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Abstract. Our approach to testing nonlinear population theory is to connect rigorously 
mathematical models with data by means of statistical methods for nonlinear time series. 
We begin by deriving a biologically based demographic model. The mathematical analysis 
identifies boundaries in parameter space where stable equilibria bifurcate to periodic 2-cy
cles and aperiodic motion on invariant loops. The statistical analysis, based on a stochastic 
version of the demographic model, provides procedures for parameter estimation, hypothesis 
testing, and model evaluation. Experiments using the flour beetle Tribolium yield the time 
series data. A three-dimensional map of larval, pupal, and adult numbers forecasts four 
possible population behaviors: extinction, equilibria, periodicities, and aperiodic motion 
including chaos. This study documents the nonlinear prediction of periodic 2-cycles in 
laboratory cultures of Tribolium and represents a new interdisciplinary approach to un
derstanding nonlinear ecological dynamics. 

Key words: bifurcation analysis; chaos; cycles; equilibrium; hypothesis testing; model evaluation; 
nonlinear demographic dynamics; parameter estimation; stability; Tribolium. 

INTRODUCTION 

Understanding the complex fluctuations in animal 
population numbers has far-reaching applications in ar
eas ranging from food production to the conservation 
of species diversity. The hypothesis that the fluctua
tions are the result of nonlinear dynamic forces has 
proved to be elusive to test due to the difficulties of 
gathering adequate ecological data, of experimentally 
manipulating ecological systems, and of evaluating 
complex mathematical models with ecological data 
(Bartlett 1990, Costantino and Desharnais 199 I, Logan 
and Hain 1991, Logan and Allen 1992, Hastings et al. 
1993). Our approach to testing population theory is to 
connect rigorously a nonlinear demographic model 
with biological data by means of newly developed sta
tistical methods for nonlinear time series. 

Nonlinear demographic models were introduced 
along with the more familiar linear matrix models (Les
lie 1948). Since that time, many density-dependent 
models have been studied (see Cushing 1988, Caswell 
1989, and references therein). Linear models yield ex
ponential growth whereas nonlinear models have the 
potential for more complex dynamical behaviors in-

1 Manuscript received 18 January I 994; revised 8 August 
I 994; accepted I I October I 994; final version received 21 
November I 994. 

eluding periodic and aperiodic cycles and chaos. Some 
of the earliest examples of chaotic dynamics were rec
ognized in ecological models (May 1974a). The de
tection of these more complex dynamics is an area of 
active research. Schaffer ( 1984, 1985)-and Schaffer and 
Kot (1985, 1986a, b) emphasized the important role of 
chaos in ecology. Alternatives to Schaffer and col
leagues' geometrical analyses (Takens 1980) include 
response surface methodology (Turchin and Taylor 
1992, Turchin 1993) and model-free methods of esti
mating Lyapunov exponents in a time series with non
parametric regression (Ellner et al. 1991, McCaffrey et 
al. 1992). 

The approach here begins with the construction of a 
biologically based dynamical model. Analytical and 
numerical methods are used to gain a mathematical 
understanding of the dynamical behavior predicted by 
the model. A key aspect of connecting model with data 
is the reformulation of the model in stochastic terms, 
which provides an explicit likelihood function for sta
tistical estimation and testing. The nonlinear mathe
matical model then becomes a vulnerable scientific hy
pothesis that can be confronted by data. 

The working hypothesis in the present study is that 
the dynamics of cultures of the flour beetle Tribolium 
can be explained by a mechanistic biologically based 
system of nonlinear difference equations. The mathe-
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matical analysis of the model involves a study of the 
equilibrium states and their stability and a bifurcation 
study of nonequilibrium states. This analysis identifies 
boundaries in parameter space where stable equilibria 
bifurcate to 2-cycles and aperiodic motion on invariant 
loops. The statistical analysis is based on a stochastic 
version of the demographic model. This analysis pro
vides procedures for parameter estimation, hypothesis 
testing, and model evaluation. The biological experi
ments yield the time series data. Statistical inference 
methods are applied to these data to estimate model 
parameters and evaluate model predictions. In so doing 
we locate the biological population in model parameter 
space and identify the type of dynamical behavior dis
played by the population. 

MATHEMATICAL MODEL 

Biologically based dynamical model 

The Tribolium system possesses great potential for 
the experimental study of nonlinear dynamics (Cos
tantino and Desharnais 1991). The combination of (I) 
high reproductive rates, (2) short life cycle (4 wk from 
egg to adult), (3) ease of culture, (4) accurate censusing 
of all life stages, and (5) the complexities of metazoan 
life history that include strong nonlinear life stage in
teractions, make it a good laboratory system. In par
ticular, some species of Tribolium are cannibalistic 
(Park et a!. 1965). Adults feed on eggs, larvae, pupae, 
and callows (young adults) while larvae eat eggs, pu
pae, and callows. Neither larvae nor adults eat mature 
adults and larvae do not feed on larvae. Although not 
biologically complete, an approximation to a particular 
cannibalistic interaction can be described easily. Con
sider a group of L, feeding larvae. Assume that a larval
egg contact means that the egg is eaten and also that 
the contacts are randomly distributed among the eggs. 
The probability of an egg not being eaten is computed 
USing the binomial distribution aS (J - Ce1)Lr = 
exp( -ce1L,) where ce1 is the coefficient of larval can
nibalism on eggs. Dynamic complexity arises from 
these many nonlinear behavioral interactions. 

We propose a model with three state variables cor
responding to three functional life stages: feeding lar
vae, denoted by L, last instar (nonfeeding) larvae, pu
pae, and callow adults, denoted by P,, and mature 
adults, denoted by A,. We will refer to these state vari
ables for convenience as "larvae," "pupae," and 
"adults" throughout this paper, but we will be careful 
to draw distinctions where confusion might arise. Pub
lished data on the feeding behavior of Tribolium larvae 
are scarce, but the results of Park et a!. (1965: Table 
1 0) for T. castaneum suggest that 14 d is a reasonable 
estimate of the feeding larva stage duration. More in
formation is available on developmental periods; Moffa 
and Costantino (1977: Table 1) estimate a time from 
egg to adulthood of =27 d for the corn oil sensitive 
strain of T. castaneum. The 27 d include 2-4 d in the 

egg stage, but an additional 2-4 d are spent as a callow 
adult. Thus, the durations of the first two stages are 
roughly identical, = 14 d under standard laboratory 
conditions. We exploit the coincidence of the two-stage 
developmental times by taking the unit of time in the 
model between censuses to be 2 wk. 

We omitted an egg stage from the model. Though 
eggs can be and are sometimes counted in flour beetle 
studies, an inordinate amount of time is required to 
separate eggs from the media. Counting just larvae, 
pupae, and adults allows many more cultures to be 
maintained in a given experiment. The egg stage is 
fairly short in duration, =4 d (Sokoloff 1974), and so 
most eggs laid within a 2-wk period become larvae by 
the end of the period. 

Larvae are thus the stage being recruited in the mod
el. Recruitment of larvae at time t is assumed to be 
proportional to the number of adults at time t - 1. The 
assumption potentially introduces some bias in the 
model predictions in that a limited number of eggs laid 
just prior to time t - 1 can in reality be present in the 
larval class at time t; adults at time t - 2 have some 
limited contribution to larval recruitment at time t. 
However, our hypothesis is that the effect of A,_2 on 
larval recruitment at time t is slight compared to the 
effects of other factors (namely, A,_ 1 through egg-lay
ing and cannibalism and L,_ 1 through cannibalism). 
Whether or not our model can account for a substantial 
portion of the dynamics of the system is a question we 
address later with data (see Biological experiments sec
tion below). 

