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ABSTRACT  

This study reports the influence of inclusion stiffness and its distribution on the stress distributions in the 

microstructural phases of different cementitious mortars using microstructure-guided finite element 

simulations. Randomly generated periodic microstructures with single/multiple inclusion sizes and 

random spatial distribution, subjected to periodic boundary conditions and a strain-controlled virtual 

testing regime are chosen for final analysis. Numerical simulations reveal: (i) the differences in 

locations/magnitudes of stress concentrations as a function of inclusion stiffness and size distribution, and 

(ii) the sometimes detrimental influence of matrix and interface stiffening/strengthening on the overall 

composite response, leading to material design strategies when non-conventional inclusions are used in 

cementitious systems for special properties. The constitutive behavior in the linear elastic regime is 

extracted based on the predicted dominant principal stresses and strains in the representative area 

element. Thus, in addition to the microstructural phase stresses, this methodology also provides 

predictions of the composite elastic modulus, which are observed to be more reliable than those obtained 

from analytical prediction models.  

Keywords: Finite elements; Homogenization; Periodic boundary conditions; Microstructure; Constitutive 

behavior, Cementitious composite  
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1. INTRODUCTION 

The link between the material microstructure and relevant mechanical properties provides valuable 

information towards design and development of sustainable cementitious materials for several 

applications. In recent years, many novel cementitious composites have emerged, incorporating several 

types of inclusion materials for various special applications such as the use of lightweight aggregates 

(LWAs) for internal curing, reduction of dead load, thermal and acoustic insulation [1–4], 

microencapsulated phase change materials (PCM) for control of thermal cracking in pavements and bridge 

decks [5] and regulating internal environment in buildings [6,7], waste and recycled materials such as 

rubber for energy absorption [8], and denser/stiffer aggregates for radiation shielding [9,10]. 

Incorporation of such inclusions influences the individual stresses in the microstructural components and 

the stress distributions in the composite, thereby dictating the failure path/mechanism of the material. 

Hence a comprehensive understanding of the influence of inclusion types on the microstructural stress 

distribution is necessary to design such materials for desired mechanical performance.   

In an attempt to elucidate the influence of stiffness of inclusions on the distribution of stresses in the 

different phases in cementitious systems, this study employs a microstructure-guided micromechanical 

modeling scheme using the finite element method. Traditionally, the influences of inclusion type and 

stiffness on the mechanical behavior (elastic modulus, strength) of cementitious systems  are evaluated 

experimentally [11–13], or through analytical approaches such as Mori-Tanaka [14–16] and double 

inclusion [17,18] models or  iterative homogenization techniques [19,20]. Analytical homogenization 

techniques have been shown to provide good estimates of the effective property of cementitious systems 

[21,22]. However, these analytical and semi-analytical homogenization techniques do not have the 

capability to evaluate local stress concentrations around inclusions which influence the macroscopic 

behavior, especially for cementitious systems that exhibit heterogeneity at a microscopic scale. Thus, 

microstructure-guided numerical modeling is a favored approach under such considerations. 

Microstructure-guided simulations have been performed on cementitious materials using randomly 

generated microstructures [23–28] or image-based microstructures [29,30]. A few recent studies have 

evaluated stress localization in the lightweight aggregate-matrix interface using an analytical approach 

[31] or through a macroscopic numerical simulation of a compression test [32], thus helping to understand 

the effect of soft inclusions on mechanical properties. In this paper, 2D periodic microstructures for 

mortars containing spherical quartz (stiff) or lightweight aggregate (soft) inclusions, including the 

interfacial transition zone (ITZ) around inclusions, are generated virtually and the representative element 
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areas (REA) thus obtained are numerically analyzed using finite elements by invoking periodic boundary 

conditions [33–35].  The fundamental differences in stress distributions in the microstructure as a function 

of the inclusion type, and the relative efficiency of matrix and interface stiffening are clearly brought out. 

In addition, the constitutive relationships in the linear elastic regime (considering in-service performance 

of structures) are also evaluated for both the material systems considered. Such comprehensive numerical 

evaluations of fundamental differences in local micro-stress distributions imparted by differences in 

inclusion type, and its resultant influence on the macroscale mechanical response are rather uncommon.  

2. MICROSTRUCTURAL MODELING  

2.1 Phase Elastic Properties  

The constitutive relationships for all the components: cement paste, hard (quartz aggregates) and soft 

(lightweight aggregate - LWA) inclusions, and the paste-inclusion interfaces are considered in their 

respective linear elastic regimes only. The default elastic properties of the components, extracted from 

available literature [14,36–41], are presented in Table 1. However, for parametric studies discussed later 

in the paper, a range of values are considered, which are indicated in the respective sections. The 

interfacial transition zone between cement paste and hard, non-porous aggregates such as quartz are 

known to be more porous than the bulk paste. In the case of saturated LWA inclusions in the mixture, 

they provide additional water and enables an increased degree of hydration, which densifies the 

microstructure. The densification is typically observed at the cement-aggregate interface [42], thereby 

stiffening the interface. This effect is accounted for in the parameters used for simulation.  

