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Transfer Function Modeling of
Processes With Dynamic Inputs

DAVID WEST and SCOTT DELLANA

East Carolina University, Greenuville, NC 27858-4353

JEFFREY JARRETT
The University of Rhode Island, Kingston, RI 02881

Time series structures, which are common occurrences with data in many industrial processes, complicate
a quality practitioner's efforts to accurately position control chart limits. ARIMA modeling and a variety of
control charting methods have been recommended for monitoring process data with a time series structure.
Estimates of ARIMA model parameters may not be reliable, however, if assignable causes of variation are
present in the process data used to fit the time series model. Control limits may also be misplaced if
the process inputs are dynamic and exhibiting a time series structure. Our purpose in this paper is to
explore the ability of a transfer function model to identify assignable causes of variation and to model
dynamic relationships between process inputs and outputs. A transfer function model is developed to
monitor biochemical oxygen demand output from a wastewater treatment process, a process with dynamic
inputs. This model is used to identify periods of disturbance to the wastewater process and to capture the
relationship between the variable nature of the input to the process and the resulting output. Simulation
results are included in this study to measure the sensitivity of transfer function models and to highlight
conditions where transfer function modeling is critical.

Introduction

N an extensive survey, Alwan and Roberts (1995)
:]I found that more than 85% of industrial process
control applications resulted in charts with possibly
misplaced control limits. In many instances, the mis-
placed control limits result from autocorrelation of
the process observations, which violates a basic as-
sumption often associated with the Shewhart chart
(Woodall (2000)). Autocorrelation of process obser-
vations has been reported in many industries, includ-
ing cast steel (Alwan (1992)), blast furnace opera-
tions (Notohardjono and Ermer (1986)), wastewater
treatment plants (Berthouex, Hunter, and Pallesen
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(1978)), chemical processes industries (Montgomery
and Mastrangelo (1991)), semiconductor manufac-
turing (Kim and May (1994)), injection molding
(Smith (1993)), and basic rolling operations (Xia,
Rao, Shan, and Shu (1994)).

Several models have been proposed to monitor
processes with autocorrelated observations. Alwan
and Roberts (1988) suggest using an autoregressive
integrated moving average (ARIMA ) residuals chart,
which they referred to as a special cause chart. For
subsample control applications, Alwan and Radson
(1992) describe a fixed limit control chart, where the
original observations are plotted with control limit
distances determined by the variance of the sub-
sample mean series. Montgomery and Mastrangelo
(1991) use an adaptive exponentially weighted mov-
ing average (EWMA) centerline approach, where the
control limits are adaptive in nature and determined
by a smoothed estimate of process variability. Lu and
Reynolds (2001) investigate the steady state average
run length of cumulative sum (CUSUM), EWMA,
and Shewhart control charts for autocorrelated data
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316 DAVID WEST, SCOTT DELLANA AND JEFFREY JARRETT

modeled as a first order autoregressive process plus
an additional random error term.

A problem with all of these control models is that
the estimate of the process variance is sensitive to
outliers. If assignable causes are present in the data
used to fit the model, the model may be incorrectly
identified and the estimators of model parameters
may be biased, resulting in loose or invalid control
limits (Boyles (2000)). To justify the use of these
methods, researchers have made the assumption that
a period of “clean data” exists to estimate control
limits. Therefore, methods are needed to assure that
parameter estimates are free of contamination from
assignable causes of variation. Intervention analy-
sis, with an iterative identification of outliers, has
been proposed for this purpose. The reader inter-
ested in more detail should see Alwan (2000, pp.
301-307), Atienza, Tang, and Ang (1998), and Box,
Jenkins, and Reinsel (1994, pp. 473-474). Atienza,
Tang, and Ang (1998) recommend the use of a con-
trol procedure based on an intervention test statis-
tic, A, and show that their procedure is more sensi-
tive than ARIMA residual charts for process appli-
cations with high levels of positive autocorrelation.
They limit their investigation of intervention anal-
ysis, however, to the detection of a single level dis-
turbance in a process with high levels of first order
autocorrelation. Wright, Booth, and Hu (2001) pro-
pose a joint estimation method capable of detecting
outliers in an antocorrelated process where the data
available is limited to as few as 9 to 25 process ob-
servations. Since intervention analysis is crucial to
model identification and estimation, we investigate
varying levels of autocorrelation, autoregressive and
moving average processes, different types of distur-
bances, and multiple process disturbances.

