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Escherichia coli EDL933, an O157:H7 strain, is known to colonize the streptomycin-treated CD-1 mouse
intestine by growing in intestinal mucus (E. A. Wadolkowski, J. A. Burris, and A. D. O’Brien, Infect. Immun.
58:2438-2445, 1990), but what nutrients and metabolic pathways are employed during colonization has not
been determined. In this study, when the wild-type EDL933 strain was fed to mice along with an EDL933 AppsA
ApckA mutant, which is unable to utilize tricarboxylic acid cycle intermediates and gluconeogenic substrates
for growth, both strains colonized the mouse intestine equally well. Therefore, EDL933 utilizes a glycolytic
substrate(s) for both initial growth and maintenance when it is the only E. coli strain fed to the mice. However,
in the presence of large numbers of MG1655, a K-12 strain, it is shown that EDL933 utilizes a glycolytic
substrate(s) for initial growth in the mouse intestine but appears to utilize both glycolytic and gluconeogenic
substrates in an attempt to maintain colonization. It is further shown that MG1655 predominantly utilizes
glycolytic substrates for growth in the mouse intestine whether growing in the presence or absence of large
numbers of EDL933. Data are presented showing that although small numbers of EDL933 grow to large
numbers in the intestine in the presence of large numbers of MG1655 when both strains are fed to mice
simultaneously, precolonization with MG1655 affords protection against subsequent colonization by EDL933.
Moreover, in mice that are precolonized with EDL933, small numbers of MG1655 are able to grow rapidly in
the intestine and EDL933 is eliminated. In situ hybridization experiments using E. coli-specific rRNA probes
showed that while MG1655 is found only in mucus, EDL933 is found both in mucus and closely associated with
intestinal epithelial cells. The data are discussed with respect to competition for nutrients and to the protection

that some intestinal commensal E. coli strains might afford against infection by O157:H7 strains.

Escherichia coli strains of serotype O157:H7 cause outbreaks
of hemorrhagic colitis and hemolytic uremic syndrome in hu-
mans (reviewed in reference 14). E. coli O157:H7 initiates
infection by binding to intestinal epithelial cells and producing
Shiga toxins Stx1 and/or Stx2, depending on the strain (re-
viewed in reference 14). Stx1 and Stx2 depurinate a critical
residue in the eucaryotic 28S rRNA of 60S ribosomes, resulting
in the inhibition of protein synthesis and consequent cell death
(33). E. coli EDL933, an O157:H7 strain, does not normally kill
streptomycin-treated mice and appears to colonize the mouse
intestine by growing in intestinal mucus (38, 40), but little is
known about the nutrients that are utilized for growth or the
metabolic pathways involved. If these pathways were defined, it
is likely that preventative measures or more effective treat-
ments for patients infected with O157:H7 strains could be
developed. With this goal in mind, we isolated an EDL933
AppsA ApckA mutant, which grows normally on glycolytic sub-
strates but is unable to utilize tricarboxylic acid (TCA) cycle
intermediates and gluconeogenic substrates for growth, and
tested its ability to colonize the mouse intestine in both the
presence and absence of the K-12 strain E. coli MG1655, a
human commensal strain. The results of these experiments are
reported in the present study.

* Corresponding author. Mailing address: Department of Cell and
Molecular Biology, University of Rhode Island, Kingston, RI 02881.
Phone: (401) 874-5920. Fax: (401) 874-2202. E-mail: pcol697u
(@postoffice.uri.edu.
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MATERIALS AND METHODS

Bacterial strains. The bacterial strains and plasmids used in this study are
listed in Table 1.

Bacterial growth and media. Luria broth was made as described by Revel (32).
Luria agar is Luria broth containing 12 g of Bacto agar (Difco) per liter. Mac-
Conkey agar (Difco) was prepared according to the package instructions. M9
minimal medium (22) was supplemented with either reagent-grade glucose
(0.2% [wt/wt]), glycerol (0.2% [wt/wt]), gluconate (0.2% [wt/wt]), L-aspartic acid
(0.4% [wt/wt]), potassium acetate (0.4% [wt/wt]), potassium fumarate (0.4%
[wt/wt]), malic acid (0.4% [wt/wt]), sodium oleate (5 mM) plus 5 mg of Brij 58/ml,
sodium pyruvate (0.4% [wt/wt]), or sodium succinate (0.6% [wt/wt]).

In vitro growth in mouse intestinal mucus. Mouse intestinal mucus was iso-
lated as previously described (3). Briefly, mice (35 days old) were fed Charles
River Valley rat, mouse, and hamster formula for 5 days. The drinking water was
then replaced with sterile distilled water containing streptomycin sulfate (5
glliter). Twenty-four hours later, the mice were sacrificed by CO, asphyxiation
and their ceca were removed. The cecal contents were collected for use in growth
experiments (see below), and any remaining cecal contents were washed out with
sterile distilled water. Mouse cecal mucus was scraped from ceca, and 1-ml
aliquots were placed into culture tubes as described previously (3). Cecal mucus
was inoculated and incubated without shaking at 37°C, and samples taken at
different times were plated and counted as described previously (23). Growth
experiments utilizing 1-ml volumes of cecal contents were performed identically.