The model, which we term the "LPA model," is a 
system of three difference equations: 

Pt+ 1 = L,(l - J.L1), (2) 

Ar+l = P,exp(-cpaA,) + A,(1 - f.La). (3) 

The quantity b > 0 is the average number of larvae 
recruited per adult per unit time in the absence of can
nibalism. The fractions f.L1 and f.La are the larval and 
adult probabilities, respectively, of dying from causes 
other than cannibalism. The exponential nonlinearities 
account for the cannibalism of eggs by both larvae and 
adults and the cannibalism of pupae by adults. The 
fractions exp( -ceA,) and exp( -ceiL,) are the probabil
ities that an egg laid between times t and t + 1 is not 
eaten in the presence of A, adults and L, larvae. Can
nibalism of larvae by adults and of pupae and callows 
by larvae typically occurs at much reduced rates and 
is assumed negligible in the model. The fraction 
exp( -cPA,) is the survival probability of a pupa in the 
presence of A, adults. The coefficients cem ce1, and cpa 
2: 0 determine the strength of the cannibalism and are 
called the "cannibalism coefficients." It is assumed 
here, based on present knowledge, that the only sig
nificant source of pupal mortality is adult cannibalism. 
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Eqs. 1-3 define a (three dimensional) map of the 
larval, pupal, and adult numbers from one point of time 
to the next. In the remainder of this section, we try to 
understand as much as possible about the dynamics 
implied by these equations, that is to say, about the 
sequences of triples (L,, P,, A,) generated by these equa
tions from initial values (L0 , P0 , A 0 ). Any knowledge 
we can obtain about these "orbits" will tell us some
thing about the long-term predictions of the model 
equations. 

To study the dynamics implied by a set of model 
equations like Eqs. 1-3, a standard procedure is to lo
cate equilibrium points and to determine their local 
stability properties. It is perhaps not surprising that a 
complete analytical description of equilibrium stability 
in terms of the system parameters is not obtainable for 
this system of nonlinear difference equations. There is 
a simplified case, however, for which a complete an
alytical description of the equilibrium stability region 
(local asymptotic stability) can be given. Moreover, in 
this case a description can also be given of the dynam
ics resulting when equilibrium stability is lost by 
changes in parameters across the boundary of this re
gion. This simplified case occurs when larval canni
balism of eggs is not present, i.e., ce1 = 0. In order to 
gain some insight into the possible dynamics of the 
model (Eqs. 1-3), we give the analytical results for this 
special case. 

Mathematical analysis: larval 
cannibalism of eggs is absent 

Equilibria are solutions (L, P, A) of the three equa
tions 

L = bA exp( -ceaA), (4) 

P = L(l - f.l-1), (5) 

A = P exp( -cpaA) + A(l - !La). (6) 

Clearly, (L, P, A) = (0, 0, 0) is an equilibrium. The 
only other non-negative equilibrium is the positive 
equilibrium (L, P, A) = (L *, P*, A*) given by the 
formulae 

A* = (cea + Cpa)- 1ln(b(l - f-l-1)/f.l-a), (7) 

L* = bA*exp(-ceaA*), (8) 

P* = L*(l - f-l-1), (9) 

when 

(10) 

The local stability of an equilibrium point is deter
mined by the eigenvalues of the Jacobian (matrix of 
partial derivatives with respect to each state variable) 
of the right-hand sides of Eqs. 1-3 evaluated at the 
equilibrium point (Lankshmikantham and Trigiante 
1988). If these eigenvalues lie inside the unit circle of 
the complex plane then the equilibrium is (locally as-

ymptotically) stable. An eigenvalue outside this unit 
circle implies instability of the equilibrium. 

The Jacobian at the origin is easily shown to have a 
dominant real and positive eigenvalue that is >I if and 
only if Eq. I 0 holds. Thus, the extinction state (0, 0, 
0) is unstable if and only if a positive equilibrium ex
ists. If Eq. 10 does not hold, the extinction state is 
stable and the population disappears from any initial 
state. 

The Jacobian at the positive equilibrium (Eqs. 7-9) 
is complicated to analyze. Nonetheless a complete de
scription of the region of parameter values within 
which all eigenvalues lie inside the complex unit circle 
can be given as follows. For any f-l-1 in the interval [0, 
1) and any "cannibalism ratio" 

(11) 

define the following functions of !La: 

beCfLa) = -
1 

!La , (12) 
- f-l-1 

where 

K±(!Lm r) 

= ~[ ~ ~ ~] 
·(-(r- 3)!La-

± Y[(r- 3)f.l-a +IF+ 4(1- r)(l- f.l.a)(2f.l.a +I)). 

(15) 

In the (f.l.m b)-plane the functions b = bi!La) and b = 
b/C!La) define curves on which the Jacobian has ei
genvalues on the complex unit circle. On the curve b 
= bzCf.l-a) the Jacobian has an eigenvalue equal to - 1 
and on the curve defined by b = b/(f.l.a) the Jacobian 
has a pair of complex conjugate eigenvalues lying on 
the unit circle. For no parameter values is + 1 an ei
genvalue. Thus, these curves define the boundaries of 
the stability region in the (fLa, b)-plane. The possible 
configurations of these boundaries depend on the can
nibalism ratio r and are shown in Fig. I. 

A bifurcation (or final state) diagram allows the long
term behavior of the LPA model to be visualized as a 
function of a particular parameter. A sample of the 
klnds of bifurcations that can occur are illustrated in 
Fig. 2. If the boundary of the stability region in the 
(f.l-

0
, b)-plane is crossed, then the positive equilibrium 

(Eqs. 7-9) loses its stability. If the boundary defined 
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FIG. I. The four possible configurations 
of the stable equilibrium and 2-cycle/invari
ant loop bifurcation boundaries in the !La -
b plane for the LPA model (Eqs. 1-3) with 
no larval cannibalism of eggs (ce1 = 0) as 
they depend on the ratio r = cpa/cea of can
nibalism coefficients. (A) occurs when 0 < 
r < 1 and is drawn here for r = 0.2. (B) 
occurs when 1 < r < 2 and is drawn here 
for r = I .6. (C) occurs when 2 < r < 3 and 
is drawn here for r = 2.9. (D) occurs when 
r > 3 and is drawn here for r = 9.0. In all 
cases ILl= 0.5128 and the functions beCfLa), 
bilLa), and b1±(!La) are defined in Eqs. (12-
14). 
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by b = b2(~J-a) is crossed then there is a bifurcation to 
a stable 2-cycle (see Fig. 2B). If the boundary defined 
by b = b/C!La) is crossed, then there is a bifurcation 
to an "invariant loop" (see Fig. 2A). This means that 
there exists a closed loop in the (L, P, A) phase plane 
that is invariant under Eqs. 1-3 (i.e., orbits starting on 
the loop will remain on the loop). The orbits on the 
loop are, in general, aperiodic or "chaotic" (although 
"period locking" can occur). Orbits starting nearby the 
loop are attracted to the loop. 

Numerical analysis: larval 
cannibalism of eggs is present 

While the above analysis is for the case of no larval 
cannibalism (ce1 = 0) we can expect similar kinds of 
stability regions and bifurcation scenarios in the (fLa, 
b)-plane when larval cannibalism is present (ce1 > 0). 
A numerically calculated stability region is shown in 
Fig. 3 for this case using parameter values estimated 
for a laboratory population (see Table 1). As before, 
the positive equilibrium destabilization boundaries are 
of two types. There is a boundary at which a bifurcation 
to a branch of 2-cycle solutions occurs, and there is a 
boundary at which bifurcation to an invariant loop oc
curs. As one of these boundaries is crossed a "stable" 
bifurcation usually occurs, that is to say, the resulting 
branch of bifurcating 2-cycles or invariant loops exists 
outside of the stability region, and the 2-cycles and 
loops are "locally stable" or "locally attracting." 
However, numerical evidence indicates that in our mod
el an "unstable" bifurcation of 2-cycles can occur, in 
which case the 2-cycles exist locally just inside the 

stability region near the boundary and are unstable. 
This seems to occur along the rising portion of the 
2-cycle bifurcation boundary (see Fig. 3). The bifur
cating branch "turns around," however, and stabilizes 
before returning to the region of instability (i.e., a sad
dle-node bifurcation occurs). This creates the interest
ing possibility of multiple attractors in our model (and 
hysteresis effects). For parameter values just inside the 
region of stability, but near the rising portion of the 
2-cycle bifurcation boundary, there exists both a stable 
equilibrium and a stable 2-cycle. 

