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ARTICLE

Surveying silicon nitride nanopores for glycomics
and heparin quality assurance
Buddini Iroshika Karawdeniya1, Y.M. Nuwan D.Y. Bandara1, Jonathan W. Nichols1, Robert B. Chevalier1 &

Jason R. Dwyer 1

Polysaccharides have key biological functions and can be harnessed for therapeutic roles,

such as the anticoagulant heparin. Their complexity—e.g., >100 monosaccharides with

variety in linkage and branching structure—significantly complicates analysis compared to

other biopolymers such as DNA and proteins. More, and improved, analysis tools have been

called for, and here we demonstrate that solid-state silicon nitride nanopore sensors and

tuned sensing conditions can be used to reliably detect native polysaccharides and enzymatic

digestion products, differentiate between different polysaccharides in straightforward assays,

provide new experimental insights into nanopore electrokinetics, and uncover polysaccharide

properties. We show that nanopore sensing allows us to easily differentiate between a clinical

heparin sample and one spiked with the contaminant that caused deaths in 2008 when its

presence went undetected by conventional assays. The work reported here lays a foundation

to further explore polysaccharide characterization and develop assays using thin-film solid-

state nanopore sensors.
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O ligo- and polysaccharides are ubiquitous in nature, with a
broad spectrum of roles that includes energy-storage and
provision (including as a foodstuff), structural building

block (e.g., cellulose), therapeutic function (e.g., the anticoagulant
heparin), and a vital part in biological recognition processes1–11.
Conventional chemical analysis tools are frequently challenged by
the daunting complexity of polysaccharide analysis:12,13 identifi-
cation of monomer composition (~120 naturally occurring
monomers!) and sequence, monomer linkage types, stereo-
chemistry, polymer length, and degree of polymer branching13.
These challenges were tragically driven home in 2008 when
undetected contamination of the common anticoagulant heparin
by a structurally similar adulterant, oversulfated chondroitin
sulfate (OSCS), resulted in profoundly adverse clinical con-
sequences in the United States, including ~100 deaths14–19.
Glycan samples can be challenged by heterogeneity and low
abundance in addition to chemical and structural diversity, so
while new analysis tools have been broadly called for12,13,20,
single-molecule-sensitive methods are a particularly compelling
goal for glycomics—more so given the absence of sample
amplification techniques analogous to PCR for DNA sequen-
cing21. Nanopore single-molecule methods have emerged as a
powerful tool for characterizing DNA and proteins, including
aspects of sequence, structure, and interactions22–28. Monomer-
resolved length determinations of more prosaic polyethylene
glycol samples further buttress the potential of suitably config-
ured nanopore assays for the analysis of polymers with biological
utility29. The simplest implementation for nanopore measure-
ments places the nanopore—a <100 nm-long nanofluidic channel
through an insulating membrane—between two electrolyte solu-
tions (Fig. 1). Ion passage through the nanopore in response to a
voltage applied across the pore gives the baseline open pore
current, i0; passage of a molecule into, across, or through the
nanopore disrupts this ion flow to give a blocked-pore current, ib.
A discernible current perturbation reveals the presence of an
analyte, and the sign, magnitude, and temporal structure of ib
depend strongly on size and shape of the analyte—and of the
nanopore—and on the applied voltage and bulk and interfacial
charge distributions. It thus provides insight into analyte pre-
sence, identity, and properties, including interactions between the
analyte and pore interior or surface29–32. Analysis of the resistive-
pulse characteristics of a sample offers the potential to glean
molecular-level insights, but the ib characteristics can also be used
more simply as benchmarks in quality assurance assays where
atypical ib values signal sample impurities.

Much groundwork must be laid, including proof-of-principle
experiments, if nanopore methods are to emerge as a tool for
glycan profiling—and by extension as a tool for –omics writ-large
(spanning genomics, proteomics, and glycomics). Sugar-pore
binding, polysaccharides, and enzyme-digested oligosaccharides

