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Abstract: The use of phase change materials in infrastructure has gained significant attention in the recent 

years owing to their robust thermal performance.  This study implements a numerical simulation framework 

using finite element analysis to evaluate the influence of Phase Change Materials (PCMs) on the thermal 

response of concrete pavements in geographical regions with significant winter weather conditions. The 

analysis is carried out at different length scales. The latent-heat associated with different PCMs is efficiently 

incorporated into the simulation framework. Besides, the numerical simulation framework employs 

continuum damage mechanics to evaluate the influence of PCMs on the freeze-thaw induced damage in 

concretes.  The simulations show significant reductions in the freeze-thaw induced damage when PCMs 

are incorporated in concrete. The numerical simulation framework, developed here, provides efficient 

means of optimizing the material design of such durable PCM-incorporated concretes for pavements by 

tailoring the composition and material microstructure to maximize performance.  

 

Keywords: Microstructure; Finite element; Numerical homogenization; Damage; Freeze-thaw; Phase 

Change Materials (PCMs). 
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1. INTRODUCTION 

Use of Phase change materials (PCMs) in cementitious composites for enhanced energy efficiency is an 

active research area [1–4]. PCMs have been shown to be advantageous in structural concretes due to their 

ability to store and release heat [2,4–6]. A large number of studies have focused on the use of PCMs towards 

indoor thermal comfort in buildings and enhancement of building energy efficiency [6–9]. Besides, PCMs 

have been shown to reduce early age hydration heat release and the early-age thermal cracking in large 

concrete structures and pavements [10–12]. In addition to the above-mentioned applications, availability of 

these PCMs with a wide range of transition temperatures [1,13] opens up various innovative avenues 

towards beneficial utilization of these materials in infrastructure materials. For example, application of 

PCMs towards reduction in freeze-thaw cycles in concretes pavements has been proposed earlier [4,13]. 

Deicing salts are commonly used to remove snow and ice from the pavement surfaces [4,13–17]. But, such 

process is labor-intensive and causes damage to the pavements [4,13,18,19]. Alternatively, incorporation 

of PCMs in concretes has been suggested [1,4,20] to solve this issue by the means of high latent heat of 

fusion of PCMs. A recent experimental study [4] has shown significant reduction in snow formation when 

PCMs are incorporated in concrete. Another recent study confirmed improved frost resistance of the 

concrete containing PCMs [20]. Numerical studies involving freeze-thaw performance of cementitious 

materials are also implemented using one dimensional finite difference technique [10,13,20].             

This paper focuses on microstructure-guided numerical simulation using finite element analysis to evaluate 

the influence of microencapsulated paraffinic PCMs with transition temperature around 5℃ on the freeze-

thaw response of macro-scale concrete pavements. The numerical simulation framework, presented in this 

study, performs numerical homogenization using finite element analysis at multiple length scales. The 

effective properties, obtained using multi-scale numerical homogenization, are employed in a macro-scale 

FE model of concrete pavement to obtain pavement temperatures under the effects of the ambient 

temperature and solar radiation whilst considering conduction, convection and radiation modes of heat 

transfer with the subgrade and the atmosphere. The pavement temperatures, thus obtained, are used to 

quantify frost damage at multiple length scales using continuum damage mechanics [21–24] that can 

capture the progressive freeze-thaw induced damage. Thus, this study integrates the material microstructure 

and thermo-mechanical properties of the constituent phases to predict the freeze-thaw response of macro-

scale concrete pavement. The numerical simulation framework, presented in this study, provides efficient 

design strategies to tailor the composition and microstructure towards development of concretes with 

improved frost-damage performance without compromising its strength. Hence, the methodology 

developed herein would be extremely useful for pavements in areas with severe winter weather conditions.  
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2. NUMERICAL SIMULATION TO ELUCIDATE THE INFLUENCE OF PCM ON THERMAL 

RESPONSE OF CONCRETE PAVEMENTS 

In this paper, a thermal analysis is carried out at multiple length scales with a view to evaluate the influence 

of PCMs in concrete pavements. Here two different material mixtures are considered. While the control 

concrete contains 70% aggregates (40% coarse aggregate and 30% fine aggregate) by volume, the PCM-

incorporated concrete contains 64% aggregates (40% coarse aggregate and 24% fine aggregate) and 6% 

microencapsulated paraffinic PCMs (as 20% volumetric sand-replacement) by volume. Such dosage of 

PCM has been shown to provide equivalent mechanical performance as compared to conventional mortars 

[25]. In this study the dosage of PCMs is fixed at 20% by volume sand substitute since incorporation of 

higher volume fraction of PCMs has been shown to result in decrease in compressive and flexural strength 

in a previous study [25]. PCM considered here has phase transition temperature of 5.1℃. It consists of a 

paraffin core encapsulated by melamine formaldehyde shell as detailed in [25].  

