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Abstract: 

The biohybrid cantilevers have been recently reported for high-throughput measurement of 

muscle contractility. In previous works, mechanical models were used to predict the contractile 

stress from the cantilever bending curvature. To derive those models, the cantilever bending 

process was considered as quasi-static and the viscous force was neglected.  To ascertain the 

effect of the viscous force on the prediction of the muscle contractility in biohybrid cantilever-

based experiments, we extend the modified Stoney’s equation to a dynamic model that takes into 

account both the viscous force and the inertia force. Parametric studies show that, because the 

viscous force hinders the movement of the cantilever, use of static models result in a system 

error between the calculated and true contractile stresses. When using static models, the diastolic 

stress will be over-estimated while the peak systolic stress will be under-estimated. The present 

work suggests that dynamic models can be used in biohybrid cantilever assays to calculate the 

muscle contractility with higher accuracy, or can be used to optimize the experimental 

parameters such that the error due to the use of static models is minimized. 

Keywords: Biohybrid cantilever, Muscle on chips, Stoney’s equation, Viscosity 
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1. Introduction 

Important progresses in developing biohybrid cantilever devices for the measurement of muscle 

contractility have been reported recently  [1–9]. In the biohybrid cantilever devices, muscle cells 

are cultured on the top of a thin substrate layer that can be made of polymers, hydrogels, or 

silicon. Paced by electric stimulation, the muscle tissue undergoes the cycles of contraction and 

relaxation, causing the cantilever to bend and recoil periodically  (Fig. 1). These types of 

biohybrid cantilever micro-systems can be used as mechanical sensors for measuring muscle 

contractility. The contractility of muscle tissue is an important physiological property of muscle 

tissues, and the high-throughput assays for measuring muscle contractility are an unmet need for 

biomedical applications such as drug discovery and safety  [2,4] and disease modeling  [10].  

 

 

Figure 1. Schematic of the bending movement of the biohybrid cantilever. (A) Side view of the 

biohybrid cantilever. (B) The stress distribution 𝜎𝜎𝑥𝑥 on the cross-section of a differential element 

of the cantilever.  

 

By measuring the deflection of the cantilever and with given geometric and material properties 

of the cantilever and tissue, the contractile stress of the muscle tissue can be estimated by using 

mechanics models. When the curvature of the cantilever is assumed to be constant 

longitudinally, a modified Stoney’s equation has been used in the literature  [5,7,8,10] to 

calculate the contractile stress 𝜎𝜎𝑐𝑐 from the constant curvature 𝑐𝑐 (see the derivations in Model 

Description): 

𝜎𝜎𝑐𝑐 = 𝐸𝐸� 𝑡𝑡𝑏𝑏
2

6𝑡𝑡𝑓𝑓

1
�1+𝑡𝑡𝑓𝑓/𝑡𝑡𝑏𝑏�

𝑐𝑐    (1) 
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where 𝑡𝑡𝑏𝑏 is the thickness of the substrate layer, 𝑡𝑡𝑓𝑓 is the thickness of the muscle sheet, the factor 

�1 + 𝑡𝑡𝑓𝑓/𝑡𝑡𝑏𝑏�
−1

 is a correction to the original Stoney’s equation when the thickness of the muscle 

layer approaches that of the cantilever beam. Here 𝐸𝐸� is an elastic modulus of the cantilever beam 

that will be clarified as follows. In the original Stoney’s equation  [11], the effect of cantilever 

width is ignored and 𝐸𝐸� is simply equal to the Young’s modulus 𝐸𝐸. When the cantilever is 

considered as a thin plate and the muscle sheet develops isotropic contraction [7,8], 𝐸𝐸� is taken to 

be the biaxial modulus 𝐸𝐸/(1 − 𝑣𝑣), where 𝑣𝑣 is the Poisson’s ratio of the substrate layer. In the 

recently reported muscle-on-a-chip assays  [4], the anisotropic muscle cell alignment was 

achieved by micro-patterning of extracellular matrix proteins on the surface of the cantilever. 

The muscle sheet developed unidirectional contraction along the length direction of the 

cantilever. In this case, following the plate theory of cylindrical bending the uniaxial modulus 

𝐸𝐸/(1 − 𝑣𝑣2) should be used for 𝐸𝐸�.  

 

It is worth noting that finite element models have also been developed to predict the large 

deformations of the muscular thin films under the active muscle contraction  [4,12,13]. In the 

muscular thin films, the two-layer biohybrid constructs can have much more complex geometries 

and tissue alignments than the cantilever counterparts. Böl et al.  [12] developed a finite element 

model of muscular thin films in which the active contraction of the muscle fibers was modeled 

using 3D truss elements and the polymeric thin film was modeled using the tetrahedral unit cell. 

