHC II
molecules with greater affinity than did the class II VEEV pep-
tides, resulting in higher levels of CD4C T cell stimulation.

In addition to quantifying the immunogenicity of our multi-
epitope DNA vaccine, we compared the protective efficacy of
the multi-epitope based approach to that of our whole-antigen
DNA vaccines against both VEEV and EBOV viral challenge in
transgenic HLA-DR3 mice. Unexpectedly, whole-antigen vacci-
nation of HLA-DR3 mice only resulted in 30% protection
against VEEV aerosol challenge, which is a dramatic departure
from the 100% protection we have routinely observed in
BALB/c mice and NHP.3,4 A similar level of protection (20%)
was observed in mice vaccinated with the class II multi-epitope
DNA construct. This lower level of protection may be due to
the use of a C57Bl/6 background of the transgenic mice, as sev-
eral studies have demonstrated that mouse strain background
can influence VEEV infection and progression.8,41 In one study,
however, VEEV infection was found to progress similarly in
both BALB/c and C57Bl/6 mice.41 Perhaps a more plausible
explanation is that the VEEV epitopes encoded within both
DNA vaccines are suboptimal for inducing immunity with
regards to presentation by a single HLA-DRB1 allele. Our
multi-epitope DNA vaccine was designed to provide coverage
against the 8 supertype HLA class II alleles. The EpiMatrix
algorithm predicted that only 2 VEEV peptides (1053–1067
and 1164–1178) were expected to be high DRB1�0301 binders
(Fig. 1), suggesting that vaccination with the multi-epitope
DNA construct could yield a limited anti-VEEV immune popu-
lation. This hypothesis is supported by the lack of IFN-g
response elicited against the VEEV class II-restricted epitopes
in HLA-DR3 mice (Fig. 5). It is likely that vaccination of trans-
genic mice expressing multiple HLA-DRB1 MHC class II alleles
would allow for increased epitope presentation, thereby broad-
ening both the cellular and humoral immune responses and
providing greater protection. Despite these inherent limitations
of the transgenic HLA-DR3 mouse system, which likely con-
tributed to reduced protective efficacy, our finding that partial
protection against the extremely high VEEV aerosol challenge
dose (10,000 LD50) with only a small number of epitopes
expected to be presented in the context of DRB1�0301 is an
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extremely encouraging result in support of this multi-epitope
based approach.

Similar to the VEEV challenge, the outcome of the ma-
EBOV challenge study indicated that the immune responses
generated in the HLA-DR3 mice vaccinated with the MHC
class II multi-epitope DNA vaccine were not sufficient for pro-
tection. These results were not unexpected based on the results
of the immunogenicity studies in the HLA-DR3 mice. Cellular
responses were only generated to a single EBOV epitope
(EBOV GP 32–49), and the EBOV-specific antibody responses
induced by the class II multi-epitope DNA vaccine were
reduced compared with those generated by the whole-antigen
DNA vaccine. However, these responses are still noteworthy
given the relative lack of high-binding DRB1�0301 epitopes
encoded within the vaccine (Fig. 1). Additionally, we were able
to generate cellular responses to 3 SUDV epitopes and antibody
responses to a single SUDV peptide, suggesting that protection
from SUDV challenge may also be obtainable using such an
approach.

Conclusion

Our studies confirmed the immunogenicity of some of the
identified class II-restricted epitopes when delivered by IM
EP in a DNA vaccine-only formulation or in a heterologous
DNA prime-peptide boost regimen. Both vaccine strategies
generated detectable cellular and humoral immune
responses, demonstrating the potential for T cell epitope-
based vaccines to induce a multi-arm response. Further
studies aimed at testing class II-restricted, multi-epitope
constructs for immune focusing and eliciting tissue-resident
20 effector CD4C T cells are needed to determine if the
immunoinformatics approach used here has the potential to
improve vaccine design for humans. Finally, the design of
epitope-based vaccines could also include class I-restricted
epitopes, and it is also possible that identifying class I-
restricted epitopes from each virus and using a 2-pronged
approach by generating both CD8C and CD4C T cell
responses would improve the breadth of the protective
immune responses and lead to increased efficacy against
both VEEV and EBOV.

