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Kazuo  YamaguchiSg, Jennifer L.  Speckern,  David S. King11 , Yoshiharu  YokooS, 
Richard S .  Nishioka**,  Tetsuya  HiranoSS,  and  Howard A. Bern** 
From the $Tokyo Research Laboratories, Kyowa Hakko Kogyo  Co., Ltd., Machida, Tokyo 194, Japan, the VDepartment of 
Zoology, University of Rhode Island, Kingston, Rhode Island 02881, the Departments of  IIGenetics and **Zoology and Cancer 
Research Laboratory, University of California,  Berkeley,  California 94720, and the $$Ocean Research Institute, University of 
Tokyo, Nakam, Tokyo 164, Japan 

The  complete  amino  acid  sequences of a  pair of tila- 
pia (Oreoehromis rnossambicus) prolactins  (PRLs) 
were  determined.  The  larger PRL  of  molecular  mass 
20,836 Da consists of 188 amino  acid  residues.  The 
smaller PRL  of  molecular  mass 19,584 Da is  11 resi- 
dues  shorter. On alignment of the  two  sequences,  the 
19.6-kDa PRL (tPRL177) has  two  conspicuous  deletions 
on the  NH2-terminal side of  the  disulfide bond  which 
connects  the first and  second cysteine residues.  The 
degree  of similarity between  the two PRL sequences is 
unexpectedly  low (130 identical  residues, 69%) com- 
pared with that  between  the  variants of other  teleos- 
tean  PRLs.  Circular  dichroism  spectra  and  hydropathy 
profiles  suggest  structural  similarity  of  the  two  PRLs. 
The  sequence  of  the 20.8-kDa PRL (tPRLlas)  has 69% 
identity with that of salmon  PRL.  The  sequence  of 
tPRL177 is  56% identical with that of  salmon  PRL.  Each 
tilapia PRL is equally  similar to mammalian  PRLs 
(about 30% identical residues). Regions  highly con- 
served among  teleostean  and  mammalian  PRLs  were 
identified on the COOH-terminal side  of  the  disulfide 
bond connecting  the first and  second cysteine residues. 

The  pituitary hormone  prolactin (PRL)’ belongs to a family 
of molecules that  are related  structurally and functionally. 
The family includes pituitary growth hormone (GH), placen- 
tal lactogen, and placental and cell line-derived proliferin (1- 
5). Within mammalian species, PRLs occur in multiple mo- 
lecular forms, variously called variants, isohormones, or iso- 
forms, which differ in primary structure and/or degree of 
glycosylation (6-9). 

Among teleost fishes, two kinds of hormone variants have 
been reported. Specker et al. (10) reported the  NHz-terminal 
amino acid sequences of a  pair of PRLs isolated from the 
tilapia (Oreochromis mossambicus). Within  the first 26 resi- 
dues there were  five substitutions, suggesting moderate  iden- 
tity (81%). However, Yasuda et al. (11, 12) have reported the 
complete amino acid sequences of pairs of PRLs from the 
chum salmon (Oncorhynchus  keta) and from the common carp 

* This research was supported  in part by National Science Foun- 
dation Grant PCM 84-05249 (to H. A. B.) and by a Rhode Island 
Foundation Grant (to J. L. S.). The costs of publication of this article 
were defrayed in part by the payment of page charges. This article 
must  therefore be hereby marked “advertisement” in accordance with 
18 U.S.C. Section 1734 solely to indicate this fact. 

5 To whom correspondence should be addressed. 
The abbreviations used  are: PRL,  prolactin; GH, growth hormone; 

HPLC, high performance liquid chromatography. 

(Cyprinus  carpio); these isohormones, in contrast with the 
pair of tilapia PRLs, are highly similar, differing from each 
other by only 4 residues and 1 residue, respectively. All fish 
PRLs lack 12 NH2-terminal residues present in mammalian 
PRLs. 

The pair of PRLs released in equal quantities from cultured 
tilapia pituitary glands are chemically distinct, with isoelectric 
points of 6.7 and 8.7 for the PRLs of mass 20 and 24 kDa, 
respectively, as estimated by sodium dodecyl sulfate-poly- 
acrylamide gel electrophoresis, yet  their immunogenic and 
physiologic properties are similar  (10,13). Both show identical 
activity in a bioassay designed to  test for the osmoregulatory 
function of PRLs (14, 15); specifically, both PRLs prevented 
the loss of  Na’ from hypophysectomized tilapia  in  fresh water 
(10). However, only the larger tilapia PRL promoted an 
increase in the length and weight of intact juvenile tilapia 
(13). 

