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Thyrotropin Receptor epitope and 
Human Leukocyte Antigen in Graves’ 
Disease
Hidefumi Inaba1*, Leslie J. De Groot2 and Takashi Akamizu1

1 The First Department of Medicine, Wakayama Medical University, Wakayama, Japan, 2 Department of Cellular and 
Molecular Biology, University of Rhode Island, Providence, RI, USA

Graves’ disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) 
receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain 
of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially 
immunogenic portion of TSHR. Both genetic factors and environmental factors con-
tribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, 
especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into 
antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide 
epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class 
II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells 
secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyper-
thyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes 
in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. 
Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating 
the immunological mechanisms. To date, linear or conformational epitopes of TSHR-
ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were 
reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the 
thymus, or in peripheral tolerance, such as regulatory T cells, could allow development 
of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been 
reported to be effective. We review and update the role of immunogenic TSHR epitopes 
and HLA in GD, and offer perspectives on TSHR epitope specific treatments.

Keywords: TSH receptor, HLA, Graves’ disease, epitope, anti-TSHR-antibody

inTRODUCTiOn

Autoimmune thyroid diseases (AITDs) are organ-specific autoimmune diseases with multiple 
etiologies (1) (Figure  1). Graves’ disease (GD) and Hashimoto’s thyroiditis (HT) are two major 
components of AITDs. When individuals having susceptible genetic background are exposed to 
environmental factors (e.g., iodine, smoking, infections, and stress, and others so far undisclosed), 
thyroid autoantigens break “self-tolerance” and AITDs develop (2). Thyroid autoantigens, such as 
thyroglobulin (Tg), thyrotropin (TSH) receptor (TSHR), thyroid peroxidase (TPO), and NIS have 
increased immunogenicity when they are iodinated, and glycosylated. Tg and TSHR have genetic 
polymorphisms that may predispose to GD (1). Specific polymorphisms of other genes [e.g., human 
leukocyte antigen (HLA), cytotoxic T-lymphocytes antigen (CTLA-4), CD40] are clearly associated 
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FiGURe 1 | Factors possibly contributing to the etiology of Graves’ disease (GD).
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with GD (3–6). GD is characterized by hyperthyroidism caused 
by stimulatory anti-TSHR antibodies (TRAb, TSAb, TSI) (7). 
TSHR peptide epitopes bound to HLA-class II are presented 
by antigen-presenting cells (APCs) to CD4+ T cells (Figure 2). 
Interaction by the complex of TSHR epitope, HLA-class II 
molecule, and T-cell receptor (TCR) is modified through bind-
ing of CD40 ligand to CD40 and of CTLA-4 to B7 (3–6). TSHR 
epitopes bound to HLA-class II presented on the surface of APC 
are the most crucial factor to determine immunogenicity. Various 
approaches to identify the TSHR epitopes have involved in silico, 
in  vitro, in  vivo, and clinical studies, and some TSHR epitope 
clusters were reported (7, 8). Thyroid function is regulated by 
not only TRAb but also cell-mediated immunity (9). Two major 
regulations (central and peripheral) maintain self-tolerance (2). 
We review the immunogenic mechanisms of GD in association 
with TSHR and HLA, and discuss future therapeutic approaches.

TSHR AnD GD

TSH receptor is one of a family of glycoprotein-coupled hormone 
receptors, and was cloned in 1990 (10). TSHR is indispensable for 
TSH signal transduction, production of thyroid hormone and Tg, 
and proliferation of thyroid follicular cells. TSHR consists of an 
extracellular domain (ECD: amino acids 1–418), a seven trans-
membrane domain (7TMD: 418–683) and an intracellular domain 
(11). ECD is also divided into Leucine-rich repeat domain (LRR: 
1–276) and a hinge region (277–418). The region around 7TMD 
is referred to as serpentine domain (11). Upon TSHR activation, 
TSH or TRAb binds to TSHR, and signal is transduced through 