Table 1: Elastic properties of the components of the mortar for FE simulations 

Elastic property 

Hardened 
cement 
paste 

 

Quartz 
inclusion 

Quartz- 
cement 
paste 

interface 

LWA 
inclusion 

LWA- cement 
paste 

Interface 

Young's Modulus, E (GPa) 20 70 15 16 30 

Poisson's Ratio,  (--) 0.22 0.17 0.22 0.20 0.20 

 

2.2 Finite Element Models: Examining the Influence of Boundary Conditions and Phase Distribution   

Two-dimensional plane strain microstructural finite element models are employed here in order to 

examine the influence of inclusion and matrix properties on the bulk elastic behavior of the composite 

system. A sufficiently large (4.15 mm x 4.15 mm) representative element area (REA) has been considered 

for the analysis. The spatial distribution of inclusions and the chosen boundary conditions play an 
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important role in any numerical stress analysis procedure [33,34]. The choice of boundary conditions as 

well as the spatial distribution of inclusions need to be thoroughly investigated since the boundary 

conditions are applied on the REA and the averaged response of REA is used as an indicator of the 

influence of the microstructural phases. Hence, this section investigates the effect of different boundary 

conditions and distribution of inclusions (in the REA) on the stress distribution in order to establish the 

appropriate parameters for detailed studies. Under uniaxial conditions, the value of higher eigenstress is 

significantly higher as compared to the other two. Here, the values of 11  and  
33  are  always lower 

than 22 . Hence, In this paper, dominant principal stress ( 22 in this case) is taken as the microstructural 

stress measure [32].  

2.2.1 Regular arrays and essential boundary conditions 

In many numerical stress analysis simulations of matrix-particulate inclusion composites (such as mortar 

or concrete), the actual material is simplified into a model that considers either a single spherical inclusion 

and the matrix surrounding it [43,44] or a uniform array of spherical (or circular, in 2D) particles in a 

continuous matrix [45,46]. The single inclusion case is generally applicable for low concentrations of 

particles (dilute limit). Figure 1(a) shows a quarter model containing a uniform array of particles with 

essential (displacement) boundary conditions [47] applied at the left and bottom edges, considering 

symmetry. The REA contains circular quartz particles (aggregates) arranged in a square lattice within a 

cement paste matrix, and contains 50% inclusions. The interfacial zone around the aggregates are also 

accounted for. The top face of the geometry is subjected to uniform compressive loading parallel to the 

Y-axis. The analysis is performed using ABAQUSTM. Figure 1(b) shows the stress distribution in the REA for 

an applied external stress of 40 MPa. While this configuration results in concentration of stresses at the 

top face due to direct application of load, the stress concentrations at the left and bottom edges are 

avoided due to the effective clearance between the inclusions and the boundaries. Moreover, when 

considering a heterogeneous material such as cement mortar, such a perfectly ordered regular lattice 

structure of inclusions fails to capture the randomness of particle distribution and the resultant stress 

distributions. This limits the application of such models for the case of random particulate composites 

even when the assumption of homogeneity can be applied to the global microstructure.   
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Figure 1: Model-I: (a) FE model showing the essential boundary conditions at the edges and applied 

compressive loading for a regular lattice of  inclusions containing interfacial zones around them. The 

model contains 50% of inclusions by volume (or area); (b) effect of regular inclusion distribution on the 

stress distribution under the boundary conditions shown and an external stress of 40 MPa. The average 

REA stress is 36.97 MPa (compression, shown by the negative sign of 22). 

2.2.2 Improvements through the use of periodic microstructure and periodic boundary conditions  

The limitations discussed above necessitate improvements in the model formulation with respect to the 

geometrical features of the microstructure where the spatial randomness in particle distribution is 

considered. Figure 2(a) shows such an improved model.  The virtual random periodic microstructure is 

generated using a microstructural stochastic packing algorithm [48–50]. This algorithm requires the 

particle size distribution (PSD) and the volume fraction of particles as inputs and it packs the circular 

inclusions with an interface layer of predefined thickness around them inside a REA of 4.15 mm x 4.15 

mm. Generation of particles and their packing in the REA is allowed if the minimum distance between the 

centroids of neighboring particles is always greater than the sum of their radii., i.e.,, the interfacial zones 

are allowed to overlap in this packing scheme. Generation and random spatial placement of inclusions 

goes on simultaneously until the target volume fraction of inclusions is reached. The algorithm is described 

in detail in [49].  Note that Figure 2(a) shows only single size inclusions even though multiple sizes, based 

on inclusion PSD can be incorporated, which is implemented in a forthcoming section. After the 

generation of the microstructure, the REA is meshed using a Python script [51] through ABAQUSTM and 

thus an orphan mesh file is obtained. Similar boundary conditions and loading as in the previous case 

(Figure 1) are applied. Figure 2(b) shows the dominant principal stress ( 22 ) distribution in the REA. The 

stresses in the inclusions are similar to that in the case of regular arrangement (Figure 1(b) – the color 



6 
 

coding is different from that in Figure 1(a) because of extremely high stress concentrations in this case). 

However the magnitude of the concentrated stresses are much higher in the regions where the inclusions 

intersect the edges of the REA. This artifact created by the intersection of particle with the REA boundaries 

are addressed as described below.  