The forthcoming sub-sections describe numerical homogenization for effective property-prediction and 

application of effective properties towards thermal response evaluation of a macro-scale pavement section 

with a view to highlight the influence of PCMs in concrete.  

2.1 Multiscale Numerical Homogenization for Prediction of Effective Thermal Properties: 

Here, a microstructure guided numerical simulation framework is employed at multiple length scales to 

compute the effective properties of both the concretes. At every length scale, a representative volume 

element (RVE) is generated with the inclusion phases. Intrinsic thermal and mechanical properties are then 

assigned to the component phases in the RVE. Periodic boundary conditions [26,27] are applied. The RVE 

is meshed and FE analyses are carried out. A post processing module generates volume averaged responses 

that are computed to yield effective properties. The basic framework for the procedure is illustrated in 

Figure 1. 

 

Post-processing 
(volume-averaged 

heat flux)

Homogenization module

Meshed RVE and Periodic 
Boundary conditions applied

Generated 3D RVE 

Effective 
Property

Input to next step 
of homogenization 
as matrix or  input 

to Macro-model

Temperature 
gradient

Thermal Response
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Figure 1:  A schematic representation of the framework to obtain the effective properties from the intrinsic 

properties of constituent phases 

The following sub-sections present the multiscale numerical homogenization procedure to obtain the 

effective properties of both the concretes.  

2.1.1 Generation of Microstructure and Boundary Conditions:  

3D representative volume elements (RVEs) are generated using the Lubachhevsky-Stillinger algorithm 

[28–31]. A hard particle contact model is employed, while ensuring there is no particle overlap. The 

formulations regarding the generation of the RVEs are adequately described in [26,27,32]. The meshed 

microstructure is implemented in a Python script and the analysis is performed in ABAQUS™ solver.  

Periodic boundary conditions (PBC) [33–36] are applied on the RVE. Periodicity provides higher 

computational efficiency in smaller analysis domain and thus facilitates faster convergence [27]. Periodic 

boundary conditions (PBC) ensure continuity of temperature and heat flux at the boarder of neighboring 

unit cells. PBCs have been applied successfully towards prediction of effective properties of heterogeneous 

composites [26] and are detailed adequately in [33–36].  Figure 2 presents the microstructures generated 

for multi-scale homogenization.  

 

Figure 2: The meshed 3D RVEs for (a)control concrete: (a-1) Step I: air voids in HCP; (a-2) Step II: sand 

in homogenized matrix from step-I; (a-3) Step III: coarse aggregate in homogenized matrix from step-II 

(a-1) (a-2) (a-3)

HCP

Sand

Mortar

Coarse Aggregate
Voids

(b-1) (b-2) (b-3)

HCP+PCM

Sand

Mortar+PCM

Coarse Aggregate
Voids

(b-4)

HCP

PCM
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and (b) PCM incorporated concrete: (b-1) Step I: air voids in HCP; (b-2) PCM in homogenized matrix from 

step-I ;(b-3) sand in homogenized matrix from step- II ; (b-4) coarse aggregate in homogenized matrix from 

step-III  

A three step homogenization procedure is followed for the case of control concrete. The first step 

homogenizes air voids with hardened cement paste (Figure 2 (a-1)) whereas the second step homogenizes 

sand into the homogenized matrix obtained from first step (Figure 2 (a-2)). The final step incorporates 

coarse aggregates into the homogenized matrix obtained from second step (Figure 2 (a-3)) and thus, 

effective property of concrete is computed.  

While a three-step homogenization is employed for control concrete, an additional step involving 

homogenization of PCMs is adopted for PCM-modified concrete. The first step of homogenization remains 

the same as control concrete case. In the second step, microencapsulated PCMs are incorporated into the 

homogenized matrix obtained from the first step as shown in Figure 2 (b-2). The third and fourth steps 

homogenizes sand (Figure 2 (b-3)) and coarse aggregate (Figure 2 (b-4)), respectively, into the 

homogenized matrix obtained from the previous step. These homogenizations are performed here at 

multiple steps in order to reduce the computational cost while maintaining computational efficiency [37]. 

The relative edge lengths of RVEs with respect to inclusion sizes are computed (Shown in Figure 2) based 

on sensitivity study. Similar relative sizes of RVEs with respect to inclusion sizes were obtained elsewhere 

[26,27].  The size distribution of inclusions (air voids, PCMs, sand and coarse aggregates) are adopted from 

[22,25,26]. The absolute volume fractions of component phases are shown in Table 1. The volume fractions 

of the individual components of control concrete are denoted as Vf
a whereas those for PCM-modified 

concrete are denoted as Vf
b. The thermal analyses of the cases involving PCM are carried out at a 

temperature below the transition temperature implying that the microencapsulated PCMs are in the solid 

state. 

