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ABSTRACT
Wrist-bands such as smartwatches have become an unobtrusive in-
terface for collecting physiological and contextual data from users.
Smartwatches are being used for smart healthcare, telecare, and
wellness monitoring. In this paper, we used data collected from the
AnEAR framework leveraging smartwatches to gather and store
physiological data from patients in naturalistic settings. This data
included temperature, galvanic skin response (GSR), acceleration,
and heart rate (HR). In particular, we focused on HR and acceler-
ation, as these two modalities are often correlated. Since the data
was unlabeled we relied on unsupervised learning for multi-modal
signal analysis. We propose using k-means clustering, GMM cluster-
ing, and Self-Organizing maps based on Neural Networks for group
the multi-modal data into homogeneous clusters. This strategy
helped in discovering latent structures in our data.
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1 INTRODUCTION
Smartwatches are multi-purpose computerized wristwatches. They
can collect information from internal and external sensors which
include heart rate, blood pressure, oxygen saturation, acceleration,
∗
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galvanic skin response, and more, depending on the model. Because
they support wireless technologies like Bluetooth, Wi-Fi and GPS
and can connect to smartphones to exchange sensor data, they
can be used effectively for many functions [5, 11]. They are useful
in tracking health and physical activity, and getting notifications
extended from connected smartphones. As such, smartwatches
play an important role in many healthcare situations. Årsand and
colleagues discuss the use of smartwatches as a diabetes patient
self-management tool [2].

Systems involving two-way communication between smartwatches
and the mobile phones have promising possibilities for monitoring
blood glucose and physical activity [23]. Other exciting and promis-
ing smartwatch applications include EchoWear, as presented in
[9, 10, 12, 19]. EchoWear is a smartwatch system used for voice and
speech treatments for patients with Parkinson’s disease. This article
aims at the analysis of Multi-modal smartwatch signals that can be
used for neurological assessment of the subject wearing the smart-
watch. Opportunistic Sensing (OS) is a paradigm for signal and infor-
mation processing in which a network of sensing systems automat-
ically discover and select sensor platforms based on an operational
scenario by determining an appropriate set of features and optimal
means for data collection based on these features [17]. SmartEAR
is a use case of opportunistic sensing using smartwatches assisted
with gateway devices such as smartphones/tablet and the secured
cloud backend.

In this paper we are using a smartwatch-based data collection
framework called AnEAR [13]. It gathers physiological informa-
tion from patients and stores it. This data can later be retrieved
for unsupervised analysis, the main theme of this paper. Physio-
logical signals collected from AnEAR have been analyzed applying
unsupervised grouping techniques, including k-means, Gaussian
Mixture Models and self-organizing maps.

2 RELATEDWORK
2.1 AnEAR
AnEAR (Android Electronically Activated Recorder) is a smartwatch-
based data collection framework used to gather and store data from
patients in their home environment. The framework consists of an
Android smartphone, a smartwatch, and a server where the data
is stored and analyzed using the SmartEAR analysis framework
presented in this paper. Along with collecting physical data,AnEAR
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Figure 1: Figure shows the AnEAR framework with the smartwatch, android mobile and the unsupervised learning as applica-
tion.

uses its smartphone’s audio recorder to record the patient’s sur-
rounding audio when activated by a heart rate based trigger. In our
current studies, patients use the Microsoft Band as the smartwatch
component, as the Microsoft Band collects more accurate and plen-
tiful than other smartwatches. Smartwatch’s sensors collect data
including HR, GSR, acceleration, skin temperature, and ambient
light levels. At present, the SmartEAR clustering analysis uses only
HR and accelerometer data.

AnEAR is currently being used in studies to analyze data from
patients with PTSD and other anxiety disorders. Currently, AnEAR
attempts to identify panic attacks by triggering audio recordings
when the patient’s heart rate exceeds a predetermined threshold.
However, every patient is different, each having different resting
heart rates, exercise habits, and triggers, creating individual vari-
ability in the data. For this reason, the AnEAR framework must
be able to determine when each specific user is experiencing a
spike in heart rate that is not attributed to exercise or movement
using Machine learning and Deep learning. This has proven to be
a challenge. Because patients are not in observable environments
while participating in this study, it is impossible to tell what the
patient is doing during data collection, and the data is therefore
unlabeled. Due to the impracticality of gathering labeled data, unsu-
pervised algorithms are the only reasonable option for meaningful
data analysis. For this reason, improvements to the framework’s
anxiety-detecting capabilities rely on unsupervised clustering anal-
ysis in order to identify any possible patterns that we can use to
develop an effective Shallow Machine and Deep learning algorithm.