 

 

Figure 2: Model-II: (a) FE model showing the essential boundary conditions at the edges and applied 

compressive loading for a randomized spatial distribution of inclusions containing interfacial zones 

around them. The model contains 50% of inclusions by volume (or area); (b) effect of random spatial 

distribution of inclusions on the stress distribution under the boundary conditions shown and an 

external stress of 40 MPa. The average REA stress is 37.2 MPa 

In order to eliminate the boundary effects, periodic boundary conditions [33–35]  are employed in the 2D 

REA as shown in Figure 3. Figure 3(a) shows schematic periodic arrays of repetitive unit cells and Figure 

3(b) shows the periodic boundary conditions applied on one of such schematic representative elements 

for illustration. Periodic boundary condition ensures two continuity criteria at the boundaries of 

neighboring unit cells in order to ensure assembly of individual unit cells as a physical continuous body 

[52]: (i) displacement continuity, i.e., neighboring unit cells cannot be separated or they cannot penetrate 

each other; and (ii) traction continuity at the boundary of neighboring unit cells. The displacement field in 

any periodic microstructure is given as: 

),(),( 21

*0

21 xxvxxxv ijiji                                                                   [1] 
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Here, 
0

ij is the applied strain tensor, and
*

iv is a periodic function representing the modification of linear 

displacement field due to the heterogeneous microstructure. For, the unit cell shown in Figure 3(b), the 

displacements on a pair of parallel opposite boundary edges are given as: 

*0

i

s

jij

s

i vxv 


                                                                      [2a] 

*0

i

s

jij

s

i vxv 


                                                                      [2b] 

Here, s and s are sth pair of two opposite parallel boundary surfaces of the unit cell as shown in Figure 

3(b). The periodic function *v is the same at both the parallel opposite edges due to periodicity. The 

difference between the displacement fields of the two opposite parallel boundary edges is given as: 

s

jij

s

j

s

jij

s

i

s

i xxxvv 
 00 )(                                                       [3] 

For a pair of opposite parallel boundary edges, 
s

jx  is constant for a specified
0

ij . Such equations are 

applied as nodal displacement constraints in the finite element (FE) microstructural analysis.  

 

Figure 3: Schematic representative element area (REA) under applied strain ( 0

22  ) with periodic 

boundary conditions 

Periodic boundary condition is implemented on the REA as nodal displacement constraints through a 

Python language program appended to the previously obtained (for Model-II, Figure 2) orphan mesh file 

containing the periodic microstructure information. A specific strain is applied on the REA and the analysis 

is implemented through ABAQUSTM solver. Thus this approach simulates a strain- (or displacement) 

controlled test scenario. To efficiently handle post-processing of the simulated individual element 

stresses, a homogenization module is developed to obtain effective area-averaged REA stresses/strains 

x2

x1

-v2
S- - ε22

0Δx2
s

-v2
S+

v1
S- v1

s+

(a)

(b)
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[53] and the effective individual phase stresses/strains. Figure 4(a) shows the generated periodic 

microstructure and Figure 4(b) shows the stress distribution obtained after analysis (Model-III) under the 

application of an imposed strain of 0.12% (which is well within the linear elastic range of cementitious 

systems). This value of strain provided an average REA stress of 36.13 MPa, which is very similar to the 

average REA stresses obtained for Models I and II when an external stress of 40 MPa was applied. 

Application of periodic boundary conditions on an REA under a strain-controlled regime eliminates all the 

boundary effects encountered in Models I and II. Hence this model (Model III) is used for further analysis 

in this paper. Free quad-dominated 4-noded bilinear plane strain quadrilateral elements (CPE4R element 

implemented in ABAQUSTM) are used in the FE models. A mesh convergence study was conducted so as 

to establish the mesh size for FE analysis. For an REA of 4.15 mm x 4.15 mm, a seed size of 0.0175 mm 

was found to yield converging responses for all sizes and volume fractions of inclusions. The finest mesh 

(68879 nodes and 68771 elements) that yielded a converged solution is shown in Figure 4(b) and is used 

in further simulations (Section 3). A seed size of 5 µm is used at the aggregate-paste interface. The analysis 

scheme presented here does not consider the separation effects of phases (debonding) under stress. 

Application of low strains (or stresses) ensures adherence to the principles of linear elasticity and that the 

interface debonding effects are not dominant.  

A flowchart that depicts the modeling and analysis sequence employed in this study is shown 

schematically in Figure 5. Area-averaged dominant principal stresses and strains in the REA, computed 

using the FE analysis, are calculated at different externally applied uniaxial displacements in order to 

obtain the effective composite Young’s modulus.  
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Figure 4: Model-III: (a) FE model showing the inclusions with the interfacial zones around them. The 

model contains 50% of inclusions by volume (or area); (b) effect of random distribution and periodic 

boundary conditions on the stress distribution under an imposed strain of 0.12%. The average REA stress 

is 36.13 MPa. 
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Figure 5: The sequence followed in the numerical analysis process including microstructural generation, 

meshing, application of periodic boundary conditions, homogenization, and determination of average 

REA stresses and effective E. (P.B.C denotes periodic boundary conditions).  

 

3.  RESULTS FROM NUMERICAL SIMULATIONS AND DISCUSSIONS 

Based on the discussions in the previous section, simulations are carried out on periodic virtual 

microstructures on which periodic boundary conditions are imposed (Model III). This section evaluates 

the sensitivity of the averaged (within a given phase or the REA) linear elastic stress responses as a 

function of varying material and geometric parameters of the microstructure, and brings out the 

fundamental differences in elastic response between systems containing hard (quartz) or soft (lightweight 

aggregates) inclusion particles. This study is limited to two-dimensional numerical simulations since it has 

been shown to provide similar trends in stress distributions and yields acceptable predictions of 

macroscopic properties [28] at significantly lower computational costs as compared to 3D analysis. This is 

especially significant when the inclusion volume fraction is 50%, along with the consideration of interfacial 

transition zones, as is carried out in this study. Hence, 2D simulations are adopted here as a tradeoff 

between prediction efficiency and computational demand. However, to demonstrate that the 2D and 3D 
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simulations yield comparable results, the elastic modulus is predicted in a 3D volume with an inclusion 

(quartz) fraction of 30% to maintain the computational expense within reasonable limits.  