In another work, Shim et al.  [13] developed a constitutive law of muscle tissue that takes into 

account the anisotropic pre-stretch and active contraction of muscle fibers. Thanks to the ability 

to model the complex geometries and material properties with the high accuracy, finite element 

models are very useful in designing complex muscle-based biohybrid devices  [5,14].  

 

Previous analytical and computational modeling of biohybrid cantilevers or muscular thin films 

have been mainly focused on the static equilibrium of the biohybrid constructs.  In these studies, 

the cantilever is assumed to be in a static equilibrium at any time instant under the acting of the 

muscle contractile force and the elastic recoiling force of the cantilever itself. However, there has 

been little effort to date to study the effect of viscous force on the motion of the biohybrid 

cantilevers. Because the cantilever is immersed in the cell culture media, viscous drag is also 
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applied on the cantilever when it undergoes dynamic bending-recoiling process. Considering the 

bending movement of the biohybrid cantilever as a vibration problem, the input is muscle 

contractile stress and the output is the cantilever deformation (e.g., curvature). For a forced 

vibration system with damping, the damping force can change both the amplitude and phase of 

the output. To ascertain the effect of the viscous force on the prediction of the contractility using 

biohybrid cantilever systems, in the present work, we extend the Stoney’s equation to a dynamic 

model that takes into account both the viscous force and the inertia force.  

 

2. Model Description 

The Lagrangian mechanics is applied here to derive the dynamic equation of motion of the 

cantilever. In the following, we first derive the elastic bending energy of the beam, the potential 

function of the active contraction, the dissipative function of the viscous force, and the kinetic 

energy of the beam. We then apply Lagrangian mechanics to derive the dynamic equations. 

 

The model developed below is for the anisotropic muscle tissue [4], i.e., the contraction is 

unidirectional along the longitudinal direction, which leads to a cylindrical bending of the 

cantilever. By virtue of the small thickness-to-length ratio, the cantilever is treated using the 

classic plate theory. To make the model analytically tractable, the curvature along the length of 

the cantilever is assumed to be constant. Adopting the plain-strain assumption along the width 

direction of the cantilever, for the cylindrical bending of plates, the normal stress 𝜎𝜎𝑥𝑥 on the cross-

section of the substrate layer in the local coordinates (Fig. 1B) is related to the strain 𝜀𝜀𝑥𝑥 as [15]: 

𝜎𝜎𝑥𝑥 = 𝐸𝐸�𝜀𝜀𝑥𝑥   (2) 

where 𝐸𝐸� = 𝐸𝐸 (1 − 𝑣𝑣2)⁄  is the uniaxial modulus. Here the normal strain 𝜀𝜀𝑥𝑥(𝑧𝑧) can be obtained 

from the curvature 𝑐𝑐 by: 𝜀𝜀𝑥𝑥(𝑧𝑧) = 𝑐𝑐(𝑧𝑧 − 𝑏𝑏), where 𝑧𝑧 measures the distance from the middle layer 

of the substrate (Fig. 1B), 𝑏𝑏 denotes the position of the neutral axis. The bending strain energy 

𝑉𝑉𝑏𝑏 can be calculated as 

                                           𝑉𝑉𝑏𝑏 = 𝐿𝐿𝐿𝐿 ∫ 1
2
𝜎𝜎𝑥𝑥𝜀𝜀𝑥𝑥𝑑𝑑𝑧𝑧

𝑡𝑡𝑏𝑏
2

−
𝑡𝑡𝑏𝑏
2

                     (3) 

where 𝐿𝐿 and 𝐿𝐿 are the width and length of the cantilever, respectively. Substituting Eq. (2) into 

Eq. (3), we obtain: 

𝑉𝑉𝑏𝑏 = 𝐸𝐸�𝐿𝐿𝑊𝑊𝑡𝑡𝑏𝑏3

24
𝑐𝑐2 + 𝐸𝐸�𝐿𝐿𝑊𝑊𝑡𝑡𝑏𝑏

2
𝑐𝑐2𝑏𝑏2           (4) 
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The elastic bending energy of the tissue layer can be neglected because the Young’s modulus of 

the muscle tissue is at least two orders of magnitude smaller than the cantilever that is made of 

polymer or silicon. For the hydrogel cantilevers  [16], the thickness of the cantilever is much 

larger than the tissue layer. In both cases, the bending rigidity of the cantilever is much larger 

than the muscle layer, which justifies ignoring of the bending strain energy of the muscle layer. 