Table 1. A table showing the volume fractions of the components of control concrete (𝑉𝑓
𝑎)  and PCM-

incorporated concrete (𝑉𝑓
𝑏)  

Component Vf
a (Control Concrete)  Vf

b (PCM-Concrete)  

HCP 24% 24% 

Void 6% 6% 

PCM NA 6% 

Sand 30% 24% 

CA 40% 40% 
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2.1.2 Effective Property Computation 

Once the RVE is generated using the Python script, it is meshed and subjected to FE analysis under 

externally applied unit temperature gradient along the X-direction. The FE analyses are carried out in 

ABAQUS™ solver. A MATLAB© script operates on the result files containing the volume of the elements 

and the responses to obtain the effective properties as explained before. The intrinsic thermal properties of 

the constituent phases of both the concretes are shown in the Table 2. 

Table 2. Thermal conductivity (𝜆) [26], specific heat capacity (C) [5] and latent heat L [4,13] at 5.1℃ for 

hardened cement paste (HCP), Sand, coarse aggregate (CA) and PCM 

 

 

 

 

A thermal analysis is carried out on the RVE containing C3D8R elements under a unit thermal gradient 

across opposite faces of the RVE along the X-direction.  The thermal analysis results for different 

homogenization steps are shown in Figure 3 (a-1), (a-2) and (a-3) for the control concrete and in Figure 3 

(b-1), (b-2), (b-3) and (b-4) for the PCM incorporated concrete).  

Phases 𝜆 (W/m K)   C (J/ kg K) 

 

L (kJ/kg) 

 

 
HCP 0.75 750 NA 

 Sand 2.8 1150 NA 

 PCM 0.15 2600 150 

 CA 2.3 790 NA 
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Figure 3: Heat flux for (a) control concrete corresponding to different homogenization steps (RVEs shown 

in Figure 2): (a-1) Step I: air voids in HCP: Homogenized thermal conductivity (𝜆):0.73 W/m K  ; (a-2) 

Step-II: sand in homogenized matrix from step-I: Homogenized 𝜆: 0.56 W/m K; (a-3) Step-III: : coarse 

aggregate in homogenized matrix from step-II: Homogenized 𝜆: 1.76 W/m K and for PCM-incorporated 

concrete corresponding to: (b-1) step I: air voids in HCP: Homogenized 𝜆: 0.6 W/m K; (b-2) Step II: PCM 

in homogenized matrix from step-I: Homogenized 𝜆: 0.53 W/m K; (b-3) Step-III: sand in homogenized 

matrix from step- II: Homogenized 𝜆: 1.43 W/m K; (b-4) Step-IV: coarse aggregate in homogenized matrix 

from step-III: Homogenized 𝜆: 1.78 W/m K. All the heat flux values correspond to externally applied unit 

temperature gradient (1℃/𝑚𝑚) in X-direction. 

A post processing module (MATLAB© subroutine) computes the volume average of the heat flux. The 

volume-averaged heat flux is used to obtain the effective thermal conductivity using Equation 1 [26].  

𝜆𝑒𝑓𝑓 = �̅�𝑒 (𝐿 𝑇𝑥=𝐿 − 𝑇𝑥=0
⁄ )                                                           [1] 

where  𝜆𝑒𝑓𝑓 is the effective thermal conductivity,  �̅�𝑒 is the homogenized (volume averaged of all elements) 

heat flux in RVE, L is the edge length of RVE. The temperatures on the two opposite faces of the unit cell 

along the X-direction are denoted by 𝑇𝑥=0 and 𝑇𝑥=𝐿. Thus, (𝑇𝑥=𝐿 − 𝑇𝑥=0) is the imposed temperature 

(a-1) (a-2) (a-3)

(b-1) (b-2) (b-3) (b-4)

(1e+03 W/m2) (1e+03 W/m2) (1e+03 W/m2) (1e+03 W/m2 )
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difference. The aforementioned 3D numerical homogenization technique for effective thermal 

conductivities has been successfully validated in a previous study [26] against experimental thermal 

conductivities obtained using a guarded hot plate apparatus in accordance with ASTM C177-13 [38]. The 

effective thermal conductivities of a multi-inclusion porous systems is often predicted on the basis of a 

microstructure guided study [26,39] which have shown substantial agreement with experimental results. 

In order to obtain the effective volumetric heat capacity, the reaction heat flux is obtained at the nodes under 

applied unit temperature gradient along X-direction. The ratio of the volume-averaged reaction heat flux to 

the temperature difference yields the effective volumetric heat capacity (𝜌𝐶𝑝)𝑒𝑓𝑓,𝑠 [40]. For the case of 

PCM incorporated concrete, a similar procedure is followed to obtain (𝜌𝐶𝑝)𝑒𝑓𝑓,𝑠 that has PCM in the solid 

state. However, at the transition temperature of the PCMs, the latent heat released by the PCM during phase 

transformation is appended to the volumetric heat capacity as shown in Equation 2 [5].  