2.2 Wearables and IoT

Figure 2: AnEAR as a remote viewer (proper authentication
required).

Wearable technology and IoT device is an interconnection of
sensors and fog-nodes that make them capable of transmitting and
collecting the data [3, 8, 24]. The big data from IoT devices can be
used effectively for health monitoring. The effectiveness of tele-
health monitoring is seen in devices like EchoWear [9]. Parkinson
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patients can use smartwatch in their speech exercises for moni-
toring purpose. Various authors proposed several architecture for
IoT and Fog. Kapur and colleagues describe the use of wearable
sensor technology in real-time musical signal processing. The sys-
tem modifies resulting sounds based upon the movements of the
performing artist [16] . Emotion recognition through the use of
physiological signals from the autonomic nervous system collected
using wearables is another application [18]. Features were mapped
to emotions such as sadness and anger. WIoT architectures may
also be presented in terms of design, function, and application [15],
such as in the FIT architecture [4, 6, 21]. It should, however, be
noted that IoT applications require low latency and may encounter
network bandwidth issues.

In our work, we leveraged the IoT based AnEAR framework and
proposed a model for predictive analysis using multi-modal smart-
watch data. The smartwatch component ofAnEAR is used to gather
data, which it sends to the smartphone component via a Bluetooth
Low-Energy connection. After the data is collected and processed,
the smartphone sends its data to a cloud server for storage and fur-
ther analysis. This analysis includes our Deep learning and Shallow
Machine learning algorithms. In the future this will allow us to
create patient-specific models to identify panic attacks and other
neurological events. This model can be sent back to the smartphone
over a secure network, which can be used to locally identify panic
attacks. The biggest concern with the IoT structure as it relates to
this or any other health study is data security, especially during
data transfer. Because patient data is sensitive by nature, securing
that data is of utmost importance. If the network that the patient’s
medical records are being transferred through is compromised, the
records are at risk of being stolen. Currently, to comply with HIPAA
standards, we are manually transferring patient data via a secure
thumb drive from the location of the study to our area of work in
order to analyze the data.

2.3 Multi-modal Smartwatch data

AnEar uses Microsoft Band to collect data from the subjects. The
Microsoft SDK exposes data from the sensors as streams, and appli-
cations can subscribe to this sensor streams. The table below shows
some of the available sensor streams their sampling rates.

Table 1: Description of variousmodalities in the smartwatch
data.

Modality Sampling Rate
Heart rate (HR) 1 Hz
Accelerometer 8 Hz

Galvanic skin response (GSR) 5 Hz
Ambient Light 2 Hz

Heart rate frequently correlates with acceleration data. For exam-
ple, running and otherwise exercising subjects experience increases
in both HR and acceleration. The figure below shows a correlation
plot between 3 dimensional acceleration and heart rate data col-
lected from ’AnEAR’. A higher Positive correlation is seen with
Pearson’s rank correlation coefficient with the subject Heart rate

and acceleration in X and Y direction although the value is small
as we are not aware of the activities or tasks which makes this a
completely unsupervised problem. This information can be vital in
accessing the health status of the individuals.

Figure 3: Correlations between pairs of variables for one
subject. Histograms are shown along the matrix diagonal;
scatter plots of variable pairs appear off the diagonal. The
displayed correlation coefficients are the slopes of the least-
squares reference lines in the scatter plots.

2.4 Data Collection
Data was collected from each subject over a two week period. Dur-
ing the two week study period, participants wore a Microsoft Band.
Data was recorded in three minute blocks, with three minutes with-
out recording between each block. This data was sent to a paired
Android device periodically throughout the day. Data from 10 par-
ticipants is analyzed in this paper.