Methods

Peptide synthesis

Selected HLA class II-restricted peptides were synthesized at
>80% purity using standard solid-phase 9-fluoronylmethox-
ycarbonyl (Fmoc) chemistry (21st Century Biochemicals).
Peptide sequence and mass were confirmed by collision-
induced dissociation and tandem mass spectrometry
(CID-MS/MS).

HLA class II binding assay

In vitro HLA class II binding assays were performed as
described previously.29 Briefly, experimental peptides were sol-
vated in 100% DMSO at 5 concentrations and mixed with
binding reagents in aqueous solutions to yield final peptide

concentrations of 100, 50, 25, 5, and 1 mM. In 96-well
plates, soluble HLA molecules representing 5 class II
alleles (DRB1�0101, DRB1�0301, DRB1�0401, DRB1�0701, and
DRB1�1501) were mixed with non-biotinylated test peptides at
each concentration and biotinylated control peptides and incu-
bated for 24 h at 37�C. The HLA-peptide complexes were then
captured on ELISA plates coated with pan-anti-human DR
antibodies (L243), developed by addition of streptavidin-euro-
pium, and bound HLA-labeled control peptide complexes were
assessed on a time-resolved fluorescence plate reader at
615 nm. Concentrations of peptide leading to a 50% inhibition
of biotinylated peptide binding (IC50) were then determined.
Binders were defined as very strong (IC50 < 1 mM), strong
(IC50 < 10 mM), moderate (IC50 < 50 mM), or weak (IC50 <

100 mM). Non-binders were defined as peptides with IC50 �
100 mM.

DNA and peptide vaccines

The VEEV, EBOV, and SUDV DNA vaccines were generated
as described previously.4,6 Briefly, the codon-optimized Vene-
zuelan equine encephalitis virus IAB structural genes minus
capsid and the codon-optimized GP gene of EBOV and SUDV
were synthesized by GeneArt and cloned into the NotI and
BglII restriction sites of the pWRG7077 eukaryotic expression
vector. The multi-epitope DNA vaccine was engineered by
linking all 44 HLA class II epitopes that were previously identi-
fied by the EpiMatrix program into one “string-of-beads” open
reading frame.29 To avoid creation of new epitopes at epitope
junctions, the sequence was analyzed using the VaccineCAD
algorithm and epitopes were re-ordered as needed. Insertion of
spacer sequences was not required at any epitope junctions.
The tPA leader sequence was placed upstream of the multi-epi-
tope sequence to target the expressed protein to the secretory
pathway, and a 3X FLAG tag (DYKDHDGDYKDHDI-
DYKDDDDK) was placed downstream of the epitope sequen-
ces for detection of this protein product. The multi-epitope
open reading frame was codon optimized for Homo sapiens,
synthesized, and cloned into the pWRG7077 eukaryotic expres-
sion vector (GeneArt).30 Research-grade preparations of all
plasmids were then manufactured (Aldevron).

Peptides corresponding to the epitopes in the HLA class II
multi-epitope DNA vaccine were emulsified at 2 mg/ml per
peptide in incomplete Freund’s adjuvant (IFA) and 10 mg each
of immunostimulatory CpG oligodeoxynucleotide 1826, mur-
amyl dipeptide (MDP), and CL097.