(𝜌𝐶𝑝)𝑒𝑓𝑓,𝑡 = (𝜌𝐶𝑝)𝑒𝑓𝑓,𝑠 + ((𝜙𝑐𝜌𝑐ℎ𝑠𝑓)/∆𝑇𝑝𝑐)                                            [2] 

where (𝜌𝐶𝑝)𝑒𝑓𝑓,𝑡 is the effective volumetric heat capacity at transition temperature, (𝜌𝐶𝑝)𝑒𝑓𝑓,𝑠 is the 

effective volumetric heat capacity for solid phase PCM, 𝜙𝑐 is volume fraction of PCM, 𝜌𝑐 is density of 

PCM, ℎ𝑠𝑓 is latent heat of fusion of PCMs and ∆𝑇𝑝𝑐 is the phase change temperature window. It is to be 

noted that all the calculations involved herein consider PCMs in solid state only, for the sake of simplicity. 

Similar approach has been successfully implemented in [5,13].  

The effective properties obtained using the above-mentioned framework for both control and PCM-

modified concretes are presented in Table 3. The values obtained for control concrete are in line with 

experimental values reported in literature [5,13]. For the cases of PCM inclusions, the values match closely 

with the ones reported in [5,26]. The effective thermal properties, thus obtained, are used in macro-scale 

simulation of pavement in the forthcoming section to elucidate the influence of microstructural 

modifications imparted by PCMs on the macro-scale structures.  

Table 3. The effective properties obtained after homogenization 

Materials 𝜆 (W/m K) (𝜌𝐶𝑝)𝑒𝑓𝑓,𝑠(J/ kg K) 

Concrete 1.4 880 

PCM incorporated concrete 1.78 928 

2.2 Simulation of Thermal Response of Macro-scale Concrete Pavements: 

In this section macro-scale FE analysis is performed to elucidate the influence of PCMs on the thermal 

performance of concrete pavement. Consequently, the temperature profiles of the pavement are obtained 

under the local weather conditions in Providence, Rhode Island, United States. Forthcoming sub-sections 
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present the model geometry, boundary conditions, analysis procedure and the thermal responses obtained 

from the numerical simulation as follows:  

2.2.1 Model Geometry and Boundary Conditions: 

A three-dimensional pavement section is modeled in FE commercial software ABAQUS™ as shown in 

Figure 4. The pavement section, considered here, is 13.3 m long and 9.15 m wide. The thickness of the top 

layer, made of concrete, is 406 mm which is lying over a subgrade of 12.20 m thickness. Such a 

configuration ensures that the subgrade is semi-infinite since the boundary effects are mitigated on the top 

pavement section when such a depth is considered [41]. 

 

Figure 4: 3D geometry of pavement section showing the ambient interactions and thermal boundary 

conditions  

The boundary conditions of the macro-scale pavement model are determined by the ambient conditions. 

The daily weather data for Providence, Rhode Island, United States are obtained from the National Oceanic 

and Atmospheric Administration (NOAA) [42]. It includes hourly global horizontal irradiance (GHI) data 

and hourly atmospheric temperature data. GHI encompasses the short wave radiations diffused in the 

atmosphere and the solar radiation incident on a surface normal to the rays thus resulting in the total amount 

of short wave radiation received per unit area of a horizontal surface on the ground. The ambient interactions 

and the temperature boundary conditions are shown in Figure 4. The daily maximum GHI (𝑞𝑠) values are 

adjusted for absorption by concrete with its absorptivity (𝛽𝑠) being 0.59 [43] and are applied as surface heat 

flux thermal load valid only during the day in the model. The hourly ambient temperature (𝑇0) is used to 

Solar radiation, 𝛽𝑠𝑞𝑠

Convection
ℎ0 𝑇  ,  − 𝑇0( )

Conduction

Ambient temperature 𝑇0  

Irradiation

  𝑇0  
 − 𝑇  ,   

𝑇  =      𝑇0  +    

Base Temperature

 𝑐
 𝑇(𝐿,  )

  
=  𝑠 𝑏  𝑎 𝑒

 𝑇(𝐿,  )
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define the heat transfer interactions. Convection is defined by the product of surface convection coefficient 

(ℎ0) and the difference of the pavement surface temperature (𝑇( ,  )) and ambient temperature (𝑇0) [44]. 