The ARIMA and intervention models are ap-
propriate for autocorrelated processes whose input
streams are closely controlled. However, there are
quality applications, which we refer to as “dynamic
input processes,” where this is not a valid assump-
tion. The treatment of wastewater is one exam-
ple of a dynamic process that must accommodate
highly fluctuating input conditions. In the health
care sector, the modeling of emergency room ser-
vice must also deal with highly variable inputs. The
dynamic nature of the input creates an additional
source of variability in the system. namely the time
series structure of the process input. For these appli-
cations, modeling the dynamie relationship between
process inputs and outputs can be used to obtain im-
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proved process monitoring and control as discussed
by Alwan (2000, pp. 675-679).

We propose a more general transfer function: an
ARIMA model that accounts for both outliers in pro-
cess output and dynamic effects from process input.
In the following section, we briefly describe the rel-
evant theory of time series analysis used in this pa-
per. We then analyze the transfer function model
terms to identify disturbances in a wastewater treat-
ment process. We follow in later sections with sup-
porting empirical evidence on the sensitivity of these
methods. The paper concludes with a discussion of
the implications for quality practitioners who may be
monitoring processes which produce data with time
series structures and which have dynamic inputs. In
this paper, we refer to autocorrelated processes as ei-
ther autoregressive (AR) or as moving average (MA)
(as defined by Box, Jenkins, and Reinsel (1994)).

Transfer Function Modeling
of Process Data

If a process quality characteristic, z;, has a time
series structure, an ARIMA model of the following
general form can represent the undisturbed or natu-
ral process variation:

H(B)a(B)z = 0(B)ay. (1)

In Equation (1), B represents the back-shift oper-
ator, where B(z;) = 2;_;. The value of ¢(B) rep-
resents the polynomial expression (1 — ¢ B — ... —
¢, B7), which models the autoregressive (AR) struc-
ture of the time series. The value of §(B) represents
the polynomial (1 — B — ... —#,B7), which mod-
els the moving average (MA) structure of the time
series. The value of a(B) represents the expression
(1-B)4(1— Bs)g. where d = d; + sd. This quantity
is a polynomial in B that expresses the degree of dif-
ferencing required to achieve a stationary series and
accounts for any seasonal pattern in the time series.
Finally, a; is a white noise series with distribution
N(0,02). This model is described by Chen and Liu
(1993b). If the series z; is contaminated by periods
of external disturbances to the process. the ARIMA
model may be incorrectly specified, the variability of
the residuals overestimated, and the resulting control
limits incorrectly placed.

The following transfer function model of Box and
Tiao (1973) describes the observed quality character-
istic, y;, as a function of three sources of variability:

w(B) 0(B)

= Ny —] :
Yy =v(B)ay_p + 3(B) ’+G>(B_)

. (2)
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TRANSFER FUNCTION MODELING OF PROCESSES WITH DYNAMIC INPUTS 317

The first term, v(B)x;_p, is the dynamic input term
and represents an impulse function, v(B), applied
to the input z;_, with a lag of b time periods. If
a dynamic relationship between the input and out-
put time series exists, lagged values of process in-
puts can be modeled, resulting in considerable re-
duction of unexplained variance. The second term,
(w(B)/6(B))I;, is the intervention term and iden-
tifies periods of time when assignable causes are
present in the process. Here, I; is an indicator vari-
able with a value of zero when the process is undis-
turbed and a value of one when a disturbance is
present in the process. See, for example, Box. Jenk-
ins, and Reinsel (1994, p. 392) for the development
of the transfer function term, and Box, Jenkins, and
Reinsel (1994, p. 462) for details of the interven-
tion term. The rational coefficient term of I; is a
ratio of polynomials that defines the nature of the
disturbance as detailed in Box, Jenkins, and Reinsel
(1994, p. 464). The third term, (6(B)/¢(B))ay, is
the basic ARIMA model of the undisturbed process
from Equation (1). We refer to Equation (2) as the
“transfer function” model throughout this paper.

