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Crack Healing in Cementitious Mortars using Enzyme Induced Carbonate 
Precipitation (EICP): Quantification Based on Fracture Response 

Akash Dakhane*, Sumanta Das†,‡ ,Hannah Hansen§, Sean O’Donnell**, Farouq Hanoon††, 
Aimee Rushton‡‡, Carlos Perla§§, Narayanan Neithalath***,  

 

ABSTRACT 

A non-microbial means of carbonate precipitation to heal cracks in concrete is evaluated in this paper. 

Enzyme induced carbonate precipitation (EICP) that relies on plant-derived urease enzyme is used to 

catalyze the reaction between calcium chloride and urea to precipitate calcium carbonate. The faster rate 

of carbonate precipitation and the absence of microbes makes this method attractive to surface 

applications for crack healing of concrete. Notched mortar beams, where pre-cracking is induced, are 

subjected to EICP solutions with different CaCl2 concentrations and a fixed molar ratio of urea-to-CaCl2 of 

1.2. X-ray diffraction and thermal analysis of samples collected from the vicinity of the notch clearly 

demonstrate the presence of calcium carbonate in the cracks. A flexural strength enhancement of about 

33% is observed for mortars treated with an EICP solution made using 0.5 M CaCl2 as compared to the 

mortars that are just moist cured, while the fracture toughness doubled. The strength and fracture 

parameters (fracture toughness, and critical crack tip opening displacement) scale well with the carbonate 

content. Digital image correlation (DIC) is used to quantify the reduction in crack extension after the 

beams are treated with the EICP solution.  

Keywords: Crack healing; Carbonate precipitation; Fracture; Strain energy release; Digital image 

correlation 
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1.0 INTRODUCTION 

Cracking is among the most important factors that compromise the durability of concrete structures. The 

ingress of deleterious agents through cracks result in corrosion of reinforcing steel, and other chemically 

induced durability problems, which further accelerate cracking, and exacerbate deterioration. Several 

strategies are used to obtain self-sealing and self-healing of  cracks in concrete, including the use of epoxy-

based materials, acrylic resins, and silicone-based polymers [1–3]. In addition to crack sealing, methods 

of crack healing also have been investigated in great detail. In a humid environment, concrete is known 

to exhibit autogenous healing through the hydration of unhydrated cement, even though this process is 

very slow and applicable only to very narrow cracks [4]. When water and CO2 are available inside the 

crack, healing could occur through the carbonation of leached calcium hydroxide [5–8]. Other possible 

self-healing mechanisms have also been described [9–13]. A microencapsulation approach that 

incorporates a healing agent into a capsule that ruptures when confronted by a crack, and polymerizes to 

seal the crack, has been well reported for both concretes and other composites [14,15]. Silica shell 

microcapsules containing functionalized silica nano-particles have also been studied to obtain smart self-

healing concrete [16]. While microcapsules are frequently applied to obtained crack healing in polymers 

and composites, for concrete, most often larger capsules are embedded to release the healing agent.   

Bio-mediated self-healing of concrete has been extensively investigated in the recent past. In general, a 

bacteria-based self-healing system consists of alkali resistant spore-forming bacteria and a substrate that 

is added to concrete during the mixing process. The dormant spores could be activated by water and 

oxygen in the event of a crack, and the organic substrate (i.e., urea) is metabolized by the active bacteria 