Three bifurcation diagrams associated with the sta
bility diagram in Fig. 3 are shown in Fig. 4. With b = 

5 (Fig. 4A) there are stable positive equilibria until at 
very high levels of adult mortality the boundary of the 
stability region is crossed, which leads to an invariant 
loop. An increase in the birth rate to the experimentally 
determined value of b = 1 1.68 (see Table 1) alters the 
system's behavior (Fig. 4B). At very low values of 
mortality there are stable positive equilibria, but as 
adult mortality is increased stable equilibria bifurcate 
to stable 2-cycles. Still higher rates of mortality yield 
a very small region of multiple attractors (0.357 :S !La 
:S 0.363) where stable equilibria coexist with stable 
2-cycles. As !La increases, the stable positive equilibria 
persist while the stable 2-cycles disappear. At high val
ues of adult mortality there is a bifurcation to an in
variant loop. In the third example, with b = 20 (Fig. 
4C), there are stable 2-cycles until !La = 0.628. For 
0.628 :S !La :S 0.723 there occur multiple attractors: 
initially stable 2-cycles together with stable fixed 
points followed by 2-cycles co-occurring with invariant 
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FIG. 2. Bifurcation diagrams for the LPA model (Eqs. 1-
3), with no larval cannibalism of eggs, using adult mortality, 
!Lao as the bifurcation parameter. In these examples r = 9 
(case D in Fig. 1). In example (A) we set b = 20. As fLa 
increases there is a bifurcation from a stable fixed point at
tractor to an invariant loop as the boundary defined by b = 
b/(fLa) is crossed. In example (B) we set b = 35. As fLa 
increases there is a bifurcation to a 2-cycle as the boundary 
defined by b = b2(fLa) is crossed. 

loops. These multiple attractors are explained by a 
"subcritical bifurcation" of 2-cycles from the equilib
rium at the point !La = 0.628, which gives rise to a 
branch of unstable 2-cycles for f.La > 0.628. This branch 
"turns around" at !La = 0.723 where a saddle-node 
bifurcation occurs, giving rise to large-amplitude 2-cy
cles for f.La < 0.723 (Fig. 4). For f.La > 0.723 the dy
namics are quite complex. 

The LPA model (Eqs. 1-3) incorporates a charac
teristic time scale, namely, that larvae at time t become 
pupae at time t + I, which, in turn, emerge as new 
adults at time t + 2. This time scale is experimentally 
testable and can be visualized in the simulated time 
series (Fig. 5). In the case of the 2-cycle there are two 
typical sequences: high numbers of larvae (L, = 325), 
pupae (Pr+ 1 = 158), and new adults (A,+ 2 = 118) and 
low numbers of larvae (L, = 18), pupae (P,+ 1 = 9), and 
new adults (A,+ 2 = 106). In the case of a stable point 
attractor, the time scale combines with the stage inter
actions to yield constant animal numbers (Fig. 5). 
While more complex, aperiodic cycles are still bound 
by the basic biology of the beetle. Larval numbers at 
time t in this case are still followed by a corresponding 

group of pupae at time t + I and so on; the stage 
interactions on the characteristic time scale produce the 
irregular, unpredictable behavior of aperiodicity or 
"chaos" (Fig. 5). 

There is an important final point to be made about 
the stable equilibria of our model Eqs. 1-3. "Almost 
all" orbits that approach a stable equilibrium do so in 
an oscillatory manner. This is proved analytically by 
showing that the cubic polynomial characteristic equa
tion for the eigenvalues of the Jacobian obtained from 
Eqs. 1-3 by linearization at a stable equilibrium can 
never have three positive real roots between 0 and I. 
Thus, there is always at least one negative real eigen
value between -I and 0 or a pair of complex conjugate 
eigenvalues of magnitude < 1. In either case this fact 
implies that orbits near the equilibrium have either a 
"period two" damped oscillation or an aperiodic 
damped oscillation (except for at most a two-dimen
sional manifold of orbits embedded in three-dimen
sional phase space). Thus, in the stable equilibrium 
regions of Figs. 1 and 3 orbits will generally exhibit 
transitory damped oscillations in their approach to the 
equilibrium. While these damped oscillations will be 
mild for parameter values near the lower boundary of 
the stability region, adjoining the extinction region, 
they will be pronounced for parameter values near the 
2-cycle and the invariant loop bifurcation boundaries. 
It follows that transient behavior might make sustained 
oscillations indistinguishable from slowly damped 
equilibration for orbits viewed over finite lengths of 
time. Consequently, the bifurcation boundaries, which 
are theoretically sharply defined, become blurred from 
a practical point of view. 

25 
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FIG. 3. Stability boundaries for the LPA model (Eqs. 1-
3) for parameter values based on the experimental data (Table 
1, all). The asterisk locates the estimated values of b = 11.68 
and !La = 0.1108. The elongated closed curve (-- -) repre
sents a 95% joint confidence region for b and !La based on 
the profile likelihood. 
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TABLE I. Maximum likelihood (ML) and conditional least squares (CLS) parameter estimates for the three-state-variable 
Tribolium model. 

Replicate 

Para-
A B c D All* 

meter ML CLS ML CLS ML CLS ML CLS ML 95% CI 

b 19.8495 23.3688 15.4928 I 1.2483 5.5380 5.3422 9.1323 7.2024 11.6772 (6.2, 22.2) 
J.La 0.0959 0.0934 0.1002 0.0930 0.1477 0.1468 0.1034 0.1099 0.1108 (0.07, 0.15) 
J.l-1 0.4725 0.4726 0.5009 0.5014 0.5082 0.5082 0.5647 0.5646 0.5129 (0.43, 0.58) 
c,a 0.0157 0.0175 0.0127 0.0087 0.0059 0.0044 0.0094 0.0068 0.0110 (0.0040, 0.0 I 80) 
c,, 0.0100 0.0098 0.0100 0.0105 0.0073 0.0080 0.0079 0.0080 0.0093 (0.008 I, 0.0 I 05) 
Cpa 0.0195 0.0198 0.0168 0.0174 0.0179 0.0180 0.0168 0.0162 0.0178 (0.0154, 0.0207) 

*The 95% confidence intervals (cl) were calculated from profile likelihoods. The ML estimates of the variances and 
covariances (matrix !) of the random elements are &- 11 = 0.2771, &- 12 = 0.02792, 6- 13 = 0.009796, 6-22 = 0.4284, &-23 = 
-0.008150 and &-33 = 0.01 I 12. 

STATISTICAL METHODS 

Stochastic model 

In this section, we describe our approach to con
necting the LPA model with time series data. The ap
proach can be used in conjunction with many other 
difference equation models of population dynamics, 
and so we treat the topic in some detail. Interested 
readers should also consult Ludwig and Walters ( 1989), 
Hilborn and Walters (I 992), and Carpenter eta!. ( 1994) 
for alternative approaches, particularly for situations 
involving observation errors. 

In order to conduct any statistical inferences, the 
deterministic difference equations must be converted 
to stochastic difference equations. The model must in
clude a probabilistic portion that specifies how the vari
ability in the data arose. For the LPA model (Eqs. 1-
3), adding noise on a logarithmic scale produces the 
following stochastic model: 

L,+ 1 = bA,exp(-c,aA,- Ce~L, + E 1,), (16) 

P,+, = L,(l - fL1)exp(E2,), (17) 

A,+ 1 = [P,exp(-cpaA,) + A,(1 - fLa)]exp(£3,). (18) 

Here [£,, E2, £ 3,]' = E, is a random vector and is 
assumed to have a trivariate normal distribution with 
a mean vector of 0 and a variance-covariance matrix 
of I. Covariances among £ 1,, E2,, and £ 3, at any given 
time t are assumed (and represented by off-diagonal 
elements of I), but we expect the covariances between 
times to be small by comparison. Thus we assume that 
E 0, E 1, ••• are uncorrelated. 