Different types of disturbances can be modeled by
the proper design of the intervention term. The two
most common disturbances for quality applications
are a point disturbance, with an impact observed for
only a single time period, and a step disturbance,
with an impact persisting undiminished through sev-
eral subsequent observations. The point disturbance
is modeled as an additive outlier (AOQ). An AO im-
pacts the observed process at one observation. The
AOQO is modeled in the form

w‘(B)
3(B)

= wp, (3)

where wy is a constant. A step disturbance to the
process is modeled as a level-shift outlier (a form of
innovational outlier or 10) in the form,

w(B)  wo
dB) 1=8B

. (4)

Chang, Tiao, and Chen (1988) and Chen and Liu
(1993h) disenss both types of disturbance.

Chang, Tiao, and Chen (1988) extended the con-
cepts of Box and Tiao (1975) to an iterative method
for detecting the location and nature of outliers at
unknown points in the time series. They define a
procedure for detecting innovational outliers and ad-
ditive outliers, and for jointly estimating time series
parameters. Their work also demonstrates that the

Vol. 34, No. 3, July 2002

presence of outliers may cause serious bias in the es-
timation of ARIMA model parameters. The iterative
method of Chang, Tiao, and Chen (1988) is effective
for large. isolated outliers, but a masking effect may
occur when multiple outliers cluster together. To
overcome these problems, Chen and Liu (1993a) pro-
posed an iterative outlier detection and adjustment
methodology designed to handle multiple outliers of
various types in a time series.

Box, Jenkins, and Reinsel (1994, p. 473) report the
significance of the intervention term in the estima-
tion of o, for two chemical process applications. For
a chemical process temperature reading, three dis-
turbances were identified by the intervention terms,
resulting in a 26% reduction in &,. For chemical
process viscosity readings, a single disturbance was
identified by the intervention term and modeled with
a resulting reduction in 7, of 6 percent.

Application of Transfer Function
Modeling to Wastewater Treatment

Wastewater contains a variety of substances that
must be removed, such as human wastes, food scraps.,
oils, soaps, chemicals, microorganisms, phosphorons
compounds, nitrogen compounds, suspended solids,
and organic matter. A critical step in the typical
wastewater treatment process, shown in Figure 1,
is the use of microorganisms to decompose the or-
ganic matter. The amount of oxygen consumed by
the microorganisms, called the biochemical oxygen
demand (BOD). is used as a process control mea-
sure. The challenges of controlling the BOD levels of
a wastewater treatment plant result from the com-
plexity of the process and the variances in the compo-
sition and flow rate of the input stream as discussed
by Wen and Vassiliadis (1998). The value of trans-
fer function modeling is illustrated in the following
example, where we analyze 527 daily measurements
of BOD from an urban wastewater treatment plant
as reported by Poch, Bejar, and Cortes (1993). The
dynamic nature of the input and output BOD is ev-
ident from the first 100 daily measurements plotted
in Figures 2 and 3.

In the following subsections, we sequentially an-
alyze the three sources of variability in the transfer
function model of Equation (2). We first evaluate
an ARIMA residual chart to serve as a benchmark.
The second subsection details an analysis that in-
cludes intervention terms in the model, and the fi-
nal subsection includes the dynamic input term. In
all cases, model parameters are estimated from the
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FIGURE 1. Typical Wastewater Treatment Plant.

first 100 days of operations and the remaining 427
days serve as an independent holdout sample. The
ARIMA analysis and estimation was performed using
SAS software; the intervention test statistic, A\, was
calculated with an Excel spreadsheet using a method
similar to the approach of Atienza, Tang, and Ang
(1998).