[17,18]. The basic premise behind microbially induced carbonate precipitation (MICP) is that the 

enzymatic hydrolysis of urea catalyzed by the microbially produced urease enzyme, in the presence of 

calcium ions, results in the precipitation of calcium carbonate [19–22]. The precipitated carbonates seal 

the cracks and enhance concrete properties. The bacterial spores and organic compounds are typically 

encapsulated (in polymeric shells, silica shells, lightweight aggregates etc.) in order to immobilize the 

bacteria and protect them before being incorporated into the concrete matrix [23,24]. MICP has also been 

established to be advantageous for several other engineering applications including cementation of soil 

to protect against liquefaction [25,26], and fugitive dust control [27]. Several studies have evaluated the 

microstructure of healed concrete and expounded the potential improvements in durability of concrete 

through MICP [17,24,28–33]. Non-ureolytic bacteria combined with an organic calcium source as a two-

component healing system for concrete has also been proposed [17,34].  
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While MICP relies on microbes to generate the urease enzyme, this study directly employs a plant-derived 

urease enzyme to catalyze the necessary reactions that induce carbonate precipitation in cracks in 

mortars, thus eliminating the need to use bacteria. Enzyme induced carbonate precipitation (EICP) is 

reported to have several advantages over MICP such as: (i) improved efficiency since it does not consume 

or compete for urea, (ii) water soluble free enzyme allows for easier in-situ application for crack control, 

(iii) smaller size of the solubilized urease enzyme than the microbially generated one, enabling penetration 

into smaller cracks, and  (iv) short life of urease activity that enables faster production of carbonates and 

enzyme degradation that eliminates long-term impacts to concrete [35]. The rapid carbonate precipitation 

induced by the EICP process makes it well-suited for surface treatment of cracks in concrete, and thus 

attractive for infrastructural management agencies. The influence of different EICP solutions and 

treatment durations on the crack healing of mortars is investigated in this work. The EICP solutions if 

developed appropriately, can be encapsulated and used as self-healing material in concrete. Notched 

mortar beams are subjected to pre-cracking before subjecting them to EICP. The fracture toughness and 

strain energy release rates of the healed beams are evaluated to understand and quantify the efficiency 

of EICP in crack-healing of concrete structures. Digital image correlation (DIC) is employed to determine 

crack propagation rates in these beams.    

2.0 EXPERIMENTAL PROGRAM 

2.1 Materials and Mixtures 

The cementitious mortars used in this study were prepared using a commercially available ordinary 

portland cement (OPC) conforming to ASTM C 150, and quartz sand. A mass-based water-to-cement ratio 

(w/c) of 0.40 (corresponding to a volumetric w/c of 1.26), and a sand volume fraction of 50% was used. 

The quartz sand had a mean particle size of 0.6 mm. The mortar mixtures were cast in 330 mm x 76 mm 

x 25 mm beam molds. A 19 mm notch was cut using a diamond saw at the center span of the beams 

(corresponding to a notch depth-to-beam depth ratio of 0.25).  All the specimens were cured in moist 

conditions (RH > 98%) at a temperature of 23 ± 2oC for a period of 28 days.  

2.2 EICP Solution Formulation 

The EICP solution used in this study was formulated based on [35]. The molar ratio of urea to CaCl2 was 

maintained at 1.2:1. Two different CaCl2 concentrations of 0.5 M and 1.0 M were used. The enzyme 

solution was designed to obtain a concentration of 1.0 g/l urease (Sigma Aldrich Type III Jack Bean Urease). 

Laboratory grade CaCl2 and urea were used for the experiments. While CaCl2 is used here to show the 

effectiveness of EICP process, a suitable alternative of calcium chloride, such as calcium hydroxide, could 
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be used to avoid durability concerns posed by chlorides.  Non-fat dry milk was used as a stabilizer because 

it has stable glycoproteins that coordinate (not bond) with the enzyme and do not interfere with the 

enzyme's active site. The EICP solutions were prepared by mixing two different stock solutions. The first 

solution consisted of 2.0 g/l low activity (200 units/g) urease enzyme and 4.0g/l of stabilizer, and the 

second solution consisted of 2.0 M CaCl2 and 2.4 M urea. The stock solutions were mixed in a 1:1 ratio to 

generate a high concentration treatment solution (termed HC). The first and second stock solutions were 

mixed in a 2:1 ratio along with 1 part DI water to generate a low concentration treatment solution (termed 

LC). The solution and treatment details are shown in Table 1.  