have been detected using a range of different nanopore platforms
from protein to solid-state33–43. While solid-state nanopores in
thin (~10 nm) membranes have been often portrayed as the
preeminent nanopore platform, their use to profile classes of
molecules beyond DNA and proteins is in its infancy. These
nanopores can be size-tuned44 to match analyte dimensions
(especially relevant for branched polysaccharides), and when
fabricated from conventional nanofabrication materials such as
silicon nitride (SiNx)45,46, offer resistance to chemical and
mechanical insult alongside low barriers to large-scale manu-
facturing and device integration. The potential for integration of
additional instrumentation components, such as control and
readout electrodes, around the thin-film SiNx nanopore core, is
especially compelling28,45,46. Recent (nanopore-free) work on
recognition electron tunneling measurements on polysaccharides,
for example, has reaffirmed the importance of a nanopore
development path that values augmented nanopore sensing
capabilities47. A key question concerning the use of SiNx nano-
pores for polysaccharide sensing is whether this fabrication
material is compatible with sensing glycans, which can exhibit a
wide range of chemical and physical properties. The often chal-
lenging surface chemistry of SiNx (giving rise to a complex sur-
face charge distribution)45,46,48 may lead to analyte-pore
interactions that hinder or prevent its use. Variability in poly-
saccharide electrokinetic mobility arising from differences in
molecular structures may exacerbate the effect of these interac-
tions. These issues become particularly important when analyte
translocation through a constricted pore is required, such as in
transverse electron tunneling measurements28,47.

Naturally occurring sodium alginate, with uses in biomedical
and food industries, presents an overall negative, but unexcep-
tional, formal charge in neutral pH aqueous solutions. Sourcing
variability for alginates that are extracted from seaweed can be as
prosaic as molecular weight to more enticing changes in the
relative abundances of alginate’s constituent mannuronate (M)
and guluronate (G) residues49. At a compositional extreme,
heparin, the prevalent anticoagulant drug, is the most highly
negative charge-dense biological molecule known50. This excep-
tional charge density couples with the demonstrated difficulty, by
other methods, of detecting the negatively charged OSCS (mole-
cular weight ~17 kDa51) contaminant in a heparin sample14–17 to
make the analysis of heparin (~16 kDa) and OSCS by nanopore a
compelling experimental test with clinical relevance.

The aims of the present work are: (1) to explore using SiNx

nanopores for sensing polysaccharides with a range of possibly
challenging chemical and physical properties; and (2) to gauge the
prospects of a clinically relevant assay to detect the toxic OSCS
impurity in heparin. We profile alginates with different properties
—A1 (Mn~74 kDa) and A2 (Mn~18 kDa)—to diversify the ana-
lyte scope, and change the solution pH to explore the effect of
SiNx nanopore surface charge on the electrokinetics of poly-
saccharide detection. Highly charge-dense heparin further
expands the molecular pool, and a change of electrolyte con-
centration is used to improve the signal levels. Under these
solution conditions, we perform analytical determinations of
heparin at clinically relevant concentrations and detect OSCS
impurities in the heparin sample. Using a simple statistical
thresholding algorithm, we detect this impurity using nanopores
differing in apparent diameter by as much as 50%.

Results
Exploring nanopore polysaccharide sensing using alginates.
Introduction of anionic alginate A1 (Mn~74 kDa; alginate masses
determined by viscosity, see Supplementary Methods) into the
headstage sample well failed to generate detectable transient

Electrode

Headstage side

OLIGO-and
POLYSACCHARIDES

V, i

H
eparin

Electrolyte

Fig. 1 Schematic of the nanopore setup. Voltage-driven passage of a
molecule into, across, or through an electrolyte-filled nanopore can be used
for analyte detection and characterization
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current changes when a positive voltage difference (the polarity
consistent with purely electrophoretic motion for an anionic
analyte) was applied with the analyte in the same well (Fig. 1).
Application of a negative potential difference, instead, generated
transient current changes (here denoted events) that could be
readily differentiated from the open current noise with ~60:1
event-to-noise frequency compared to analyte-free scans. Figure 2
shows a representative time trace of A1-induced events, with a
characteristic event magnified. The frequency of discrete current
blockages associated with the addition of A1 showed a linear
increase with analyte concentration (Supplementary Fig. 1), so
that regardless of mechanism, with appropriate measurement
conditions, the event frequency can be used to determine the
analyte concentration. The mechanism of A1-induced signal
generation was investigated in a series of experiments. Using a
setup (Supplementary Fig. 2) that physically separated electrodes
and nanopore, events were only detected when A1 was injected
into the well proximal to the nanopore, thus supporting a signal
generation mechanism involving interaction with the nanopore
and not with the electrodes. This result did not, however, dis-
tinguish between passage-free collision with the nanopore open-
ing (bumping or blocking) or translocation through the pore32.
Either mechanism (including extending the idea of bumping or
blocking to allow for transient interactions of the analyte with the
pore mouth), though, has the potential to deliver analytically
useful sensing performance. Low analyte concentrations challenge
the direct investigation of polysaccharide translocation through
small, single nanopores. In one experiment to investigate this, a
solution of A1 was added to the headstage side of a ~22 nm-
diameter nanopore and was left overnight with a −200 mV vol-
tage difference. The initially analyte-free contents of the ground-
stage side were then transferred to the headstage side of a fresh
~17 nm-diameter pore, and an appreciable number of A1-char-
acteristic events (182 in 1 h) were detected again using a
−200 mV difference. Acid digestion was used as a signal gen-
eration and amplification technique (complete details in
the Supplementary Methods) to convert A1 polymers to many
smaller fragment-derived species absorbing at ~270 nm52,53. This
spectrophotometric assay (Supplementary Fig. 3) was used to
confirm translocation of polysaccharide through an ~8 nm SiNx