:: ;
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e
-
== —
h
=
=
T
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FIGURE 2. Wastewater Treatment Input BOD Time Se-
ries.
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Wastewater g
Stormwater ____ |

Sludge

ARIMA Model Residual Analysis of
the Wastewater Process

The construction of ARIMA residual control
charts begins by analyzing the autocorrelation and
partial autocorrelation functions to identify an ap-
propriate ARIMA model for the BOD output. Box,

|
I\
AT At 04 RS O W
g AT
FIGURE 3. Wastewater Treatment Qutput BOD Time
Series.
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TABLE 1. Wastewater Control Models

Control Limits

Outliers Detected

Outliers Detected

Model Oq 1-100 101-527
ARIMA Residual 28.1 +84.3 60, 61 465
Intervention Term 6.24 +18.7 31, 60-64, 90, 95 465-467
Intervention and 5.84 +17.5 31, 60-64, 90, 95 114, 465-467

Dynamic Input Term

Jenkins, and Reinsel (1994, pp. 183-223) and Mont-
gomery and Johnson (1976, pp. 193-200) discuss such
The autocorrelation function for the
first 100 observations cuts off abruptly at a lag of
one, while the partial autocorrelation function fol-
lows a sinusoidal decay pattern. This information
suggests that the process is stationary, and that an
MA(1) model is appropriate for the BOD output
of the wastewater treatment plant. Estimation of
MA(1) model parameters yields the following result:

.’!}p £ = 2747 + 0.582(’[. (5)

an analysis,

If the fitted model is an adequate representation of
the sample data, then the model residuals shown in
Figure 4 should approximate a white noise process,
an important property for the success of the residu-
als control chart. The obvious disturbance beginning
in day G0 can affect model identification and param-
eter estimates. The magnitude of this impact will
be clear in the next subsection, where we identify
and model these events. For the moment, we will
ignore the disturbance and estimate o, in Equation
(5). The results, shown in Table 1, are that 7, = 28.1
and that the 3-sigma limits are +84.3. The residuals
control chart identifies days 60 and 61 of Figure 4 as
potential process disturbances. Applying these con-
trol limits to holdout ohservations for days 101-527
identifies a single disturbance at day 465.

Addition of Intervention Analysis to the
Wastewater Process Model

The use of the iterative method of Chang, Tiao,
and Chen (1988) can improve on the ARIMA resid-
nals results by identifying and explicitly modeling
wastewater process disturbances. This method is
based on the likelihood ratio criteria, A, defined by
Fox (1972), and uses the following algorithm:

L. Treat the observed time series, z. as if no out-
liers exist. Identify an ARIMA model and es-

Vol. 34, No. 3, July 2002

timate model parameters (i.e. the polynomials
defined in Equation (1)).

2. From the model estimated in step 1, compute
the residuals, e;, and &,.

3. Estimate A;p and Aoy to determine the pres-
ence of AO and 10 outliers, respectively, for
t = 1 to n observations. The first statistic, Ay,
is used to test the hypothesis that Hy: wy = 0,
Hy: wy # 0 in Equation (3). The second statis-
tic, Aap, is used to test Hy: wo =0, Hy: wy # 0
in Equation (4). These estimators are defined

as
et
Mr == 6
= 2 (©)
and )
Ao = . 5 (7)
PTa
where
P=+ai+m2+...+72 41 (8)
and

@a = p*n(F)n(B)z. (9)

250 00

200.00

150,00

10000 |

Residual

FIGURE 4. Wastewater Output BOD MA(1) Model
Residuals.
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In Equations (8) and (9), the 7; terms are the
coefficients of the following rational polynomial
with terms defined in Equation (1):

(B)a(B
w(5) = 2B)aB)
Op
The symbol F' represents the forward shift op-

erator.
4. Find the maximum magnitude of the series of
statistics Ay and Aop.

Nro = max |Aq ¢ a0 = max | Ao 4|

If either or both of these values exceeds a
threshold, C', which typically varies from 2.5
to 4. it is determined that an outlier exists. If
the maximum value is 770, then the outlier is
an [0. Conversely, if the maximum is 7740, then
the outlier is an AQ. The residuals are adjusted
by a method that is dependent on the nature of
the outlier. For an 10 outlier, the model resid-
ual for that single period is set to zero. For
an AO outlier the model residuals are adjusted
using

Etonew = €t — *IDAW(B)IT' (12)

After adjusting the model residuals, a new
value of 7, is computed.

o

Continue to identify additional outliers by re-
peating steps 3 and 4 with modified residuals
and re-estimating o, until no further outlier
candidates exist.

6. Treat the disturbance times for all outliers iden-
tified above as known and simultaneously esti-
mate the ARIMA model parameters and inter-
ventions. Repeat steps 1 to 6 with this model
and stop when no additional outliers are iden-
tified.