The stochastic construction represented by Eqs. 16-
18 has a number of statistical advantages. First, on a 
logarithmic scale the model is of the general form 

W,+, = h(W,) + E, (19) 

where W, = [In L, In P,, In A,]' is the column vector 
of log-transformed state variables, h(W,) = [In· 
{bA,exp(-c,,;\,- Ce~L,)}, In{(l - !L1)L,}, ln{P,exp(-cP,;\,) 
+ (I - !La)A,} ]' is a column vector of functions, and 
E, has a multivariate normal (0, I) distribution. A sto
chastic model of this form is a type of multivariate, 

nonlinear, autoregressive model. Development of sta
tistical methods for nonlinear autoregressive models 
(estimation, testing, evaluation) has received much at
tention in recent years (Tong I 990). Second, the non
linear map of the deterministic model on the logarith
mic scale is preserved in the conditional expected val
ues of In Lr+,, In P,+ 1, In A,+, given values of L,, P,, and 
A,: 

E (In L,+ 1 I L, = 1,, P, = p,, A, = a,) 

= ln[ba,exp(- ceaat - cell,)], (20) 

E (In P,+,IL, = 1,, P, = p, A,= a,) 

= ln[(l - !l-1)1,], (21) 

E (In A,+ 1 IL, = 1, P, = p,, A,= a,) 

= ln[p,exp( -cpaa,) + (1 - fLa)a,]. (22) 

Thus the stochastic version retains the essential dy
namical properties that we described in the Mathe
matical models section. Other statistical advantages are 
that the model is easy to simulate and that parameter 
estimates are straightforward to compute from data. 

The stochastic construction has biological advantag
es as well. First, the noise structure is realistic. Ecol
ogists have drawn a distinction between demographic 
(intrinsic chance variation among individuals in the 
timing of births and deaths) and environmental (chance 
variation from extrinsic sources affecting many indi
viduals) fluctuations in populations (see May 1974b, 
Shaffer 198 I, Simberloff 1988). Models with noise ad
ditive on a logarithmic scale correspond to environ
mental-type fluctuations (Dennis et a!. 199 I). At the 
large sizes typical of Tribolium cultures, we expect the 
variability component due to environmental fluctua
tions to outweigh the component due to demographic 
fluctuations (Dennis and Costantino 1988). Second, the 
model allows for covariance of fluctuations in larvae, 
pupae, and adults in a given time period, as described 
by the covariance of the elements in E,. A bad/good 
week for adults is likely related to having a bad/good 
week for larvae, etc. Autocovariances of the noise el-
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there is a bifurcation from a stable fixed-point attractor to an 
invariant loop as the stability boundary is crossed at fLa = 
0.876. Case (B) represents the estimated value of b = I I .68. 
There is a bifurcation to a 2-cycle at a small value of fLu = 
0.011. As adult mortality increases, the population reenters 
the region of parameter space where the positive equilibria 
are stable (see Fig. 3). However, there is a narrow interval 
0.357 < fLa < 0.363 where a stable 2-cycle and fixed-point 
equilibria coexist, separated by an unstable 2-cycle (---). 
In case (C) we set b = 20. In this case, when the population 
reenters the region of stable equilibria (at fLa = 0.628) a 
branch of unstable 2-cycles bifurcates to the right (-- -). 
This branch "turns around" at fL, = 0.723 where a saddle
node bifurcation occurs, creating the stable large-amplitude 
2-cycles shown in (C). In the meantime, prior to fLa = 0.628 
the population crosses the equilibrium stability boundary at 
fLa = 0.689 where stable invariant loops bifurcate from the 
equilibria. This complicated scenario creates a region 0.628 
< fLa < 0.723 of multiple attractors. Specifically, there co
exists stable equilibria and stable 2-cycles for 0.628 < fLa < 
0.689 and stable invariant loops and stable 2-cycles for 0.689 
< fLa < 0.723. For larger values of b the dynamics are even 
more complex. 
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FIG. 5. Simulated time series corresponding to the three 
classes of behavior indicated in Figs. 3 and 4. Parameters are 
based on the experimental data (Table I, all). Case (A) rep
resents the estimated value of fL, = 0. I I 08, which produces 
a stable 2-cycle. In case (B) we set fLu = 0.6, which results 
in a stable equilibrium. In case (C) we set fLa = 0.9, which 
yields an aperiodic cycle. 

ements through time, though, are not expected to be 
important compared to the covariances between the el
ements within a time, provided the underlying dynam
ics (deterministic equations) are specified correctly. Fi
nally, the different scales of variability for larvae, pu
pae, and adults are accounted for through the param
eters on the main diagonal of the variance-covariance 
matrix I. 

Likelihood function 

The stochastic LPA model (Eqs. 16-18) provides an 
explicit likelihood function. A likelihood function 
gives the chance that an outcome of a proposed sto
chastic mechanism would result in the observed data, 
relative to all other possible outcomes. A likelihood 
function is a fundamental tool in statistical inference 
(see Stuart and Ord 1991) and represents the crucial 
connection between model and data. Data for a partic
ular Tribolium population are a realization of the joint 
stochastic variables L1, P1, and A 1• The data take the 
form of a trivariate time series: (!0 , p0 , a 0), (l,, p 1, a,), 
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... , (lq, pq, aq) (see Fig. 7). Let w, denote the column 
vector of observations at time t: w, = [In !,, In p,, In 
a,]'. Suppose e denotes the unknown parameters in the 
functions in h(-) of Eq. I 9 (that is, the parameters in 
the deterministic model equations). Additional un
known parameters are in the variance-covariance ma
trix, 'l:. The likelihood function, L(6, I), is given by 

q 

L(6, I)= ll p(w,lwt-1), (23) 
t=l 

where p(w, I w,_ 1) is the joint transition probability den
sity function (pdf), that is, the joint pdf for W, con
ditional on W,_ 1 = w,_ 1 and evaluated at w,. It is a 
multivariate normal pdf with a mean vector of 
h(wH) and a variance-covariance matrix of I: 

p(w, I w,_l) = III-112(21T)-312 

· exp[ -(w,- ht-I )''l: - 1(w,- ht-I)/2], (24) 

where h,_ 1 denotes h(w,_ 1). Most of the actual statistical 
calculations utilize the log-likelihood given by 

q 

In L(6, I) = LIn p(w,l w,_ 1) 
t=l 

-q(3/2)In(21T) - (q/2)Iniii 

q 

- (1/2) L (w,- h,_ 1)'I- 1(w,- h,_ 1). 
t=l 

(25) 

Maximum likelihood estimates 

Maximum likelihood (ML) estimates of parameters 
in 6 and I are those values that jointly maximize L(6, 
I), or In L(6, I). No closed formulas for such estimates 
exist, although it can be shown that the ML estimates 
of the parameters in I can be written in terms of the 
ML estimates of parameters in 6 (see paragraph con
taining Eq. 34 for formula). The ML estimates of pa
rameters in 6 must be obtained numerically for any 
particular data set. We have found that maximizing the 
log-likelihood using the Nelder-Mead simplex algo
rithm (see Olsson and Nelson 1975, Press et a!. I 986) 
is convenient, reliable, and easy to program. The al
gorithm only requires a subroutine to evaluate the log
likelihood (Eq. 25) for any particular set of parameter 
values. 

ML estimates for the stochastic LPA model (Eqs. 
16-18) have desirable statistical properties. ML esti
mates are asymptotically unbiased (bias approaches 
zero as sample size increases), asymptotically efficient 
(variance approaches theoretical lowest bound as sam
ple size increases), and asymptotically normally dis
tributed (allowing construction of approximate confi
dence intervals) (see Stuart and Ord 1991). For non
linear time series models, the sample size is the number 
of observations in the time series, and the theorems 
about ML properties generally require that the sto-
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FIG. 6. Response surfaces in the LPA model (Eqs. 1-3). 
Plot (A) shows how larval numbers at timet+ I are a function 
of the number of larvae and adults at timet. Plot (B) shows 
how adult numbers at time t + I are a function of the number 
of pupae and adults at time t. On a logarithmic scale, these 
surfaces represent predicted values for one-step transitions. 

chastic model have a statistical equilibrium in the form 
of a stationary distribution (Tong 1990). A nonlinear 
autoregressive model of the form of Eq. 19 will typi
cally have a stationary distribution when every trajec
tory of the underlying deterministic model w,+ 1 = h(w,) 
has a bounded attractor. It is easy to demonstrate with 
simulations that the stochastic LPA model possesses a 
stationary distribution (see Discussion section, Fig. 
22). 