Figure 6(a) shows the generated unit cell for 30% area fraction of quartz inclusions (size of inclusions is 

considered to be identical (600 µm)) and Figure 6(b) shows the stress distribution in the unit cell for 

applied strain of 0.12%. For an inclusion Young’s modulus of 70 GPa, 2D simulation predicts an effective 

Young’s modulus of 25.3 GPa. Figure 7(a) shows the 3D RVE containing 30% volume fraction of quartz 

incisions. The particle size distribution of sand was obtained using a Static Light Scattering (SLS) Particle 

Size Analyzer [54]. Figure 7(b) exhibits the stress distribution in the RVE. In the case of 3D analysis, the 

stresses are slightly lower as compared to the 2D simulation results as can be seen from Figures 6(b) and 

7(b). Stresses are concentrated inside the stiffer quartz inclusions and the stress concentrations are higher 

when the inclusions are very close to each other in both the simulations.  Figure 7(c) shows the predicted 

effective composite Young’s modulus as a function of the Young’s modulus of the inclusions when 2D or 

3D simulations are implemented. The similarity in the 2D and 3D results verify the fact that 2D simulations 

can be used to reliably simulate the macroscopic properties of the system under consideration.  

 

 
 

Figure 6: (a) 2D FE model showing the quartz inclusions (30%) and matrix; (b) stress distributions for an 
applied strain of 0.12%. 

 
 

 
 
 

 
 

(a) (b)
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Figure 7: (a) 3D FE model showing the quartz inclusions (30%) and matrix; (b) stress distributions for an 
applied strain of 0.12%, and (c) comparison of effective elastic modulus from 2D and 3D simulations 

In this study, the size of inclusions is considered to be identical (600 µm) for both the quartz and 

lightweight aggregate systems, for simplicity. The default volume fraction of inclusions for the remainder 

of this study is 50%. However, the modeling technique and discussions presented herein are not restricted 

to such simplified systems and can tackle any realistic inclusion sizes and volume fractions. The effect of 

multiple inclusion sizes on the effective stresses is also demonstrated later in this paper. The thickness of 

inclusion-matrix interface has been kept constant at 30 µm for the simulations [36,40,41]. The default 

material properties of different components are reported in Table 1.   

3.1 Influence of Material Properties  

In this section, the sensitivity of effective REA and individual phase stresses in quartz and LWA mortar 

systems to variations in material properties are evaluated.   

3.1.1 Influence of inclusion stiffness and prediction of composite E 

Figures 8(a) and (b) show the dominant principal stress ( 22 ) distribution considering the material 

properties shown in Table 1 for both the quartz and LWA mortar systems respectively, when a strain of 

0.12% is applied to the REA. The LWA inclusions exhibit significantly higher deformation as compared to 

the quartz inclusions as can be seen from these figures, which is expected. While the quartz particles are 

highly stressed in the quartz mortar system, in the LWA mortar, it is the ITZ that bears the highest stress.  

This is expected considering the significantly higher stiffness of quartz particles as compared to that of 

LWA as shown in Table 1. Another distinct observation from Figure 8 is that the magnitude of stress inside 

the quartz particles increases when the particles are very close to each other, attributable to the 

(a) (b) (c)
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significant stiffness mismatch between the inclusions and the matrix. On the contrary, LWA mortar does 

not exhibit an increase in stress inside LWA. Instead, the stress concentration in the ITZ is higher if the 

neighboring particles are close to each other. Thus, the relative stiffness of the inclusions with respect to 

the matrix results in distinctively different stress distributions, and thus differing propensities of failure in 

the microstructure. Note that the magnitude of the maximum dominant principal stresses ( 22 ), which 

occur in the inclusions when the inclusion is stiffer and the inclusion-paste stiffness mismatch is higher, 

and in the ITZ when inclusion-paste stiffness mismatch is lower, are rather comparable. The quantified 

averaged REA stress and the stresses in the other microstructural phases are plotted in Figure 9 as a 

function of the inclusion stiffness.      

 

 

Figure 8: Dominant principal stress ( 22 ) (MPa) distributions in:  (a) quartz mortar system and (b) 

lightweight aggregate mortar system. Magnified representation of stress distributions in both mortar 
systems containing the zones around the inclusions are shown for clarity. The REA is subjected to a 

strain of 0.12%.  