For the wastewater treatment process, the result
from step 1 of the iterative method is the model es-
timated in Equation (5). Applying steps 2-6 with
C = 3 yields the following ARIMA intervention
model:

Yre1 = 22.2 4 0.337¢; + 13014

+ 29815 + 61.815 + 9.81,
— 44.515 + 20.31 + 19.31. (10)
The seven outliers detected by intervention analy-
sis did not result in the identification of a different

form of model; in this case the model remains an
MA(1) model. However, the value of #; is reduced

Journal of Quality Technology

from 0.582 (estimated for the basic ARIMA residu-
als chart) to 0.337. Most importantly, the estimate
,, which is the basis for placing control limits, is re-
duced. The estimate 7, = 28.1 of the basic ARIMA
residuals is reduced significantly to o, = 6.24 with
the inclusion of intervention terms (see Table 1).
This results in tighter placement of control limits
for a residuals chart and more sensitivity to identify
additional potential disturbances to the wastewater
process. Potential disturbances are now identified for
days 31, 60-64, 90, and 95 and for days 465-467 of
the holdout sample.

Addition of Dynamic Input Analysis to the
Wastewater Process Model

We next include a term for the dynamic regression
of the input BOD in the control model. Autocorrela-
tion and partial antocorrelation functions calculated
for the input BOD suggest that this time series is also
an MA(1) process. We fit a transfer function model
of the form of Equation (2) vielding the following
result:

'a"f = 8.1+ Uo}?l,{ + []-if)i’r,l
+228("(_] +]f (11)

where ; is the BOD input to the process at time {
and [; represents the same seven intervention terms
defined in Equation (10). By modeling the variability
of the BOD input to the wastewater process, the es-
timate 7, is reduced to 5.84 (see Table 1). The place-
ment of the control limits is now at £17.5, the tight-
est control limits of all three models investigated.
Including the dynamic input term in the model pro-
vides increased sensitivity, identifying a potential dis-
turbance at day 114, which use of the model in Equa-
tion (10) did not detect.

Sensitivity of Intervention Analysis

The quality practitioner may be concerned with
the power of intervention analysis to detect and
model process disturbances and in understanding
those process conditions where it is most important
to use transfer models. We explore these issues next
using simulated data.

Impact of Process Disturbances on
Variance Estimation

To understand the impact of outliers on the es-
timation of the noise variance in ARIMA models,
we estimate o, for simulated time series ranging in
length from 50 to 200 observations for #; and ¢, val-
ues of 0.3, 0.5, and 0.7. The impact of a single point

Vol. 34, No. 3, July 2002



TRANSFER FUNCTION MODELING OF PROCESSES WITH DYNAMIC INPUTS 321

TABLE 2. Impact of Single Disturbance on &, for AR(1) Time Series Model

Distance Series AR
Size Length Level ARIMA Control Limits
w n ol T +37,
1 50 0.3 1.01 3.03
) 50 0.3 1.04 3.12
3 50 0.3 1.10 3.30
4 50 0.3 1.14 3.42
1 50 0.5 1.01 3.03
2 50 0.5 1.04 3.12
3 50 0.5 1.09 3.27
4 50 0.5 1.156 3.45
1 50 0.7 1.01 3.03
2 50 0.7 1.05 3.15
3 50 0.7 1.10 3.30
4 50 0.7 1.15 3.45
1 125 0.5 1.00 3.00
2 125 0.5 1.01 3.03
3 125 0.5 1.03 3.09
| 125 0.5 1.06 3.18
1 200 0.3 1.00 3.00
2 200 0.3 1.01 3.03
3 200 0.3 1.02 3.06
4 200 0.3 1.04 3.12
1 200 0.5 1.00 3.00
2 200 0.5 1.01 3.03
3 200 0.5 1.02 3.06
4 200 0.5 1.04 312
1 200 0.7 1.00 3.00
2 200 0.7 10 3.03
3 200 0.7 1.02 3.06
4 200 0.7 1.04 3.12

disturbance of sizes 1, 2, 3, and 4 in units of ¢, on
estimates of o, are measured. The results reported
in Table 2 for AR(1) models and Table 3 for MA(1)
models are averages of 1,000 repetitions. Since the
simulated data a; is constructed with o, = 1, the 3-
sigma control limits should be at £3. To the extent
that the model estimate of o, exceeds 1. the control
limits are misplaced due to the failure to identify and
model the process disturbance. The results suggest
that for time series of length greater than 200 ob-
servations, a single disturbance of 4o, or less will
have a modest impact of 4% or less on the place-
ment of control limits. For shorter time series of ap-
proximately 50 observations, disturbances of 2o, or
greater will significantly bias the estimators of con-
trol limits. These limits will be overestimated from