However, the properties of ML estimates do not hold 
if the model is a poor description of the underlying 
stochastic mechanisms producing the data. In partic
ular, if the noise vector E, in Eq. 19 does not have a 
multivariate normal distribution, or is correlated 
through time, then the ML estimates could be biased. 
Since we aim to identify dynamic behavior by esti
mating where the parameters in 6 are in parameter 
space (Fig. 3), an alternative estimation method that 
yields more robust parameter estimates is useful. 

Conditional least squares estimates 

Conditional least squares (CLS) estimates relax most 
distributional assumptions about E, (Klimko and Nel
son 1978, Tong 1990). As such, we use CLS estimates 
as a check on the ML estimates. If the normality as
sumptions are reasonable, both ML and CLS estimates 
are consistent (converge to the true parameters as sam-
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FIG. 7. Time series data (e) and one-step forecasts 
(0) for control replicate A of Desharnais and Liu (I 987). 
Solid lines connect the observed census data. Dashed lines 
connect the observed numbers at time t with the forecast 
at timet+ I. 

pie size increases) and thus should be similar. CLS 
estimates remain consistent, though, even if E, is non
normal and autocorrelated, provided the stochastic 
model has a stationary distribution (Klimko and Nelson 
1978, Tong 1990). 

CLS estimates for multivariate time series models 
have not received much study; the estimates are typi
cally described only for univariate models (Tong 1990). 
Fortunately, in the LPA model, CLS estimates reduce 
to 3 univariate cases, because any given parameter 
(e.g., f.L1) does not appear in more than one model equa
tion (Eq. 17). CLS estimates are based on the sum of 
squared differences between the value of a variable 
observed at timet and its expected (or one-step fore
cast) value, given the observed state of the system at 
time t - I. For the LPA model, there are three such 
conditional sums of squares: 

q 

L {In l, 
t=l 

450 
A 

400 I' 
I 

350 
I' 

l1l 300 
< 
> 250 
a: 
< 200 
..J 150 

100 

50 

0 
250 

B 

200 

l1l 

< 
150 

0.. 
:::> 
0.. 100 

50 

0 

150 

125 

til 100 
.... 
..J 
:::> 75 
0 
< 50 

25 

0 
0 5 10 15 20 

TIME 

FIG. 8. Time series data (e) and one-step forecasts 
(0) for control replicate B of Desharnais and Liu (1987). 
Solid lines connect the observed census data. Dashed lines 
connect the observed numbers at time t with the forecast 
at timet+ I. 

.f {In p, - ln[(l - f.L 1)l,_t] )2, (27) 
t=l 

q 

Qi93) = L {In a, - ln[pt-texp( -craa,_ 1) 
t=l 

(28) 

Here 9 1 = [b, c,1, c,a]', 92 = f.L1, and 63 = [cpa• ILal' are 
the parameter vectors from the individual model equa
tions (Eqs. 16-18). The conditional sums of squares 
are constructed on the logarithmic scale because that 
is the scale on which we assume noise is additive (Eq. 
19). The conditional one-step expected values appear
ing in Eqs. 26-28 are from Eqs. 20-22. 

CLS estimates minimize the conditional sums of 
squares (Eqs. 26-28). Three separate numerical mini
mizations are required, one for each of the sums of 
squares. We find the Nelder-Mead simplex algorithm 
convenient. Alternatively, the CLS estimates can be 
obtained by minimizing Q 1, Q 2, and Q3 in turn with a 
standard nonlinear regression package. The estimates 
of the parameters in the variance-covariance matrix of 
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connect the observed numbers at time t with the forecast 
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E, are then found from the sums of squares and cross 
products matrix constructed using the conditional re
siduals (observed log-scale variable at time t minus 
estimated expected value given variables at time t -
I). 

Hypothesis testing and confidence intervals 

One test of a dynamic model is that we would expect 
replicate populations to have the same parameter val
ues. Laboratory Tribolium populations come as close 
as is practical in population biology to being replicates, 
provided careful laboratory protocol is followed. Under 
such circumstances, we can test whether or not the 
parameter estimates obtained by fitting the model sep
arately to the replicates could have arisen from one 
common model with identical parameters. 

The test is a likelihood ratio test (Stuart and Ord 
1991 ). Suppose r replicate populations are cultured and 
censused. The result would be r multivariate time se
ries. It is not necessary that each culture be followed 
for the same total length of time. The log-likelihood 
for the j'h replicate, denoted In L/(J1, I), is given by 
Eq. 25, except with q1, wJt, and h}(I-IJ substituted for q, 
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(0) for control replicateD of Desharnais and Liu (1987). 
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connect the observed numbers at timet with the forecast 
at timet+ I. 

w, and hr-1. Here% is the sample size for replicate j, 
wJt is the vector of observed logarithmic population 
sizes for the p replicate at timet, and h}(r-l) is the vector 
of conditional expected values for ~~given ~(r-IJ = 
w1u_ 11 (Eqs. 20-22). The joint log-likelihood for all r 
replicates, provided they are independent replicates, is 
the sum of the individual log-likelihoods: 

I 

In L(9 1, ••• , 9,; I~r ... , I,) = L In L/91, I). (29) 
}~1 

Here 91 and I 1 contain the parameters for the j'h rep
licate. 

The null hypothesis of the test is that the r replicates 
are trajectories from the stochastic model (Eqs. 19) 
with identical parameters: 

H0: 91 = 92 = ... = 9, = 9, 
I1 = I 2 = ... = I, = I. (30) 

The alternative hypothesis is that one or more param
eters among the replicates is different. 

The test requires ML parameter estimates under both 
null and alternative hypotheses. For the alternative hy
pothesis, the model is fitted individually to each rep-
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TABLE 2. Residual analyses. First (p 1) and second-order (p2) sample autocorrelations and Lin-Mudholkar (z) test statistic 
for normality. 

Test Replicate 
sta- A B c tis-

D 

tic Larvae Pupae Adults Larvae Pupae Adults Larvae Pupae Adults Larvae Pupae Adults 

p, -0.04 0.05 0.30 -0.29 -0.07 0.05 0.00 0.18 0.34 -0.20 -0.38 0.03 
P2 -0.12 0.15 -0.45 0.54* 0.56 -0.48* -0.16 0.16 -0.17 0.06 0.13 0.08 
z 1.88 2.70** 1.85 0.81 -0.85 -1.21 1.68 2.20** 2.08** 0.32 0.70 -0.63 

* Significant (0.05 level of probability) j'" order autocorrelation if Jp J exceeds 0.46. 
** Significant (0.05 level of probability) departure from normality if Jzl exceeds 1.96. 

licate (that is, Eq. 25 is maximized), to obtain the ML 

estimates 9,, ... , 9, :.i,, ... , :irA substitution of the 
ML estimates into Eq. 29 produces the maximized log
likelihood under the alternative hypothesis: 

In LA= In L(0 1, ••• , 0,; :.i,, ... , :.i,). (31) 

For the null hypothesis, we substitute 9 for 9 1, 92, 

... and 9, and I for I,, I 2, .•• and I, in the log-

likelihood (Eq. 29). Then, ML estimates 9 and i are 
found by maximizing Eq. 29. The maximized log-like
lihood under the null hypothesis then becomes 

In LN = In L(O, ... , 0; i, ... , :.i). (32) 

If the null hypothesis is true, the likelihood ratio test 
statistic given by 

(33) 

will have an approximate chi-square distribution with 
12(r - 1) degrees of freedom (the number of param
eters estimated under the alternative hypothesis minus 
the number of parameters estimated under the null hy
pothesis). The conditions for the chi-square approxi
mation to hold are the same as the conditions for as
ymptotic efficiency of the ML estimates: stationary dis
tribution, large sample size, and appropriateness of the 
model itself. 

One of the main objectives of our analyses is to 
classify the dynamical behavior of the system. We do 
this by locating the ML estimate of 9 in parameter space 
and identifying the type of behavior (stable point equi
librium, 2-cycles, and so on) displayed by the deter
ministic LPA model (Eqs. 1-3) at those parameter val
ues. Naturally, there is uncertainty attached to the pa
rameter estimates. However, confidence intervals for 
individual parameters, and joint confidence regions for 
sets of parameters, are straightforward to compute with 
likelihood methods. 