 

(a)

(b)

(a)

(b)
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Figure 9(a) shows the area-averaged dominant principal stresses in the REA as well as those in the 

individual microstructural phases for a mortar system containing quartz particles as a function of the 

Young’s modulus of quartz (in the range of 50 to 100 GPa).  With increasing E of quartz (at the same 

inclusion volume fraction, and leaving the E of the paste and the interface unchanged), the average 

stresses in all the phases in the microstructure increase linearly. The quartz inclusions experience the 

highest average stress amongst all the phases because of the significantly higher E values compared to 

the paste or the ITZ, in line with Figure 8(a). The ITZ and the paste matrix components show similar 

averaged stresses, attributable to the fact that the stiffness difference between these phases is negligible 

when compared to the difference in stiffness between quartz and these phases.  Figure 9(b) shows the 

averaged REA and other component stresses in the LWA mortar system for varying stiffness of LWA 

inclusions (between 6 and 21 GPa [38]). Here, the highest stress is observed in the ITZ as shown in Figure 

8(b) because of the fact that its stiffness is the highest among all the phases in this microstructure.  While 

the average stress increases in all the phases when stiffer LWA is used, the rate of increase in stress is 

higher in the LWA inclusions compared to the other phases or the REA. The average stress in the cement 

paste matrix and ITZ of the LWA mortar system linearly increases with LWA stiffness whereas the stress 

increase in the LWA inclusions is found to be nonlinear, primarily attributed to the deformational effects 

of the LWA and the consideration of perfect bonding between the phases in the model. The rate of stress 

increase in the LWA and the paste decreases with increasing LWA stiffness and the stresses in these 

phases are almost equal when the LWA and the paste stiffness are similar, as expected. Figures 9(a) and 

(b) also show that the averaged stresses in all the components are lower in the LWA system as compared 

to those in quartz mortar system. This can be attributed to the stresses concentrated over large areas in 

quartz particles that increases the average inclusion stresses as well as the other phase stresses in quartz 

mortar system due to assumption of perfect bonding between phases. On the contrary, LWA system 

shows lower stresses due to lower stiffness of LWA inclusions as well as lower effective stiffness of REA. 

Furthermore, several important, microstructure-based design-relevant considerations are obtained 

through these simulations, which are summarized below:  

(i) Although significant stress concentrations are observed inside stiff particles in the quartz mortar, the 

interfaces between the paste and the inclusions are more critical since ITZ is the weakest component 

in this system and the stiff inclusions can sustain significantly higher load without failure. The average 

stress in ITZ increases by about 16% and the average REA stresses by about 20% when the E of the 

stiff inclusion is doubled, denoting that there is no significant advantage in terms of propensity to fail 

(strength) even if a very stiff (and thus generally strong) inclusion is used, unless the paste (and 
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interface) properties are concurrently altered. However, at low strains, the beneficial effects of a 

higher composite stiffness also cannot be discounted;  

(ii) Even though the inclusions in the LWA mortar exhibit the lowest stress among all the components 

under applied external strains, the softer and weaker (compared to the cement paste matrix and ITZ) 

LWA inclusions are critical towards failure of LWA mortar system;  

(iii) Tripling the stiffness of LWA inclusions (within limits without compromising various benefits of LWAs 

such as low density and thermal performance) results in more than doubling of the stress in the LWA 

inclusions. While stiffening of LWA inclusions increases the stress inside LWA inclusions, the strength 

of the inclusions also likely increases concurrently. Hence a suitable combination of stiffening and 

strengthening of LWA inclusions can be selected for optimal mechanical performance;  

(iv) Increase in stiffness of LWA inclusions is also associated with increase in stress in the ITZ and matrix. 

Hence, the results indicate that the ITZ and matrix also needs to be strengthened if the LWA stiffness 

(and strength) is to be increased. These results exhibit that the fundamental material-design 

approach, which is based on traditional stiff inclusion incorporation, needs to be altered when softer 

inclusions are incorporated in cementitious systems.   

The modeling approach and the results described here indicate the probable failure modes and provide 

valuable information on the mechanical performance and design of particulate composite materials such 

as mortars and concrete, especially when new inclusion materials are used for specific performance 

features or to address sustainability issues (e.g., the use of different types of soft inclusions such as LWAs 

for internal curing [2,55], fly ash-based aggregates [56,57], microencapsulated phase change materials for 

thermal cracking control [5], and waste and recycled materials such as rubber for energy absorption [8]). 

It is reiterated that the models consider perfect bonding between the particles and the matrix; a case not 

completely realistic, but helps provide comparisons of material response.  

Figure 9(c) shows the constitutive response of the quartz and LWA mortars containing 50% of inclusions 

by volume, extracted from numerical simulations. The dominant principal stresses ( 22 ) and principal 

strains ( 22 ) in the linear elastic range of these systems are used. Thus the approach presented here can 

be used to determine the composite elastic moduli of systems containing multiple inclusion types. In 

addition to the E value, as described earlier, this methodology also provides estimates of the microstresses 

in the different phases under imposed strains (in the linear elastic regime) and facilitates the development 

of constitutive relationships for composite materials, which otherwise would be experimentally tedious. 

Comparison of Young’s modulus values obtained from numerical simulation (FEA) to those calculated 
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using analytical/semi-analytical approaches as well as experimental validation of the adopted numerical 

technique is detailed in a later section of this paper. 

 

 

Figure 9: Effective REA and individual component stresses ( 22 ) as a function of inclusion stiffness for: 

(a) quartz mortar system and (b) LWA mortar system; and (c) linear constitutive relationship for quartz 

and LWA mortar systems for defaults values of material parameters (shown in Table 1) and 

microstructural features.  

