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Porous inclusions as hosts for phase change materials in cementitious 
composites: Characterization, thermal performance, and analytical 

models 

Matthew Aguayo1, Sumanta Das2, Cesar Castro3, Nihat Kabay4, Gaurav Sant5, Narayanan 
Neithalath6 

 

ABSTRACT 

This paper examines the influence of four different lightweight aggregates (LWAs) having different pore 

structure features, on containing phase change materials (PCMs) within their pore network, and 

beneficially impacting the thermal properties of the mortar. The porosity and absorption capacity of the 

LWAs significantly influence the thermal conductivity. The incorporation of 5% of PCMs by total volume 

of the mortar reduces the composite thermal conductivity by 10% or more. Maxwell-Garnett effective 

medium and multi-step Mori-Tanaka mean-field homogenization models are employed to predict the 

composite thermal conductivity. Multi-step homogenization based either on known microstructural 

arrangement, or the property contrast between the constituent phases, are adopted. A microstructural 

contrast factor is defined, which accounts for both the thermal conductivities and the volume fractions of 

the phases with the highest property contrast. Smaller contrast factors indicate reduced divergence of 

the predictions from the experimental results, thereby aiding in the selection of suitable homogenization 

schemes for multi-phase composites.  

Keywords: Phase Change Materials (PCMs), Microstructure, Lightweight Aggregate, Thermal 
Conductivity, Homogenization models  
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1. Introduction 

Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage (TES) materials 

that can be used to store and dissipate energy in the form of heat [1–4]. As the temperature increases, 

the endothermic phase change of PCMs from solid-to-liquid absorbs heat, while as the temperature 

decreases, the exothermic liquid-to-solid transition releases heat. The incorporation of PCMs in walls and 

roofs have been extensively studied as a means to reduce the energy consumption in passively designed 

buildings [5–8]. Several approaches to incorporate PCMs in concrete have been used, including the use of 

microencapsulated PCMs in powder form that can be added directly to concrete [9–11], or impregnation 

of liquid PCMs into porous inclusions to be used as aggregates in concrete [12–15].  

This paper concerns the use of porous inclusions as carriers for PCMs in concrete. PCM in liquid state is 

impregnated into the pores of lightweight aggregates (LWAs). This overcomes one of the main 

disadvantages of lightweight structures as building envelopes, namely, the low thermal inertia. Large 

temperature fluctuations in such buildings can be reduced through the use of PCM incorporations, in 

addition to providing increased thermal insulation. Moreover, this approach can also be used for 

structural concretes in exposed conditions such as bridge decks to limit the number and/or intensity of 

freeze-thaw cycles experienced by concrete [16] and to reduce the rate of thermal deformation and stress 

development by controlling the temperature rise [17].  

Several methods to impregnate porous aggregates with PCMs have been reported [18–20]. The amount 

of heat stored and released by PCMs contained within the pores of LWAs depends on the pore structure 

of the LWA as well as the thermal properties of the PCM (i.e., enthalpy, specific heat, and phase transition 

temperature). Thus a fundamental characterization of PCMs and LWAs is important in properly 

understanding their thermal response and the efficient design of LWA-PCM composite mortars. This paper 

evaluates four different types of LWAs with respect to their capacity to impregnate an organic paraffin-

based PCM in their material structure, and consequently influence the composite thermal properties. 

These porous inclusions are incorporated into cement mortars and their thermal conductivities 

determined (using a guarded hot-plate method), ensuring that the volume fraction of PCM in all the 

mixtures remains the same. Effective medium and mean-field homogenization models are used to predict 

the thermal conductivity of the composite mortars. The dependence of predictive efficiency of the models 

on the relative volume fractions of microstructural phases of high property contrast, and the intensity of 

thermal property contrast is brought out.   
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2. EXPERIMENTAL PROGRAM 

2.1. Materials  

A commercially available Type I/II ordinary portland cement (OPC) conforming to ASTM C150, one bulk 

paraffin-based phase change material (PCM) supplied by Entropy Solutions (PureTemp 24X), and four 

different light weight aggregates (LWA) were used to proportion the mortars used in this study. The LWAs 

used were pumice (PU), perlite (PE), expanded shale/clay (ESC), and expanded slate (ES). Coarse sand (CS), 

having a median particle size of 600 µm was used in the control mortar. The particle size distributions of 

all the LWAs and the CS are shown in Figure 1, and the visual appearance of LWAs in Figure 2. The median 

particle size (d50) of OPC was 10 µm and the median particle size for the LWAs ranged between 800 and 

1200 µm.   