Mouse colonization experiments. The method used to compare the large-
intestine-colonizing abilities of E. coli strains in mice has been described previ-
ously (35, 36). Briefly, three male CD-1 mice (5 to 8 weeks old) were given
drinking water containing streptomycin sulfate (5 g/liter) for 24 h to eliminate
resident facultative bacteria (21). After 18 h of starvation for food and water, the
mice were fed 1 ml of 20% (wt/vol) sucrose containing Luria broth-grown E. coli
EDL933 strains and/or MG1655 strains, depending on the experiment. After
ingestion of the bacterial suspension, both the food (Charles River Valley rat,
mouse, and hamster formula) and streptomycin-water were returned to the mice,
and 1 g of feces was collected after 5 and 24 h and on odd-numbered days at the
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TABLE 1. Bacterial strains and plasmids

E. coli strain or plasmid

Relevant characteristic(s)

Source or reference

Strains
MG1655

MG1655 Str*
MG1655

MG1655 Str" Nal”
MG1655 Str'

MG1655 Str" AppsA ApckA::Cm

Wild type (CGSC no. 7740)

Spontaneous streptomycin-resistant mutant of

Spontaneous nalidixic acid-resistant mutant of

PpsA pckA double deletion mutant of

E. coli Genetic Stock Culture Collection,
Yale University
This study

This study

This study

MG1655 Str', carrying cat in the pckA

deletion
EDL933 Wild-type O157:H7

EDL933 Str*
EDL933

EDL933 Str" Nal®
EDL933 Str"

EDLO933 Str* AppsA ApckA:Cm

Spontaneous streptomycin-resistant mutant of

Spontaneous nalidixic acid-resistant mutant of

PpsA pckA double deletion mutant of

Alison O’Brien

This study

This study

This study

EDLO933 Str', carrying cat in the pckA
deletion and retaining the pO157 virulence
plasmid (see Materials and Methods)

Plasmids
pKD3

Template plasmid, contains chloramphenicol 4

resistance cassette flanked by FLP
recombinase target sites; bla cat

pKD46

Temperature-sensitive plasmid, contains 4

arabinose-inducible phage A red
recombinase gene for linear DNA

exchange; bla

pCP20

Temperature-sensitive plasmid, contains FLP 4

recombinase gene for removal of antibiotic

resistance genes; bla cat

indicated times. Mice were housed individually in cages without bedding and
were placed in clean cages daily. Fecal samples (no older than 24 h) were
homogenized in 1% Bacto tryptone, diluted in the same medium, and plated on
Luria agar plates with appropriate antibiotics. Plates contained streptomycin
sulfate (100 pg/ml), streptomycin sulfate (100 pg/ml) and nalidixic acid (50
pg/ml), or streptomycin sulfate (100 pg/ml) and chloramphenicol (30 pg/ml). All
plates were incubated for 18 to 24 h at 37°C prior to counting. When necessary,
100 colonies from plates containing streptomycin were applied with toothpicks to
plates containing appropriate antibiotics to differentiate strains. Each coloniza-
tion experiment was performed at least twice, with essentially identical results.
Data from typical experiments are presented.

Isolation and enumeration of MG1655 and EDL933 from mouse intestinal
mucus. E. coli EDL933 Str" and MG1655 Str" were each fed to separate sets of
three mice. On day 16 postfeeding, the mice were sacrificed, and the ileum, the
rest of the small intestine, the cecum, and the colon were removed from each
mouse. Each section of the intestine was washed extensively with HEPES-Hanks
buffer (pH 7.2), and the mucus from each section of the intestine was scraped
into 5 ml of HEPES-Hanks buffer (pH 7.2) as described previously (3). Each
sample was homogenized by vortexing and then plated on MacConkey agar with
appropriate antibiotics. Plates were incubated for 18 to 24 h at 37°C prior to
counting. The number of CFU per intestinal section was calculated from the
CFU per milliliter by multiplying by the total volume (in milliliters) of each
mucus sample.

Mutant construction. Gene knockout mutants (deletions) were made as de-
scribed by Datsenko and Wanner (4). Their method allows the sequential con-
struction of double deletion mutants by use of the same chloramphenicol cassette

(4). Gene knockouts were confirmed phenotypically as discussed in Results and
genetically by PCR using primers specific for upstream and downstream flanking
sequences. Primers used to construct the deletion mutants were designed ac-
cording to the EDL933 and MG1655 genome databases. Deletions of 2,367 and
1,341 bp were made in the ppsA gene and the pckA gene, respectively. The
specific PCR primers used to construct the deletions and to confirm deletions
after allelic exchange are listed in Table 2.

Confirmation that EDL933 Str" AppsA ApckA::Cm retained the pO157 plas-
mid. The presence or absence of the EDL933 pO157 plasmid (GenBank acces-
sion number AF074613) was determined for strains MG1655, EDL933, EDL933
Cu (cured of the pO157 plasmid [38]), and the EDL933 Apps4 ApckA double
mutant by attempting to PCR amplify an internal 595-bp fragment of the espP
gene, which is known to be in the pO157 plasmid (2). The forward primer
5'-CGGCAGAGTATCAAGAGC-3' and the reverse primer 5'-CATTAAATG
GAGTTATGCGTC-3" were used for this amplification. The internal fragment
of espP was amplified from EDL933 and the EDL933 AppsA ApckA double
mutant but was not amplified from EDL933 Cu or MG1655. Therefore, the
EDL933 AppsA ApckA double mutant appears to have retained the pO157
plasmid.