7TMD into Gαs. Recently, Brüser et al. found that a peptide named 
P10 (TSHR-405-FNPCEDIMGY-414) located in C-terminus of 
TSHR-ECD, is conserved in different GPHRs-ECD and different 
species. They found that P10 can activate TSHR in  vitro, and 
suggested that P10 isomerizes and induces structural changes in 
the 7TMD, triggering Gαs activation (12) on TSHR-ECD ligand 
binding. Schaarschmidt et al. proposed that the re-arrangement 
of the ECD (extracellular loop 1) was critical for TSHR activation 
(13). TSHR is alternatively divided into an A-subunit (amino 
acids 1–302), C-domain (303–367), and B-subunit (368–764) 
(14). Deletion of 50 amino acids in C-domain (residues 317–366) 
had no effect on TSH binding or on TSH and TSAb-stimulating 
activities (15). After C-domain is physiologically cleaved (15), 
A-subunit (residues 22–289) is shed into the circulation (14). Thus, 
TSHR A-subunit is thought to be preferentially immunogenic in 
GD (16), and also in animal GD models (17). Importantly, two 
portions in TSHR A-subunit (246–260 and 277–296) and another 
region in TSHR B-subunit (381–385) fold together to form a 
complex TSH-binding pocket (18).

GeneTiC FACTORS in GD

In research on twins, genetic factors were found to contribute 
79% to the likelihood of having GD (19). In a Japanese nation-
wide study in 1999, 2.1–3.1% of hyperthyroidism seemed to 
be familial, and the relative risk of familial GD was increased 
from 19- to 42-fold (20). Tomer and Davies reported that 33% of 
siblings of AITD patients developed AITD themselves, and 56% 
of siblings of AITD patients produced thyroid autoantibodies, 
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FiGURe 2 | Relation of TSHR and HLA-DR in GD *note that amino acids of TSHR epitope 78–94 (underlined residues vSiDvTLQQ) are predicted to 
contact the HLA-DR-binding groove or TCR at positions 1–9, respectively.
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also supporting a strong genetic influence on development of 
AITD (21). Genetic factors reported to predispose to GD include 
specific polymorphisms of HLA (3), CTLA-4 (4, 5), CD40 (6), 
protein tyrosine phosphatase-22 (PTPN22) (22), FOXP3, and 
CD25 (3). In addition, polymorphisms of TSHR (3, 4), Tg (3), 
interleukin-2 receptor alpha (IL2RA) (23), and Fc receptor-
like3 (FCRL3) (24) were reported. Among these, HLA is a 
major genetic factor in AITD (3). The HLA locus is located on 
chromosome 6p21, and encodes (1) class I genes, such as HLA 
antigens A, B, and C, and (2) class II genes, such as HLA-DP, 
DQ, and DR genes (25). Inheritance of HLA-DRB1*03:01 (DR3) 
has been demonstrated to induce the highest susceptibility to 
GD in several ethnic groups (26, 27), and also in HT (3, 28). 
HLA-B8 was reported to be associated with GD in many studies 
(21). HLA-DQA1*05:01 was also reported to predispose to GD 
in Caucasians (26, 29). By contrast, HLA-DRB1*07:01 (DR7) 
was reported to be a protective allele for GD (30). The DR3 and 
DR7 alleles differ at the 74th amino acid in HLA-DRβ1, a critical 
residue in the binding pocket of the HLA-DR protein. The amino 
acid is arginine or glutamine, respectively. When DRB1*03:01 
and DR7 alleles coexist, DR7 appears to suppress the suscep-
tibility to GD conferred by DR3 (3). The HLA-genes have also 
been shown to be associated with GD in non-Caucasian popula-
tions, although the predisposing alleles are different from those 
observed in Caucasians. Chen et  al. found that HLA-B*46:01, 
HLA-DPB1*05:01, HLA-DQB1*03:02, HLA-DRB1*15:01, and 
HLA-DRB1*16:02 were associated with GD in Taiwan (31). 
Recent studies in Japan have shown associations of GD with 

HLA-B*35:01, HLA-B*46:01, HLA-DRB1*14:03, and HLA-
DPB1*05:01 (32). These authors reported that the protective 
allele, HLA-DRB1*13:02 overwhelms the GD-susceptibility of 
DP5 when they coexist. Many other gene associations have been 
reported. Vita et al. recently reported that certain HLA alleles are 
associated with stress-triggered GD and with clinical outcomes 
(33). The second most important gene polymorphism involves 
CTLA-4, which is expressed on activated T cells. It binds to B7 
on the surface of APC to suppress T-cell-mediated immunity 
through co-suppressive signals (4).

One group has consistently reported association of TSHR 
gene polymorphisms with GD in Japanese (3, 4, 34). A Tg poly-
morphisms, in association with DR3, is also considered to relate 
to GD (3). Tomer et al. reported interaction between a Tg gene 
variant and DRB1-Arg 74 in predisposing to GD, increasing the 
odds ratio to more than 36 (28). Furthermore, they confirmed 
that TSHR, CTLA-4, and Tg genes are associated with GD in 
Italians (35). In an age-related aspect, Brown et  al. identified 
novel susceptibility loci related to young age onset of GD (36). 
In a mouse model of GD, TRAb were genetically linked to both 
MHC-class I and Class II antigens (37).