The value of ℎ0 is a function of wind velocity which can be assumed to be 26 W/m2K for the air-concrete 

interface at low wind speeds [45] and is applied as a surface film coefficient in the model that defines the 

convective interaction between the pavement surface and the atmosphere. The Stefan-Boltzmann radiation 

constant ( ) and the surface emissivity of concrete ( ) with values 5.6697 x 10-8 W/m2K4 and 0.92 

respectively, when multiplied with the difference of the fourth powers of ambient temperature (𝑇0) and 

pavement surface temperature 𝑇( ,  ) (   (𝑇0
 − 𝑇( ,  ) ) ) give the radiative heat transfer. This is 

modelled by defining a surface radiation interaction between the pavement surface and the atmosphere with 

an ambient temperature of 𝑇0. The temperature at the base of the pavement (here below the subgrade) (𝑇 ) 

is a function of the ambient temperature 𝑇0 and the relationship is shown as follows [46]:  

𝑇 ( ) =      𝑇0( ) +                                                           [3] 

Temperature boundary conditions are applied to the base of the pavement model. Another boundary 

condition stems from the heat flux continuity equation at the interface between the top concrete layer and 

bottom subgrade layer. This interaction is defined in the model with a surface-to-surface contact, thereby 

ensuring a conductive heat flow at the interface. While the conductivity of concrete is obtained from 

numerical homogenization (Table 3), conductivity of subgrade is adopted as 1.75 W/(m.K) [47]. For the 

case of PCM incorporated concrete, the significant jump in internal energy during phase change is 

accounted for by defining the latent heat as a thermal property of the material. A nonlinear transient heat 

analysis step in the model ensures that the latent heat in conjunction with the density of the material 

successfully attenuates the heat capacity in the phase change temperature window as mentioned earlier. 

Thus, as the pavement in the model cools down in absence of solar radiation and plunging ambient 

temperature, the PCMs having a volume fraction of 6% (Vf), release 150 kJ/kg (hsf) at 5.1℃ (Tpc). Density 

of 300 kg/m3 for PCMs is adopted here [25]. This study incorporates a phase transformation temperature 

window (∆𝑇𝑝𝑐) of 1℃  which is in line with values reported elsewhere [5]. At the transition temperature of 

the PCMs, the latent heat released by the PCM during phase transformation is added to the volumetric heat 

capacity (Equation 2), obtained using numerical homogenization as explained before.  

 2.2.2 Finite Element Simulation of Macro-scale Response:  

A MATLAB© script extracts the data from the weather data files and feeds it into the ABAQUS™ model. 

The conductive, radiative and convective heat transfer processes are considered in the python script for 

ABAQUS™ solver. A transient heat transfer FE analysis is carried out in ABAQUS™ solver.  A mesh 

convergence study was performed. The top concrete layer containing 280 linear hexahedral DC3D8 
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elements and the bottom subgrade layer containing 630 linear hexahedral DC3D8 elements ensured 

converged solution. A post processing module extracts the temperature data of the pavement for both 

concrete and PCM-modified concrete cases which are reported in Figure 5 for the months of December 

2015, January 2016 and February 2016.  

 

Figure 5: Surface temperature profile of both the concretes contrasted with the ambient temperature for 

the first four weeks of (a) December 2015, (b) January 2016 and (c) February 2016 

The ambient temperature is also depicted in Figure 5 for reference. As can be seen from the figure, the 

pavement surface temperature for both concrete systems is higher than the peak ambient temperature which 

can be attributed to the solar radiation that heats up the surface. Similar observations were noted elsewhere 

[10,13]. Figure 5 also clearly shows that temperature peak of control concrete is higher than the temperature 

peak of the PCM-incorporated concrete when the temperature is greater than the phase transition 

temperature of 5.1℃. The reduced temperature peak obtained in the PCM incorporated concrete 

substantiates the effective solar energy storage capacity of PCMs which would otherwise be wasted in 

raising the surface temperature as obtained in the control concrete. The effectiveness of the PCM 

incorporated concrete lies in its ability to store the energy during its phase change as a latent heat in the 

(a) (b)

(c)
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charging cycle (under incoming solar radiation) that can be released at lower temperatures in the 

discharging cycle towards effective defrosting. From Figures 5(a), (b) and (c), it is clear that the amplitude 

of temperature variations (difference between maximum and minimum pavement temperature) reduces 

significantly when PCM is incorporated.  The difference is more pronounced for lower ambient 

temperatures.  This is attributed to the release of latent heat during phase-transformation (liquid to solid) of 

PCMs at transition temperature of 5.1℃. Thus, the temperature profiles shown here reflect the effectiveness 

of these PCMs in keeping the pavement surface warmer even under very low ambient temperatures, thereby 

establishing the fact that such PCMs are extremely effective in the New England area of the United States 

facilitating enhanced service life. Similar observations were found experimentally in [13]. In order to shed 

more light, Figure 6 shows the pavement temperature profiles for January 7, 2016. Figure 6 (a-1) and (b-1) 

correspond to maximum ambient temperature of 7.2℃ and peak solar radiation of 384 W/m2 for control 

concrete and PCM-incorporated concrete respectively.  