 

Figure 1: Particle size distributions of the LWAs and the coarse sand 
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Figure 2: Lightweight aggregates used in this study: (a) pumice (PU), (b) perlite (PE), (c) expanded shale 
and clay (ESC), and (d) expanded slate (ES) 

2.2 LWA Pretreatment and Absorption of PCM  

LWAs are used as carriers for the PCMs in this study. Thus it is important to determine the absorption of 

PCM in each of the LWAs. The following procedure for pretreatment and absorption was implemented. 

Initially, LWA was washed and sieved to remove any material finer than 150 µm (No. 100 sieve), as their 

contribution to total absorption is deemed negligible. The use of finer material also likely results in 

erroneous absorption values because of the increased particle surface area that might cause the PCM to 

adsorb on the surfaces rather than absorbing into the pores. After washing the aggregates, they were 

placed in the oven at 100°C for 48 hours to remove any evaporable water and bring them to the oven dry 

(OD) condition. Drying beyond 48 hours resulted in negligible mass changes. The physical properties of 

the LWA including the relative densities in the oven dry and saturated surface dry conditions were 

measured in accordance with ASTM C128-15. The absorption of PCM into the pores of the LWA was 

determined by soaking a known mass of LWA in PureTemp 24X liquid for 24-to-72 hours, after which the 

soaked LWA was placed in a fine mesh to allow the excess PCM to drain. The soaking was performed at a 

temperature greater than the phase transition temperature of the PCM (in this case, 24oC) to keep it in 

the liquid state throughout. Vacuum saturation was not employed to ensure that the impregnation 

method can be easily replicated in practice. After 24 hours of draining, the soaked LWA was weighed 
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again, and the absorption was determined. Negligible increase in absorption was observed when the 

soaking time was increased beyond 72 hours, and thus the LWAs were soaked in liquid PCM for 72 hours 

and allowed to drain for 24 hours (to ensure saturated surface dry condition) prior to being mixed with 

the cement paste.  

2.3 Mixtures 

Ten mixtures (nine mortar, and one paste) were proportioned with a volumetric water-to-binder ratio, 

(w/b)v = 1.58 (mass-based w/p ≈ 0.50). Table 1 shows the mixture proportions and the corresponding 

nomenclature. The mortar samples were proportioned with a constant paste volume of 50%. The LWA 

mortars contained 50% LWA inclusions by volume.  For the LWA mortars, 5% PCM by overall volume of 

the mortar was incorporated by adjusting the amount of LWA impregnated with the PCM, to be used in 

the mortar. This is illustrated in Figure 3(a) using the case of pumice aggregates as an example. The overall 

aim is to incorporate 5% of PCM by volume of the mortar.  The pumice aggregate used in this study has a 

porosity of 39% and an absorption capacity of 21% (Section 3.1 provides more details on absorption).  In 

other words, 21% of the total volume of LWAs will contain the PCM. If all the LWA (which is 50% by volume 

of the mortar) is saturated with PCM, then the volume fraction of PCM in the mortar is 21% of 50%, which 

is 10.5%. Since the intention is to use only 5% by volume of PCM in the mortar, PCM-soaked pumice LWAs 

will need to be used along with non-impregnated LWAs in this mortar. Thus, almost half of the total LWA 

used in this mortar will be non-impregnated ones. Alternatively, when perlite LWA with an absorption of 

11.2% is considered as shown in Figure 3(b), almost all of the LWAs need to be impregnated to achieve 

the desired PCM volume fraction of 5% (the volume fraction of PCM in the mortar is 11.2% of 50%, which 

is 5.6%).  
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Figure 3: Illustration of the methodology to obtain 5% of PCM in the mortar with: (a) Pumice LWA, and 
(b) Perlite LWA. Relative amounts of filled and non-filled LWAs in both the cases as well as the 

saturation levels of LWAs are shown. 