nanopore.
The analyte-induced translocation blockage current, ib, is

expected to be determined by the properties of the analyte and its

size relative to the nanopore, among other experimental factors
(including interfacial phenomena)30,32. For each individual
current blockage, we calculated the blockage duration, τ, and
the fractional blockage current magnitude, fb= 〈ib〉/〈i0〉, where
〈···〉 denotes a time-average, and i0 is the current through the pore
when unobstructed by analyte. Plots of number of events as a
function of τ and fb (Fig. 3) provide an overarching summary of
the total current trace. Given detectable differences as a function
of analyte, such plots and other representations have the potential
to function as analyte fingerprints in quality assurance assays.
Fingerprints for A1 are shown in Fig. 3, acquired in 1M KCl, pH
~7 solutions using a −200 mV voltage difference. Supplementary
Figs. 4–6 provide alternative presentations of the experimental
measurements. The (most frequent) fb increased in magnitude
with increasing nanopore radius, rpore (that is, the relative
magnitude of the current perturbations due to the analyte were
reduced). This parallels the behavior observed in studies of DNA
translocation that could be described using a simple volume-
exclusion framework:r2analyte=r

2
pore ¼ 1� fb. While nanopore dia-

meters are fixed once fabricated (absent etching), a conforma-
tionally flexible macromolecule can present a range of apparent
cross-sections to a nanopore, down to its molecular cross-section
if linearized by a sufficiently small nanopore. Translocation of
hyaluronic acid through SiNx nanopores fabricated using a
helium ion microscope calibrated to produce ~6.5–8.6 nm-
diameters yielded fb ~ 0.95. Quasi-monodisperse samples gave
single-level blockages with magnitudes of (1−fb), and multi-level
blockages with magnitudes equal to (1−fb) and approximately
twice that value, indicating the presence of linear and partially
folded-over biopolymers, respectively43. Nanopore geometric
constraints can thus affect the effective end-to-end length of the
translocating molecule or, depending on the nature of the analyte,
expose surface chemistry that can similarly affect translocation
times. In Fig. 3d, the use of a ~5 nm-diameter nanopore
broadened the distribution of fb and produced deeper blockages
with longer durations than when using the larger nanopore.
Lowering the electrolyte concentration can have a dramatic effect
on nanopore sensing, through changes in the bulk and at
interfaces. For example, reducing the ion concentration from 1 to
0.1 M KCl increases the Debye layer thickness changing the
electrostatic size of the pore with consequences for electrokinetic
phenomena, and electroosmosis especially. Comparing Fig. 3a, e,
this change of concentration did not affect the voltage polarity