3.1.2 Influence of matrix and ITZ stiffening 

This section reports the influence of matrix as well as ITZ strengthening/stiffening (such as those 

accomplished through the use of additives like silica fume as a partial replacement of cement) in mortars 

containing quartz or LWA as inclusions with an aim of understanding the relative influences of matrix 

modification.  The Young’s modulus of silica fume modified cement paste is taken as 25 GPa [58] as 

opposed to 20 GPa for the unmodified systems. The stiffness of the ITZ was also increased proportionally 

(Young’s modulus of ITZ is taken as 18.75 and 37.5 GPa in quartz and LWA mortars respectively) since 

(b)(a)

(c)
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silica fume incorporation is known to result in interface densification and stiffening [58,59]. Figures 10(a) 

and (b) show average stresses in the REA as well as in the individual microstructural phases corresponding 

to an applied strain of 0.12% for the quartz and LWA mortars respectively. Stresses increase in all the 

phases for both the mortar types when the paste phase contains silica fume. In the quartz mortar, the 

average stress in the ITZ increased by about 15% when 10% silica fume was incorporated. However, the 

strength enhancement of both the ITZ and the paste phase will likely be larger than the stress increase, 

thereby rendering improved mechanical performance to the quartz mortar when silica fume is 

incorporated in the paste phase. This has been demonstrated through experimental studies [58,60]. The 

stress increase inside the quartz inclusions has an insignificant influence on material failure because of 

the higher strength of quartz particles [61]. On the contrary, the inclusions in the LWA mortar system are 

relatively weak and even a marginal increase in inclusion stress is likely to result in material failure at even 

lower applied strains as compared to that in LWA mortar systems without silica fume incorporation. Thus 

the combined stiffening of ITZ as well as the matrix in LWA mortar system has a detrimental effect on the 

strength, provided it is the lightweight inclusion that is weaker and fails first. This points to the fact that 

matrix strengthening methods such as the use of silica fume might not be beneficial from a viewpoint of 

mechanical response in these systems, unless the LWA is stronger. However, the densification of the 

matrix and the ITZ will still lead to better durability properties in such concretes.      

 

Figure 10: Effect of silica fume incorporation on the average REA and phase stresses for: (a) mortar 

containing quartz inclusion, and (b) mortar with LWA inclusions. The modified matrices contain 10% 

silica fume by mass as a cement replacement material.  

 

3.2 Influence of Inclusion Content 

The preceding sections have dealt with systems containing a constant inclusion volume fraction of 50%. 

Figures 11(a) and (b) show the effect of inclusion volume fraction on the average principal stresses in the 

(a) (b)
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quartz and LWA mortars respectively. With increasing volume fraction of inclusions, the average REA 

stresses as well as the stresses in all the phases in both the systems increase linearly. For the quartz mortar 

(Figure 11(a)), the rates of stress increase in the microstructural phases as well as the REA as a function 

of the inclusion volume fraction are higher as compared to those in LWA mortar (Figure 11(b)). This is 

once again attributed to the higher stiffness of quartz inclusions. While an increase in the ITZ stress at 

higher volume fractions of quartz is likely to be responsible for interface failure (since ITZ is the weakest 

component in the quartz mortar) and thus the material failure under smaller applied strains in quartz 

mortar, a stress increase inside the LWA inclusions (which is the weakest component in the LWA mortar) 

at higher volume fractions of LWA is expected to be the cause of failure of LWA mortar system under 

smaller external applied strains.  

 

Figure 11: Effective REA and individual phase stresses as a function of inclusion volume fraction for: (a) 

quartz mortar and (b) LWA mortar.  

 

3.3 LWA Mortar with Multi-Sized Particles: Microstress Distribution and REA Stresses 

While all the previous parametric studies considered the response of systems with single sized inclusions, 

the influence of several inclusion sizes (as is the realistic case) on the average REA and phase stresses is 

dealt with in this section. Default values of material/geometrical properties of inclusions, paste, and ITZ 

(Table 1) are used here. Here the area fraction of ITZ is kept constant at 3.36% and the thickness of ITZ 

varies with the size of inclusions.  Table 2 shows the three different uniform inclusion size distributions 

used in this study. The inclusion sizes are uniformly distributed around a mean of 0.6 mm and standard 

deviations of 0.06, 0.12, and 0.24 mm respectively. Figures 12(a) and (b) show the dominant principal 

stress ( 22 ) distribution in single- and multi-sized particulate (LWA) systems respectively. Here, LWA 

(a) (b)
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inclusions with a mean size of 0.6 mm and a standard deviation of 0.24 mm are considered. Figures 12(a) 

and (b) also show enhanced stress concentrations between the closely spaced inclusions, especially if they 

are aligned in a direction perpendicular to that of the applied strain. In Figure 12(b), when smaller 

particles, particularly with varying sizes are in proximity with each other, a slight reduction in stress is 

observed. With smaller particles, there is a reduction in the continuous volume of ITZs (the highly stressed 

phases in the LWA mortar systems) that are adjacent to each other, resulting in such an observation.  

These are reflected in the individual phase stresses as well as the average principal REA stresses for the 

different particle size distributions, which are shown in Figures 13(a) and (b) respectively. These figures 

provide average stress information on mortars containing 50% LWA inclusions by volume. The averaged 

stresses are highest in the single-sized LWA mortar due to the higher stress concentrations in the inter-

inclusion areas as explainer earlier. The stresses reduced considerably (by about 20%) when non-uniform 

particle sizes are considered since interactions between neighboring smaller and larger particles reduce 

the stresses, contrary to the higher stress-concentrations encountered between two closely spaced 

similar-sized inclusions. For the same reason, the averaged REA stresses also decrease as the inclusion 

size distribution is more spread out (the mean size being the same), as reflected in Figures 13 (a) and (b).       
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Figure 12: Influence of particle sizes on the dominant principal Stresses (MPa) in the REA for: (a) single-

sized LWA inclusions, and (b) multiple sized (Mean = 0.6 mm and std. dev. = 0.24 mm) LWA inclusions 

embedded in a cement paste. Magnified representation of stress distributions in the vicinity of the 

particles (similar and dissimilar sizes) are shown for clarity. 