We  now describe the determination of the complete amino 
acid sequences of these two tilapia PRLs. Comparison be- 
tween them  and  other teleostean and mammalian PRLs may 
contribute  toward  understanding the relationships between 
structure  and biological properties of PRLs and GHs. 

EXPERIMENTAL PROCEDURES 

Materials-Tilapia 20- and 24-kDa PRLs were purified as de- 
scribed by Specker et al. (10). The enzymes used for fragmentation 
were as follows:  lysyl endopeptidase (Wako Pure Chemical), Staphy- 
lococcus aureus protease (Miles Laboratories Inc.), a-chymotrypsin 
(Sigma), and carboxypeptidase A (Sigma). Reagents and solvents for 
the gas-phase sequenator (AI31 model  470A)  were purchased from 
Applied Biosystems. Other chemicals used were of the purest grade 
commercially available. 

Reduction and S-Carboxnmidomethylatwn-Each tilapia PRL (100 
pg) was reduced with dithiothreitol (20 mM) in 100 pl of 0.1 M Tris- 
HC1, 6 M guanidine HC1, 1 mM Na,EDTA, pH 8.3, for 2 h at 50 “C 
and subsequently S-alkylated with iodoacetamide (45 mM) for 30 min 
at room temperature. S-Alkylated protein was desalted by reverse- 
phase high performance liquid chromatography (HPLC) on a YMC 
AM-312 ODS column (Yamamura Kagaku, 0.6 X 15 cm, particle size 
5 pm, pore size 120 A), eluted with a 60-min linear gradient of  0-70% 
aqueous acetonitrile  containing 0.1 % trifluoroacetic acid. 

Enzymatic and Chemical  Cleavage-S-Alkylated protein prepared 
as described above was subjected to enzymatic and chemical cleavage. 
For each cleavage, 2-4 nmol of protein were  used. Digestion with 
lysyl endopeptidase was performed in 0.1 M Tris-HC1, 4 M urea, pH 
9.0, at 37  ‘C for 4 h using 1% (w/w) enzyme. Digestion with S. aureus 
protease was performed in 0.1 M Tris-HC1, pH 7.8, at 37 “C for 24 h 
using 4% (w/w) enzyme. Digestion with chymotrypsin was performed 
in 0.1 M ammonium bicarbonate, 0.1 mM CaCl,, pH 8.4, a t  37 “C for 
16 h using 1% (w/w) enzyme. Cyanogen bromide cleavage  was per- 
formed with a 100 M excess of the reagent in 70% formic acid at room 
temperature in  the dark for 24  h. The resultant peptides were sepa- 
rated by reverse-phase HPLC under the same conditions as described 
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FIG. 1. A, complete amino acid sequence of 20-kDa tilapia  PRL. Broken lines indicate amino acid residues 
determined by sequence analyses. The designations LE and SP represent peptides derived by  lysyl endopeptidase 
and S. aureus protease, respectively. C p e  A represents the sequence derived by carboxypeptidase A digestion. B, 
complete amino acid sequence of the tilapia 24-kDa PRL. Broken lines indicate amino acid residues determined. 
The designations CT and CB represent peptides derived from chymotrypsin and from cyanogen bromide cleavages, 
respectively. 

above. Carboxypeptidase digestion was performed in 0.2 M triethyla- 
mine formate, pH 8.5, at  room temperature;  aliquots were  removed 
at appropriate time intervals and subjected to amino acid analysis. 

Amino Acid  Analysis-Two  nmol of tilapia PRLs were hydrolyzed 
in 6 M HCl at  110 "C for 22 h. Amino acid analyses were carried out 
on a  Jeol200A  amino acid analyzer with a standard gradient program. 
Amino acid analyses of the carboxypeptidase digests were performed 
by the  Waters picoTag method of Bidlingmeyer et ai. (16). 

Sequence Analysis-Automated Edman degradation was performed 

with a gas-liquid sequenator (17). Resultant  phenylthiohydantoins 
were identified by HPLC on a C, reverse-phase column (Senshu 
Kagaku, SEQ-4, C,, 0.46 X 30 cm, particle size 7 rm)  at 40 "C using 
a gradient of acetonitrile in 40 mM sodium acetate buffer (pH 4.9) for 
elution. 