 
Table 1: Mixture proportions (volumetric) used in this study 

Mixture OPC (%) LWA (%) CS (%) PCM (%) 

OPC Paste  100 - - - 

Plain Mortar 50 - 50 - 

Mortar with LWAs (PU0, PE0, 
ES0, ESC0) 

50 50 - - 

 Mortar with PCM-
impregnated LWAs (PU5, 

PE5, ES5, ESC5) 
50 45 - 5 

 

2.4 Test Methods 

The porosities of the different LWAs prior to impregnation were determined using mercury intrusion 

porosimetry (MIP) on oven dried samples. The dried LWA samples were tested in a mercury porosimeter 

that is capable of exerting a maximum pressure of 414 MPa. The relationship between pore diameter and 

intrusion pressure was determined using the Washburn equation, based on the assumption that the pores 

are cylindrical in shape [21]. The contact angle and surface tension values used in this study were 117o 

and 0.485 N/m respectively [22].  
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The compressive strengths of mortars containing both the non-impregnated and PCM-impregnated LWAs 

were determined in accordance with ASTM C109 on 50 mm cubes at different ages.  

The thermal properties (e.g. onset, peak, and phase change temperatures, enthalpy, and specific heat 

capacity) of the LWAs and PCM-impregnated LWAs were determined using a differential scanning 

calorimeter (DSC) in accordance with ASTM E1269-11. Four replicates for each specimen type were tested 

using aluminum pans, where samples were uniformly distributed across the bottom of the pan prior to 

each run. The thermal program used for analysis included a temperature sweep where the sample was 

heated from -10°C-to-50°C followed by a ramp down cooling to -10°C in an inert nitrogen environment. A 

rate of temperature change (i.e., heating and cooling) of 5°C/min was used. Prior to testing of the LWA 

samples, heat flow calibration was performed using a sapphire standard reference. Equation 1 was used 

to determine the specific heat capacity (Cp), in J/(g.K) of the LWA prior to PCM impregnation. 

Cp(s) = Cp(st) ∙
Ds∙Wst

Dst∙Ws
             (1) 

Here Cp(st) is the specific heat capacity of the sapphire standard in J/(g.K), Ws is the mass of the specimen 

(mg), Wst is the mass of the sapphire standard (mg), Ds is the vertical displacement between the heat flow 

curves of the specimen holder (mW) and the specimen at a given temperature, and Dst is the vertical 

displacement between the heat flow curves of the specimen holder and sapphire standard (mW) at a 

given temperature.  

Thermal conductivity was determined in accordance with ASTM C177-13 using a guarded hot plate 

apparatus (Figure 4(a)) where measured power is applied to the hot plate in a centralized metered section. 

The central meter section (Figure 4(b)) is surrounded by thermally isolated guards (a small gap separates 

the hot plate and guards), thus enabling one-dimensional heat flow. Heat sinks located on the top and 

bottom of the apparatus remove the heat and provide uniform temperatures at the outer surfaces of the 

specimen. Two identical (300 x 300 x 12 mm) plate specimens were used to ensure symmetrical heat flow, 

and averaged to obtain the final thermal conductivity. Specimens for thermal conductivity were tested 

after 28 days of hydration and allowed to dry for in ambient conditions for 24 hours prior to testing. The 

duration of testing for each specimen was between 6-10 hours, in order to establish a steady-state 

temperature gradient over the thickness of the specimen. Thermal conductivity (λ) was determined from 

the Fourier equation as: 

λ =
qL

2A(Th−Tc)
       (2) 
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where q is the power input to the central heater, L is the thickness of the specimen, A is the surface area 

of the central heater, Th is the temperature of the hot face, and Tc is the temperature of the cold face.  

 

Figure 4: (a) Side profile of the guarded hot plate apparatus and (b) aerial profile of the centralized 
metered section for determining thermal conductivity. 

3. RESULTS AND DISCUSSIONS 

3.1. Characteristics of Lightweight Aggregates 

Obtaining the appropriate physical properties and pore structure characteristics of LWA that are 

important in PCM impregnation is critical towards material design of thermally efficient cementitious 

systems. Figure 5 shows the relationship between pore size and volume of mercury intruded for the LWAs 

studied. Table 2 shows average specific gravities (oven and saturated surface dry), average pore 

diameters, porosities, and the PCM absorption capacities after 72 hours of immersion, of the four 

different LWAs. It is clearly seen that the physical properties of the LWAs are quite different from each 

other, attributable to the source of the aggregates and their processing. The PCM absorption capacity is 

an important parameter that dictates the thermal efficiency of the composite. The pumice and expanded 

shale/clay aggregates show higher PCM absorption capacities than those of perlite and expanded slate. 