Table 1: EICP treatment details on pre-cracked beams 

Specimen ID 

EICP solution information 

Treatment after pre-cracking CaCl2 
conc. (M) 

Urea 
conc. (M) 

Urease 
conc. (g/l) 

Stabilizer 
(Nonfat dry 
milk) (g/L) 

Control NA 14 days (moist curing) 

LC-7 0.5 0.6 

1.0 2.0 

7 days (EICP solution) 

LC-14 0.5 0.6 14 days (EICP solution) 

HC-7 1.0 1.2 7 days (EICP solution) 

 

2.3 Strength and Fracture Response Testing 

The flexural strength of the notched beams was determined using standard center-point loading as per 

ASTM C293/293M-10, after 28 days of moist curing. Based on the obtained flexural strengths, a total of 

24 beams were loaded in three-point bending to a CMOD of 0.032 mm (approximately 95% of the peak 

load) in a closed-loop testing machine with the crack-mouth opening displacement (CMOD), measured 

using a clip gauge, acting as the feedback signal. This process was intended to create a controlled single 

crack above the notch in these beams. All the beams had similar crack tip opening displacements (CTOD) 

and crack lengths above the notch, which were around 20 µm and 12 mm respectively. After this pre-

cracking procedure, the beams were subjected to the following treatment procedure: (i) six beams were 

returned to the moist-curing chamber, and (iii) three sets of six beams each were subjected to EICP 

solutions.  Two sets of beams were subjected to the LC solution for 7 days and 14 days respectively, and 

the remaining set subjected to the HC solution for 7 days, as shown in Table 1. The sides of the notch were 

sealed, and the notches were filled with the respective EICP solutions. Since the EICP process is a fast 

reaction, stock solutions were mixed immediately prior to treating the beams. The beams were treated 

every day for the desired duration to enable continuous carbonate precipitation. The experimental 

procedure is schematically described in Figure 1.  
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After the respective treatment durations, the beams were again subjected to the three-point bending 

tests under CMOD control (Figure 2(a)). The tests were terminated at a CMOD of 0.20 mm. Both 

monotonic (one loading and unloading cycle), and cyclic (multiple loading and unloading cycles) tests were 

carried out. Digital image correlation (DIC) was used to determine the crack propagation features in the 

monotonic testing regime. The cyclic regime was used to determine the fracture parameters (e.g., fracture 

toughness) and compliance-based fracture resistance curves (R-curves).  

 

Figure 1: Schematic of the EICP treatment and fracture testing procedure 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

(a) 

(b) 
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Figure 2: (a) Experimental set up for three-point bending test on notched beams under CMOD-
controlled mode, (b) horizontal (u) displacement field from DIC in the pre-peak region. 

 

 

DIC is a non-contact optical method that provides full-field surface displacements of the sample using 

digital images taken at different time intervals during the mechanical testing. The beam surface was 

speckled with random patterns to provide adequate contrast for image correlation (See Figure 2(a)). A 

Charge-Coupled Device (CCD) camera recorded images every 5 seconds during the monotonic testing 

regime. A rectangular area of approximately 120 mm x 60 mm above the notch was imaged. After 

termination of the test, the digital images were post-processed. The correlation between the subset of 

images corresponding to different locations in the load-CMOD plot was determined in order to calculate 

the displacement fields (Figure 2(b)) using VIC-2D softwareTM (Correlated Solutions). The requisite 

mathematical formulations can be found in [36,37]. The horizontal (u) and vertical (v) displacement fields 

were obtained through the minimization of the correlation coefficient [38].  

2.4 Identification and Quantification of Carbonate Precipitation  

X-Ray Diffraction (XRD) and thermal analysis were used to ascertain the enhancement in the amount of 

carbonates precipitated in the crack through the EICP treatments. Small chunks were removed from the 

vicinity of the notch in the beams which were exposed to EICP treatment. These chunks were powdered 

to prepare them for XRD and thermal analysis.  