Recently, Limbach et  al. found hypermethylation of T-cell 
signaling genes and TSHR gene, suggesting dysregulation in 
T cell and TSHR signaling in GD patients (38). Stefan et al. also 
reported a genetic–epigenetic interaction involving a non-coding 
SNP in the TSHR gene that controls thymic TSHR gene expres-
sion and promotes escape of TSHR-reactive T cells from central 
tolerance, triggering GD (39).
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ReLATiOn OF TSHR-eCD AnD HLA-DR

Shed TSHR-ECD protein is endocytosed into APCs and pro-
cessed to TSHR-ECD peptides in lysosomes (Figure  2). These 
peptide epitopes bind to HLA-DR molecules, and subsequently 
the complex of HLA-DR and TSHR-ECD epitope is presented 
on APCs to CD4+ T cells. Aberrant expression of HLA-DR 
molecules was first considered as a trigger of GD (40), and later 
both TSHR and HLA-DR were found to be critical in the process 
of autoimmunity in GD (41). Recombinant human interferon 
(IFN)-α was reported to increase the expression of HLA-DR 
and TSHR on thyrocytes in GD subjects and not in controls 
(42). Shimojo et al. first reported that fibroblasts co-transfected 
with both human TSHR and MHC-class II could induce GD in 
mice (43). Lymphocytes infiltrating the thyroid in human TSHR 
A-subunit transgenic mice are involved in recognition of human 
TSHR A-subunit by T cells activated using adenovirus encod-
ing the human TSHR (44). The complex of TSHR-ECD epitope 
presented on APC with MHC-class II and recognition by T cells 
appears to be necessary to initiate an immunogenic reaction.

We examined the binding affinity between TSHR-ECD 
epitopes and HLA-DR in  silico, in  vitro, and in  vivo stud-
ies (7,  8, 45–47). Predicted binding affinities of TSHR-ECD 
peptides to epitope-binding groove in various HLA-DRs were 
examined using computer algorithms (7). These studies in silico 
and in vitro showed the priority of strong binders to HLA-DR 
in terms of immunogenicity. The peptide-binding groove in 
HLA-DR consists of nine amino acids. Amino acids in positions 
1, 4, 6, 7, and 9 bind to HLA-DR and those in positions 2, 3, 5, 
and 8 face the TCR. We found that the amino acid position 4 
of the amino acid sequence in the binding groove of HLA-DR 
is critical in determining binding affinity between the TSHR 
epitopes and HLA-DR (8). Positively charged Arginine in 
position 4 of the amino acid sequence in the binding motif of 
HLA-DRB1*03:01 appears also important (3, 8). TSHR-ECD 
epitopes with negatively charged D (aspartic acid) or E (glutamic 
acid) in position 4 of the binding motif bind more strongly to 
HLA-DR3 and are more stimulatory to GD patients’ peripheral 
blood mononuclear cells and to splenocytes from HLA-DR3 mice 
immunized to TSHR-ECD (9). As a result, TSHR-ECD peptide 
132–150 (GIFNTGLKMFPDLTKVYST) was identified in silico, 
in vitro, and in clinical assays as an important epitope in GD, and 
peptide 78–94 (ISRIYVSIDVTLQQLES) was also identified as 
an important epitope when additional peptides were synthesized 
and used for assay as candidate epitopes (7, 45) (Figure 2). The 
possible importance of TSHR epitopes having moderate binding 
affinities to HLA-DR3; residues 145–163, 158–176, 207–222, 
248–263, 272–291, and 343–362 was also identified (7). These 
epitopes appear important in immunogenicity to TSHR due to 
their favored binding to HLA-DR3, thus increasing presentation 
to T cells (8, 45).