Preparation of histological sections for hybridization. After the mice were
sacrificed, the cecum was removed from each mouse and cleaned of fecal ma-
terial as described above. Each cecum was placed in 5 ml of fixing solution
containing methanol, chloroform, and acetic acid (6:3:1) for 1 h and then was
transferred to 5 ml of fresh fixing solution for an additional hour. Prior to
sectioning, each cecum was stored at 4°C in 70% ethanol. Mouse colonic, ileal,
and small intestinal tissues were fixed in the same way. Tissues were dehydrated
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and embedded in paraffin prior to the preparation of 5-um-thick cross sections.
Sections were placed onto glass microscope slides. Prior to hybridization, the
sections were deparaffinized by treatment with xylene (three times for 10 min
each) and were dehydrated for 10 min in 96% ethanol. Before the hybridization
solution was applied, the intestinal sections were circumscribed with an
ImmEdge pen (Vector Laboratories, Inc., Burlingame, Calif.).

Oligonucleotide probes. A probe specific for E. coli 23S rRNA (EC1531;
5'-CACCGTAGTGCCTCGTCATCA-3") was used (30). The probe was labeled
at the 5" end with CY3 red fluorescent dye (cyanine dye CY3.29-OSu; Biological
Detection Systems, Pittsburgh, Pa.). In addition, probe EU338 (30), which is
specific for the eubacterial 23S rRNA domain, was used. This probe (5'-GCTG
CCTCCCGTAGGAGT-3") was labeled at the 5’ end with the green fluorescent
compound fluorescein (Peninsula Laboratories, Inc., Belmont, Calif.).

Hybridization and microscopy. For the visualization of bacteria in the intes-
tinal sections, the eubacterial probe labeled with fluorescein was used in com-
bination with the CY3-labeled E. coli-specific probe. Hybridization was carried
out as described by Poulsen et al. (30), with the following modifications. The
hybridization solution contained 10% formamide and 2.5 ng of each probe at pH
7.2. Washing solution I contained 10% formamide at pH 7.2. Washing solution
II was at pH 7.2. After hybridization, sections were viewed by confocal micros-
copy.

Gas chromatography. Short-chain volatile fatty acids were extracted from the
mouse cecal mucus as described by Holdeman et al. (12). Nonvolatile acids were
extracted from the mouse cecal mucus and methylated as described by Holde-
man et al. (12). Short-chain volatile fatty acids and methylated nonvolatile acids
were assayed in a CAPCO model 700 gas chromatograph equipped with a 1/4 in.
by 6 ft column packed with 10% SP1000 on 100/120 Chromosorb W. The
chromatograph was run at 135°C with helium as the carrier gas at 120 ml/min,
and the acids were detected with a thermal conductivity detector at —95 mA. A
Supelco volatile acid standard mix and nonvolatile acid standard mix were used
as standards.

Sequence (5'—3")

....GCGACTAAACGCCGCCGGGGATTTATTTTATTTCTTCAGTgtgtaggctgagetgetteg”

RESULTS

Growth of EDL933 in cecal mucus and in cecal contents in
vitro. Although strain EDI.933 has been shown to colonize
streptomycin-treated mouse large intestines and to grow in
cecal mucus in vitro (38), it has not previously been tested for
growth in cecal contents. To this end, E. coli EDL933 Str" was
inoculated at 5 X 10° CFU/ml into both undiluted cecal mucus
and cecal luminal contents at 37°C and cultures were assayed
for viable counts at various times. In mucus, EDL.933 Str" grew
with a doubling time of about 20 min and reached a final cell
density of about 10° CFU/ml. In contrast, EDL933 Str" re-
mained relatively constant in number in cecal contents for 6 h
postinoculation and was undetectable at 24 h postinoculation.
Therefore, as with strain MG1655, it appears likely that
EDL933 colonizes the mouse large intestine by growing in
mucus.

E. coli MG1655 and EDL933 appear to utilize different nu-
trients in the intestine when fed to mice simultaneously. The
mouse model of large intestine colonization requires that mice
be fed streptomycin sulfate in their drinking water throughout
the duration of the experiment. This treatment eliminates the
facultative flora and creates a niche for E. coli but leaves the
obligate anaerobe population largely intact (21). When E. coli
MG1655 Str' and MG1655 Str™ Nal" are fed together to strep-
tomycin-treated mice (10° CFU of each strain per mouse), the
two strains colonize identically over a 15-day period, with each
at a level of about 107 CFU/g of feces (data not shown).
Therefore, MG1655 Str' and MG1655 Str* Nal' are considered
to be isogenic, and each is regarded as the wild-type MG1655
strain. Similarly, E. coli EDL933 Str* and EDL933 Str* Nal"
also colonize identically, with each at a level of about 107
CFU/g of feces (data not shown). Thus, they are also consid-

.Forward, CCTGTGTGGTTGCAATGTCCG; reverse, TTGTTCTTCCCGTGATGCAGAC
..AGACTTTACTATTCAGGCAATACATATTGGCTAAGGAGCAGTGgtgtaggctggagetgcttcg?
Forward, GTTAATTATCGCATCCGGGCAG; reverse, TTACCCCGGCAGCATTGAAGTG

AATGTGTTTCTCAAACCGTTCATTTATCACAAAAGGATTGTTCgcatatgaatatcctecttag?
..GCGGGTATCTTTAATCGAGATACGTTTGCCAGTGCCGTTCCAgcatatgaatatcctccttag”

JIdentical to E. coli MG1655 AppsA primer 1, except that the first 5" T is A

TABLE 2. Primers for construction of AppsA ApckA mutants

Primer

E. coli MG1655 AppsA primer 1 ...............

“ Uppercase letters are ppsA, or pckA specific and lowercase letters are pKD3 specific, immediately downstream of the cat gene.

b Uppercase letters are ppsA specific and lowercase letters are pKD3 specific, immediately upstream of the cat gene.
¢ Primers flanking either the pps4 or pckA gene were used to confirm expected changes in the size of DNA fragments.