Vol. 34, No. 3, July 2002

4% to 16%. These conclusions hold for both AR(1)
and MA(1) time series structures and for all levels
of #; and ¢, investigated. The effect of two distur-
bances in the time series is summarized in Table 4 for
an AR(1) time series with ¢ = 0.5. In this case, the
shorter time series control chart limits will be over-
estimated by 9% to 30%, and, for the longer series of
200 observations, overestimated by 2% to 9%.

Power of Iterative Intervention Analysis

Chang, Tiao, and Chen (1988) report the power of
their iterative method to detect large outliers varying
from 30, to bo, using simulated AR(1) (&7 = 0.6)
and MA(1) (#; = 0.6) time series consisting of 150
observations. They found that the iterative method
achieves a power of 0.975 for identification of an 10,

www.asq.org
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TABLE 3. Impact of Single Disturbance on @, for MA(1) Time Series Model

Disturbance Series AR
Size Length Level ARIMA Control Limits

w 0 N Ta +36,

1 50 0.3 1.00 3.00

2 50 0.3 1.04 3.12

3 50 0.3 1.09 3.27

4 30 0.3 1.15 3.45

1 50 0.5 1.01 3.03

2 50 0.5 1.04 3.12

3 50 0.5 1.09 3.27

4 50 0.5 1.14 3.42

1 50 0.7 1.01 3.03

2 50 0.7 1.05 3.15

3 50 0.7 1.09 3.27

4 50 0.7 1.16 3.48

1 125 0.5 1.01 3.03

2 195 0.5 1.01 3.03

3 125 0.5 1.03 3.09

4 125 0.5 1.06 3.18

1 200 0.3 1.00 3.00

2 200 0.3 1.01 3.03

3 200 0.3 1.02 3.06

4 200 0.3 1.04 3.12

1 200 0.5 1.00 3.00

2 200 0.5 1.01 3.03

3 200 0.5 1.02 3.06

4 200 0.5 1.04 3,12

1 200 0.7 1.00 3.00

2 200 0.7 1.01 3.03

3 200 0.7 1.02 3.06

4 200 0.7 1.04 3.12
and a power of 0.99 for identification of an AO in We extend the work of Chang, Tiao, and Chen
both AR(1) and MA(1) time series with 5o, distur- (1988) by investigating the power of the iterative de-
bances. For the smaller 3¢, disturbance, the power tection method for outliers of lo,, 20,. and 30, in
is reduced to 0.55 for an 10 and 0.69 for an AO for both AR(1) and MA(1) time series to characterize
both time series structures. more typical process-related outliers. The experi-

TABLE 4. Impact of Two Disturbances on 7, for AR(1) Time Series Model

Disturbance Series AR
Size Length Level ARIMA Control Limits
w n ol T, +37,
2 50 0.5 1.09 3.27
4 50 0.5 1.30 3.90
2 125 0.5 1.03 3.03
4 125 0.5 1.14 3.42
2 200 0.5 1.02 3.06
4 200 0.5 1.09 3.27

Journal of Quality Technology Vool. 34, No. 3, July 2002
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TABLE 5. Factorial Design

Factor Factor levels
AR (¢) or MA (6) Level 0.3,0.5, 0.7
Type of Assignable Cause Step, Point

Size of Assignable
Cause Disturbance

0.0, 1.0, 2.0, 3.0
(multiples of &)

mental comparisons are based on a full factorial de-
sign with three design factors. The design factors,
summarized in Table 5, are the level of the time se-
ries structure in the manufacturing process (repre-
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sented by either ¢, for the autoregressive model or
6 for the moving average model), the nature of the
assignable cause of variation, and the magnitude of
the disturbance. The parameters of the time series
structure include a low level of 0.3, a moderate level
of 0.5, and a high level of 0.7. Four different levels
of disturbances are studied: 0.0c0,, 1.00,, 2.00,, and
3.00,. We investigate both point disturbances and
step disturbances. The disturbance is generated at
random locations between observation 2 and obser-
vation 150, which is the end of the simulated data.
Reported results are averages of 1000 repetitions for
each condition. The two aspects of the power of in-
tervention models in process control applications are
measured in this study by the rate of true positives
and the rate of false positives (or false alarms).