Mice

Female BALB/c mice were obtained from National Cancer
Institute-Frederick. Female HLA-DR3 transgenic mice were
obtained from Dr. Chella David (Mayo Medical School) under
commercial license. These mice express the both the HLA
DRB1�0301 a and HLA DRB1�0301 b genes and are negative
at the mouse H2Ab0 class-II locus.31 All mice were 6 to 8 weeks
old at initiation of studies. All animal research was conducted
in compliance with the Animal Welfare Act and other federal
statutes and regulations relating to animals and experiments
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involving animals and adheres to principles stated in the
“Guide for the Care and Use of Laboratory Animals,” Institute
for Laboratory Animal Research, Division of Earth and Life
Studies, National Research Council, National Academies Press,
Washington, DC, 2011. The USAMRIID facility where some of
this animal research was conducted is fully accredited by the
Association for the Assessment and Accreditation of Labora-
tory Animal Care International. All animal research conducted
at EpiVax was approved by the Institutional Animal Care and
Use Committee and was conducted in compliance with the
Animal Welfare Act.

Vaccinations

BALB/c mice were vaccinated 3 times at 3-week intervals with
plasmid DNA diluted to specified concentrations in calcium-
and magnesium-free PBS (Invitrogen) by IM EP using the
Ichor Medical Systems TriGridTM Delivery System (TDS) as
described previously.4,6 Briefly, mice were placed in an
IMPAC6 chamber and anesthetized with straight isoflurane
gas. Anesthetized mice were then injected in one tibialis ante-
rior muscle with 20 ml of a DNA solution using a 3/10cm3 U-
100 insulin syringe inserted into the center of the TriGridTM

electrode array with 2.5 mm electrode spacing. Injection of
DNA was followed immediately by electrical stimulation at an
amplitude of 250 V/cm, and the total duration was 40 ms over
a 400 ms interval. HLA-DR3 transgenic mice were vaccinated
2 times at a 2-week interval with plasmid DNA by IM EP as
described above. On days 28 and 42, the negative control and
vaccine groups received 100 ml of an IFA/adjuvant emulsion or
an IFA/adjuvant/peptide emulsion, respectively, by subcutane-
ous injection at the base of the tail.

Immunological assays

Epitope-specific cellular immune responses were detected and
analyzed by IFN-g enzyme-linked immunospot (ELISpot) assays
using kits purchased from Mabtech or R&D Systems. All assays
were performed according to the manufacturer’s directions.
Briefly, splenocytes were isolated from individual animals and
resuspended in complete RPMI 1640 medium (Gibco). Spleno-
cytes isolated from HLA-DR3 mice were added in triplicate at a
concentration of 2.5 £ 105 cells per well. Individual or pooled
target peptides were added at a concentration of 10 mg/ml.
Pooled 15-mer peptides with an 11-base overlap spanning the
E2 or E1 envelope glycoprotein of VEEV IAB (Pepscan) and
pooled 15-mer peptides with a 10-base overlap spanning the
envelope glycoprotein of EBOV (Mimotopes) were also added
at 10 mg/ml. Stimulation with 2 mg/ml concanavalin A (Sigma-
Aldrich) in 3 wells was used as a positive control, and 6 wells
were plated with cells and media only as a background control.
Splenocytes isolated from BALB/c mice were plated in duplicate
at a concentration of 1.0 £ 105 cells/well. Peptide pools were
added at a concentration of 10 mg/ml. Cells were incubated for
48 hours at 37�C in 5% CO2. Plates were sent to ZellNet Con-
sulting, Inc. where raw spot counts were recorded using a Zeiss
high-resolution automated ELISpot reader. The average number
of spots per peptide or peptide pool was calculated and adjusted
to spots per million cells.

Total IgG anti-EBOV and anti-VEEV end point antibody
titers were determined for serum samples by standard ELISA
using sucrose gradient-purified, irradiated whole EBOV or
VEEV IAB antigen as described.6,42 Briefly, 2-fold serial dilu-
tions of test sera, starting at 1:100, were incubated with 250 ng
of VEEV IAB antigen or 700 ng of EBOV antigen per well
in 96-well plates. A heavy chain-specific goat anti-mouse
horseradish peroxidase (HRP)-conjugated secondary antibody
(Sigma-Aldrich) and ABTS (2,20-Azinobis [3-ethylbenzothiazo-
line-6-sulfonic acid]-diammonium salt) peroxidase substrate
(KPL) were used for detection of VEEV-specific responses. The
same secondary antibody and TMB (3,30,5,50-Tetramethylben-
zidine) 2 peroxidase substrate (KPL) were used for detection of
EBOV-specific responses. Total IgG epitope-specific antibody
titers were measured as described above with a few modifica-
tions. Individual and pooled peptides were diluted in 1x car-
bonate buffer (Sigma-Aldrich) and added at 250 ng per well in
96-well plates. The same secondary antibody and the ABTS
peroxidase substrate were used for detection of peptide-specific
responses. The optical density was measured at 405 nm for all
plates using ABTS and at 450 nm for all plates using TMB 2
with a SpectraMax M2e microplate reader (Molecular Devices)
and end point titers were determined using Softmax Pro v5.4.1
(Molecular Devices).