XRD was carried out using a Siemens D-5000 diffractometer in a - configuration using Cu-K radiation 

(=1.54 Å). The samples were scanned on a rotating stage between 10o and 70o (2) in a continuous mode 

with a step scan of 0.02o and step rate of 0.5/second. High-Score Xpert Analysis software was used for 

phase identification. Thermal analysis was carried out using a simultaneous thermal analyzer (Perkin 

Elmer STA 6000) in a nitrogen environment, at a gas flow rate of 20 ml/s. The samples were heated from 

ambient temperature to 995°C at a heating rate of 15°C/min. At least three replicate samples were used 

for thermal analysis.  

3.0 RESULTS AND DISCUSSIONS 

3.1 Quantification of Carbonate Precipitation    

Figure 3 shows the XRD spectra of powdered samples from the control beam as well as the different EICP 

solution treated beams. The peaks corresponding to 2 of 23.02o, 29.41o, and 39.40o represent the calcite 
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polymorph of calcium carbonate. It can be noticed that the peak intensities are higher in the samples 

treated with EICP solutions after pre-cracking, than in the control sample which was moist cured after 

pre-cracking. This is an indication of carbonate precipitation in the cracks, resulting in its healing. The LC-

14 sample (treated for 14 days with a solution containing 0.5 M CaCl2, 0.6 M urea, and 0.5 g/l urease) 

shows the highest carbonate peak intensity. The major peaks occurring at 2 values of 18.09o, 34.09o, and 

47.12o are attributable to portlandite (calcium hydroxide), the major crystalline component in hydrated 

portland cement systems.  

 

 

 

 

 

 

 

 

Figure 3: XRD spectra of the control and EICP solution treated samples. “C” indicates calcium carbonate  

Figure 4(a) shows the thermogravimetric (TG) and differential TG (DTG) curves for the untreated and EICP 

solution treated samples after the respective treatment durations. Thermal analysis tests on cement-

based materials typically illustrate three distinct peaks attributable to: (i) loss of evaporable water and 

chemically bound water in C-S-H and ettringite, in the range of 110-130oC, (ii) dehydroxylization of calcium 

hydroxide around 450oC, and (iii) decarbonation of calcium carbonate, in the range of 650-800oC, as can 

be noted from Figure 4(a). It can be noticed that the peak in the 110-130oC range is higher for the EICP 

solution treated samples. This is possibly the effect of chlorides from the treatment solution that acts to 

accelerate the hydration of unhydrated cement in the vicinity of the crack. Note that the treatment 

solution was applied only along the crack, and samples for thermal analysis were sourced from the same 

location. For the treated samples, an additional peak in the DTG curve is observed around 175oC, which 

likely comes from the decomposition of excess or precipitated calcium chloride from the treatment 

solution [39]. The calcium hydroxide contents in the treated samples are lower than that in the control 

sample. This can be explained by the dissolution of calcium ions from the calcium hydroxide present in 
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the hydrated products, aided by the treatment solution that initially has a lower pH than the concrete 

pore solution. The calcium ions that are dissociated from calcium hydroxide, as well as those from calcium 

chloride which is a part of the treatment solution, reacts with the carbonate ions to form calcium 

carbonate. This is evident from the carbonate peaks in the DTG curves. For the control (untreated) sample, 

only one dominant peak corresponding to calcium carbonate is observed, around 720oC, while an 

additional, more pronounced carbonate dissociation peak around 800oC is observed for the treated 

samples. The thermal dissociation of calcium carbonate is influenced by the grain size [40]; the carbonate 

species resulting from atmospheric carbonation (generally of calcium hydroxide in the cement pastes) 

dissociates much before the carbonates precipitated from the EICP reaction, which explains the presence 

of multiple carbonate peaks in the DTG curves.            