Since the soaking of LWA by PCM was carried out under ambient conditions (i.e., no vacuum), absorption 

is a function of easily accessible porosity and the sizes of pores. Even though the porosity of expanded 

shale/clay LWA is about 10% higher than that of the pumice LWA, it has a PCM absorption that is about 

5% less than that of pumice. This can be attributed to the average pore diameter of the pumice LWA being 

30% greater than that of the expanded shale/clay. Larger pore sizes at comparable porosities ensure larger 

absorption as can be noticed in the comparison between pumice and expanded slate LWAs in Table 2. For 

the perlite LWA, the porosity is the lowest but the absorption capacity is comparable to that of expanded 
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slate LWA because of much larger pore sizes which allow the PCM to absorb into most of the available 

pore spaces.   

 

Figure 5: Pore diameter-pore volume relationships curves for the four different LWA types.  

Table 2: Physical properties of lightweight aggregates 

LWA 
S.G. 
(OD) 

S.G. 
(SSD) 

PCM 
Absorption 
capacity, % 

by vol. 

Average 
Pore 

Diameter 
(µm) 

Porosity 

Pumice 1.45 1.75 21.1 516 0.39 

Perlite 1.72 1.81 11.2 580 0.15 

Exp. Shale/Clay 1.07 1.33 15.7 361 0.53 

Exp. Slate 1.77 1.99 10.6 247 0.30 

 

3.2. Compressive Strength of PCM-impregnated LWA Mortars 

Previous studies have indicated that the PCMs have the propensity to leak out of the LWA host, and 

interfere with cement hydration, thereby influencing the mechanical properties of concrete [12,23]. The 

compressive strength development as a function of curing time for LWA mortars without and with 5% (of 

the total mortar volume) of PCMs impregnated in the LWAs, are shown in Figures 6(a) and (b) respectively. 

A comparison of these figures reveal that the compressive strengths remain invariant of both the LWA 

type and PCM incorporation in the LWAs.  These results establish that LWAs can be used as effective 
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carriers of PCM without adversely influencing the physico-chemical mechanisms that are dominant in 

strength development. It also shows that the pre-treatment and PCM impregnation methodology 

described earlier can be adopted effectively without any leakage of PCM from the LWAs into the matrix. 

In previous studies, when there was potential for such leakage, cement paste coating on the LWAs was 

found to solve the issue [24,25].   

 

Figure 6: Compressive strengths as a function of time for: (a) plain LWA mortars, and (b) LWA mortars 
containing 5% PCM by total mortar volume, impregnated in the pores of the LWAs. The standard 

deviation in compressive strengths ranged between 2 and 3 MPa at early ages and 1 and 2 MPa at later 
ages. 

3.3. Thermal Characterization of LWAs and LWA-PCM Mortars 

3.3.1. Enthalpy of fusion (Hf
0) 

Figure 7 shows the endothermic heat flow peak for the four different LWAs impregnated with PCM (up to 

their absorption capacity, Table 2), after 72 hours of absorption. The endothermic peak represents the 

heat being absorbed by the PCM (latent energy storage), as a result of phase transition. The onset 

temperature (Tonset) corresponding to melting is 17.3  0.15°C and the completion temperature (Tcompletion) 

is 27.5  0.15°C. The melting point or endothermic peak occurs at 24°C for all the LWA-PCM combinations, 

which is the intrinsic phase change temperature of the PCM. The difference in heat flow curves between 

different LWA-PCM combinations is a result of the differences in the PCM absorption capacity of the LWA 

(Table 2). Unsurprisingly, the degree of PCM absorption, which in turn depends on the pore structure of 

the LWA, influences the thermal energy storage. The total area under the heat flow curve in the 

temperature range between the onset and completion of phase transition, which corresponds to the 

enthalpy of the composite, is shown for all the LWA-PCM combinations in Table 3. The theoretical 

enthalpy was determined from the amount of PCM (by mass) absorbed in the different LWA types and 
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the heat storage capacity (heat of fusion) provided by the manufacturer for the chosen PCM, which in this 

case was 184 J/g. The theoretical and experimentally measured enthalpies for all the combinations are 

quite similar, with the measured enthalpies being slightly higher. This can be attributed to the likely 

presence of small amounts of PCM that adhere to the surface of the LWAs even after the draining process. 

The results presented are the average of three DSC runs for a given sample. The standard deviations 

ranged from 4%-to-15%.    

DSC was also used to determine the specific heat capacity of the pristine LWAs as described earlier. The 

specific heat capacities of all the LWAs were determined at a temperature of 27.5°C (beyond the PCM 

phase transition). The measured specific heat capacity, shown in Table 4, ranges between 0.62-to-0.91 

J/g-K, and are very similar to those reported for these materials [26–29].  