VEEV IAB-neutralizing antibody titers were determined
by PRNT for each serum sample as described previously.2

Briefly, 2-fold serial dilutions of sera were mixed with equal
volumes of Hanks Balanced Salt Solution (HBSS) w/ HEPES
supplemented with phenol red, 2% Fetal Bovine Serum
(FBS), and 1% penicillin-streptomycin containing 200 PFU
of virus and incubated at 4�C overnight. The mixtures were
used to infect monolayers of Vero 76 cells for 1 h at 37�C
in 5% CO2. The monolayers were then overlaid with 2 ml
of 0.6% agarose in complete Basal medium Eagle with Ear-
le’s Salts (EBME) (Invitrogen). Plates were stained after
24 h at 37�C in 5% CO2 with 2 ml of overlay consisting of
0.6% agarose in complete EBME containing 5% neutral red.
Plaques were enumerated 24 h after staining and the anti-
body titer required for an 80% reduction in the number of
plaques as compared with controls (PRNT80) was calculated.

Virus challenges

Mice were challenged with ma-EBOV by IP injection as
described previously.43 VEEV IAB (strain Trinidad donkey)
was prepared as described previously4 and mice were chal-
lenged via the aerosol route as described previously.8 Briefly,
mice were placed in a whole-body aerosol chamber within a
class III biologic safety cabinet and exposed for 10 min to a
VEEV aerosol created by a Collision nebulizer. Samples of the
generated aerosol were collected from the all-glass impinger
(AGI) attached to the aerosol chamber. AGI samples were ana-
lyzed by standard plaque assay to determine inhaled dose as
described previously.44 Mice were monitored for 28 d post chal-
lenge for clinical symptoms and death. Any moribund animals
were euthanized. All challenge studies involving the use of
VEEV or ma-EBOV were performed at USAMRIID in Animal
Biosafety Level 3 or 4 laboratories, respectfully.
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Statistical analysis

GraphPad Prism software v6 for Windows (Graph, Inc.) was
used to graph and conduct statistical analysis of all data. Briefly,
Kaplan-Meier survival curve analysis using a long-rank test was
performed for the HLA-DR3 mouse challenge data, one-way
analysis of variance with Tukey’s post hoc tests was used to
compare ELISA titers between challenge groups at each time
point, 2-way analysis of variance with Tukey’s post hoc tests
was used to compare peptide ELISA titers and ELISpot counts
between HLA-DR3 challenge groups for each peptide, 2-way
analysis of variance with Dunnet’s post hoc tests was used to
compare ELISA titers between dose study BALB/c groups at
each time point, and one-way analysis of variance with
Dunnet’s post hoc tests was used to compare ELISPOT counts
for each BALB/c dose study group. Log10 transformations were
applied to peptide ELISA titers, whole virus ELISA titers and
PRNT80 titers. Probability (p) values < 0.05 were considered
statistically significant.

Abbreviations

EP electroporation
ELISpot enzyme-linked immunospot
ELISA enzyme-linked immunosorbent assay
EBOV Ebola virus
HLA human leukocyte antigen
IM intramuscular
MHC major histocompatibility complex
PRNT plaque reduction neutralization test
SUDV Sudan virus
VEEV Venezuelan equine encephalitis virus
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