Using the strain at the middle of tissue layer, the potential function 𝑉𝑉𝑐𝑐 for the cell contraction 

stress can be calculated as: 

       𝑉𝑉𝑐𝑐 = 𝜎𝜎𝑐𝑐𝐿𝐿𝐿𝐿𝑡𝑡𝑓𝑓𝑐𝑐 �−
𝑡𝑡𝑓𝑓+𝑡𝑡𝑏𝑏
2

− 𝑏𝑏�                 (5) 

To calculate the kinetic energy, the velocity of the cantilever is estimated as follows. In the 
global coordinate system, defining 𝑋𝑋(𝑠𝑠) and 𝑍𝑍(𝑠𝑠) as the current configuration of the beam, 

where 𝑠𝑠 is the arc length, one have 𝑋𝑋(𝑠𝑠) = ∫ 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠′𝑑𝑑𝑠𝑠′𝑠𝑠
0 = 1

𝑐𝑐
𝑠𝑠𝑖𝑖𝑖𝑖𝑐𝑐𝑠𝑠~𝑠𝑠 − 𝑠𝑠3

6
𝑐𝑐2, and 𝑍𝑍(𝑠𝑠) =

∫ 𝑠𝑠𝑖𝑖𝑖𝑖𝑐𝑐𝑠𝑠′𝑑𝑑𝑠𝑠′𝑠𝑠
0 = 1

𝑐𝑐
(1 − 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠)~ 𝑠𝑠2

2
𝑐𝑐. Taking derivative of 𝑋𝑋(𝑠𝑠) and 𝑍𝑍(𝑠𝑠) with respect to time, the 

magnitude of the velocity �̅�𝑣(𝑠𝑠) of the cantilever as a function of the arc length 𝑠𝑠 can be 
approximated as  

�̅�𝑣(𝑠𝑠) = �̇�𝑐�𝑠𝑠6

9
𝑐𝑐2 + 𝑠𝑠4

4
    (6) 

The kinetic energy 𝐸𝐸𝑘𝑘 of the cantilever can be calculated as 𝐸𝐸𝑘𝑘 = 𝜌𝜌𝑡𝑡𝑏𝑏𝑊𝑊
2 ∫ �̅�𝑣(𝑠𝑠)2𝑑𝑑𝑑𝑑𝐿𝐿

0 , where 𝜌𝜌 is 

the density of the substrate material. Using Eq. (6), the kinetic energy can be obtained as follows: 

𝐸𝐸𝑘𝑘 = 𝜌𝜌𝑡𝑡𝑏𝑏𝐿𝐿7𝑊𝑊
126

�̇�𝑐2𝑐𝑐2 + 𝜌𝜌𝑡𝑡𝑏𝑏𝐿𝐿5𝑊𝑊
40

�̇�𝑐2            (7) 

The viscous force exerted on the cantilever is taken into account through a dissipation function 

𝑉𝑉𝑑𝑑 in an integral form, 

𝑉𝑉𝑑𝑑 = 𝛼𝛼𝛼𝛼
2 ∫ �̅�𝑣(𝑠𝑠)2𝑑𝑑𝑠𝑠𝐿𝐿

0             (8) 

where 𝛼𝛼 is a dimensionless number and 𝜇𝜇 is the dynamic viscosity of the culture media. To be 

analytical tractable, 𝛼𝛼 will be estimated here in an ad hoc approach. The dimensionless number 

involved in the calculation of viscous force for a plate with a width W and a length L moving in 

a viscous fluid is given  [17] as  𝛼𝛼 = 6𝜋𝜋(3𝐿𝐿 + 2𝐿𝐿)/5𝐿𝐿. This formula is used here for the 

estimation of the numerical value of 𝛼𝛼. Substituting velocity from Eq. (6) into equation Eq. (8), 

we derive the dissipation function 𝑉𝑉𝑑𝑑 as 

𝑉𝑉𝑑𝑑 = 𝛼𝛼𝛼𝛼𝐿𝐿7

126
�̇�𝑐2𝑐𝑐2 + 𝛼𝛼𝛼𝛼𝐿𝐿5

40
�̇�𝑐2 (9) 
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The Lagrangian ℒ can be calculated as follows: 

ℒ = 𝐸𝐸𝑘𝑘 − (𝑉𝑉𝑏𝑏 + 𝑉𝑉𝑐𝑐)   (10) 