E. coli MG1655 and EDL933 ApckA confirming primers

E. coli MG1655 and EDLI33 APCKA PIIIICT 2uvrsoososeosoosesesssesessseseesessesesesresesresese

E. coli MG1655 and EDL933 AppsA confirming primers
E. coli MG1655 and EDL933 ApckA primer l......c.ccoevicncnne

E. coli MG1655 and EDL933 AppsA primer 2.

E. coli EDL933 AppsA primer 1.........
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FIG. 1. Colonization of the intestine by MG1655 and EDL933 fed simultaneously to mice. Sets of three mice were fed either 10'° CFU of
MG1655 Str" (A) and 10° CFU of EDL933 Str* Nal” (OJ) (A) or 10'° CFU of EDL933 Str* () and 10° CFU of MG1655 Str" Nal" (A) (B). At the
indicated times, fecal samples were homogenized, diluted, and plated as described in Materials and Methods. When necessary, 100 colonies from
MacConkey agar plates containing streptomycin were applied with toothpicks to MacConkey agar plates containing both streptomycin and nalidixic
acid. The asterisk in place of the day 9 data point represents <1 colony in 100 toothpicked colonies from each mouse that were EDL933 Str'. Bars
representing standard errors of the log;, means of CFU per gram of feces for each set of three mice are presented for each time point.

ered to be isogenic, and each is regarded as the wild-type
EDL933 strain.

When streptomycin-treated mice are simultaneously fed
10" CFU of an E. coli strain and 10° CFU of the same strain
marked with an additional antibiotic resistance cassette for
identification, the strains maintain the ratio of their original
input values throughout a colonization experiment, implying
that they have the same growth rate in the intestine and that
the same nutrients are used with equal efficiencies (35). With
this in mind, experiments were performed to determine
whether EDL933 and MG1655 also have the same growth rate

and nutrient use during growth in the intestine. A set of three
mice was fed 10'° CFU of the wild-type MG1655 Str* strain
and 10° CFU of the wild-type EDL933 Str* Nal” strain. At 5 h
postfeeding, MG1655 Str* was found at an approximate level of
10° CFU/g of feces, whereas EDL933 Str' Nal® was at an
approximate level of 10* CFU/g of feces, reflective of the input
ratio (Fig. 1A). However, within 3 days postfeeding, ED1.933
Str* Nal” had grown to a level of 10% CFU/g of feces, i.e., about
the same level as MG1655 Str', and then slowly but continu-
ously dropped to a level about 3 orders of magnitude below
that of MG1655 Str™ (Fig. 1A). Since EDL933 Str" Nal” grew in
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TABLE 3. Growth of MG1655 and EDL933 strains on glycolytic
and gluconeogenic carbon sources

Growth of EDL933 or MG1655 strains”
Carbon source

Wild type AppsA ApckA::Cm
Gluconate +4++ +++
Glucose +++ +++
Glycerol +++ +++
Acetate + -
Aspartate ++ -
Fumarate ++ -
Malate +4++ -
Pyruvate +++ -
Oleate ++ -
Succinate ++ -

@+, Agoo > 0.80; ++, Agoo = 0.30 to 0.50; +, Aggp = 0.10 to 0.20; —, Aggo
< 0.05. All cultures were inoculated at about 10° CFU/ml from an overnight M9
minimal medium glucose culture. Cultures were incubated at 37°C for 24 h with
aeration in a shaking water bath.

the intestine from small to large numbers in the presence of
large numbers of MG1655 Str", it appeared that EDL.933 was
initially able to utilize one or more nutrients in the intestine
better than MG1655 could, but then had difficulty maintaining
itself in the presence of large numbers of MG1655. Similarly,
small numbers of MG1655 Str* Nal* (10° CFU/mouse) grew to
large numbers (~10” CFU/g of feces) in the presence of large
numbers of EDL933 Str* (10'° CFU/mouse) within 3 days
postfeeding and remained at that level throughout the 15-day
duration of the experiment (Fig. 1B). These results indicated
that MG1655 was initially able to use one or more nutrients in
the intestine better than EDL.933 could.