The peak corresponding to carbonate decomposition was used in this study to quantify the amount of 

carbonates precipitated through the EICP treatment. Figure 4(b) shows the amount of calcium carbonate 

present in the vicinity of the notch in the control and treated pastes. Some of this carbonate can be 

attributed to atmospheric carbonation. A significant amount of calcium carbonate is precipitated in the 

treated mortars, resulting in crack healing, which has the potential to improve the mechanical properties, 

as will be discussed in the forthcoming sections. The LC-14 sample shows the highest amount of calcium 

carbonate, which is in line with the XRD spectra shown in Figure 3. Based on carbonate quantification as 

a function of EICP solution composition and treatment duration, it seems that a longer duration of 

treatment using a lower concentration solution is a beneficial option. The use of a higher concentration 

solution is found to result in slightly more carbonate precipitation over 7 days than the lower 

concentration solution, but the difference is not very significant. This is likely because the efficiency of 

urease is inhibited by high calcium chloride concentrations [35].       

(a) (b) 
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Figure 4: (a) TG and DTG curves of the control and EICP solution treated samples, (b) calcium carbonate 
contents in the samples as a function of the treatment type/duration 

 

3.2 Mechanical Response of the Treated Mortars: Quantification of Crack Healing Efficiency  

3.2.1 Strength enhancement 

The mechanical response of the beams treated with EICP solutions were determined to quantify the 

beneficial impacts of carbonate precipitation in the induced crack. The treated beams were loaded in 

three-point bending to obtain load-CMOD plots as shown in Figure 5(a), from which the flexural strengths 

(Figure 5(b)) were obtained. It is seen that the flexural strengths of the treated beams are higher than that 

of the control mortar which was moist-cured. The strength increase is attributed to carbonate 

precipitation, which partly (or fully) heals the induced crack above the notch. The relative increase in 

strength as compared to the control mortar is in line with the amount of carbonates precipitated (Figure 

4(b)), with the LC-14 sample showing the highest strength. The crack healing efficiency of EICP treatment, 

as evidenced by the strength increase, provides options to develop surface application strategies to 

cracked concrete structures to enhance their mechanical and durability properties.   

A magnified view of the load-CMOD response of the beams in the region of approximately 25% to 50% of 

the peak load is shown in the inset of Figure 5(a). Because of the presence of the pre-existing crack, and 

the absence of any crack-healing, the control specimen shows a lower initial load, while the treated 

specimens show higher loads because of the carbonate precipitation in the cracks. However, around a 

CMOD of 5 to 6 µm, there is a sudden drop in the load of the treated specimens, after which load again 

increases. The drop can be attributed to the breaking/failure of the calcite in the cracks, after which the 

specimen begins to take more load. Note that the drop is much larger for the HC-7 specimen, which is 

likely the result of differences in calcite morphology, as discussed in a later section. At a CMOD of around 

10 µm, the loads in the control and HC-7 specimens become almost identical and this trend is followed 

for the entire load-CMOD response.  
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Figure 5: (a) Load-CMOD response under monotonic loading, and (b) post-treatment flexural strengths 
of the mortars (notched beam test). The data in the marked circle is magnified in the inset in (a).   

 

3.2.2 Fracture parameters (KIC, CTODc, and GR) 

The fracture parameters considered in this study for the control and treated mortars are the critical stress 

intensity factor or the fracture toughness (KIC), critical crack tip opening displacement (CTODc), and the 

strain energy release rate (GR). KIC and CTODc were evaluated using the two-parameter fracture model 

(TPFM). TPFM uses loading and unloading compliances (from one loading and unloading cycle), peak load, 

specimen and notch geometry, and a geometry correction factor to determine the values of KIC and CTODc 

[41,42]. Multiple loading-unloading cycles were used to determine GR. The non-linear response in the pre-

peak region in a notched beam (notch depth a0) is accounted for through the consideration of an effective 

elastic material containing a crack length of aeff (aeff > a0). Representative load-CMOD responses under 

several loading-unloading cycles, used to determine the TPFM parameters and GR are shown in Figure 6. 