Circular Dichroism Spectra-CD spectra were obtained on a  Jasco 
500A spectropolarimeter. Fused quartz cells of 5-mm path length 
were used for the measurements from 250 to 330 nm, and 0.2-mm 
path length for the measurements from 190 to 250 nm. Protein 



Primary Structures of a Pair of Fish Prolactins 9115 

0.5 

- z 
0 

N 
v 

- 
0)  
U 

n m 

0 
v) 

U 
n 

0 1 

A 
LI 

LE-10 

LE-2 

E- 1 

LE-1 c 

LE-2 

1 

5 

6 

LE-30 
I i -33 

"\ 

I I 

0 Time (min) 60 
b 1 

0 Time (min) 60 

FIG. 2. A, separation by HPLC of a lysyl endopeptidase digest of 20-kDa PRL on a YMC AM-312 column (0.6 
x 15 em, particle size 5 pm). Elution was  performed with a 60-min linear gradient of 0-70% acetonitrile containing 
0.1% trifluoroacetic acid at a flow  rate  of 1 ml/min. B, separation by HPLC of a S. aureus digest of tilapia 20-kDa 
PRL. Chromatographic conditions are as in A. 

concentrations were 0.2 mg/ml in water. Mean residue  molecular 
ellipticities, [elMRW, were calculated using a value of 111 for the mean 
residue weight in  both PRLs. 

RESULTS 

Amino Acid Sequences-Fig. 1 summarizes the amino acid 
sequences of the tilapia  PRLs and  the peptides used for 
sequence determination. Sequence data for the peptides are 
shown in  Table 2.' Sequence analysis of 1 nmol of the  intact 
S-carboxamidomethylated tilapia 20-kDa PRL allowed as- 
signment of  29 NH,-terminal residues. In order to obtain the 
sequences of the remaining residues, further sequence anal- 
yses of fragments from proteolytic cleavage  were performed. 
Eight lysyl endopeptidase peptides (LE-2, LE-10, LE-11, LE- 
15, LE-16, LE-25, LE-30, LE-33) purified by HPLC (Fig. 2 A )  
were analyzed for NH,-terminal sequences. Peptide LE-30 
confirmed a  portion of the  NHz-terminal sequence of the 
intact  protein and extended it through residue 52. The other 
lysyl endopeptidase peptides provided the determination of a 
total of 109 additional residues. Subsequently, seven S. aureus 
protease peptides (SP-2,  SP-9,  SP-10,  SP-12,  SP-13, SP-15, 
SP-21) were isolated by HPLC (Fig. 2B). They provided 17 
missing residues and  the alignment of lysyl endopeptidase 
peptides in  the order LE-30, LE-33, LE-2, LE-16, LE-25, LE- 
11, LE-15, and LE-10. Peptide  SP-10 was found to be gener- 

* Tables 2-5  are presented in miniprint at  the  end of this paper. 
Miniprint is easily read with the aid of a standard magnifying glass. 
Full size photocopies are included in  the microfilm edition of the 
Journal that  is available from  Waverly Press. 

ated by nonselective cleavage with S. aureus protease at  the 
carboxyl side of Ser-91. LE-30 and LE-33 overlapped by only 
one glutamyl residue. However, LE-33 was the only lysyl 
endopeptidase peptide having an  NHz-terminal glutamic acid. 
In addition, the extensive sequence similarity between tilapia 
20-kDa PRL  and  other teleostean PRLs (see below) confirmed 
the alignment. 

Carboxypeptidase A digestion of the  intact S-carboxami- 
domethyl protein provided the COOH-terminal sequence 
-Val-Cys (Table  3),  and the complete sequence was accord- 
ingly established. 