T- and B-cell responses to genetic immunization differ in DR3 
and DR2 transgenic mice. Mice transgenic for HLA-DR3 were 
more prone to develop AITD than were HLA-DR2 transgenic 
mice (45, 48). Pichurin et  al. reported that in DR3 transgenic 
mice immunized to adenovirus coding TSHR 1–289, TSHR 
peptide (142–161) that is close to one of the epitopes mentioned 

above appeared to be a major T-cell epitope (49). Other groups 
also defined the T-cell epitopes in development of GD (50–53). 
Martin et  al. found TSHR peptides 52–71, 142–161, 202–221, 
and 247–266 to be frequently recognized by CD4+ T cells from 
patients with GD (52). Tandon et al. found that TSHR 146–165, 
160–179, and 202–221 were relevant (53). A logical interpreta-
tion of the relation of epitope/DR binding to GD is that strong 
binding affinity to HLA-DR is related to high efficiency in antigen 
presentation (7). In fact, an exogenous antigen, such as Yersinia 
that possesses molecular mimicry with TSHR was reported to 
contribute to development of GD (54). Guarneri and Benvenga 
reported molecular mimicry between microbial and thyroid 
autoantigens, and proposed that microbial infection in predis-
posed subjects might initiate AITDs (55). Furthermore, they 
reported an in silico analysis for amino acid sequence homologies 
in HLA-DR-binding motifs between some microbial proteins and 
thyroid autoantigens (TSHR, Tg, and TPO). Yersinia, Borrelia, 
Clostridium botulinum, Rickettsia, and Helicobacter pylori were 
demonstrated to have molecular similarity to these thyroid 
autoantigens; thus, suggested to be associated with triggering 
AITD (56). They also reported a patient having HLA-DRB1*03:01 
who developed GD possibly by rickettsial infection based on 
homology with hTSHR/HLA-DR*03:01 binding motif (57). Vita 
et al. found homology of tumor-associated antigens (NY-ESO-1) 
used as vaccines, with TSHR, Tg, and TPO in panels of HLA-class 
I- and class II-binding motifs (58). They concluded that AITD 
might be elicited by NY-ESO-1 vaccination.

Alternatively, peptides with high-binding affinities to HLA-DR 
molecules could lead to thymic deletion of the cognate T cells, 
while those peptides exhibiting moderate binding affinities 
could escape “negative selection” in the thymus and enter in the 
circulation and participate in autoimmune disease. Competition 
between low- and high-risk alleles for binding to TSHR peptides 
could also affect the development of GD. Due to a higher affinity 
for specific fragments, protective alleles might prevent binding 
and presentation of crucial epitopes by high-risk alleles. In addi-
tion, certain HLA alleles may not present important epitopes that 
induce TSHR antibodies. To date, prediction of binding of epitope 
to HLA-class II is possible as described above, and prediction of 
binding affinity between epitope and TCR is in development (59).

In mice, a splicing variant of mouse TSHR is related to GD. 
Endo and Kobayashi described “GD” in mice immunized to 
the TSHR gene lacking exon 5 (residues 132–157) (60). This 
observation suggested that exon 5 in TSHR may suppress GD 
progression, or antibody to residues in exon 5 may contribute to 
regulate immunity to TSHR. It also suggests that the TSHR-ECD 
peptide 132–150 (GIFNTGLKMFPDLTKVYST) noted above as a 
strong HLA binder may not be directly involved in pathogenesis 
of GD (7).

ROLe OF CYTOKineS/CHeMOKineS

For maturation of naïve CD4+ T cells (Th0) in the immuno-
logical network, activation of both the TCR and co-stimulatory 
molecules are necessary (61). APCs, as well as MHC-class II 
molecules, affect this process. This activation occurs by interac-
tion among epitopes, APCs, and Th0 cells. Subsequently, local 
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cytokine regulation determines whether a Th0 cell will become 
a Th1 or Th2 cell. The presence of IL-12 and IFN-γ will activate 
signal transducer and transcription activator 4 (stat 4) and stat 1 
signaling pathways, respectively, and promote Th1 cellular dif-
ferentiation (61). For Th2 differentiation, IL-4 induces GATA3 
through the stat-6 signaling pathway. Usually, Th1 cells produce 
IFN-γ, whereas Th2 cells secrete IL-4, 5, and 13. In GD, activated 
CD4+ T cells secrete cytokines/chemokines that stimulate B-cells 
to produce TRAb, and in turn hyperthyroidism occurs. Thus, a 
preferentially increased Th2/Th1 balance has been reported in 
GD (62). As IgG1 type of TSAb formation is seen initially in GD, 
an important role for Th1 was also reported (63). Novel cytokines 
and chemokines, such as CXCL10 were reported to be related to 
pathogenesis of GD (64). Increased serum levels of IL-21 (65) and 
decreased serum IL-7 (66) were also reported in GD. Intriguingly, 
an association of chromosome 5q23–q33 with AITD suggested an 
important role of clustered cytokines and other immune modu-
lators encoded in this genetic locus (67). Another subset of Th 
cells, Th17 cells, was reported to play different roles in mice with 
different genetic backgrounds (68). Horie et al. genetically immu-
nized NOD-H2(h4) or BALB/c mice with TSHR A-subunit, and 
found that IL-17 was indispensable for development of Graves’ 
hyperthyroidism in non-GD-susceptible NOD-H2(h4), but not 
in GD-susceptible BALB/c mice (68).