The pre-peak slopes are higher for the treated samples, indicating a higher elastic modulus, attributable 

to crack healing. The LC-14 sample shows the highest peak strength and elastic modulus because of the 

higher carbonate content. It is also important to note that the post-peak drop is more significant for the 

treated samples, plausibly indicating debonding of carbonate crystals from the mortar and/or breakage 

of the carbonate crystals.   

 

 

(b)(a)
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Figure 6: Load-CMOD relationship under multiple loading-unloading cycles to determine the fracture 
parameters 

 

Figures 7(a) and (b) depict KIC and CTODc respectively of the treated and untreated mortar samples, 

extracted using TPFM. KIC, which is an elastically equivalent fracture toughness, is one the most important 

fracture parameters of cement-based materials. Similar to the flexural strength results, the fracture 

toughness and CTODc values are also higher for the treated samples, with the LC-14 sample showing the 

highest improvement. Note that TPFM uses peak load in the calculation of KIC, and that is reflected in the 

values shown in Figure 7(a). Carbonate precipitation fills the cracks, thereby not only enhancing the 

strength of the mortar, but also making the crack path more tortuous. Moreover, calcium carbonate is 

softer than the cement hydration products, aiding in energy dissipation. Both these aspects contribute to 

the enhancement of KIC of the treated mortars. Energy is also dissipated in breaking the bonds between 

the precipitates and the mortar, which also has the potential to increase the fracture toughness. 

Treatment with EICP solution also likely results in the precipitation of carbonates in small pores adjacent 

to the notch, thereby resulting in further reaction product densification and pore size refinement, which 

also could contribute to improving the strength and toughness [42,43]. The enhancement in toughness 

scales with the carbonate content as shown in Figure 7(c).  

CTODc represents the crack tip opening beyond which unstable crack propagation begins. The carbonate 

precipitation in the cracks increases the CTODc values, and thus delays the start of unstable crack 
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propagation in the treated mortars. The trend, once again, relates well to the carbonate content as shown 

in Figure 7(c). In fact, the beneficial increase in CTODc due to EICP is larger than the corresponding increase 

for KIC, which is indicative of the energy dissipation provided by the carbonates precipitated in and around 

the crack.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: (a) Fracture toughness, and (b) CTODc of the control and treated mortars, (c) relationship 
between the carbonate contents and KIC or CTODc(error bars indicate standard deviation) 

 

Resistance curves (R-curves) employ multiple loading-unloading cycles (Figure 6) from the closed-loop 

CMOD controlled testing of notched beams to better elucidate the crack growth process in cementitious 

materials [44,45]. R-curves are envelopes of strain energy release rates and they represent the strain 

energy release rate (GR) as a function of crack extension. The fact that stable crack propagation increases 

the compliance of the specimen is used to extract the R-curves. GR is determined as shown in Equation 1: 

(a) (b) 

(c) 
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𝐺𝑅 =  
𝑃2

2𝑡

𝜕𝐶

𝜕𝑎
+

𝑃

2𝑡

𝜕(𝐶𝑀𝑂𝐷𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐)

𝜕𝑎
     (1) 

The first term is the elastic component and the second, the inelastic component of strain energy. Here, P 

is the applied load, C is the unloading compliance, t is the thickness of the specimen and a is the crack 

length. CMODinelastic is the residual CMOD when the sample is unloaded, which can be obtained from Figure 

6. The elastic component is calculated using the rate of change of the unloading compliance with crack 

length, and corresponds to the energy release rate due to incremental crack growth. The inelastic 

component considers the rate of change of inelastic CMOD with crack length, and corresponds to 

permanent deformation caused due to crack opening. Both the rate components in Equation 1 are 

obtained by differentiating polynomial curve fits of compliance-crack length and inelastic CMOD-crack 

length relationships. Effective crack length (a0+a) is obtained by solving a non-linear equation that 

considers the beam span and geometry, unloading compliance, and the elastic modulus [46]. Crack 

extension (a) is extracted from each of the unloading compliances from the cyclic load – CMOD curves 

in Figure 6.  