The strategy for sequence determination of 24-kDa PRL 
was similar to  that used for 20-kDa PRL (Fig. 1 and  Table 
4). One nmol of the  intact S-carboxamidomethylated 24-kDa 
PRL was submitted to sequence analysis, and an NHz-ter- 
minal sequence of  26 residues was determined. Analyses of 
nine lysyl endopeptidase peptides (LE-5, LE-6, LE-9, LE-10, 
LE-11, LE-12, LE-18, LE-20, LE-23 (Fig. 3A)) and four S. 
aureus protease peptides (SP-2,  SP-6, SP-12, SP-15, Fig. 3B) 
provided the sequences of a  total of 143 residues. Nine hitherto 
unidentified residues and two overlaps were established by 
analyses of peptides CT-9, CT-10, CT-21, and CB-7 obtained 
by chymotryptic digestion and cyanogen bromide cleavage 
(Fig.  3, C and D). CT-9 overlaps LE-20 by  only 1 residue, 
Leu-151.  However, LE-20 was the only lysyl endopeptidase 
peptide having an NHz-terminal leucine with the exception 
of LE-18, which had been aligned at 17-57. The considerable 
sequence similarity between tilapia 24-kDa PRL  and tilapia 
20-kDa PRL (see below) confirmed the alignment. Carboxy- 
peptidase A digestion of intact S-carboxamidomethylatedpro- 
tein provided the COOH-terminal sequence -Met-Cys (Table 
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FIG. 3. A, separation by HPLC of a lysyl endopeptidase digest of tilapia 24-kDa PRL. Chromatographic 
conditions are  as in Fig. 2A. B, separation by HPLC of a S. aurezu protease digest of tilapia 24-kDa PRL. 
Chromatographic conditions are as in Fig. 2. C, separation by HPLC of a chymotrypsin digest of tilapia 24-kDa 
PRL. Chromatographic conditions are as in Fig. 2.0, separation by HPLC of the peptides generated by cyanogen 
bromide cleavage of 24-kDa PRL. Chromatographic conditions are  as in Fig. 2. 
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at 209 nm  and 221 nm  in this region is typical of a-helical 
polypeptides. The relative intensities of these two bands are 
similar to those of human GH reported by  Bewley et al. (18). 
The  a-helix  content estimated by the method of Bewley and 
Li (19) is about 45% in each of the PRLs. The CD spectrum 

5).  Thus,  the complete amino acid sequence of 24-kDa PRL 
was established. 

The amino acid compositions of the two PRLs, shown in 
Table  1,  are  in agreement with the results of amino acid 
sequence determinations. Molecular masses were calculated 
to be 19,584 Da for 20-kDa PRL and 20,836 Da for 24-kDa 
PRL. The mass calculated for the 24-kDa PRL is lower than 
that estimated by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (10). Sequence analyses confirmed that  it has 
no glycosylation site  such  as  is  present  in mammalian PRLs 
(7). 

CD Spectra-The CD spectra of the two PRLs are shown 
in Fig.  4. The two spectra are similar in the region of amide 
bond absorption (Fig. 4A). The position of two negative bands 

TABLE I 
Amino acid composition of 20- and 24-kDa PRL 

Residue 20 kDa 24 kDa 

Asx 16.9" (Is)* 16.9 (16) 
Thr 11.9 (12) 10.2 (9) 
Ser 20.8 (24) 23.1 (27) 
Glx 21.3 (22) 18.6 (18) 
Pro 7.9 (8) 12.2 (12) 
GlY 5.0 (4) 6.9 (6) 
Ala 13.1 (12) 11.7 (11) 
1mcys 3.5 (4) 3.6 (4) 
Val 6.7 (7) 6.0 (7) 
Met 3.7 (4) 6.6 (7) 
Ile 9.8 (10) 9.9 (10) 
Leu 26.6 (25) 27.1 (26) 
TYr 1.1 (2) 1.6 (2) 
Phe 4.5 (4) 4.9 (5) 
His 4.7 (4) 7.3 (7) 
LYS 11.6 (11) 11.4 (11) 
Arg 7.2 (7) 9.1 (9) 
Trp ND' (1) ND (1) 

Total 176.3  (177)  187.1 (188) 

0 

-50 

.lo0 

I 
250 260 270 280 290 300 310 

Wavelengh (nn) 

FIG. 4. Circular dichroism spectra of 20-kDa PRL (-) 
and the 24-kDa PRL (---) in H,O. A, amide bond circular 
dichroism spectra. B, side-chain circular dichroism spectra. 