We use confidence intervals and regions based on 
the profile likelihood. Profile likelihood intervals re
quire much computing, but can be applied to many 
different types of statistical models (see McCullagh and 
Neider 1989: 254, Venzon and Moolgavkar I 988). Pro
file likelihood intervals are only approximate, that is, 
their coverage frequencies asymptotically converge to 
95% as the sample size (time series length) becomes 

large. The intervals are usually asymmetric, and typ
ically have better small-sample coverage frequencies 
than do symmetric confidence intervals arising from 
the matrix of second derivatives of the log-likelihood 
function. 

The profile likelihood intervals and regions are ob
tained by inverting a likelihood ratio test. Suppose (3 
is a parameter (or vector of parameters) of interest in 
the vector 9, and suppose tjl is the vector of all the 
other parameters: 9 = [(3, ljs]'. We write the likelihood 

function as L(9, I) = L((3, tjl, I). Let ~P and ip denote 
the values of ljJ and I formed by maximizing the like-

lihood for a fixed value of (3. Then L((3, ~P' :.ip) taken 
as a function of (3 is the "profile likelihood"; evalu
ating this function requires a separate maximization for 
each value of (3. The 95% profile likelihood interval 
(or region) is the set of all values of (3 for which -2[ln 

L((3, ~P' :.ip) - In L(O, :.i)] :S: X2
005(TJ), where X2

0os(T]) 
is the 95th percentile of a chi-square distribution with 
11 degrees of freedom, and 11 is the number of param
eters in (3 [X2

005(TJ) = 3.843 if (3 represents just one 
parameter]. The interval is the set of all (3 values for 
which a likelihood ratio test on (3 would not reject the 
null hypothesis. 

Model evaluation 

Model evaluation procedures center on the residuals 
defined as the differences of the logarithmic state vari
ables and their one-step (estimated) expected values: 

(34) 

Here e, is a vector of residuals for In 1,, In p,, and In a, 
in a population at time t, and h denotes the functions 
in h (Eqs. 20-22) evaluated at the ML parameter es
timates. The ML estimate of the matrix I, incidently, 

can be written in terms of the residuals as :.i) = RR'Jq, 
where R = [e 1, e2, ••• , eq] is a matrix with residual vectors 
as columns. 

If the model fits, then e 1, e 2, ••• , eq should behave 
approximately like uncorrelated observations from a 
trivariate normal distribution. Unlike the original noise 
vectors, the residual vectors are, in fact, correlated, and 
the normality is approximate, with the quality of the 
approximation varying among different nonlinear time 
series models. Thus, autocorrelation tests and normal-
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ity tests should be used only as rough guides to po
tential areas in which the model is not adequate. Cox 
and Small (I 978) provide some useful approaches to 
testing multivariate normality. A useful scan for out
liers from multivariate normality is to calculate the 
quadratic form for each vector residual: 

(35) 

If e1 is indeed an observation from a multivariate nor
mal (0, l:) distribution, then s 1 is an observation from 
a chi-square distribution with 3 df (e.g., Cox and Small 
1978, Seber I 984). An estimate of I, such as the ML 

estimate i or the moment estimate i = RR'I(q - 1), 
must be substituted for I in Eq. 35; the chi-square 
distribution in practice is thus only approximate. The 
residuals for each individual state variable should have 
small autocorrelations and approximate univariate nor
mal distributions. Tests such as the Lin-Mudholkar test 
for (univariate) normality against asymmetric alterna
tives (Lin and Mudholkar I 980, Tong 1990: 324) are 
useful supplements to standard normal probability 
plots. Standard univariate autocorrelation tests (Tong 
I 990: 324) are informative as well. 

Failure of the model to describe some portions of 
the data can have two main causes. First, the distri
butional assumptions about the noise vector E 1 in the 
model (Eq. 19) could be incorrect. Under such circum
stances, CLS estimates are probably superior and 
should be used instead of ML estimates. Second, the 
underlying dynamics of the system, as expressed in the 
deterministic model (Eqs. 1-3) could be incorrectly 
specified. A valuable tool for studying this possibility 
is to plot the map and one-step transitions together 

using interactive three-dimensional plotting software. 
The underlying deterministic map (Eqs. 1-3) gives L,+ 1 

as a function of L1 and AI' P 1+ 1 as a function of L1, and 
Ar+l as a function of P1 and A1 (Fig. 6). On the loga
rithmic scale, these functions are essentially response 
surfaces representing the expected values of In Lr+l• In 
Pr+l• In Ar+l given the values of these variables at time 
t. Each three-dimensional graph of surface and obser
vations can be rotated interactively to detect areas 
where the surface is not adequately describing the data. 

BIOLOGICAL EXPERIMENTS 

Experimental protocol 

We now turn our attention to the data and to the 
application of the procedures just described to connect 
the mathematical model (Eqs. 1-3) with the time series 
observations. First we look at the experimental pro
tocol. 

Desharnais and Costantino (1980) initiated 13 cul
tures of the corn oil sensitive strain of Tribolium cas
taneum Herbst with 64 young adults, 16 pupae, 20 large 
larvae, and 70 small larvae. Each population was con
tained in a half-pint milk bottle (237 ml) with 20 g of 
corn oil media (90% wheat flour, 5% brewer's yeast, 
and 5% liquid corn oil) and kept in an unlighted in
cubator at a temperature range of 33 ± 1 oc and a 
relative humidity range of 56 ± 1 I%. Every 2 wk all 
stage classes, except eggs, were censused and all stage 
classes, including eggs, were placed in fresh media. 
This procedure was followed for 38 wk. After 10 wk 
of culture, each population was randomly assigned to 
one of four treatments. Three of the treatments, each 
with three replicates, involved demographic perturba-
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tions and one treatment, with four replicates, served as 
a control. The three demographic perturbations were: 
(1) 100 adults added, (2) all adults removed, and (3) 
all immatures removed. The control cultures were not 
disturbed. The census data are given in Table 2 of De
sharnais and Liu (1987). 

Parameter estimates obtained 
from control replicates 

We fitted the stochastic model (Eqs. 16-18) to the 
time series of the four control replicates (see Figs. 7-
10). The maximum likelihood and conditional least 
squares parameter estimates are given in Table 1. The 
CLS estimates were obtained by minimizing the con
ditional sums of squares (Eqs. 26-28) using the Nelder
Mead method. The ML estimates were calculated by 
maximizing Eq. 25 using the Nelder-Mead method. 
Starter values for the iterative ML calculations were CLS 
estimates. The ML calculations converged for other 
starter values as well. The ML and CLS estimates are 

Pt 

similar, which suggests that the distributional assump
tions about the noise vector E, in Eq. 19 are reasonable. 

The observed time series together with the one-step 
predictions, calculated from Eqs. 20-22 using the ML 
parameter estimates, are sketched in Figs. 7-10. Since 
the one-step forecasts are conditional predictions of 
animal numbers at timet + 1 given the actual numbers 
at time t, we attempted to incorporate that idea into the 
data presentation. In each figure solid lines connect the 
observed census data (e). Dashed lines connect the 
observed numbers at time t with the forecast (0) at 
time t + 1. The accuracy of a particular forecast can 
be judged by comparing the prediction at time t + 1 
with that actually observed at time t + 1. Keep in mind 
that the one-step forecast, say, for the number of feed
ing larvae at time t + I is conditional on both the 
number of larvae at time t and the number of adults at 
time t, and not on just the number of larvae at time t. 
The graphs associate the data at time t with a forecast 
at time t + 1 and allow a visualization of how well 
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prediction and observation agree. In general, the graphs 
reveal a close association between the one-step fore
casts and the actual animal counts. 

Theoretically, these four populations should be aris
ing from the same model with the same parameter val
ues. We tested the hypothesis that the parameters are 
identical for all four populations (null) vs. the hypoth
esis that the parameter values are different between 
populations (alternative). We used the likelihood ratio 
statistic (Eq. 33) for the test. For these data, we failed 
to reject at the 0.05 significance level the null hypoth
esis that the parameters of the four control populations 
are identical (G2 = 49.6, df = 36, P = 0.065). 