Figure 8 shows the crack growth resistance curves for the control and treated mortars. In general, R-curves 

of cement-based materials comprise of a rising portion (indicating the formation of fracture process zone, 

the region of non-linearity at the tip of the crack) and a plateau region (indicating steady-state crack 

growth). It can be seen that the strain energy release rates of all the mortars are higher than that of the 

control mortar in the steady-state crack growth region. Thus it can be safely stated that the treated 

mortars require a higher strain energy for a given crack extension than the control mortar in this regime, 

because of the presence of energy dissipating mechanisms as discussed earlier. These trends are 

consistent with those of KIC and CTODc. However, in the low crack extension stage (i.e., in the pre-peak 

region), the HC-7 mortar shows lower GR than all the other mortars. A previous work on EICP in test tubes 

showed that lower concentration solutions are capable of producing calcite crystals with a more uniform 

size distribution. This is attributed to the slower mineral precipitation [35]. With higher concentration 

solutions, the precipitation is rapid and non-uniform crystals, visually appearing as agglomerations of 

small crystals, are formed. Note that the calcite contents are rather invariant between LC-7 and HC-7 

samples as noticed from Figure 5(b). It is plausible that the presence of non-uniform, agglomerated 

crystals in the crack (even though the carbonate volume fraction remains roughly the same) dissociate 

quickly in the event of a crack driving force, forcing large crack extensions at lower strain energies. It was 

shown in Figure 5(a) that the drop in load for the HC-7 mortar was higher than those in LC-7 and LC-14 

mortars, substantiating this deduction.  However, the volume of calcite filling the cracks is roughly the 
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same irrespective of the solution concentration (i.e., between LC-7 and HC-7 in Figure 4(b)); thus after 

dissociation of the grains, the energy balance becomes favorable for steady-state crack growth in this case 

also. The bulk fracture parameters KIC and CTODc are not able to capture this behavior since they are 

averaged global quantities. Thus the R-curves provide a more refined understanding of the micro-scale 

crack propagation response, and help explain the material behavior better. This also helps to choose the 

appropriate treatment methodology for crack healing.  

 

 

 

 

 

 

 

 

Figure 8: Crack growth resistance as a function of crack extension for the control and treated mortars 

3.3 Crack Propagation in the Treated Beams  

Crack propagation is significantly influenced by the microstructure of the material. The deposition of 

calcite in the crack influences the propagation of the crack under loading. Since the control mortar is not 

subjected to any crack healing treatment, cracks propagate faster under a smaller load, as evidenced by 

the fracture toughness and strain energy release rates shown earlier. In this section, the localized 

response at the tip of the crack is quantified using digital image correlation (DIC) to bring out the 

effectiveness of EICP in controlling crack lengths.  

The 2D displacement fields obtained from DIC for the control and LC-14 mortar specimens are shown in 

Figures 9(a) and (b) respectively. These two samples alone are shown here to bring out the contrast 

between the control and best-performing EICP-treated samples. The images correspond to a CMOD of 

0.04 mm, which corresponds to 95% of the peak load in the post-peak regime as can be noted from Figure 

5(a). This is the region of unstable crack propagation. In both  figures, the displacement jump is visible at 

the tip of the notch. The crack extension (a) can be measured based on the extent of the displacement 
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jump along the Y-direction at the notch tip (x = 0), whereas the crack tip opening displacement (CTOD) 

can be measured from the displacement jump at x=0; y=0 [42]. Figures 9(c) and (d) show the 

corresponding 3D surface plots of the horizontal (u) displacements obtained from DIC for the control and 

LC-14 mortar samples. A displacement jump of 0.005 mm was set as a threshold limit to qualify the 

displacement jump as contributing to the extension of the crack. At a CMOD of 0.04 mm, the crack 

extension is significantly lower for the EICP-treated sample as compared to the untreated control sample. 