1000 msa

b c

500 pA

500 pA 500 pA 500 pA

1 ms 1 ms
COONa COONa

Sodium alginate

i0 = ~20,300 pA i0 = ~20,600 pA

i0 = ~27,000 pA

OH OH

OH OH
O

O

O

O

O

n

1 ms

Fig. 2 Representative nanopore current trace and events from sodium alginate samples from two different sources. a A representative segment of an A1-
induced current trace using a ~21 nm-diameter pore; the solid blue line marks the most frequent event level, ib, and the blue dashed line is its mean across
all events. The magnified current event is from the same trace. b A2- and c enzyme-digested-A2-associated single events through a ~22 nm-diameter pore.
All currents were measured in response to a −200mV voltage difference
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needed to generate events, but decreased the fb for the same
experimental configuration, and appreciably lengthened the
(most frequent) blockage duration. More profoundly, the tenfold
salt concentration decrease reduced the frequency of events
sixfold in the same size ~18 nm-diameter pore. We found, and
exploited in a more general context for the sensing of heparin and
OSCS (below), that such a simple change of electrolyte
concentration is a powerful parameter for tuning our ability to
sense polysaccharides. Changing the electrolyte pH offers a
similar parameter for tuning the sensing performance of
nanopores with ionizable surface groups. The surface charge of
SiNx nanopores can be tuned from negative through its isoelectric
point (~4.4 ± 0.3; standard deviation across three pores) to
positive45,54, and the consequence of this pH change is seen in
Supplementary Fig. 7: the voltage polarity for signal generation is
opposite at pH 3 and 5 (and opposite to the electrophoretic
direction for all pH values), and the event frequency is at its
minimum nearest the isoelectric point and increases with increase
and decrease in pH from this point.

After the initial exploratory and proof-of-principle experi-
ments using A1, we turned to the second sodium alginate
sample, A2, obtained from a separate supplier. In general, the
interplay between analyte charge density, monomer chemical
nature and polymer linkages, and electrolyte composition, is
expected to influence nanopore sensing. Experiments showing
the polarity-dependence of event occurrence, and its frequency,
as a function of pH showed the same qualitative behavior as for
A1 in Supplementary Fig. 7, but with lower event frequencies
overall. Both alginate samples were readily digested by alginate
lyase (Supplementary Fig. 3)55, but infrared spectroscopy
showed that A2 contained a dramatically greater proportion
of carboxylate groups than A1 (Supplementary Fig. 8), so that
the overall charge density of this molecule was expected to be

higher than A1. Attempts to directly measure ζ potentials were
complicated by corrosion of electrode surfaces, as noted in
work examining the electrokinetics of protein transport
through nanopores56. Further analysis was consistent with
alginate A1 having a ratio of guluoronic (G) to mannuronic (M)
residues exceeding that of A2, with values from IR spectroscopy
of ~63%G/37%M and ~57%G/43%M, respectively49. Nanopore
profiling of A2 showed differences compared to A1. Using the
same electrolyte for A2 as for A1, measurements generated a
~sevenfold lower event frequency with longer durations for A2
compared to A1, in spite of the 75-fold higher A2 concentra-
tions required for reasonable measurement times. Enzymatic
digestion of A2 produced events at a higher frequency than for
undigested A2, but still at lower frequency than for A1. The
events for the digested sample of A2 were tenfold shorter-lived
than for the A2 polymer, but not appreciably different in terms
of blockage depth (Fig. 3, Supplementary Fig. 4). Measurements
of the molecular-weight dependence of hyaluronic acid
translocation through He-ion-drilled SiNx nanopores showed
>10–100-fold differences in event duration between ~50 and
2500 kDa species, where the differences were expected to arise
from macromolecular size, alone. The attenuation of short-
duration events due to instrument response characteristics has
been detailed in earlier work, and is accommodated here
through the use of suitable fitting functions57,58. The stand-
alone reliability of extended measurements using the same
~10 nm pore for the alginate samples in series was limited by
frequent partial pore clogging by A2 that occasionally led to
long-lived partial blockages that required cleaning steps that
could change the apparent nanopore diameter by up to 3 nm.
Nevertheless, these measurements using single pores yielded fb,
τ, and event frequency characteristics for the three analytes
consistent with the results in Fig. 3.
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Characterization of clinical and contaminated heparin. These
initial survey experiments showed measurement outcomes with
strong sensitivity to analyte identity, with the number of anionic
carboxylate moieties being a compelling differentiator between A1
and A2. We then turned to the pressing specific challenge of
(anionic) heparin sensing and (anionic) OSCS impurity detection.
The first change, from the earlier work, was that the signal gen-
eration voltage polarity (in 1 and 4M KCl) now corresponded with
the conventional electrophoretic direction for an anionic species.
Acid digestion experiments akin to those in Supplementary Fig. 3
confirmed that heparin could translocate through the pore in
response to an applied voltage. As with A1, heparin could be
detected in 1M KCl electrolyte, but the heparin event blockage
magnitude and event frequency were both greater in 4M KCl, and
so measurements were performed at this higher salt concentration
(see Supplementary Fig. 9 for representative events and a heat map).
Plots of event frequency versus heparin concentration were linear
(Fig. 4), with a limit of detection of 0.379 USP heparin units·mL−1