The ML parameter estimates for the model fitted to 
all four control populations (Table I, all) place the 
system in a zone of stable 2-cycles (asterisk, Fig. 3). 
The ML location of the system in parameter space is 
but a point estimate: how much uncertainty is attached 
to the estimate? Depicted in Fig. 3 is a dashed, cigar
shaped closed curve representing a 95% confidence 
region for the key parameters b and f.La· The region was 
calculated with the profile likelihood method. The like
lihood function was maximized for each point on a I 00 
X I 00 grid of b and f.La values. The dashed curve is a 
contour indicating where the likelihood ratio test sta
tistic for two parameters equals 5.992 (the approximate 
95th percentile of a chi-squared distribution with 2 df). 

20 

Note that most of the confidence region lies within the 
zone of 2-cycles. However, the tip of the region extends 
into the zone of stable point equilibria, in an area where 
the system undergoes damped oscillations. 

Distinguishing damped oscillations from sustained 
oscillations in a noisy environment has always been 
problematic. Our analysis suggests that while there are 
plausible values of b and J.La leading to damped oscil
lations, a far larger region of plausible b and f.La values 
predicts sustained oscillations. The uncertainty stems 
primarily from the parameter b (see univariate confi
dence intervals, Table I). In future experiments, the 
value of b (larvae recruitment) could be estimated in
dependently with more precision. Note that we with
held data from nine additional populations (three treat
ments, three replicates per treatment) from the param
eter estimation process, in order to evaluate the pre
dictive capabilities of the model (see Model evaluation: 
demographically perturbed replicates section). 
Including the nine additional time series in the ML 
estimates narrows considerably the confidence inter
vals for all the model parameters. 

Model evaluation: control replicates 

Is the noise structure assumed in the stochastic LPA 
model (Eqs. 16-18) adequate? Table 2 displays results 
of analyzing residuals of the combined model ("all," 
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data. The one-step forecasts (dashed-line projections) are 
based on the parameter estimates obtained from the control 
cultures. 

Table 1) for univariate normality. First- and second
order autocorrelations and the Lin-Mudholkar normal
ity statistic were calculated for each state variable in 
each of the replicates (A, B, C, D) used to estimate 
parameters. Replicate B revealed some second-order 
autocorrelation, but no first-order autocorrelation. Mild 
normality departure is displayed by the pupae of rep
licates A and C, and the adults of replicate C (Table 
2). 

Overall, the residuals conform adequately to the uni
variate normal model. Quantile-quantile (Q-Q) plots of 
the logarithmic residuals for larvae, pupae, and adults 
(Fig. 11 A-C) reveal that the departures from normality 
indicated in Table 1 are due to a small number of out
liers. In Fig. liD, the multivariate normal residuals 
(quadratic forms, Eq. 35) are displayed in a chi-square 
Q-Q plot. The multivariate normal model describes the 
data reasonably well, except for four outliers (the four 
points on the extreme right of Fig. I 1 D). The four 
outliers (replicate A, t = I; replicate B, t = I; replicate 
B, t = 17; replicate C, t = 5) are evident in the original 
data and one-step plots (Figs. 7-10). As noted earlier, 
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Fro. 15. Time series data (e) and one-step forecasts (0) 
for replicate C of Desharnais and Liu ( 1987) where I 00 adults 
were added at t = 5. Solid lines connect the observed census 
data. The one-step forecasts (dashed-line projections) are 
based on the parameter estimates obtained from the control 
cultures. 

the deterministic LPA model can be viewed as a re
sponse surface representing the expected value of the 
logarithm of larval, pupal, and adult numbers at time 
t + 1 given the values of these variables at timet (Eqs. 
20-22). The differences between the observed and 
model-predicted number of animals (residuals) are 
graphed in Fig. 12. The overall magnitude of the de
viations is not large; furthermore, the residuals do not 
seem to vary systematically with the sizes of the state 
variables. 

Model evaluation: demographically 
perturbed replicates 

Can the model successfully forecast larval, pupal, 
and adult numbers for populations that were not used 
to estimate the parameters? One-step predictions, based 
on the parameter values obtained from the control cul
tures (Table 1), are compared with the observed time 
series data for nine demographically perturbed popu
lations in Figs. 13-21. In the first treatment, 100 adults 
were added to each of the three cultures following the 
census at week 10 (t = 5). The model (Figs. 13-15) 
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FIG. 16. Time series data (e) and one-step forecasts (0) 
for replicate A of Desharnais and Liu (1987) where all adults 
were removed at t = 5. Solid lines connect the observed 
census data. The one-step forecasts (dashed-line projections) 
are based on the parameter estimates obtained from the con
trol cultures. 

appears to handle the added adults quite adequately. In 
the second treatment, all of the adults were removed 
after the week 10 census. The predicted number of 
adults at week 12 (t = 6) are in agreement with the 
observed numbers (Figs. 16-18). The forecasts of lar
val numbers at week 12 are not good; removing all 
adults means that the model predicts no larvae at week 
12, but larvae were observed. While the experimenters 
did remove adults they did not remove the eggs laid 
by those adults, consequently, larvae were observed at 
the next census. After this inconsistency between math
ematical model and experimental protocol, the model 
recovers to make accurate population forecasts for t ~ 
8. In the third treatment, all of the immature life stages 
(eggs, larvae, pupae) were removed (Figs. 19-21). The 
biology suggests a cascade of effects will follow. First, 
larval numbers at time t + I will be solely a function 
of adult numbers at time t. Second, no pupae will be 
observed at time t + 1, but this class will be present 
at t + 2. Finally, adult numbers at time t + 3 (6 wk 
following the removal of immatures) will increase. 
Each of these events are realized and the model sue-

450 

400 

350 

Ul 300 
< 250 > 
a: 200 < 
....1 150 

100 

50 

0 

250 

200 

Ul 
< 

150 
0. 
::I 

100 0. 

50 

0 

150 

125 

til 100 
1-
....1 
::I 75 
c 
<( 50 

25 

A 

B 

5 10 
TIME 

15 20 

FIG. 17. Time series data (e) and one-step forecasts (0) 
for replicate B of Desharnais and Liu (1987) where all adults 
were removed at t = 5. Solid lines connect the observed 
census data. The one-step forecasts (dashed-line projections) 
are based on the parameter estimates obtained from the con
trol cultures. 

cessfully predicts each event both qualitatively and 
quantitatively. The ability of the model to reflect the 
behavior of the demographically perturbed populations 
gives us added confidence that the deterministic equa
tions (Eqs. 1-3) capture the essential dynamical rela
tionships among the state variables. 

The prediction error analyses for each of the de
mographic treatments are summarized in Table 3. In 
the adults-added treatment, replicate A shows second
order autocorrelation by the larvae but no first-order 
autocorrelation, and replicate C reveals some first-order 
autocorrelation by adults. In the adults-removed treat
ment, replicate B shows some second-order autocor
relation by pupae. Departure from normality is dis
played in 10 of the 27 treatment time series: by pupae 
(replicate B) and adults (replicates A, B) in the adults
added treatment, by larvae (replicates B, C) and pupae 
(replicate A) in the adults-removed treatment, and by 
larvae (replicate C), pupae (replicate A, C), and adults 
(replicate C) of the immatures-removed treatment. The 
normality departures are mostly moderate and can be 
traced to a small number of outliers in each time series. 
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Recall that these are prediction error analyses, rather 
than analyses of residuals as in Table 2, since these 
cultures were not part of the parameter estimation pro
cess. Overall, the predictions support the stochastic 
LPA model. 

DISCUSSION 

The role of nonlinear demographic theory in ecology 
will ultimately be decided by tests with experimental 
data. If demographic models cannot yield quantitative 
predictions in well-studied laboratory and field sys
tems, it is unlikely that such models will yield con
vincing qualitative insights into any other ecological 
systems. The Tribolium system has been studied ex
tensively for over 60 yr and is a prime candidate for 
an attempt at a detailed mathematical understanding. 