 

 

Figure 7: DSC curves of LWAs impregnated with PCM, after 72 hours of absorption. 

 

Table 3: Enthalpy comparison of the LWA-impregnated PCMs 

LWA+PCM 
Measured Enthalpy 

(J/g) 
Theoretical Enthalpy 

(J/g) 

Pumice 31.66 30.42 

Perlite 14.45 11.78 

Exp. Shale/Clay 34.26 28.70 

Exp. Slate 12.24 11.40 
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Table 4: Specific heat capacity of the LWAs 

LWA Specific Heat Capacity (J/g-K) 

Pumice 0.91 

Perlite 0.62 

Exp. Shale/Clay 0.68 

Exp. Slate 0.88 

 

3.3.2. Thermal conductivity of LWA mortars 

The thermal conductivity of all the mortars evaluated here are shown in Figure 5. The thermal 

conductivities have been determined in the saturated condition. In other words, the accessible pores in 

the LWA that contribute to its absorption capacity (Table 2) are filled with water or water and PCM. The 

thermal conductivity is the highest for the conventional OPC mortar because of the higher thermal 

conductivity of the dense quartz particles [30,31].  The reduction in thermal conductivity when regular 

sand is replaced by lightweight aggregates (irrespective of the LWA type) can be easily noted from this 

figure. The added advantage of reducing the structural self-weight, and the capability to provision the 

non-PCM impregnated LWAs with water for internal curing, provides an array of benefits for this 

methodology.   PCM impregnated LWA mortars generally show thermal conductivities that are about 10%-

20% lower than the regular LWA (water-saturated) mortars, at a total PCM content of 5% by volume in 

the mortars. This reduction in thermal conductivity can be attributed to the lower thermal conductivity of 

the PCM (0.15 W/m-K) as compared to that of water (0.6 W/m-K). In addition, the absorption capacity of 

the aggregates also influences the thermal conductivity since the pores that are not accessible to water 

and/or PCM are filled with air that has a much lower thermal conductivity than any of the other 

constituents. Densification of the interface layer in LWA mortars [32] influences heat transfer and could 

result in diminishing some of the effects of porosity-induced thermal conductivity reduction. The porosity 

and surface characteristics of LWAs are thus also important.  The thermal conductivity experiments show 

that, in addition to the latent heat capacity of PCMs that help reduce energy consumption when used in 

building envelopes, the enhanced insulation properties of LWA concrete containing PCMs also will be 

beneficial in energy efficient construction. The methodology can be easily implemented in concrete 

masonry units and precast concrete wall and roof panels.  
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Figure 8: Thermal conductivity determined after 28 days of hydration for the paste and mortars. The 
first data is for OPC paste, and the rest are for mortars where the paste volume fraction is 0.50.  

3.4. Application of Homogenization Models for Thermal Conductivity Prediction of LWA-PCM 

Composite Mortars 

As noted earlier in this paper, LWAs, when incorporated in cementitious materials, are random multi-

phase media consisting of the solid phase, and the distributed pore phases that can contain a combination 

of air, water and/or PCM. Thus, in contrast to general multi-phase media which consists of one continuous 

matrix and multiple inclusion types, the LWA mortars consist of an inclusion phase which by itself is bi- or 

tri-phasic, as shown in Figure 9. Accurately predicting the engineering behavior (mechanical, electrical, 

thermal etc.) of such multi-phase materials is a challenging task. For two-phase composites (matrix and 

one type of inclusion) with an ordered microstructure, exact models exist. When the microstructure is 

random, bounds on effective properties are usually adopted [33,34]. Effective medium theories (EMT), 

such as Bruggeman’s unsymmetrical EMT and self-consistent symmetrical EMT [35], and generalized 

effective medium theories [36,37] for composite properties including conductivity have been proposed 

and validated. When phase-geometry information is available along with the volume fraction, then much 

narrower bounds can be attained. For example, mean field homogenization models use the aspect ratio 

and orientation of the inclusion phase to provide accurate property descriptors [38,39]. In this paper, 

attempt is made to predict the effective thermal conductivity of cementitious mortars containing LWAs 

impregnated with PCM using a simple analytical model and a simplified mean field homogenization model. 