MG1655 and EDL933 AppsA ApckA double mutants colo-
nize at the same level as their wild-type parents. E. coli strains
can utilize both glycolytic and gluconeogenic substrates for
growth; however, it is not known whether they use both glyco-
lytic and gluconeogenic substrates to colonize the mouse in-
testine. Phosphoenolpyruvate carboxykinase converts oxaloac-
etate to phosphoenolpyruvate and is encoded by the E. coli
pckA gene (20). Phosphoenolpyruvate synthase is encoded by
the E. coli ppsA gene and converts pyruvate to phosphoenol-
pyruvate (27). Since the conversion of TCA cycle intermedi-
ates to phosphoenolpyruvate is completely blocked in a ppsA
pckA double mutant, it is unable to grow on gluconeogenic
substrates “below” the step of phosphoenolpyruvate, but gly-
colytic pathways are not affected (10). MG1655 Str* AppsA
ApckA::Cm and EDL933 Str" AppsA ApckA::Cm were con-
structed, and after it was shown that they failed to grow on
gluconeogenic substrates but were still able to grow on glyco-
lytic substrates (Table 3), each was fed to a set of three mice
along with the respective wild-type parent at a level of 10°
CFU/mouse. The colonizing abilities of MG1655 Str" Nal" and
MG1655 Str" AppsA ApckA::Cm were virtually indistinguish-
able; each strain colonized at a level of about 107 CFU/g of
feces (Fig. 2A). These data indicate that MG1655 predomi-
nantly utilizes glycolytic substrates for growth in the intestine
when it is the only E. coli strain fed to mice. Similarly, the
EDL933 Str" AppsA ApckA::Cm mutant colonized the intestine
at the same level as EDL933 Str" Nal' throughout the 15 days
of the experiment; each strain colonized at a level of about 107
CFU/g of feces (Fig. 2B). These data suggest that EDL933

INFECT. IMMUN.

predominantly utilizes glycolytic substrates for growth when it
is the only E. coli strain fed to mice.

The EDL933 Str" AppsA ApckA (gluconeogenesis defective)
mutant is not maintained as well as wild-type EDL933 Str*
Nal” in the intestine in the presence of large numbers of
MG1655 Str". Although strain EDL.933 did not appear to uti-
lize gluconeogenic substrates for growth when it was the only
E. coli strain fed to mice (Fig. 2B), we were interested in
determining whether EDL933, which had difficulty maintain-
ing itself in the presence of large numbers of MG1655 (Fig.
1A), utilizes gluconeogenic substrates under those conditions.
Therefore, mice were fed MG1655 Str* (10'® CFU/mouse)
along with both EDL933 Str" Nal” (10° CFU/mouse) and
EDL933 Str* AppsA ApckA::Cm (10° CFU/mouse). As shown
in Fig. 3A, during day 1 postfeeding, both EDL933 Str" Nal"
and EDL.933 Str* AppsA ApckA::Cm initially grew equally well
in the mouse intestine to levels of about 10® CFU/g of feces.
However, beyond day 1 postfeeding, EDL933 Str* AppsA
ApckA::Cm was not maintained as well as the wild-type
EDL933 Str” strain, such that by day 7 postfeeding, it was at a
level about 2 orders of magnitude below that of the wild-type
strain (Fig. 3A). These data indicate that, in addition to the
utilization of glycolytic substrates, EDL933 utilizes gluconeo-
genic substrates for growth in the presence of large numbers of
MG1655 in an attempt to maintain itself in the mouse intes-
tine. In contrast, MG1655 Str" AppsA ApckA::Cm actually had
a slight advantage over the wild-type MG1655 Str” strain in the
mouse intestine in the presence of large numbers of the
EDL933 wild-type strain (Fig. 3B). These data indicate that
MG1655 utilizes glycolytic substrates exclusively for growth in
the intestine in the presence of large numbers of EDL933.

Location (vertical distribution) of EDL933 and MG1655 in
the mouse intestine. Although the ability of E. coli to grow in
intestinal mucus has been correlated with its ability to colonize
the mouse large intestine (18, 26, 35, 36, 39), there is little
information to indicate where various E. coli strains are found
in the intestine. Therefore, EDL933 Str' and MG1655 Str"
were each fed to separate sets of three mice. On day 16 post-
feeding, the numbers of the strains in ileal mucus, the mucus
isolated from the rest of the small intestine, cecal mucus, and
colonic mucus were determined. The numbers of MG1655 and
EDL933 CFU were at least 10-fold higher in cecal and colonic
mucus than in ileal and small intestinal mucus (Table 4). These
data indicate that during the maintenance stage of coloniza-
tion, both EDL933 and MG1655 grow in mucus throughout
the mouse intestine, but to far larger numbers in cecal and
colonic mucus.

Visualization of EDL933 and MG1655 in thin slices of the
mouse intestine. It was previously shown that when MG1655 is
fed to mice, it is found in the mucus layer of the mouse cecum
but is not associated with epithelial cells (see Fig. SA in refer-
ence 23). In contrast, EDL933 has been shown to bind to
intestinal epithelial cells in calves, pigs, and mice (5, 15, 37, 39).
For determination of whether EDL933 is associated with
mouse intestinal epithelial cells under the conditions of the
present study, mice were fed EDL933 Str* (10° CFU/mouse).
At 24 and 48 h postfeeding, EDL933 Str" was visualized in situ
in the mucosa of the cecum, the colon, the ileum, and the
middle of the small intestine by hybridization with an E. coli-
specific oligonucleotide probe (see Materials and Methods).
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FIG. 2. Colonization of the mouse intestine by E. coli strain MG1655 and its ppsA pckA deletion mutant and EDL933 and its ppsA pckA
deletion mutant. Sets of three mice were fed either 10° CFU of MG1655 Str* Nal* ((J) and 10° CFU of MG1655 Str* AppsA ApckA:Cm (A) (A) or
10° CFU of EDL933 Str" Nal* () and 10° CFU of EDL933 Str" AppsA ApckA:Cm (A) (B). At the indicated times, fecal samples were
homogenized, diluted, and plated as described in Materials and Methods. Bars representing standard errors of the log;, means of CFU per gram

of feces for each set of three mice are presented for each time point.