(in a 500 µL well). In comparison, clinical dosage levels of ~104

units·day−1 using ~103 units·mL−1 stock solutions are not
uncommon. Heparin and alginate fingerprints differed in appear-
ance from each other, but also through the profoundly different
measurement configuration—opposite applied voltage polarity and
fourfold higher electrolyte concentration for heparin—used to
acquire them. We were more keenly interested, though, in whether
an OSCS impurity in heparin could be detected. We performed
measurements on unadulterated USP samples of either heparin or
OSCS under identical experimental conditions. On the level of
individual events, heparin and OSCS differed in their apparent
interaction with the nanopore, with OSCS having a greater pro-
pensity to permanently block the pore unless a ~1.3 V (so-called
zap) pulse—a common approach leveraging the electrokinetic basis
of analyte motion—was quickly applied when indications suggest-
ing an impending permanent blockage arose. In addition, events
associated with the heparin and OSCS samples differed appreciably
in the current fluctuations during individual current blockages:
OSCS current blockages exhibited ~2–3 × greater current noise, σ
(fb), than heparin-induced events. Overall, in spite of considerable
overlap in the most frequent event fb and τ, the distribution of event
characteristics revealed a key difference between heparin and OSCS
samples (Fig. 5 and Supplementary Fig. 10). Namely, events mea-
sured using heparin samples exhibited a longer duration tail in the
total event duration distribution, while events measured using
OSCS samples exhibited a longer tail in fb. Measurements of mix-
tures of heparin and OSCS (16 ppm each) yielded event distribu-
tions showing both tails, consistent with the presence of both the
heparin therapeutic and its contaminant. We developed an auto-
matic thresholding procedure based on event distribution
statistics in fb and τ (details in the Supplementary Methods) to
collapse the event distribution fingerprints into recognition
flags denoting the presence or absence of each component. In
brief, OSCS was declared present when events occurred with
fb;sample≲modeðf binnedb;USPheparinÞ � 3σðf binnedb;USPheparinÞ and heparin was
declared present when events occurred with
τsample≳modeððlog10τUSPOSCSÞbinnedÞ � 3σððlog10τUSPOSCSÞbinnedÞ.
Figure 5 shows the correct recognition of USP heparin, USP OSCS,
and a mixture of both, across four trials using nanopores of slightly
different sizes. The OSCS contaminant levels detected here were
fourfold lower (without efforts to explore a lower bound) than the
OSCS detection limit reported in the work that examined and
quantified the contaminant in suspect heparin lots18.

Discussion
We demonstrated the feasibility of using SiNx nanopores to
characterize glycans exhibiting a variety of chemical

compositions, including a prevalent therapeutic, heparin. The
extremely high-charge density carried by heparin poses a parti-
cular challenge to a nanoscale sensor element that can, itself,
be charged. More generally, unwanted interactions between
analyte and nanopore—and the ease and feasibility of ameliora-
tive steps—can imperil nanopore-based experiments: that none of
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standard deviation for the three trials
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Fig. 5 Nanopore resistive-pulse analysis of heparin, OSCS, and their
mixture. a Superimposed scatter plots of 16 ppm heparin, OSCS and OSCS-
contaminated heparin added to 4M potassium chloride at +200mV and
measured using a ~13 nm pore. The colors in the legend correspond to the
listed sample, and are blended (using transparency) in the plot where
events from different samples overlap. b Recognition flags of heparin, OSCS
and their mixture from four independent trials accurately identify the
presence of the OSCS aliquot in the mixture. The red squares denote
recognition of a species from the distribution of the corresponding property
(column)
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the diverse polysaccharides considered here catastrophically
clogged the nanopore—even when subjected to the stringent test
of translocation through the pore–was salutary48. Indeed, nano-
pore sensing was successful over a number of electrolyte con-
centration ranges, from 0.1 to 4M KCl, for which shielding of the
charged nanopore surface would be quite different in degree.
With translocation possible through SiNx nanopores, even with
their charged surface, a rich set of nanopore-based sensing con-
figurations should be within reach. In this work, we used a
straightforward resistive-pulse sensing paradigm to readily detect
and differentiate between different polysaccharides, including
enzymatic digestion products and two separate alginate samples
differing in relative monomer composition. We used voltage
polarity and electrolyte composition alongside the distribution of
events as a function of fb and τ to construct fingerprints and
recognition flags characteristic of each sample. Linear calibration
curves show that these measurements easily support concentra-
tion determinations in addition to analyte recognition.