3 PROPOSED APPROACH
3.1 Unsupervised Learning
Hastie, Tibshirani, and Friedman explain unsupervised learning as
‘learning without a teacher’ [14]. Unsupervised machine learning
is defined as the machine learning task of inferring a function to
describe hidden structure from unlabeled data.

As the data is unlabeled, the accuracy of structures the algorithm
reveals is not evaluated. Unsupervised learning tries to draw in-
ferences from the dataset. Cluster analysis is the most common
form of unsupervised learning. It is often used for exploratory data
analysis to find hidden patterns. Clusters are usually modeled us-
ing a measure of similarity, such as the Euclidean or probabilistic
distance. Clustering algorithms include:

• Hierarchical clustering
• K-means clustering
• Gaussian Mixture Models
• Self-organizing maps
• Hidden Markov models
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Figure 4: The difference between supervised and unsuper-
vised learning adapted from [1] is shown.

We have used AnEAR to collect and store unlabeled data and
applied K-means, Gaussian Mixture Models and Self-organizing
maps for unsupervised clustering of the data.

3.2 K-means clustering

K-means clustering is an unsupervised learning that is used for
exploratory data analysis of unlabeled data. It is a method of vector
quantization which is quite extensively used in data mining. The
algorithm finds k groups in the data. In this method, observations
are placed in the cluster with the nearest mean. This mean typically
serves as a prototype for the cluster. The k-means++ algorithm uses
an heuristic to find centroid seeds for k-means clustering. The data
space is thus partitioned into Voronoi cells. As mentioned in [7]
this algorithm aims to minimize the squared error function J given
by:

J =
K∑
k=1

∑
i ∈ck

| |xi −mk | |2

The Euclidean distance, squared Euclidean distance, Mahalanobis
distance, or Cosine distance between data points and cluster centers
can be used as the distance measure, which is then minimized.
Matlab functions are used to generate k-means plots of the data
sourced from the AnEar framework.

3.3 Gaussian Mixture Model clustering
Other approaches for clustering involve the use of certain models
for clusters and attempt to optimize the fit between the data and the
model. A mathematical distribution, such as a Gaussian or Poisson
distribution, can represent each cluster. The entire data set is then
modeled by a mixture of these distributions. GMM clustering is a
fuzzy or soft clustering method, and is therefore inherently flexible.
This model is often useful when analyzing subpopulations within a
given population. It breaks down a general data observation of a
cluster into multiple, more specific observations. This is incredibly
useful when identifying the nuances of an anxiety disorder. With
lots of training data, we can potentially design the SmartEAR analy-
sis to pick up subtle changes in mood that indicate a potential panic
attack in a user by applying this mixture model to our analysis.

3.4 Self Organizing maps
Self Organizing Maps (SOMs) are a form of a neural network that
maps inputted values on a two-dimensional plane to create similar
clusters of data. Priento and colleagues proposed a new method
for the detection and recognition of traffic signs using a SOM [22].
Their method first detects potential road signs by analysing the
distribution of red pixels within images, and then it identifies the
actual road signs from the distribution of dark pixels. The SOMmap
is trained to sort and organize inputs into clusters. All values in the
same cluster will then be processed and handled in the same way
through cluster analysis. In order to successfully organize the data
in this manner, SOMs require a large amount of data to process. This
allows its learning algorithm to be trained to identify and organize
similar inputs, much like how the human brain processes sensory
information by organizing different parts of the human brain to
process different senses. According to the European Journal of
Operational Research [20], SOM networks make fewer observations
than other analysis algorithms, including k-means, when processing
non-overlapping data sets, and outliers in the processed data don’t
seem to disturb our algorithms as much. Unfortunately, the rate of
correct classification drops significantly for SOMs as the number
of clusters increases.

4 RESULTS AND DISCUSSIONS
We collected data from theAnEAR framework, including GSR, Heart
Rate, Accelerometer data, and Temperature. This work presents the
use of AnEAR for clinical analysis. Multi-modal unlabeled smart-
watch data can’t be used to directly predict the user’s activity or
the neurological state. However, there may be correlations between
physiological signals acquired via AnEAR which, will also aid un-
derstanding of possible relationships between different vital signals.
We performed unsupervised clustering analysis in this study to
show a use case for the AnEAR smartwatch system. Three different
techniques of unsupervised clustering were performed on the data
collected from the AnEAR system. We have chosen to focus on two
variables, HR and acceleration, due to their greater likelihood of
correlation.