As a control, separate mice were fed MG1655 Str* (10° CFU/
mouse), which was also visualized by the same method in situ
in the mucosa of the cecum, the colon, the ileum, and the
middle of the small intestine at 24 and 48 h postfeeding. In the
cecum, EDL933 was present both in the mucus and closely
associated with epithelial cells at both 24 and 48 h postfeeding
(Fig. 4A and 5B). That EDL933 was closely associated with
epithelial cells was especially apparent in sections in which the
mucus layer had been ripped away from the epithelial cell
surface (Fig. 4B). The same results were found in the colon
(not shown). At least 10-fold fewer EDL.933 cells were seen in
the mucosa of the ileum and the middle of the small intestine
than in the cecum and colon, and the majority of EDL.933 cells

observed were associated with epithelial cells (not shown).
In contrast, MG1655 was observed in the cecum exclusively
in mucus (not shown), as was observed previously (see Fig.
5 in reference 23). The same result was true of the colon, the
ileum, and the middle of the small intestine, although at
least 10-fold fewer MG1655 cells were observed in the ileum
and the middle of the small intestine than in the cecum and
colon (not shown). Since the vast majority of EDL933 cells
in the intestine at 24 and 48 h postfeeding were in the cecum
and colon and since EDL933 fails to grow in cecal contents
(see above), it appears that the vast majority of its growth in
the first 24 to 48 h occurs in cecal and colonic mucus and
perhaps on epithelial cells.
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FIG. 3. Colonization of the mouse intestine by E. coli strains MG1655 and EDL933 and their Apps4 ApckA::Cm mutants. Sets of three mice
were fed 10'° CFU of MG1655 Str* (O) and 10° CFU each of EDL933 Str" Nal" ((J) and EDL933 Str* Apps4 ApckA::Cm (A) (A) or 10'° CFU
of EDL933 St (0) and 10° CFU each of MG1655 Str* Nal” (O) and MG1655 Str™ AppsA ApckA::Cm (A) (B). At the indicated times, fecal samples
were homogenized, diluted, and plated as described in Materials and Methods. When necessary, 100 colonies from MacConkey agar plates
containing streptomycin were applied with toothpicks to MacConkey agar plates containing both streptomycin and nalidixic acid and plates
containing both streptomycin and chloramphenicol to determine numbers of either EDL933 Str" or MG1655 Str* cells. Bars representing standard
errors of the log,, means of CFU per gram of feces for each set of three mice are presented for each time point.

Mouse cecal mucus does not contain high levels of TCA
cycle intermediates. For determination of whether EDL933
might use TCA cycle intermediates for growth in mouse cecal
mucus in vitro, mouse cecal mucus (4 mg/ml) was analyzed by
gas chromatography for fumarate, oxaloacetate, succinate, and
acetate (see Materials and Methods). Fumarate, oxaloacetate,
and succinate were below the limit of detection (0.2 wM) and
acetate was just at the limit of detection (0.2 nM). It is there-
fore unlikely that the gluconeogenic substrates that EDL933

utilizes for growth in cecal mucus in vitro are TCA cycle in-
termediates or acetate. Furthermore, since the dry weight of
mucus isolated directly from the mouse cecum is about 80
mg/ml, it would contain, at most, 4 wM concentrations of
acetate, fumarate, oxaloacetate, and succinate. This translates
to <1 pg of each of these substrates in cecal mucus/ml in vivo,
making it highly unlikely that they are being used as gluconeo-
genic substrates for the growth of EDL933 in the mouse intes-
tine.
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TABLE 4. Distribution in intestinal mucus preparations of MG1655
Str* and EDL933 Str at 16 days postfeeding to
separate mice

Amt of bacteria in tissue (log;,
Tissue from which day CFU/section)”

16 mucus was isolated

MG1655 Str* EDL933 Str*

Small intestine” 4.07 £ 0.33 4.72 = 0.02
Tleum 3.80 +0.15 3.62+0.29
Cecum 559 +=0.21 6.11 = 0.65
Colon 5.67 £0.25 5.57 = 0.54
Feces (day 15)° 7.42 +0.23 7.44 +0.22

“Mucus from immediately below the stomach to the proximal ileum.

® Data for feces are given as log;, CFU per gram of feces on day 15 postfeed-
ing.

¢ Data are means * standard errors of the means.

EDL933 Str" and EDL933 Str" AppsA ApckA::Cm fail to
grow in mice that are precolonized with MG1655. Humans
infected with O157:H7 strains are presumably colonized with
at least one commensal E. coli strain. To mimic that situation,
mice were precolonized with strain MG1655 Str* (10° CFU/
mouse) and on day 14 postfeeding were fed EDL933 Str* Nal"
(10° CFU/mouse) and EDL933 Str* AppsA ApckA::Cm (10°
CFU/mouse). In contrast to the results of the cofeeding exper-
iments (Fig. 3A), EDL933 Str* Nal® and EDL933 Str* AppsA
ApckA::Cm failed to grow extensively in mice that were pre-
colonized with MG1655 Str', whereas MG1655 Str' remained
at a level of about 10”7 CFU/g of feces (Fig. 5A). Furthermore,
the wild-type EDL933 strain stabilized at a level of about 10°
CFU/g of feces, whereas ED1.933 Str* AppsA ApckA::Cm was
completely eliminated from the intestine (Fig. 5A). Therefore,
the precolonization of mice with the commensal E. coli
MG1655 afforded protection against the growth of low levels
of infecting wild-type EDL933 to high levels in the intestine.