Values indicate the number of residues/molecule. 
Numbers in  parentheses  represent the number of residues deter- 

mined by sequence analysis. 
' ND, not determined. 
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FIG. 5. Alignment of amino acid sequences (represented by standard single-letter abbreviations) of 
tPRL177 and tPRLlss with those of PRLs from salmon ( l l ) ,  carp (12), sheep (20), rat (21), and human 
(22). Identical residues among the teleost PRLs are boxed with a broken line. Identical residues in teleost and 
mammal PRLs  are boxed with a solid line. 
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in  the region of aromatic side chain absorption shows some 
differences; neither  spectrum shows a positive tryptophan 
band above 290 nm, which was observed in ovine PRL  and 
human GH (18). At the present  time we have no interpretation 
to offer for these findings. 

DISCUSSION 

The complete amino acid sequences of the two tilapia  PRLs 
surprisingly disclose much less similarity than exists between 
the two salmon PRLs  and between the two carp  PRLs. The 
sequence identity for the entire molecule is only 69% (130/ 
188), considerably less than  that found in the NH,-terminal 

sequence (81%, 21/26) (10). The larger tilapia  PRL, previ- 
ously termed 24-kDa PRL  and henceforth termed  tPRLlW, 
contains 188 residues. The smaller tilapia PRL, previously 
termed 20-kDa PRL  and henceforth called tPRL177,  contains 
177 residues. The more basic isoelectric point of tPRLIM (8.7) 
compared with that of tPRL,,,  (6.7) (10) can now  be explained 
by the larger number of basic residues and  the smaller number 
of acidic residues. 

Fig. 5 details the complete amino acid sequences of the two 
tilapia  PRLs, along with those of some other teleostean and 
mammalian PRLs. Sequences have been aligned to optimize 
similarity. The teleostean PRLs  all lack the first 12 amino 

A -  t i l a p i a  PRL177 
3 -  

2 -  
1 1 1 

2 -  

1 -  

0 -  

- 1  - 

-2  - 

50 100 150 

C 
3 -  

2 -  

salmon PRL 

4 1 4 ,  
FIG. 6. Hydropathy profiles of #. 

tPRL177 (A) ,  tPRLlss (B) ,  salmon 
PRL (0, ovine PRL (D),  and human 
PRL (E). A hydropathy score for each 
residue  was obtained by  averaging the 
hydropathy indices (34) of 9 amino acids -2  
at a $me.-Arrows indicate the position V 
of cysteine residues. 
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-3 

1 
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E 
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1 
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- 1  

-2 

- 3  
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acid residues present  in mammalian PRLs  and, consequently, 
the  first disulfide loop that exists  in mammalian PRLs.  In 
having similar numbers of residues and four conserved cys- 
teine residues rather  than six, they more closely resemble 
GHs. Each  teleostean PRL is only about 30% identical to  the 
mammalian PRLs.  tPRL177 is about 56% (105/188) identical 
to salmon PRL  and 51% (96/188) identical to carp PRL. 
tPRL,, is 69% (129/188) identical to salmon PRL  and 64% 
(121/188) identical to carp  PRL. 

The degree of identity between the two tilapia  PRLs (69%) 
is no higher than  that between tilapia  PRLs  and the other 
teleostean PRLs. Compared to tPRLI,, tPRL,,, lacks two 
short sequences: 5 residues (41-45) and 6 residues (152-157) 
preceding the first cysteines of the two disulfide bonds which 
are likely to be present (see below). The 58 substitutions 
found between the two tilapia  PRLs  are  distributed along the 
entire molecule. This extends  our earlier contention that these 
two forms are  distinct at  the pretranslational level (10, 13) 
and  are probably products of two separate genes. Further,  the 
greater similarity of the larger than  the smaller tilapia PRL 
to  the other  teleostean  PRLs (69 and 64% compared with 56 
and 51%) suggests that receptor systems and bioassay systems 
might distinguish tPRL177 from other teleostean PRLs. In 
this regard, it is interesting that  in  intact juvenile tilapia, 
ovine PRL, bovine GH, and  the larger tilapia PRL were found 
to stimulate growth, whereas neither  tilapia  GH nor the 
smaller tilapia PRL had  such an effect (13). 

In  an amphibian bioassay system, tPRL177,  but  not tPRL,, 
nor various GHs, behaves similarly to ovine and amphibian 
PRL.3 We might speculate that overall these findings suggest 
that conservative evolutionary pressure on  the tilapia  PRLs 
remained on the larger, leaving the smaller one free to change 
and  take on other  functions  or to lose original functions. 
Specker et al. (23) proposed that  the  PRL cell is a renegade 
growth hormone cell.  We can now propose that tPRL177 is a 
renegade PRL molecule which has  lost growth hormone-like 
characteristics. 