From a fundamental perspective, nanopores can be a powerful
tool for exploring molecular, interfacial, and intermolecular
phenomena, often arising from only simple changes of experi-
mental conditions. Electrolyte-dependent interfacial interactions
—at nanopore and molecule surfaces—are complex, and treat-
ments of widely varying levels of sophistication have emerged
from decades of experimental and theoretical studies of the
canonical nanopore-DNA system, in particular32. For example,
changes of electrolyte concentration have been observed to
reverse the sign of the current perturbation in DNA transloca-
tions through solid-state nanopores, and to decrease dextran
sulfate blockage frequencies while increasing their durations
using ~1.3 nm-diameter pores where the Debye length was
comparable to the pore dimensions42,59. With the larger pores
used here, overlapping Debye layers would not be expected in
0.1 M KCl solutions, leaving three expected principal effects of
lowering the electrolyte concentration from 1M KCl: a lowering
of the potential across the pore and thus of the overall electro-
phoretic force on an analyte near the pore; a reduction in the
available number of bulk ions displaced by the analyte volume;
and a change in the ion distribution around charged interfaces—
the nanopore and analyte surfaces—that influences the nanopore
signal through a complex overall mechanism within a given
experimental configuration. Blockage magnitudes measured here
in the more conventional 1 M KCl would be consistent with, in a
simple volume exclusion sense (r2analyte=r

2
pore ¼ 1� fb), translo-

cation of linearized polysaccharides. Deeper blockages would be
expected from the polysaccharides here with hydrodynamic radii
on par with the nanopore diameters (for example, A1 and A2
have viscosity-derived free-solution hydrodynamic radii of ~19
and ~8 nm). Polysaccharide translocation was independently
confirmed and signals were detected only when the analytes had
access to the nanopores, so these recorded events either arose
from analyte interactions with the pore mouth rather than from
translocation, or the blockage magnitude analysis must include
additional factors such as charge density carried by the analyte,
itself, and consider mobile charges at the analyte-solution and
solution-nanopore interfaces59,60. The effects of these and more
complex interfacial phenomena emerged in one of the more
unexpected observations in this work: that the voltage polarity for
signal generation with both alginate samples was opposite to that
expected for electrophoretic motion of an anionic polymer (for
example, hyaluronic acid in He-ion-drilled SiNx pores43), and the
more charge-rich A2 was detected at a lower event frequency
than A1. The voltage polarity contrasted with the electrophoretic
polarity for detecting highly charge-dense, anionic heparin.
Nanopore-based studies with polyethylene glycol polymers point
to a change of effective analyte charge by sorption of electrolyte