Table 2: Size distributions (uniform distribution) of the LWA particulate inclusions for FE simulation 

PSD Type 
Range 
(mm) 

Mean 
(mm) 

Std. Dev. 
(mm) 

Single Size NA 0.6 0 

Multiple Size (Narrow) 0.5-0.7 0.6 0.06 

Multiple Size (Medium) 0.4-0.8 0.6 0.12 

Multiple Size (Wide) 0.2-1.0 0.6 0.24 

 

 

 

Figure 13: Effect of LWA inclusion size distribution on: (a) the matrix and inclusion stresses; and (b) 

effective REA stresses (mean particle size is 0.6 mm) 

3.4 Micromechanics-Based Elastic Modulus Predictions 

3.4.1 Comparison with analytical modeling schemes 

Predicting the material properties of composite systems is an important attribute desired from a 

micromechanical model, so that material design decisions could be made in a rational manner with limited 

experiments. This section compares the composite Young’s modulus values predicted using the above-

described micromechanical model as well as using well-established analytical models such as Mori-Tanaka 

[62], double inclusion [63] and Hobbs method [64]. Mori-Tanaka (M-T) method has been previously used 

for determination of effective properties of cement-based materials [15,65–67]. It considers a discrete 

spherical inclusion embedded in an infinitely extended homogeneous reference medium (matrix). The 

homogenized elastic moduli for two-phase materials can be quantified from the individual phase 

(a) (b)
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properties as recently explained in [21,62]]. A two-step homogenization is performed for the 

determination of effective Young’s modulus for binder systems using the M-T method. In Step I, the 

cement paste and ITZ are homogenized and in Step II, the inclusions and the resultant phase from Step-I 

(which is the new reference medium) are homogenized. While the Mori-Tanaka model consists of an 

ellipsoidal inclusion in an infinitely extended homogeneous reference medium, the double inclusion (DI) 

model considers an ellipsoidal inclusion embedded in another ellipsoidal matrix, which is further 

embedded in an infinitely extended homogeneous medium [18,63]. Detailed derivation and analysis 

procedure are described in [18,63,66]. Here the inclusion (quartz or LWA) is considered to be embedded 

in ITZ, and this composite particle is embedded in an infinite cement paste matrix.  

Another analytical homogenization approach derived by Hobbs [64] is also used here for comparison. The 

resultant homogenized Young’s modulus (E*) for a two-phase composite is given as: 

                                                                         𝐸∗ = 𝐸𝑚 [1 +
2𝜙𝑖(𝐸𝑖−𝐸𝑚)

(𝐸𝑖+𝐸𝑚)−𝜙𝑖(𝐸𝑖−𝐸𝑚)
]                                              [4]                                                                              

where 𝜙𝑖 is the volume fraction of the inclusions, and Ei and Em are the Young’s modulus of the inclusion 

and matrix respectively. Here also, a two-step homogenization procedure for the multiple phases as 

adopted for the M-T method is carried out in order to obtain the homogenized Young’s modulus.  

It needs to be noted here that the analytical schemes such as Mori-Tanaka method are based on Eshelby's 

solution for a single ellipsoidal inclusion in an infinite field. On the other hand, the numerical simulations 

are performed on 2D microstructures with circular inclusions under plane strain condition, which does 

not directly correspond to the assumption of spherical/ellipsoidal inclusions used in analytical schemes. 

However, the comparison between numerical and analytical schemes presented here is intended towards 

exploring the relative efficiency of the two fundamentally different methods to predict the effective 

responses in such cementitious systems.  

 Figures 14(a) and (b) show the composite Young’s modulus with varying inclusion volume fractions for 

quartz and LWA mortar systems respectively. The Young’s modulus increases significantly in the quartz 

mortar with increasing volume fraction of inclusions whereas it decreases with increasing inclusion 

volume fraction in the LWA mortars, as expected. In both the systems, the M-T and double inclusion 

models predict higher values of Young’s modulus as compared to those quantified using the 

micromechanical FE analysis. This is because these analytical schemes do not adequately capture the 

realistic inter-inclusion interactions that result in stress-concentrations/relaxations in these micro-

heterogeneous systems that influence the composite REA stresses for a given imposed strain. Hobbs 

method is also a simple geometry-independent and volume-fraction based analytical method which also 
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does not capture stress-concentrations in heterogeneous systems with complex geometries. On the 

contrary, a numerical scheme such as the one described here adequately captures such interactions [22]. 