B-CeLL ePiTOPe AnD TRAb in GD

In addition to the T-cell epitopes described above, numerous 
studies have identified B-cell epitopes of TSHR-ECD in GD. The 
structure of the Fab fragment of IgG determines the binding 
affinity to TSHR. TRAb consists of (1) TSAb: thyroid-stimulating 
antibody, (2) TSBAb: thyroid-stimulation blocking antibody, 
and (3) neutral TRAb (1, 9, 69). (1) Studies suggest that TSAbs 
interact with the N-terminal region of the TSHR and transduce 
a signal through binding sites different from the TSH-binding 
site (70). R38 in TSHR is the major N-terminal contact residue of 
TSAb, M22 (71). The TSAb epitopes require involvement of the 
highly conformational N-terminus of the A-subunit (72). TSAb 
also preferentially recognize the free A-subunit in animal studies 
(73). Binding of anti TSHR antibodies to the amino-terminal end 
of the ECD was confirmed in DR3 transgenic mice (46). TSBAb, 
usually seen in patients with primary myxedema, recognize the 
C-terminal region of TSHR-ECD. The antibodies that bound to 
TSHR residue 381–385 blocked TSHR stimulation by TSH (74).

In contrast to the other glycoprotein hormone receptors, 
TSHR has ligand-independent (constitutive) activity. Chen et al. 
found that monoclonal antibody, CS-17, significantly reduces 
this constitutive activity. This antibody, thus, was considered as 
“inverse agonist,” but binds to N-terminus of TSHR-ECD, resi-
dues 260–289 (75). Rees Smith et al. also showed that antibodies 
of both stimulating and blocking types bind well to the TSHR 
(residues 22–260) (76). Neutral TRAb have a linear epitope con-
fined to the cleaved region of TSHR (residues 316–366) (77). By 
contrast, Hamidi et al. investigated properties of non-stimulatory 
murine monoclonal antibody, 3BD10. The linear epitope locates 
in TSHR (residues 31–41) (78). Clinically, Soliman et al. reported 
that simultaneous recognition of peptides TSHR 158–176 and 

248–263 is important for the development of GD (79). In con-
trast to GD, the functional epitopes of TRAb in HT patients were 
reported to be uniquely different from those observed in GD (80). 
A female patient with HT had a blocking type TBII and a weak 
TSAb. Her blocking type TBII was uniquely reactive with the 
N-terminal, rather than C-terminal of TSHR-ECD. In addition, 
her TSAb epitope did not appear to be present solely on the N- or 
C-terminus of the TSHR-ECD (although the functional epitopes 
of most TSAb are known to involve the N-terminal region of 
the receptor) (80). Multimers of TSHR, not monomers, may be 
required for the maturation of TRAb (81). While little interest is 
directed to MHC-class II in the development of B-cell epitope in 
GD, T-cell activation through MHC-class II is indispensable for 
maturation of TRAb-producing B-cell.

Measurement of TRAb plays an important role in clinical 
practice. A meta-analysis showed that the overall sensitivity and 
specificity of the second- and third-generation TRAb assays in GD 
are 97.1 and 97.4%, and 98.3 and 99.2%, respectively. The likeli-
hood of TRAb-positive individuals to have GD is 1367- to 3420-
fold greater compared to that of a TRAb-negative person (82).