TABLE 6. Iterative Intervention Analysis Results AR(1) Models (1000 Runs Per Experiment, C' = 3)

Size of
AR Type of Special Cause Proportion of
Level Assignable Disturbances Disturbances
(1) Cause (multiples of o) Detected
0.30 None 0 .003
Step 1 .007
2 .038
3 201
0.50 None 0 006
Step 1 011
2 057
3 .265
0.70 None 0 .004
Step 1 .008
2 074
3 309
0.30 None 0 .006
Point 1 018
2 154
3 .505
0.50 None 0 .001
Point il 031
2 i 11
3 618
0.70 None 0 .002
Point 1 .028
2 228
3 702
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TABLE 7. lterative Intervention Analysis Results MA(1) Models (1000 Runs Per Experiment, C' = 3)

Size of
AR Type of Special Cause Proportion of
Level Assignable Disturbances Disturbances
(61) Cause (multiples of o) Detected
0.30 None 0 .002
Step 1 010
2 016
3 055
0.50 None 0 007
Step 1 005
2 042
3 089
0.70 None 0 001
Step 1 014
2 058
3 175
0.30 None 0 007
Point 1 021
2 147
3 A55
0.50 None 0 004
Point 1 012
2 139
3 452
0.70 None 0 002
Point 1 018
2 124
3 400

The experimental results of the intervention anal-
ysis are reported in Table 6 for the AR(1) models and
in Table 7 for the MA(1) models. These tables sum-
marize the proportion of times that a disturbance
was detected by the intervention analysis for each ex-
perimental condition. Our operational definition for
detecting a disturbance is based on using a threshold
value of C' = 3. We also report operating character-
istic curves for other values of the threshold C' in
Figure 5.

The results of the AR(1) time series of Table 6
indicate that a point disturbance is easier to identify
than a step disturbance. This is likely caused by the
fact that the persistent nature of the step disturbance

Journal of Quality Technology

results in significantly overestimating o, and thereby
understates the values of A calculated in Equations
(6) and (7). The results also suggest that it is easier
to detect a disturbance at higher values of autocorre-
lation. The 30, point disturbance is detected 50.5%
of the time at ¢ = 0.3, 61.8% at ¢; = 0.5, and
70.2% at ¢y = 0.7. The corresponding results for
the step disturbance are 20.1% for ¢, = 0.3, 26.5%
for ¢y = 0.5, and 30.9% for ¢; = 0.7. Detection of
disturbances smaller than 3o, is unreliable. From
1% to 23% of disturbances of size 1o, and 20, are
detected.

From the results of Table 7, it is evident that out-
lier detection is more difficult with the MA(1) than

Vol. 34, No. 3, July 2002
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—+—AR(1)
—=— MA(1)

True Positive Rate

v a0l 002 0o ap ag o
False Postitive Rate

FIGURE 5. Operating Characteristics of Intervention De-
tection.

with AR(1) time series. For the MA(1) series, the
3a, point disturbance is detected 45.5% of the time
at 6, = 0.3, 45.2% at 0; = 0.5, and 40% at 6; =
0.7. Again, the smaller disturbances are not reliably
identified, with detection proportions ranging from
0.5% to 15%.

The false positive rate can be inferred from Ta-
bles 6 and 7 by the propartion of disturbances de-
tected for the experimental conditions with a zero
disturbance size. Since there is no disturbance for
this condition, the distinction between the step and
point disturbance is irrelevant. By averaging across
all three parameter levels, we estimate that the inter-
vention model detected a “false disturbance” about,
0.37% of the time. A similar analysis for the MA(1)
results yields a false positive rate of 0.38%.