Besides, the accuracy of the analytical homogenization techniques has been shown to be limited if the 

stiffness contrast between the phases is high [22,68]. This is reflected in Figures 14(a) and (b) that shows 

the predicted elastic modulus as a function of the inclusion volume fraction for both the quartz and LWA 

mortars. In the quartz mortar system (Einclusion/Epaste = 3.5) with 50% inclusion volume fraction, the 

analytical schemes (M-T and DI) predict about 20% higher value of homogenized Young’s modulus as 

compared to the micromechanical FE analysis. On the other hand, the homogenized Young’s moduli 

predicted using analytical schemes are about 10% higher than that quantified using the FE analysis for the 

LWA mortar system (Einclusion/Epaste = 0.8). In the case of quartz mortar, the Young’s modulus predicted by 

Hobbs method correlates well with that obtained using numerical simulation at lower quartz volume 

fractions (up to 30%). However, the predictions diverge at higher quartz volume fractions because of the 

dilute limit being exceeded and the inter-particle interactions becoming dominant, the effect of which 

cannot be accounted for by analytical models. The trends in Figure 14 suggest that Hobbs method over-

predicts the Young’s modulus as compared to numerical approach when the inclusions are stiffer than the 

matrix and under-predicts it when the inclusions are softer than the matrix. A comparison of the results 

from the numerical analysis scheme to the experimentally determined elastic moduli is shown in the 

forthcoming section.           

 

Figure 14: Young’s modulus predicted using the micromechanical model and its comparison with well-

established analytical models for: (a) quartz mortar and (b) LWA mortar 

 

3.4.2 Experimental validation 

(a) (b)
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To validate the micromechanical FE model, experimental values of Young’s modulus of quartz mortar at 

different volume fractions of quartz has been adopted from an experimental study [54] where the elastic 

modulus was measured in accordance with ASTM C469, using cylindrical specimens (10 cm diameter x 20 

cm height). For numerical simulations, the Young’s modulus of quartz, cement paste and ITZ were taken 

as 64 GPa, 16.75 GPa and 8.375 GPa respectively, ITZ thickness as 5 µm, and the Poisson’s ratio of all the 

components as 0.22 as reported in the above-referenced experimental study. Four different volume 

fractions of quartz (10, 20, 30 and 55%) are used for simulations. For the numerical analysis, four replicate 

microstructures with random spatial distributions were generated for each of the inclusion volume 

fractions.  The median inclusion size of quartz for the micromechanical analysis was matched to those 

used in the experimental studies (365 m). Figure 15 shows the Young’s modulus of quartz mortar, 

predicted using the FE scheme (principal stresses and strains measured in the REA, when the 

microstructure was subjected to different strains in the linear elastic regime, as shown in section 3.1.1) 

along with the experimental measurements. A very good correlation is noticed between the predicted 

and measured Young’s modulus as can be seen from this figure, contrary to the analytical schemes, 

establishing the viability of using the numerical homogenization scheme in determining the Young’s 

modulus of micro-heterogeneous systems. Also, the standard deviations of the predicted Young’s 

modulus values from four replicate microstructures are negligible as compared to standard deviations of 

experimental measurements, reinforcing the efficacy of using microstructure-guided numerical 

simulation towards prediction of Young’s modulus. 

 

 

Figure 15: Relationship between experimentally obtained E value and those predicted using the 

micromechanical FE scheme and analytical techniques for a mortar containing different volume fractions 

of quartz particles.  
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4. CONCLUSIONS 

This paper was motivated by the desire to fundamentally understand the modifications in the 

microstructural stress distributions as a function of the stiffness of the inclusions, so as to enable 

microstructure-guided design of sustainable or special-performance cementitious particulate composite 

systems. This study has investigated the influence of individual phase properties on the stresses in the 

microstructural components as well as the REA of quartz and LWA mortars when subjected to varying 

displacements in the linear elastic regime. A microstructure-based strain-controlled virtual testing scheme 

was employed. The virtual microstructures were generated using a particle-packing-based algorithm. The 

choice of a periodic microstructure with periodic boundary conditions has been elucidated in detail and 

microstructural stress analysis was performed using the finite element method. Microstructural stress 

distributions and averaged REA stress as well as individual component stresses were evaluated for various 

material- and geometry-related parameters in quartz and LWA mortars.  

Numerical simulations revealed stress concentrations inside the harder inclusion phase in the quartz 

mortar whereas the LWA mortar exhibited stress concentration at the ITZ.  While the failure of traditional 

quartz mortar system is not dictated by stress inside quartz particles due to their higher strength, the 

stress inside weaker LWA inclusions in such mortars becomes critical due to the lower strength of LWA 

inclusions. Since increasing the strength and stiffness of LWA inclusions also results in increase in stress in 

the LWA inclusions, a balance need to be sought between the strength of LWA inclusions and the resultant 

stress enhancement. Such an issue is non-existent for mortars containing hard inclusions such as quartz. 

Combined stiffening of matrix as well as ITZ with techniques such as silica fume incorporation yielded 

increase in stresses in all the components in both the systems. Increase in the ITZ stress (weakest 

component in quartz mortar system) could be counteracted by strength enhancement of ITZ and thus 

superior performance obtained through silica fume incorporation in conventional quartz mortars. But, 

same was not found true for the LWA mortar since the stress in the LWA inclusions increases with 

increasing ITZ and matrix stiffness while the strength of LWA remains unaltered. Hence traditional 

strengthening and stiffening of matrix as well as ITZ is not a viable technique of performance enhancement 

in LWA mortar.  

The microstructure-based numerical technique accurately captured the stress concentrations in these 

systems. This resulted in improved predictions of the elastic modulus using the micromechanical scheme, 

especially for the systems where stiffness contrast between the phases is high, as compared to many 
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analytical homogenization schemes. This study thus links the microstructure with mechanical behavior of 

two different micro-heterogeneous materials to bring out their fundamental difference in micro-stress 

distribution and provides valuable input towards material design of such non-traditional cementitious 

systems with different inclusions of varying stiffness.  
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