 

Figure 6: Pavement temperature profiles on January 7, 2016 for: (a-1) control concrete pavement 

corresponding to maximum temperature (7.2℃) of the day; (a-2) control concrete pavement 

corresponding to minimum ambient temperature (-7.1℃) ; (b-1) PCM-incorporated concrete pavement 

corresponding to maximum temperature (7.2℃); (b-2) PCM-incorporated concrete pavement 

corresponding to minimum ambient temperature (-7.1℃)   



13 

 

PCM-incorporated concrete shows slightly lower temperatures under the same ambient temperature as 

expected. Figures 6 (a-2) and (b-2) show the pavement temperatures corresponding to minimum ambient 

temperature of the day for control concrete and PCM-incorporated concrete respectively. While the control 

concrete pavement shows significantly lower pavement temperatures (minimum temperature -5.4 ℃), the 

PCM-incorporated concrete shows relatively higher pavement temperatures (minimum temperature -1.3℃). 

This is attributed to the heat released by PCMs during phase-transformation thus helping to keep the 

pavement warmer. Considering a water-freezing temperature of -6.1℃ in concrete [13,48], the control 

concrete pavement is expected to freeze at this minimum ambient temperature of on January 7, 2016 

whereas the PCM-incorporated concrete does not freeze. Overall, considering a freezing and thawing 

temperature of -6.1℃ and 0℃ respectively in concrete [13,48], the control concrete experiences 25 freeze-

thaw cycles, whereas the PCM-incorporated concrete experiences 13 number of freeze-thaw cycles during 

December 2015 – February 2016 (Surface temperatures reported in Figure 5) thereby reinforcing the idea 

that PCMs have the potential to enhance the service life of pavements.  In order to shed more light into the 

effectiveness of the PCMs, simulation of frost-damage in both the concretes is elucidated in the forthcoming 

section.  

3. INFLUENCE OF PCM ON THE FREEZE THAW RESPONSE OF CONCRETE AND MORTAR 

MICROSTRUCTURE 

While the previous section employed microstructure-guided numerical simulation at different length scales 

to obtain the macro-scale thermal response of concrete pavement, this section applies the pavement surface 

temperatures, obtained in the previous section for February 2016, to the meso scale so as to elucidate the 

fundamental difference in freeze-thaw response imparted by PCMs in concretes. The forthcoming sub-

sections show microstructure-guided numerical simulation for frost-damage response in concretes and 

mortars using continuum damage mechanics. The analysis involves generation of meshed 2D representative 

element areas (REAs) by Python scripts. The physical change in the phase transformation of water to ice 

during the freezing cycle leads to a volume increase of 9% in the micro-pores [49]. The damage in the 

cementitious matrix of the REA is implemented in ABAQUS™ with the help of a user defined subroutine 

UMAT that implements the damage laws. A post processing module computes the degraded Young’s 

modulus from the results obtained by ABAQUS™ solver. The analysis procedure and the results are 

presented as follows:      

3.1 Microstructures and Material Properties:  

The damage analysis is carried out at the mortar scale. Here, 2D REAs are chosen to reduce computational 

demand as a trade-off between computational efficiency and demand [50]. The REAs are generated using 
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Lubachevsky–Stillinger algorithm [26,28–31]. The edge lengths of REAs are chosen as five times the mean 

diameter of inclusions based on a sensitivity study. Similar RVE sizes relative to inclusion sizes are 

implemented successfully in [27,32].  Figure 7(a) shows the control mortar microstructure containing 40% 

hardened cement paste with 10% voids and 50% sand by volume. The REA for PCM-incorporated mortar 

is shown in Figure 7(b) which contains 20% PCM as sand-replacement. The PCM-modified mortar 

microstructure contains 40% hardened cement paste with 10% voids, 40% sand and 10% PCM (20% sand 

replacement) by volume. The size distribution of PCM and sand are adopted from [25]. 

 

Figure 7: The generated REAs for: (a) mortar matrix containing 50% sand and 40% hardened cement 

paste (HCP) with 10% void; (b) PCM-modified mortar containing 40% HCP, 10% void, 40% sand and 

10% PCM by volume. 

The analysis requires the material properties for the matrix and inclusion phases which are shown in Table 

4. The poison’s ratio for all components except PCMs is taken as 0.2. A poison’s ratio of 0.4 is adopted for 

PCMs [25]. 