Mice were also precolonized with EDL933 Str" and EDL.933
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Str" AppsA ApckA::Cm and were then fed MG1655 Str* Nal”
(10° CFU/mouse) at day 14. Within 1 day postfeeding,
MG1655 Str" Nal® grew to the level of EDL933 Str' and then
colonized the mice at a level of >107 CFU/g of feces, whereas
both EDL933 Str" and EDL933 Str" AppsA ApckA::Cm levels
dropped continuously (Fig. 5B). Once again, the EDL933 Str"
AppsA ApckA::Cm level dropped at a much faster rate than the
EDL933 Str" level, further indicating that EDL933 is main-
tained in the presence of MG1655 by the utilization of glu-
coneogenic substrates (Fig. 5B). In control experiments, it was
found that wild-type EDL933 not challenged with MG1655
colonizes the mouse intestine at a level of about 107 CFU/g of
feces for at least 23 days (not shown), showing that it was
indeed the MG1655 fed to mice at day 14 that caused the
elimination of EDL933 (Fig. 5B).

DISCUSSION

The large intestine of the mouse consists of the cecum and
the colon, each of which contains the mucosa and the luminal
contents. The two components of the mucosa are the layer of
epithelial cells on the intestinal wall and the mucus layer,
which covers them. The relatively thick (up to 400 wm) mucous
layer consists of mucin, a 2-MDa gel-forming glycoprotein, and
a large number of smaller glycoproteins, proteins, glycolipids,
lipids, and sugars (1, 6, 7, 16, 28, 29, 31, 34). Presumably, shed
epithelial cells are a source of many of the smaller mucous
components (29, 31). The mucus layer itself is in a dynamic
state, constantly being synthesized and secreted by specialized
goblet cells and degraded to a large extent by the indigenous
intestinal microbes (13, 25). Degraded mucus components are
shed into the intestinal lumen, forming a part of the luminal
contents, and are excreted in feces (13).

The prevalent theory to explain how bacteria colonize the
mammalian gut is that the approximately 500 indigenous spe-

e

10 pm

FIG. 4. In situ hybridization with fluorescence-labeled oligonucleotide probes. At 24 and 48 h postfeeding, cecal mucosal sections of mice fed
EDL933 Str* were hybridized with an E. coli-specific oligonucleotide probe (red) and a eubacteria-specific oligonucleotide probe (green). Cecal
sections from 48 h are shown. EP, epithelial cell. E. coli cells appear red, while all other bacteria appear green. Bar, 10 wm. (A) The mucus layer
is intact. (B) The mucus layer was separated from the epithelial cell during preparation.
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FIG. 5. Colonization of the intestine by strains MG1655 and EDL933 when precolonized with either MG1655 or EDL933. Sets of three mice
were fed either 10° CFU of MG1655 Str* on day 0 (O) and 10° CFU each of EDL933 Str* Nal* (OJ) and EDL933 Str* AppsA ApckA::Cm (A) on
day 14 postfeeding (A) or 10° CFU each of EDL933 Str" ((J) and EDL933 Str" AppsA ApckA::Cm (A) on day 0 and 10° CFU of MG1655 Str* Nal®
(O) on day 14 postfeeding (B). At the indicated times, fecal samples were homogenized, diluted, and plated as described in Materials and Methods.
When necessary, 100 colonies from MacConkey agar plates containing streptomycin were applied with toothpicks to MacConkey agar plates
containing both streptomycin and nalidixic acid and plates containing both streptomycin and chloramphenicol to determine numbers of EDL933
Str" cells. Asterisks in place of data points represent days when <1 colony in 100 toothpicked colonies from each mouse were EDL933 Str'". Bars
representing standard errors of the log;, means of CFU per gram of feces for each set of three mice are presented for each time point.

cies (24) can coexist as long as each member of the flora is able
to utilize one or a few limiting nutrients better than all the
others and its rate of growth during the colonization process is
at least equal to the washout rate from the intestine (8, 9). The
rate of growth in the intestine by a particular bacterium is
presumably determined by the nature of the limiting nutrient it
utilizes, and the density to which it grows is determined by the
available concentration of that nutrient. E. coli strains appear
to colonize the mouse intestine by growing in the mucus layer

(18, 26, 35, 36, 38, 40). Consequently, if two E. coli strains
compete for the same nutrient(s) in the mucus layer and nei-
ther strain is attached to epithelial cells, the one that utilizes
them more efficiently will eliminate the other strain (9, 10).
Although the human and mouse large intestinal mucosa are
structurally alike, the unperturbed human intestine is sensitive
to as few as 50 E. coli O157:H7 cells (11), whereas the mouse
intestine must be treated with streptomycin to create a niche
for E. coli strains, including O157:H7. It is currently unclear
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whether the difference in sensitivity to O157:H7 strains is due
to a difference in innate immunity, the composition of the
microflora, consequences of adhesion to epithelial cells, nutri-
ent availability, or a combination of these factors. Neverthe-
less, the data presented here suggest that the streptomycin-
treated mouse model appears to be ideally suited to identifying
differences in nutrient preferences between O157:H7 and com-
mensal E. coli strains in the mouse intestine that might also
contribute to pathogenesis in humans.