The selection of an appropriate threshold, ', to
use in identifying potential outliers is dependent on
the economiecs of the process, To guide this deci-
sion we plot operating characteristic curves in Fig-
ure 5 that define the tradeoff between true positive
and false positive rates for the detection of a single
disturbance in AR(1) and MA(1) time series with
threshold values of C' = [2,2.5,3,3.5,4]. Higher val-
ues of €' correspond to the lower left of the figure
and lower values to the upper right. For both AR(1)
and MA(1) time series, a significant increase in sen-
sitivity oceurs hy lowering the threshold from €' = 4
to €' = 2.5. Below C = 2.5, the gains in sensitivity
are at the expense of a substantially higher number
of false positives. At €' = 2.5, approximately 79%
of point disturbances are identified in AR(1) time
series and 66% in MA(1) series. The corresponding
false positive rate is slightly less than 1%,

Implications for Quality Practice

Transfer function modeling is shown to be use-
ful in monitoring process quality because of its abil-

Vol. 34, No. 3, July 2002

ity to identify process disturbances resulting from
assignable sources of variation prior to the estima-
tion of model parameters, and its ability to explicitly
model relationships between dynamic process inputs
and output quality levels. This allows the quality
practitioner to more accurately estimate the process
variability and minimize the problem of misplaced
residual chart control limits. The use of a transfer
function model is most beneficial for relatively short
time series with 50 to 200 observations. For these
short time series, control limits can be overestimated
by as much as 15% from a single reasonably small
point disturbance and overestimated by 30% for two
such disturbances. Small changes in control limits
can have large effects on the statistical performance
of the chart. For time series with more than 200
observations, transfer function modeling is most im-
portant under conditions of large (greater than 4¢,)
or multiple disturbances.

Our simulation studies indicate that point distur-
bances, confined to a single observation, are more
easily detected than are step disturbances, with an
effect persistent over many observations. It also ap-
pears to be easier to detect a given disturbance in an
AR(1) time series than in an MA(1) time series, and
detection rates increase for AR(1) models at higher
values of the autoregressive parameter ¢;. The sen-
sitivity of the transfer function model to detect out-
liers is dependent on the choice of the threshold, €,
used in the iterative procedure. Operating charac-
teristic curves constructed from the simulated results
suggest that a threshold value of €' = 2.5 provides
a good tradeoff, resulting in high sensitivity while
maintaining a false positive rate of less than 1%. For
a threshold of 2.5, approximately 79% of 3¢, dis-
turbances are detected in AR(1) series and 66% in
MA(1) series.

The need to analyze quality measurements for a
time series structure is well doecumented in the qual-
ity literature. Perhaps less well understood are the
benefits of checking process inputs for time series
structure. If process inputs vary over time, they pro-
duce an additional source of variability that should
be modeled. When analyzing a wastewater treat-
ment plant, for example, we found that the input
BOD had an MA(1) structure. By incorparating
this information into the transfer function model for
wastewater treatment, we were able to reduce our
estimate of o, by 6.4%.,

A disadvantage of the application of time series
methods to proecess control is the loss of simplicity

WWW.asq.org
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which is characteristic of Shewhart charts. We would
like to emphasize that the computational burden of
transfer function modeling is not as formidable as it
may at first appear. The determination of ARIMA
models with intervention terms and dynamic rela-
tionships is only performed periodically, when the
identification of a new model is appropriate. Com-
mercial software products are available that have au-
tomated routines for this analysis. Weller (1994) and
Kusters (1995) identify PC-Expert from Scientific
Computing Associates (www.scausa.com) and Auto-
box 3.0 (www.autobox.com) as two of the leading
commercial products with capabilities for interven-
tion analysis and transfer function modeling. The
daily monitoring of the process can be accomplished
by transposing the transfer function model into a
spreadsheet format. For example, if Equation (11)
were the basis of wastewater process monitoring, the
operator would be required to enter only an input
and output BOD rate. With this information, an ap-
propriate monitoring strategy can be employed. For
example, a residual can be determined for the resid-
unal chart of Alwan and Roberts (1988) or an inter-
vention statistic calculated for the model of Atienza,
Tang, and Ang (1998).
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