Note that at this CMOD, the treated sample also carries a higher load (Figure 5(a)); yet the crack extension 

is lower. These results reinforce the results reported earlier in this paper and attests to the efficiency of 

EICP-based crack healing method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: (a) and (b): 2D horizontal (u) displacement fields at 0.04 mm CMOD for the control and LC-14 
mortars, and (c) and (d): 3D plots of displacement field to determine crack extension and CTOD 
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In order to shed more light into the relative healing efficiency of different treated samples as compared 

to the untreated one, rate of crack extension with respect to change in CMOD (a/CMOD) is plotted at 

as a function of CMOD in Figure 10. The a values corresponding to all the CMOD values were determined 

from DIC as explained earlier. The crack extension rate is shown only for CMOD values beyond about 60% 

to 70% of the peak load since before this load, crack extension is rather minimal. Due to the existence of 

an unhealed crack, a significant amount of energy is utilized in extending the crack in the control sample 

at relatively lower loads as can be noticed from Figure 10. The EICP-treated samples exhibit significantly 

lower crack extension rate, especially at loads before and close to the peak (CMOD ≤ 0.04 mm) as 

compared to the control mortar, attributable to carbonate precipitation that heals the crack and thus 

provides higher strain energy release rates (Figure 8). The crack extension rates are the lowest for the LC-

14 sample, which is in line with the amount of carbonate precipitated, and the other fracture 

characteristics determined earlier. Beyond the peak (which is higher for the treated mortars), the rate of 

crack extension is rather invariant for all the samples because energy has already been expended in driving 

the crack through the healed locations.   

 

Figure 10: Crack extension rates of the control and EICP-treated mortars as a function of CMOD 

4.0 SUMMARY AND CONCLUSIONS 

The efficiency of enzyme induced carbonate precipitation (EICP) as a crack healing methodology for 

concrete was evaluated in this study. Plant-derived urease enzyme was used to catalyze the reaction 

between calcium chloride and urea to precipitate calcium carbonate in the cracks. This non-microbial 

method of carbonate precipitation has several advantages over microbial induced carbonate precipitation 
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(MICP). Two different CaCl2 concentrations at the same molar ratio of urea-to-CaCl2 (of 1.2) were used for 

two different treatment durations in this study. Notched mortar beams were pre-cracked using a crack 

mouth opening displacement (CMOD) controlled test procedure, and then subjected to either moist 

curing or the EICP treatment.  

XRD and thermal analysis studies conclusively demonstrated the presence of calcium carbonate in the 

cracks of the mortar beams after EICP treatment. The carbonate contents trended as: LC-7 < HC-7 < LC-

14, which also matched well with the trends in the flexural strengths of the treated samples. Detailed 

fracture studies were carried out on the mortars to elucidate the effectiveness of the treatment methods. 

Both the parameters of the two-parameter fracture model (TPFM), viz., fracture toughness (KIC), and 

critical crack mouth opening displacement (CTODc) were found to increase linearly with increase in 

carbonate content. The treated mortars were found to require a higher strain energy for a given crack 

extension than the control mortar, because of the presence of energy dissipating mechanisms introduced 

in the cracks by the precipitated calcite crystals.  Digital image correlation clearly showed that the crack 

extension at or close to the peak load, as well as the rate of crack extension in the pre-peak region, were 

significantly reduced through EICP. The experimental studies conclusively showed the benefits of EICP in 

healing concrete cracks. The EICP method, where the calcite precipitation is rather quick, can be applied 

as a surface treatment strategy to heal cracks in concrete infrastructural elements.  
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