Table 4. Input material properties for numerical simulation of damage [22,25,37] 

 

 

 

3.2 Numerical Simulation of Isotropic Damage in Concretes: 

The damage analysis is implemented in python language program which is later used in ABAQUSTM solver 

to obtain results. A user-defined subroutine in ABAQUSTM applies the volume expansion (due to freezing) 

in the voids embedded in the cement paste matrix. The resulting mechanical response is captured by the 

12.75 mm 12.75 mm

HCP SandPCM Voids

(a) (b)

Component E (GPa) α (µ /℃)  

HCP 22.4 15 

Sand 70 5 

PCM 4.45 25 
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framework that applies the damage law. The mechanical properties are used from Table 4 while the size 

distribution is similar to what has been implemented earlier in the study. Finally, a post processing module 

computes the stress-strain response after every freeze-thaw cycle and yields the degraded material 

properties of the mortar which is scaled up to the concrete level and validated with experimental results 

reported in [49].   

Periodic boundary conditions [33–36] are implemented in the REAs as described earlier. The framework 

assumes fully saturated voids.  The analysis framework imports the surface temperatures of the pavement 

from the macro scale analysis (for the month of February 2016 as shown in Figure 5(c)) and applies 

volumetric expansion in the voids as soon as the freezing temperature of -6.1℃ [13,51] is reached. The 

volumetric expansion is implemented using a user-defined subroutine in ABAQUSTM that incorporates 

volumetric thermal expansion of voids by means of artificial coefficient of thermal expansion of the void 

so as to obtain 9% volumetric expansion. The volume expansion is released when the average nodal 

temperature increases above 0℃ (Thawing temperature [13,52]). Such freeze-thaw cycle induce damage 

around the voids which propagates with increasing number of freeze-thaw cycles.  

The progressive damage in HCP matrix due to freeze-thaw cycles is implemented by user defined 

subroutine UMAT [53–55] in ABAQUS™. The progressive degradation of both the mortars due to frost-

damage is modelled here by continuum damage mechanics while considering the heterogeneity in these 

materials [21–23]. Assuming isotropic stiffness degradation, the damage variable, D is given as [21–24,56]:  

 = (1 − 𝐷)∁:                                                                        [4] 

Where the effective stress tensor is denoted by  , ∁ denotes fourth order tensor of elasticity and   is the 

strain tensor. The value of damage, D ranges from 0 (undamaged) to 1 (completely damaged). The damage 

rate denoted by �̇� assumes only zero or positive values which can be explained by its proportionality with 

the damage energy release rate [22].  

In order to characterize the damage in the cement paste matrix at the scale of the mortar (Figures 7(a) and 

(b)), an isotropic damage model is used that provides a damage evolution law as shown in Equation 5 [57]. 

�̇� = 𝜉( 𝑆(𝜖𝑒𝑞)  𝜖𝑒𝑞⁄ )                                                      [5] 

Where 𝜉 is the Lagrange multiplier which when multiplied with the partial derivative of the constraint 

𝑆(𝜖𝑒𝑞) (as mentioned in Equation 6) with respect to the 𝜖𝑒𝑞 (elastic energy) gives the rate of scalar damage 

�̇�. The constraint 𝑆(𝜖𝑒𝑞) is defined as follows: 

𝑆(𝜖𝑒𝑞) = 1 − exp[−((𝜖𝑒𝑞 − 𝑎) 𝑏⁄ )𝑐] − 𝐷                                                 [6] 
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𝑆(𝜖𝑒𝑞) is constrained to be ≤ 0.  The damage evolution law (Equation 5) is discretized by an implicit Euler 

scheme and it yields the instantaneous damage parameter 𝐷. The fitting parameters a, b and c (in Equation 

6) for cement paste, adopted from [57], are 0.488, 0.1 and 3.0 respectively. For the PCM incorporated 

mortar, same damage parameter values are implemented since the matrix is HCP for both the cases.  

3.3 Frost-damage Response:  

Figure 8 shows progressive damage in mortars for both the cases. The figure shows progressive frost-

damage in both the mortars for the month of February in the year 2016 in Providence, Rhode Island, United 

States. The model geometries for control and PCM-incorporated mortar are shown again in Figure 8(a-1) 

and (b-1) for the ease of reference.  While Figures 8 (a-2) and (a-3) exhibit progressive damage on February 

10 and February 28 respectively for the control mortar, Figures 8 (b-2) and (b-3) show the damage status 

on February 10 and February 28 respectively for the PCM-incorporated mortar. While the control concrete 

has experienced 10 freeze thaw cycles, the PCM incorporated concrete has experienced 5 such events over 

the month of February, 2016. As the damage progresses, on day 10, for the control mortar, the HCP matrix 