Locating populations in 
model parameter space 

Consistent with earlier work (Chapman 1928, Lan
dahl 1955, Taylor 1965, Desharnais and Costantino 
1985, Hastings and Costantino 1987, 1991, Costantino 
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FIG. I 9. Time series data (e) and one-step forecasts 
(0) for replicate A of Desharnais and Liu (1987) where 
all immatures were removed at t = 5. Solid lines connect 
the observed census data. The one-step forecasts (dashed
line projections) are based on the parameter estimates ob
tained from the control cultures. 

and Desharnais 1991 ), we accept the hypothesis that 
the fluctuations in animal numbers observed in labo
ratory populations of beetles are due primarily to the 
nonlinear cannibalistic interactions among eggs, lar
vae, pupae, and adults. We arrive at this conclusion in 
the following way: first, by writing an explicit three
state-variable demographic model incorporating the 
major factors of the population biology of the beetle 
(specifically, birth, death, and cannibalism); second, by 
mathematical and numerical analyses of the model's 
dynamics; third, by incorporating a stochastic com
ponent in the model that provides an explicit likelihood 
function for estimating parameters from time series 
data; and fourth, by evaluating the full stochastic model 
using an independent data set and using statistical di
agnostic methods based on an analysis of residuals 
(one-step forecast errors). Culmination of this four-step 
process allows us to estimate the location of the pop
ulations in parameter space (Fig. 3). Specifically, for 
the data set studied here (Desharnais and Costantino 
1980) the populations are placed in the region of pa
rameter space that corresponds to stable 2-cycles. 
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the control cultures. 

Stochastic realizations 

In recent years, we have interpreted fluctuations in 
adult numbers as a stochastic equilibrium with a gam
ma stationary distribution (Costantino and Desharnais 
I 981, Dennis and Costantino 1988, Desharnais et a!. 
1990, Costantino and Desharnais 1991). Are the gam
ma model and the stochastic LPA model consistent with 
each other? The answer is yes, provided the underlying 
adult dynamics are either a stable point (Fig. 5B) or a 
stable cycle with oscillations of small magnitude (Fig. 
SA). Fig. 22 depicts a frequency histogram of adult 
numbers simulated from the stochastic LPA model. The 
time series was generated using the parameter values 
estimated from the laboratory populations ("all" in 
Table 1) and contains I 000 observations. As we have 
noted, the parameter values correspond to a 2-cycle of 
adult numbers. The histogram in Fig. 22 resembles a 
gamma probability distribution. The amplitude of the 
underlying 2-cycle fluctuations is small compared to 
the magnitude of the noise fluctuations and so the 
2-cycle is not evident in the histogram. Clearly, sta
tionary distributions provide limited information con-
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FIG. 21. Time series data (8) and one-step forecasts (0) 
for replicate C of Desharnais and Liu (1987) where all im
matures were removed at t = 5. Solid lines connect the ob
served census data. The one-step forecasts (dashed-line pro
jections) are based on the parameter estimates obtained from 
the control cultures. 

cerning the details of the fluctuations in animal num
bers. On the other hand, these distributions do provide 
a very practical quantitative assessment of the fre
quency of occurrence of particular population sizes. 
The adult numbers behave like a population with a 
growth rate that has a stable equilibrium but is per
turbed by environmental noise, precisely the conditions 
that lead to a gamma-like stationary distribution of 
population abundance (Dennis and Patil 1984). 

An important feature of our argument for the iden
tification of the deterministic dynamics in the presence 
of stochasticity is that the three-variable stochastic 
model allowed us to quantify the relative contribution 
of the stochastic component. The model diagnostic 
techniques used evaluate explicitly whether the as
sumed random element adequately describes the data. 
By incorporating a testable stochastic component into 
the model we are able to discern stable 2-cycle behav
ior. 

New experiments 

The ability to reliably locate populations in param
eter space opens the possibilities for many new ex-
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TABLE 3. Prediction error anlayses. First (p 1) and second-order (p2) sample autocorrelations and Lin-Mudholkar (z) tesl 
statistic for normality, calculated for each of the three replicates (A, B, C) of three demographic perturbation treatments 

Demographic perturbation treatment 

Adults added Adults removed Immatures removed 

A B c A B c A B c 
L, p, 0.37 -0.43 -0.06 0.04 -0.16 -0.14 -0.14 -0.15 -0.11 

P2 0.59* 0.28 0.18 -0.17 -0.22 -0.28 -0.19 -0.20 -0.07 
z 1.23 -0.24 -0.71 0.15 -2.86** -2.71** 1.50 -0.96 2.74** 

P, p, -0.38 -0.04 -0.01 -0.11 -0.08 0.14 -0.14 -0.24 -0.35 
P2 0.44 0.43 0.08 -0.24 0.51* -0.06 0.39 0.20 0.39 
z -0.84 -2.72** -0.11 -2.94** -0.36 -1.16 -2.19** 1.67 -2.29** 

A, p, 0.35 -0.01 0.51* 0.38 0.21 0.21 -0.39 0.23 -0.01 
P2 0.19 0.07 0.08 -0.09 -0.11 -0.11 -0.14 0.03 -0.11 
z 2.57** 2.65** -0.46 1.52 0.09 -0.67 0.27 -0.46 -3.77** 

* Significant (0.05 level of probability) j'h order autocorrelation if Ji>J exceeds 0.46. 
** Significant (0.05 level of probability) departure from normality if Jzl exceeds I .96. 

periments. The modern theory of nonlinear dynamics 
(i.e., bifurcation theory) provides guidance for the con
duct of a new phase of population research in which 
the rigorous statistical verification of experimentally 
designed shifts in dynamical behavior would provide 
convincing evidence for the relevance of nonlinear 
mathematics in population ecology, including the pos
sibility of chaos. For example, on the basis of Fig. 3, 
which was generated from a historical data set, exper
imentally increasing the rate of adult mortality should 
result in the disappearance of the oscillations in animal 
numbers: the dynamics change from a 2-cycle to a sta
ble fixed-point attractor. With an additional increase in 
adult mortality we expect aperiodic, "chaos-like" fluc
tuations in animal numbers. By applying our approach 
we should be able to document predicted transitions in 
dynamical behavior including transitions to chaos. 

CONCLUDING REMARKS 

The prospect of identifying nonlinear demographic 
behaviors in ecological systems continues to provoke 
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FIG. 22. Histogram of adult numbers for the stochastic 
LPA model simulated for 1000 time steps using the parameter 
values (Table I) and variance-covariance matrix estimated 
from the control cultures. The smooth curve represents a gam
ma probability density function fitted to the stochastic real
izations. 

debate. Ecologists are comfortable with the assertior 
that nonlinear systems can display limit cycles, mul· 
tiple attractors, and strange attractors, because the as· 
sertion is a mathematical fact. Ecologists for the mos 
part also agree that ecological relationships are fre· 
quently, perhaps largely, nonlinear. Particular nonlinea: 
behaviors, however, are tantalizingly difficult to pin t< 
any given, real ecological system. Ecological system! 
are complex: alternate explanations abound; data col 
lection is challenging; noise is prevalent. Are periodi< 
fluctuations observed in a system really limit cycle! 
caused by some intrinsic, identifiable mechanism, o 
are they caused by some unobserved external forces' 
Did a system get pushed into a different attractor, o 
have conditions assumed by the model simp!) 
changed? Is it chaos or is it noise? 

We believe that part of the difficulty stems from lacl 
of explicit connections between models and data, be 
tween theories and experiments. First, theoretical mod 
els in ecology tend to emphasize qualitative dynamics 
The end product of an investigation is a broad map o 
the phase-parameter space of a simplified deterministi1 
model, with the delimited regions governed by differen 
types of attractors. We presented such a study, of ; 
three-variable difference equation model of Triboliun 
life stages, in the second section of this paper. Becaus1 
of the highly nonlinear interactions of cannibalism, th1 
model has it all: extinction, stable points, periodic cy 
cles, aperiodic orbits, multiple attractors, and strang' 
attractors. Second, the laboratory or field data tend t< 
be collected for reasons other than testing a specifi, 
mathematical model. Data are precious, models an 
cheap. A well-designed empirical study often answer 
many questions and rules out many models. That 
previous Tribolium experiment provided, for our par 
ticular model, data for parameter estimates and separat, 
data for model evaluation, was a fortunate but inci 
dental aspect of the experiment. Third, theoretical ecol 
ogy has had a paradoxically weak statistical tradition 
Even if model and data are in concert, the mathematic2 
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ecology literature provides little guidance as to what 
to do with the data. The statistical interface between 
model and data that we reported here was helpful to
ward making theories more accountable to experi
ments. 
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