Identical residues among the teleostean and  the mammalian 
PRLs (see Fig. 5) are clustered in four highly conserved 
regions located at  the alignment positions 6-20,  46-60,  71- 
86, and 161-178. Residues involved in receptor binding are 
thought to be located within these highly conserved regions, 
since ovine PRL shows high binding affinity to  the tilapia 
PRL receptor (24), and conversely, PRLs of some teleosts 
have low but significant activity in mammalian PRL assays 
(25-27). Recently, Nicoll et al. (4) compared the amino acid 
sequences of mammalian GHs  and  PRLs  in an  attempt  to 
identify the regions involved in receptor binding and in en- 
suring hormone specificity and generating species specificity. 
They suggested that four clusters of residues are  the deter- 
minants for receptor binding corresponding to positions 3-8, 
50-57, 78-82, and 127-136 of the teleostean PRL sequences. 
Among these, only the first  three  clusters correspond with 
regions highly conserved between teleostean and mammalian 
PRL sequences and  are  thus likely to contain  determinants 
for receptor binding of teleostean PRL. 

Because the 1-134 segment of human GH has binding 
affinity for both mammalian PRL  and GH receptors (28,  29), 
the NH2-terminal  two-thirds of PRL  and GH  are  thought to 
be important for receptor binding. However, the 1-134 frag- 
ment  has low potency in vivo (30). In  contrast, two-chain 
forms of human GH obtained by enzymatic cleavage in  the 
region between residues 134 and 150 (31, 32) and two-chain 
forms of rat  PRL cleaved at about the same position (33) 
retain full activity in in vivo mammalian assays. These  results 

J. L. Specker, S. C. Brown, and P. S. Brown, unpublished data. 

suggest that COOH-terminal  portions of the molecules ensure 
hormone specific activity in vivo. Teleostean and mammalian 
PRLs  are thought to have similar tertiary  structures  as judged 
from sequence similarity, similar circular dichroism spectra 
in  the region of amide bond absorption,  and similar hydrop- 
athy profiles (Fig. 6). Therefore, teleostean PRLs probably 
have two disulfide bonds formed by cysteines 46-161 and 
cysteines 178-188, corresponding to  the similarly located di- 
sulfide bonds present  in mammalian PRLs (20). The closest 
similarity between the  PRLs  is on the COOH-terminal side 
of cysteine 161; another highly similar region is on the COOH- 
terminal side of cysteine 46. These highly conserved regions 
are  thought to be exposed to  the outside of the molecule as 
indicated by  low hydropathy values (Fig. 6) and  are probably 
essential for biological activity of mammalian PRLs  as well 
as teleostean PRLs. 

The new information on the  structures of this  pair of PRLs 
supports our earlier conclusion, based more on biological and 
immunological information (10,13), that  the tilapia  PRLs  are 
importantly similar, and possibly importantly different, in 
their  tertiary  structures.  Thus, one conclusion, possibly  im- 
portant to efforts to modify PRL or  GH functions using 
recombinant DNA techniques, is  that two deletions from 
tPRL177, both located on  the NHp-terminal side of disulfide 
bonds, are of no consequence to  the tertiary  structure which 
ensures PRL’s osmoregulatory function; however, their loss, 
and/or  alteration in residues, seems to have led to decreased 
effectiveness in promoting juvenile growth. 
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Table 3.  Cdrboxypeptldale A d i g e r t l a n  o f  carbaxanido- 
methylated  tPRLl88 

Rerlduerlmole 

Tlne l n l n l  Ydl(lll) Carboxamidomethyl- 
c y r t e i n e l l 7 1 )  

10 0.21 0.31 

30 0.82 0.87 

120 0 .92  1.0 
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I11  120 

13)  160 
I 4 1  241 
1 5 )  60 

- 

Table 5 .  Cdrboxfieptldase A d l q e r t i o n   o f  Cdrboxamido- 
methylated tPRL188 

Reriduerlmole 

Tlme (mln l  Metl l87)  Cnrboxamldomethyl- 
c y i t e l n e l l 8 8 )  

10 0.09 

30 0.01 

120 

0.24 

0.1s  0.11 
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