(Figure 8(a-2)) shows significant damage whereas the damage is negligible for the PCM incorporated HCP 

matrix in the PCM modified mortar (Figure 8(b-2)). This is attributed to the fact that PCMs act as heat 

storage and releases heat when the ambient temperature starts to drop decreasing the amplitude of diurnal 

temperature fluctuations in the pavement. As a result, the number of freeze-thaw cycle experienced by 

pavement reduces due to incorporation of PCM in the mortar which is reflected here in the form of 

significant reduction in damage when PCM is incorporated. This trend is continued till the end of the month 

(Day 28) as shown in Figure 8 (a-3) and (b-3). 
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Figure 8: Progressive damage in mortars: (a-1) model geometry for control mortar, (a-2) damage in 

control mortar on Day 10; (a-3) damage in control mortar on Day 28; (b-1) model geometry for PCM-

incorporated mortar, (b-2) damage in PCM-incorporated mortar on Day 10; (a-3) damage in PCM-

incorporated mortar on Day 28  

Degraded Young’s modulus (Ed) values for both the mortars corresponding to days in the month of February 

2016 are calculated from the damage values using equation 4 and are reported in Figure 9(a). The PCM-

incorporated mortar experiences significant reduction in frost-degradation as comparted to control mortar 

which is primarily attributed to the lower number of freeze-thaw cycles experienced by PCM-incorporated 

mortar due to thermal heat storage capacity of PCMs as explained earlier. Degraded Yung’s modulus values 

obtained for mortar are numerically homogenized with coarse aggregates (40% by volume) to obtain 

degraded Young’s modulus for concretes as shown in Figure 9(b). PCM incorporated concrete show a lesser 

degree of degradation than control concrete as expected. While the control concrete shows a 25.5 % 

degradation, the PCM incorporated concrete shows a 15% for the same time period which fundamentally 

reinforces the efficacy of using PCMs towards improving freeze-thaw durability of cementitious materials.    

PCM

Sand

Void

(a-2) (a-3)

(b-2) (b-3)(b-1)

(a-1)
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Figure 9: Ratios of degraded Young’s modulus (Ed) to initial Young’s modulus (E0) with number of days 

of February for (a) mortars and (b) concrete for control and PCM-incorporated concretes respectively 

highlighting Days 10 and 28 (see Figure 8)  

In order to shed more light on the predictive capability of the numerical simulation framework, the frost-

damage results from numerical analysis for control concrete are compared to experimental results reported 

in [49]. Here the ratios of degraded Young’s modulus (Ed) to initial Young’s modulus (E0) are plotted for 

up to 10 number of freeze-thaw cycles. The predicted values correlate very well with the experimental 

values signifying robustness of the numerical simulation framework in predicting freeze-thaw response in 

cementitious materials. The numerical simulation framework thus integrates the material microstructure to 

the macro-scale structural performance and provides an efficient means to optimize these concretes for 

durable infrastructure.  

 

Figure 10: Predicted vs experimental ratios of degraded Young’s modulus (Ed) to initial Young’s modulus 

(E0) for concrete  

(a) (b)
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4. CONCLUSIONS 

This paper presents microstructure-guided numerical simulations at different length scales to evaluate the 

influence of PCMs on the freeze-thaw response of concrete pavements. Two different concretes were 

employed for evaluations. While the control concrete contains 70% aggregate by volume, the PCM-

modified concrete contains 20% PCM as sand-replacement (6% absolute volume). A three-step numerical 

homogenization was performed for control concrete and an additional step involving PCMs was 

incorporated in PCM-modified concrete. The effective properties, thus obtained from the numerical 

homogenization, were employed in macro-scale concrete pavement model to obtain the pavement 

temperatures under the influence of ambient temperatures and solar radiation. The analysis was performed 

for ambient conditions at Providence, Rhode Island, United States during December 2015-February 2016. 

The PCM incorporated concrete pavements showed a significantly reduced amplitude of pavement 

temperature fluctuations as compared to that obtained for control concrete. This is attributed to the latent 

heat storage capability of the PCM which is released at its transition temperature. The results also indicate 

50% reduction in the number of freeze-thaw cycles, experienced by pavement, when PCMs are 

incorporated. In order to shed more light into the influence of PCMs on the frost damage response of 

concretes, an isotropic damage model was employed to capture the progressive frost deterioration of the 

mortar and concrete. A superior frost damage-resistance of the PCM modified concrete was observed as 

compared to control concrete signifying effectiveness of the PCMs. For the month of February 2016, the 

control concrete experienced 25.5 % loss of stiffness whereas the PCM-modified concrete showed about 

15% loss of stiffness. This advocates the use of PCMs in concrete pavements with a view to enhance frost-

damage resistance of concrete pavements. The microstructure guided numerical simulation framework, 

presented in this paper, provides an efficient means of designing concretes by tweaking the material at 

different length scales to maximize performance.  
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