CenTRAL AnD PeRiPHeRAL TOLeRAnCe

In central tolerance, immature T cells with high affinity for 
autoantigen-derived peptides are deleted in the thymus (7). 
Regulatory T cells (Tregs) play an important role in suppressing 
immunogenic T cells in the periphery (peripheral tolerance) (83). 
Dysfunction of central tolerance in the thymus or Tregs would 
allow onset of GD. Thyroid autoantigen expression of TSHR, TPO, 
and Tg in the thymus was not significantly different in different 
mouse strains (84), suggesting that not only thyroid autoantigen 
presentation with various MHC molecules but also co-activators 
or other factors must control self-tolerance. In mouse studies, 
Tregs are reported not to be involved in TSHR self-tolerance (2). 
Tregs control the balance between GD and HT (2). Treg num-
bers in human GD were reported not to be decreased, but Treg 
function was suggested to be impaired (83, 85). Recent articles 
further support this Treg functional impairment in several types 
of CD4+ Treg cells (Foxp3+, CD69+, Tr1) (86).

ePiTOPe SPReADinG DURinG 
PROGReSSiOn OF GD

In the course of pathogenic amplification of immunogenic T- and 
B-cells in GD, “epitope spreading” is frequently seen (50, 69, 87). 
Intra molecular (TSHR) (69, 88) and inter molecular (Tg, TPO) 
(2) epitope spreading are observed. The mechanism may relate 
to developing immunity to host TSHR, and epitope spreading 
along this antigen (human TSHR to mouse TSHR) (17). Possible 
reason for T-cell epitope spreading may be the heterogeneity in 
recognizing thyroid autoantigen (89), or re-arrangements of TCR 
gene (90). IgG VH gene re-arrangement is known to be associ-
ated with B-cell epitope spreading (1, 91). Segundo et al. reported 
that the occurrence of two distinct types of Thyroid-infiltrating 
B-lymphocytes. Type 1 B-lymphocytes showed features of 
marginal zone B-cells, and type 2 B-lymphocytes exhibited a 
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phenotype of germinal center B-cells. They suggested that type 
2 might be associated with high titers of TPOAb and not anti-
TSHR antibody (92). The role of thyroid-infiltrating B cell in 
TSHR-related B-cell epitope spreading is yet clear.

PeRSPeCTiveS On TSHR-SPeCiFiC 
TReATMenTS

A novel small molecular TSHR antagonist has been demonstrated 
to be effective in animal studies as a TSHR-specific treatment for 
GD (93). TSHR epitope-specific treatments using mutated TSHR 
peptides were reported to suppress immunogenic reaction of 
TSHR-ECD in HLA-DR3 transgenic mice immunized to TSHR-
ECD protein (46). Peptides in HLA-DR-binding positions 2, 3, 
5, and 8 are assumed to be outward facing to stimulate the TCR 
(8). Therefore, a mutant TSHR peptide was constructed in which 
the contact of peptide to TCR would be attenuated (46). TSHR 
peptide 78–94: ISRIYVSIDVTLQQLES was mutated to TSHR 
peptide 37m: ISRIYVSIDATLSQLES, in which DR3-binding 
motif position 5 was mutated V > A, and position 8 Q > S. 37m 
was predicted to bind to HLA-DR3, but not bind strongly to 
TCRs. Both antibody titers to TSHR peptide 78–94, and reaction 
of splenocytes to TSHR peptide 78–94, were significantly reduced 
in mice immunized to TSHR peptide 78–94 plus 37m, compared 
to mice immunized to TSHR peptide 78–94 alone.

The goal of inducing self-tolerance to prevent AITD will 
require accurate prediction of at-risk individuals together with an 
antigen-specific therapeutic approach. A transgenic mouse strain 
having spontaneous TRAb production was developed, and offers 
further opportunities for investigation of GD in vivo (94, 95). As 
a B-cell-targeted therapy, anti CD20 antibody was reported to be 
effective for thyroid associated orbitopathy (96). In addition, as 
well as the acquired immunity described above, innate immunity 

was suggested to be involved with development of GD (97, 98). 
Pathogen-associated molecular patterns (PAMPs), danger-
associated molecular patterns (DAMPs), and iodide effects on 
gene expression were reported to be related to innate immune 
responses (97). The expression of toll-like receptor 4 in thyroid 
cells may be associated with development of AITDs (98). Thus, 
specific treatment targeted to innate immunity might be hopeful.

COnCLUSiOn

In the recent years, remarkable progression of research in the 
mechanism underlying GD was seen. In addition to the function 
and conformation of TSHR, its binding interaction to HLA-class 
II molecules and presentation to T cells have been investigated. 
The relation of TSHR and HLA in terms of TSHR epitope pres-
entation is crucial in development of GD. Numerous studies to 
identify T- and B-cell epitopes have also demonstrated, including 
(1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. 
Dysfunction of central and peripheral tolerance could contribute 
to development of GD. Although key ideas have been proposed, 
further investigations are warranted to elucidate precise immu-
nological systems in GD and to establish TSHR epitope-specific 
treatment.
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