ions (K+ for those studies) with the resultant analyte motion then
being electrophoretic for the voltage polarity and the sign of the
sorbed charge29. The results of Supplementary Fig. 7, however,
point to pH-dependent changes in the voltage polarity required
for sensing alginates, with the polarity having opposite signs on
either side of the isoelectric point of SiNx. Mirroring this change
in the voltage polarity is the SiNx surface charge that is positive at
lower pH and negative at higher pH45,46,56. This change in
nanopore surface charge sign causes a reversal in the direction of
electroosmotic motion for a fixed voltage polarity (and thus fixed
electrophoretic direction). In addition, when an analyte contains
at least one ionizable moiety (with associated pKa), then changes
of solution pH can also affect the analyte charge sign and density
—and thus the voltage polarity required for electrophoresis in a
given direction. The apparent mobility of an analyte in response
to electrolyte flow through the surface-charged nanochannel is
the sum of its electrophoretic and electroosmotic mobilities,
which can both be tuned by the solution pH. Work examining the
electrokinetics of protein transport through silicon nitride
nanopores showed that electroosmosis could overwhelm elec-
trophoresis as the effect determining the direction of analyte
motion56. Given the acidic functional groups in the analytes here,
the changes in nanopore surface chemistry should dominate the
effective mobility and its voltage polarity dependence. The event
frequency and voltage polarity behaviors are consistent with the
distinct physicochemical properties of each analyte with both
electrophoresis and electroosmosis occuring simultaneously. In
the negatively charged SiNx pores at pH~7, electroosmosis and
electrophoresis are in opposition for anionic A1 and A2, and
signal was generated in the electroosmotic direction for both. The
electrophoretic force would be greater on the more highly
charged A2, lowering its detection frequency in the opposing
electroosmotic direction, relative to A1, consistent with obser-
vation. More detailed exploration of the differences between A1
and A2 must also contend with their different molecular weights
and their different chain flexibilities arising from their different
M/G ratios. In the case of heparin, the charge density is suffi-
ciently high so that events are detected using a voltage polarity
that would electrophoretically drive the anionic polymer towards
the nanopore. Experimental investigations including and beyond
the ones presented here, exploring the underpinnings of the
nanopore-generated signal using (polysaccharide) biopolymers
such as these, with greater chemical and structural complexity
than the canonical nanopore test molecule, DNA, or than
homopolymers such as polyethylene glycol, should also provide
fertile ground for high-level simulations. Interfacial effects will
require additional study in the context of polysaccharides, but
hold possibilities for tuning sensing selectivity and sensitivity.
Indeed, explicit consideration of sensing conditions—including
nanopore size, electrolyte composition, and voltage polarity—
already augments the ability to compare nanopore molecular
fingerprints as shown in Fig. 3.

The failure in 2008 to detect an OSCS contaminant in clinical
heparin samples had previously led to patient morbidity and
mortality14–18, so that our ability to use a simple nanopore-based
assay to quantify heparin levels and detect OSCS at clinically
meaningful contamination levels, is itself significant. In a broader
sense, we expect that these initial results exploring polysaccharide
structure can, by analogy with earlier nanopore DNA and protein
sensing supporting genomics and proteomics, spotlight the
potential of using nanopores as a tool for glycomics. The
demonstration of polysaccharide translocation through
nanofabrication-compatible SiNx nanopores portends the devel-
opment of more sophisticated sensing schemes as seen in the use
of nanopores for genomics. Similarly, the successful use of che-
mical tuning—of electrolyte composition and by enzyme addition
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—to alter the nanopore signal generated by diverse poly-
saccharides suggests that nanopore glycomics might borrow from
and extend upon similar approaches developed for nanopore
genomics. There is an ongoing need in glycomics for new tools to
cope with the analytical challenges caused by the structural and
physicochemical complexity of polysaccharides, and by the often
inherently heterogenous nature of naturally derived carbohy-
drates. The demonstrations of nanopore sensing here provide a
beachhead for ongoing efforts to develop solid-state nanopores as
a promising platform technology for glycomics.

Methods
Nanopore formation and characterization. A full listing of the experimental
details is available in the Supplementary Information. Nanopores were formed via
controlled dielectric breakdown44 in nominally 10 nm-thick silicon nitride (SiNx)
membranes. Apparent nanopore sizes were inferred from their conductance, G,
determined from Ohmic current-voltage data. This method for determining the
size of a single nanopore has long-standing use, but has gained greater prominence
with the emergence of low-overhead nanopore fabrication methods such as various
implementations of the dielectric breakdown method44,61,62. Conductance-based
characterization provides effective characterization of nanopores without the
burdens of charged-particle microscope use, and so we adopted the approach
within its conventional application framework.44–46,58,59,63–67. Nanopores used for
measurements produced stable open-pore (analyte-free) currents in the electrolyte
solutions used.

Polysaccharide profiling. Polysaccharides were commercially obtained: sodium
alginate samples from two different sources—A1 (Alfa Aesar, Ward Hill, MA) and
A2 (FMC Corporation Health and Nutrition, PA, USA); USP heparin sodium salt;
and USP OSCS. For routine measurements, sample aliquots were added to the
headstage side (Fig. 1), leaving the ground side free of initially added analyte.
Current blockages were extracted using a current-threshold analysis. The experi-
ment was configured as shown in Fig. 1, and applied voltage differences ΔV=
−Vheadstage electrode were reported so that a positive value would be required for
electrophoretic passage of an anionic molecule through the nanopore.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files.
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