Accurate prediction of thermal properties helps develop mixture proportions for such composite mortars, 

including the amount and type of LWA and PCM needed for desired thermal performance. However, it 
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needs to be noted that these models cannot take into account clustering, percolation and size effects, 

which can be accomplished only using detailed numerical modeling schemes.  

 

Figure 9: Idealized LWA for effective property determination. Some LWAs have PCM while some others 
have water to ensure desired PCM levels in the mortars. An “idealized” LWA is also shown, that is 

representative of the LWA phase. 

Homogenization is executed here for a two-phase composite (cement paste and LWA). However, LWA 

being a multi-phase heterogeneous composite in its own right (containing a solid phase, and pores 

containing water, air, or PCM), its effective thermal property is determined by a separate homogenization 

process. Accurate determination of the volume fractions of the appropriate phases, the intrinsic thermal 

conductivity of solid phase in LWAs (considering that the thermal conductivities of water, air, and PCM 

are known), and the effective thermal conductivity of the LWA, are needed for the property prediction of 

the mortar.  It is emphasized that the effective property of LWA as stated here is not for an individual LWA 

particle, but a representative one for the entire LWAs present in a certain mortar. Realistically, some LWAs 

in the mortar contain water and air voids, while some others contain PCM and air voids. The “idealized” 

LWA particle combines both these types as shown in Figure 9.    

3.4.1. Volume Fractions of component phases  

Since all the mortars were proportioned for 5% of PCM by total volume, and the mortars contain 50% by 

volume of LWA, the volume of PCM as a fraction of total LWA volume is 10%. The remaining pore volume 

of the LWAs is filled with water and air. The amount of water filled pores is determined by subtracting the 

PCM volume from the LWA absorption capacity, and the remaining fraction of porosity is considered as 
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air voids. The volume fraction of water filled pores in the LWA mortars without PCM is the same as its 

absorption capacity. Table 5 presents the individual phase volume fractions in the different LWAs.  

Table 5: Fractions of solid, water, PCM, and air in the LWAs in the PCM-impregnated mortars. The water 
comes from the saturated, non-PCM impregnated LWAs added to ensure that the total PCM volume 

fraction is 5%. 

LWA Porosity 
Solid 

fraction 
Absorption 

capacity 
PCM 

content 
Water 

content 
Air void 
content 

Pumice 0.39 0.61 0.211 0.1 0.111 0.179 

Perlite 0.15 0.85 0.112 0.1 0.012 0.038 

Exp. Slate 0.30 0.7 0.106 0.1 0.006 0.194 

Exp. Shale/Clay 0.53 0.47 0.157 0.1 0.057 0.373 

 

3.4.2. Intrinsic thermal properties of component phases  

Having known the volume fractions of the phases, it is then necessary to obtain the intrinsic thermal 

properties of the individual phases within the LWA particle to determine the effective thermal properties 

of LWAs. The thermal conductivities of water, air, and PCM (0.6, 0.15, and 0.025 W/m-K respectively) are 

known [40,41]. The thermal conductivity of the solid phase of the different LWAs was obtained in this 

study through an inverse analysis procedure using the Mori-Tanaka approach [42,43,38] as detailed 

below.  

Mori-Tanaka homogenization method has been used for the determination of effective properties of 

cement-based materials [44–47]. It approximates the interaction between the different phases by 

considering that each inclusion is embedded, in turn, in an infinitely extended homogeneous reference 

medium (matrix) that is subjected to a temperature gradient. In other words, each inclusion behaves like 

an isolated inclusion in the matrix experiencing the average temperature gradient in the matrix as the far-

field gradient. The effective thermal conductivity based on Mori-Tanaka model is given as [43]: 

i

MT

miimc Av )( )()()()()(                                                               (3) 

Here, )(c is the effective composite thermal conductivity; )(m is the thermal conductivity of matrix; )(i  

is the thermal conductivity of inclusion, )(iv is the inclusion volume fraction and 
i

MTA is the Mori-Tanaka 

gradient concentration tensor of the inclusion, given as [43]: 

1)()( )(  i

d

imi

d

i

MT AvIvAA                                                                  (4) 
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Here, )(mv is the matrix volume fraction, i.e., )()( 1 im vv  , I denotes the identity tensor and i

dA is the 

gradient concentration tensor of dilute inclusions with perfect interfaces, given as [43]: 

1)()()( )]([  mimi

d SRIA                                                               (5) 

Where )(mR is the resistivity tensor, given as 
1)()( )(  mmR  and S is the Eshelby tensor [43,48]. For 

multiple spherical inclusions of isotropic thermal conductivity embedded in a matrix, Equation 3 reduces 

to a scalar expression as [38,49]: 
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                                                               (6) 