Figure 5: K-means clustering analysis is performed on
AnEAR data from 10 subjects.
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Figure 5 shows our implementation of k-means clustering using
the k-means++ algorithm for centroid initialization and squared
Euclidean distance. A cross marks centroid locations. The data have
been partitioned into three clusters using the best arrangement out
of several initializations. Matlab k-means by default initializes the
replicates separately using k-means++. It reduces the probability of
a bad initialization leading to a bad clustering result. Initial cluster
centroid positions were chosen to perform a preliminary clustering
phase on a random 10 percent subsample of the input data using the
Matlab command ’cluster.’ Here the value of K is three, so we see
three clusters with different colors along with their centroids. We
have used the same data and analyzed it using Gaussian Mixture
Model clustering.

Figure 6: GMM clustering analysis performed onAnEAR data

GMM clustering works by maximizing the component posterior
probability given the data. Figure 6 shows the four plots generated
by GMM clustering.

• Diagonal covariance matrices indicate that the predictors
are uncorrelated.

• Full covariance matrices allow for correlated predictors.
• Shared covariance matrices mean that all components have
the same covariance matrix.

• Unshared covariance matrices mean that all parts have their
own covariance matrix.

Unlike the k-means, 2 Clusters are shown for GMM conducted on
the AnEAR data, as designated by two different colors. The clusters
are more or less similar and informative as shown in k-means in
Figure 5. The only difference is the number of clusters used in the
unsupervised learning. Another exploratory analysis we have used
in the self-organizing maps using Neural Network. SOM or self-
organizing map is a neural network method with a set of neurons
connected to form a topological grid. We got a topographical map
of input patterns of the AnEAR data with Acceleration and Heart
rate as feature space as shown in Figure 7. SOM was trained with
a Neural Network of 36 Neurons. Each Neuron has several data-
points in it, and thus acts as its own cluster. The SOM pattern is
shown as a hexagonal grid. The blue hexagons in the figure repre-
sent the neurons, and the red lines connect neighboring neurons in

Figure 7: Distances between neighboring neurons.

Figure 8: Data point locations and weight vectors.

the figures. The colors in the regions containing the red lines indi-
cate the distances between neurons. Darker colors represent larger
distances, and lighter colors represent smaller distances. A group
of Dark segments appears in the upper-right region, bounded by
some lighter segments of yellow color. From the figure, this group-
ing might indicate that the network has clustered the data into
three groups. The color difference indicates that data points in a
particular region are farther apart.

We had two parameters sowe have seen twoweights. The dataset
consist of two features from ten subjects. Those features were Heart
Rate and average Acceleration. It is hard to see distinguishable
clusters from the plot of SOM weight positions, but we can clearly
see the distribution of the data set and the neurons used to learn
to classify input vectors according to their grouping in the input
space. The blue dots or circles represent the neurons and green
ones represent the data points.

Clustering analysis can reveal hidden patterns in the underlying
data. We have shown three different types of clustering in this
paper: k-means, Gaussian Mixture Model clustering and Neural
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Network based SOMs. K-means used 3 Clusters to group theAnEAR
data and GMM used 2 Clusters. While SOM did not use a distinct
number of clusters, instead using 36 neurons, figure 7 suggests the
presence of 3 clusters in the data. The smartwatch dataset is rich
and can provide vital information about the person wearing the
device.

5 CONCLUSIONS
In this study, we leveraged multi-modal unlabeled smartwatch data
from the AnEAR framework. We have shown the possibility of
the correlation between different modalities could be helpful in
predicting the user’s activity or neurological state. We discussed
results obtained through various clustering approaches such as
K-means clustering, GMM clustering and SOMs for discovering the
latent structures in multi-modal smartwatch data. As a future work,
it would be interesting to study the analysis of such a system on
data obtained through patients.
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