By this investigation, evidence was presented that EDL.933
primarily utilizes one or more glycolytic substrates for 1 day of
initial rapid growth in the mouse intestine in the presence of
large numbers of MG1655 cells, suggesting either that it uses
those glycolytic substrates more efficiently than MG1655 or
that those substrates are unavailable to MG1655. The data also
suggest that to maintain itself maximally in the intestine be-
yond day 1 in the presence of large numbers of MG1655,
EDL933 utilizes one or more gluconeogenic substrates in ad-
dition to glycolytic substrates, ie., EDL933 Str" AppsA
ApckA::Cm colonized poorly relative to EDL933 Str™ Nal® in
the presence of large numbers of MG1655 (Fig. 3A). However,
the utilization of gluconeogenic substrates does not allow
EDL933 to remain in large numbers in the presence of
MG1655; instead, it merely postpones its decline to smaller
numbers (Fig. 3A). In contrast, the data presented here indi-
cate that EDL933 utilizes glycolytic substrates exclusively for
both successful initial growth as well as maintenance when it is
the only E. coli strain fed to the mice, i.e., in the absence of
MG1655, EDL933 Str" Nal® and EDL933 Str* Apps ApckA::Cm
colonized equally well (Fig. 2B). An explanation may be that in
the absence of MG1655, EDL933 has sufficient glycolytic sub-
strates to maintain the colonization state, but in the presence
of large numbers of MG1655, it is unable to compete effec-
tively for those substrates beyond the first few days and begins
to utilize gluconeogenic substrates in an attempt to remain in
the intestine.

At the present time, it is not known which gluconeogenic
substrates EDL.933 uses for growth in the mouse large intes-
tine, but it is unlikely that acetate, fumarate, oxaloacetate, or
succinate are involved since, as shown here, the concentration
of each is too low in mucus to support growth. Possibilities for
gluconeogenic substrates that EDL933 utilizes in mucus in-
clude the amino acids aspartate and tryptophan, which can
serve as sole carbon sources for E. coli growth (19). Free amino
acids are found in mouse cecal mucus (7). In addition, phos-
phatidylserine, present at a relatively high concentration in
mouse cecal mucus preparations scraped from the intestinal
wall (17), has been shown to serve as a sole source of carbon
for the growth of EDL933 (17). Since EDL.933 can utilize fatty
acids for growth (Table 3), it is possible that the fatty acids
contained in phospholipids serve as gluconeogenic substrates
for EDL933 in the mouse intestine when this strain is growing
in the presence of large numbers of MG1655. In addition, it
was previously reported that, of the carbon sources present in
intestinal mucus, E. coli K-12 utilizes gluconate and other as
yet unidentified carbon sources for growth in streptomycin-
treated mice (28, 36, 37). Since MG1655 is a K-12 strain, it is
possible that gluconate is one of the glycolytic substrates that
MG1655 utilizes better than EDL933 in the intestine.

In the present study, it was also shown that EDL933 is found
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both in mucus and closely associated with intestinal epithelial
cells for at least 2 days (Fig. 4), whereas MG1655 is known to
reside exclusively in the mucus layer (see Fig. 5 of reference
23). EDL933 may therefore be able to utilize nutrients that are
available exclusively at the surfaces of the epithelial cells. One
intriguing possibility is that if EDL933 damages the mem-
branes of intestinal epithelial cells in streptomycin-treated
mice, as it does in other animal models (5, 15, 37), it may be
able to utilize the nutrients present in the damaged membranes
for growth. This source of nutrients would presumably be un-
available to MG1655, since it is not associated with intestinal
epithelial cells in vivo (23).

Another interesting finding is that small numbers of
EDL933 (10° CFU/mouse) are unable to grow in the intestine
to any large extent in mice that are precolonized with MG1655
(Fig. 5A), yet they are able to grow to at least the same level as
MG1655 when small numbers of EDL933 (10° CFU/mouse)
are fed to mice simultaneously with large numbers of MG1655
(10" CFU/mouse) (Fig. 1A and 3A). It is unlikely that after
several days in the intestine MG1655 secretes an antimicrobial
that limits the growth of EDL933, since precolonized EDL933
cells are eliminated rapidly by small numbers of MG1655 fed
to mice at day 14 (Fig. 5B). These findings suggest that there is
competition between the two strains for nutrients. It is there-
fore more likely that after a few days in the intestine, MG1655
adapts to the glycolytic substrate that small numbers of
EDL933 need for initial growth, and after adapting, utilizes
this substrate at least as well as EDL933 or that the substrate
is depleted by EDL933 during its rapid growth phase. In either
case, these data raise the possibility that in humans colonized
with commensal strains such as MG1655, exposure to EDL.933
would not result in disease, whereas other humans could be
colonized with commensal strains that do not compete well
with EDL933 for glycolytic substrates and disease would ensue.
For determination of whether this hypothesis has merit, the
experiments presented here will have to be repeated with a
number of commensal E. coli strains that have been isolated
from humans. Future studies will be designed to address this
issue as well as to determine the glycolytic and gluconeogenic
substrates that EDL933 utilizes in the mouse intestine in the
presence of large numbers of MG1655 and the glycolytic sub-
strates that MG1655 utilizes in both the presence and absence
of EDL933.
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