The experimentally measured thermal conductivities of the plain LWA mortars (without PCM) were used 

in a two-step inverse analysis procedure employing the Mori-Tanaka method to obtain the thermal 

conductivity of solid phase in different LWAs. The steps are schematically shown in Figure 10. In the first 

step, the experimental thermal conductivity of the different LWA mortars and the known thermal 

conductivity of the cement paste phase (see Figure 8) are used to back-calculate the thermal conductivity 

of the different LWAs. The second step calculates the thermal conductivity of solid phase of the LWA from 

the homogenized thermal conductivity of LWA obtained from step-I and the already known thermal 

conductivities of air and water. The LWA is considered as a three-phase composite here. The solid phase 

thermal conductivities obtained for pumice, perlite, expanded slate, and expanded shale/clay are 0.8, 

0.59, 0.82 and 1.1 W/m-K respectively, reflecting the differences in the mineralogy of these LWAs.  The 

values of thermal conductivity of the solid phase of the LWAs thus obtained from inverse analysis are used 

in further simulations to determine effective thermal conductivity of PCM-impregnated LWA mortars.   
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Figure 10: Inverse analysis procedure for the determination of thermal conductivity of the solid phase of 
LWAs. 

3.4.3. Predicting effective thermal conductivity of PCM-impregnated LWA mortars  

In this section, analytical and mean-field homogenization models are used to predict the effective thermal 

conductivities of PCM-impregnated LWA mortars from those of its phases and their volume fractions. 

Among the several analytical models available, Maxwell-Garnett model is used here since it has been used 

in the past to predict the thermal conductivity of multiphase particulate composite materials [50,51].  The 

homogenized thermal conductivity c  can be obtained from the thermal conductivities of the matrix ( m

) and the inclusion ( i ) phases as: 
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In this equation, iv the volume fraction of inclusion i and N is the number of inclusion phases.  

The simplified mean-field homogenization scheme employs the Mori-Tanaka method [42,43,38]. Two 

different approaches are implemented as explained below. First, a two-step homogenization process, 

both involving the Mori-Tanaka scheme, is implemented as shown in Figure 11. In the first step, the water-

filled voids, PCM-filled voids and the air voids are homogenized into the solid LWA matrix to obtain the 

homogenized thermal conductivity of LWA. The second step homogenizes the thermal conductivity of 

LWA (determined in Step-I) with that of the hardened cement paste matrix to determine the effective 

thermal conductivity of the PCM-impregnated LWA mortar.   
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Figure 11: Two-step Mori-Tanaka homogenization scheme for determination of thermal conductivity of 
PCM-impregnated LWA mortars. 

The homogenization method described above relies on the knowledge of the microstructural 

arrangement in the composite, i.e, the LWA phase is dispersed in the matrix phase. Note that all the three 

phases in the representative LWA is considered in a single homogenization step. In cases where the 

microstructural phase arrangement is not a priori known, a sequential homogenization process has to be 

employed. This approach homogenizes a two-phase media at any given step, and uses the homogenized 

results in the following step. The order of homogenization relies less on the microstructural arrangement, 

and is dictated by the property contrast between the phases. Figure 12 depicts the stages in the four-

stage homogenization approach, also involving the Mori-Tanaka method. The four-stage homogenization 

procedure includes the following steps: (i) the first stage of homogenization considers the solid phase of 

LWAs as the matrix and the water filled pores as inclusions; (ii) the homogenized thermal conductivity 

obtained from step-I is then input as the matrix for the second stage with the PCM filled pores as 

inclusions, (iii) in the third step, the resultant of the second stage serves as the matrix to which the air 

voids are added as inclusions to obtain the effective thermal conductivity of LWA inclusions; (iv) the last 

step homogenizes the LWAs into the matrix of hardened cement paste to obtain the effective thermal 

conductivity of PCM-impregnated LWA mortars. This order of homogenization ensures minimization of 

the effects of thermal conductivity contrast of different phases on the predicted effective property.  
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Figure 12: Four-step Mori-Tanaka homogenization scheme for thermal conductivity determination of 
mortars with PCM-impregnated LWAs. 

The effective thermal conductivities of the PCM-impregnated LWA mortars predicted using the Maxwell-

Garnett and Mori-Tanaka schemes are shown in Figure 13 (a) along with the corresponding experimental 

values. It is immediately evident from this figure that the two-step Mori-Tanaka approach results in the 

closest predictions of thermal conductivity. The differences between the experimental and predicted 

results range from 7% to 13%, with the largest difference demonstrated for the system that has the 

highest amount of air voids (expanded shale/clay; Table 5) and the least difference when the volume of 

air voids are the least (perlite). The thermal conductivity contrast between air voids and the other 

constituent phases is the largest (one-to-two orders of magnitude), and hence higher volume fractions of 

air voids result in increased divergence of the predictions from experimental results.  Presence of phases 

with high property contrasts limits accurate prediction of effective properties as reported in [52–54] .   
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Figure 13: Experimental and predicted thermal conductivity values of PCM-impregnated LWA mortars. 

 

Figure 14(a) shows the average (of all the four LWA mortars) difference between the experimental 

thermal conductivities and those predicted using the three analytical schemes presented in this paper. It 

can be seen that the two-step Mori-Tanaka method, that considers the microstructural arrangement (and 

therefore appropriate inter-phase interactions) is the most reliable among the methods chosen. When 

property contrast alone is considered as is the case for the four-step method, the predictive efficiency 

drops. However, both these approaches are more efficient than the Maxwell-Garnett method.  
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Figure 14: (a) Average deviations between the experimental thermal conductivities and those predicted 
by the three modeling schemes, and (b) predictive efficiency as a function of the microstructural 

contrast factor. 

To quantify the influence of the microstructural phases and contrasts in their thermal conductivities on 

the predicted composite, a microstructural contrast factor () is defined as shown below:  
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                                                                         (8) 

Here, s  is the thermal conductivity of solid phase of the LWA, 
air is the thermal conductivity of air, sv  

is the volume fraction of solid phase in LWAs and 
airv  is the volume fraction of air voids in LWAs. This 

factor accounts for both the thermal conductivities as well as the volume fractions of the phases with the 

highest property contrast. Figure 14(b) shows the relationship between the contrast factor and the 

normalized change in thermal conductivity (/exp), where  is the absolute difference between the 

experimental and predicted thermal conductivities and exp is the experimental thermal conductivity. A 

smaller value of /exp indicates better predictive efficiency of the model. It is shown that an increase in 

 results in lower predictive efficiencies, thereby quantifying the influence of volume fractions and 

properties of the contrasting phases on the predictive capabilities of analytical models.  

4.  CONCLUSIONS 

A comprehensive study on the influence of LWA characteristics on PCM impregnation efficiencies, and 

the resulting thermal properties of the mortars has been reported. Four different LWAs of different 

(a) (b)
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mineralogy and pore structure features were used. The mixtures were designed to ensure 5% of PCM by 

volume of the mortar. This necessitated a proportioning procedure that included both PCM–impregnated 

and non-impregnated LWAs, depending on their porosity and absorption capacity. The LWA mortars 

containing 5% of PCM showed thermal conductivities that are 10% or more lower as compared to those 

of the plain LWA mortars, which can be attributed to the much lower thermal conductivity of PCM as 

compared to water. In addition to enhancing the insulating capacity of the composite mortars used as 

building elements, the incorporation of PCMs also compensates to some degree for the loss of thermal 

inertia in lightweight systems because of their heat storage and release capacity that reduces temperature 

fluctuations in the building.  

Maxwell-Garnett effective medium, and Mori-Tanaka mean-field homogenization models were used to 

predict the thermal conductivity of LWA-PCM mortars. The thermal conductivities of the solid phase of 

the LWAs were determined using an inverse analysis procedure.  The application of Mori-Tanaka method 

included: (i) a two-step process based on known microstructural arrangement of the composite where 

the homogenized LWA was incorporated into a cement paste matrix, or (ii) a four-step process where 

each of the microstructural constituents (solid, pore, air, and water phases of LWA and the cement paste) 

were sequentially homogenized based on the thermal conductivity contrast between the phases. The two-

step Mori-Tanaka approach resulted in the thermal conductivity predictions being closest to the 

experimental values, and the Maxwell-Garnett predictions diverged the most. The understanding that the 

relative volume fractions of phases with the largest property contrasts (in this case, the solid phase of 

LWA and air), and the magnitude of these property contrasts impact the accuracy of analytical predictive 

schemes led to the development of a microstructural contrast factor. This factor was found to be very 

well related to the normalized difference in the experimental and predictive thermal conductivities.  
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