Recall that the general form of the Lagrange’s equation for a system with two generalized 

coordinates (i.e., 𝑏𝑏 and 𝑐𝑐) takes the following form:   

    𝑑𝑑
𝑑𝑑𝑡𝑡

𝜕𝜕ℒ
𝜕𝜕�̇�𝑏
− 𝜕𝜕ℒ

𝜕𝜕𝑏𝑏
= −𝜕𝜕𝑉𝑉𝑑𝑑

𝜕𝜕�̇�𝑏
               (11) 

    𝑑𝑑
𝑑𝑑𝑡𝑡

𝜕𝜕ℒ
𝜕𝜕𝑐𝑐̇
− 𝜕𝜕ℒ

𝜕𝜕𝑐𝑐
= −𝜕𝜕𝑉𝑉𝑑𝑑

𝜕𝜕𝑐𝑐̇
              (12) 

Since the Lagrangian ℒ is independent of the �̇�𝑏, Eq. (11) can be simplified to: 

𝑏𝑏 = 𝜎𝜎𝑐𝑐𝑡𝑡𝑓𝑓
𝐸𝐸�𝑡𝑡𝑏𝑏

1
𝑐𝑐
                             (13) 

By substituting Eq. (10) and (13) into Eq. (12), the general governing equation of motion for this 

dynamic model is obtained:  

�𝜌𝜌𝑡𝑡𝑏𝑏𝐿𝐿
5𝑊𝑊

20
+ 𝜌𝜌𝑡𝑡𝑏𝑏𝐿𝐿7𝑊𝑊

63
𝑐𝑐2� �̈�𝑐 + �𝛼𝛼𝛼𝛼𝐿𝐿

5

20
+ 𝛼𝛼𝛼𝛼𝐿𝐿7

63
𝑐𝑐2� �̇�𝑐 + �𝐸𝐸

�𝑡𝑡𝑏𝑏3𝐿𝐿𝑊𝑊
12

+ 𝜌𝜌𝑡𝑡𝑏𝑏𝐿𝐿7𝑊𝑊
63

�̇�𝑐2� 𝑐𝑐 =
(𝑡𝑡𝑏𝑏+𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓𝐿𝐿𝐿𝐿

2
𝜎𝜎𝑐𝑐(𝑡𝑡)           (14) 

In the case of cantilever bending in the small curvature and slow motion region, by neglecting 

the nonlinear terms in equation (14), the linear equation of motion can be obtained in the 

following form: 
𝜌𝜌𝑡𝑡𝑏𝑏𝐿𝐿4

10(𝑡𝑡𝑏𝑏+𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓
�̈�𝑐 + 𝛼𝛼𝛼𝛼𝐿𝐿4

10(𝑡𝑡𝑏𝑏+𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓𝑊𝑊
�̇�𝑐 + 𝐸𝐸�𝑡𝑡𝑏𝑏2

6(1+𝑡𝑡𝑓𝑓 𝑡𝑡𝑏𝑏⁄ )𝑡𝑡𝑓𝑓
𝑐𝑐 = 𝜎𝜎𝑐𝑐(𝑡𝑡)                               (15) 

If neglecting the viscous and inertia forces, i.e., by setting �̇�𝑐 = 0 and �̈�𝑐 = 0 in Eq. (15), we 

recover the modified Stoney’s equation given in Eq. (1). Equation (15) indicates that because of 

the presence of viscous and inertia force on the cantilever, the muscle contractility 𝜎𝜎𝑐𝑐 is not 

simply proportional to the curvature 𝑐𝑐, but a function of 𝑐𝑐 and its time derivatives. Therefore, 

using the Stoney’s equation or its variants in the contractility measurement assays will result in a 

system error.  

To show quantitatively how the bending motion of the cantilever is affected by the viscous force, 

Eq. (14) and (15) are solved numerically with an assumed function 𝜎𝜎𝑐𝑐(𝑡𝑡). We assume the 

calcium-induced muscle contractile stress 𝜎𝜎𝑐𝑐(𝑡𝑡) is decoupled from the bending of the cantilever, 

and in one period it is described as  

𝜎𝜎𝑐𝑐(𝑡𝑡) = ��𝜎𝜎𝑠𝑠𝑠𝑠 − 𝜎𝜎𝑑𝑑𝑑𝑑� �
1−𝑐𝑐𝑐𝑐𝑠𝑠�2𝜋𝜋𝑡𝑡𝑐𝑐

𝑡𝑡�

2
� + 𝜎𝜎𝑑𝑑𝑑𝑑,   0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑐𝑐

                 𝜎𝜎𝑑𝑑𝑑𝑑,                        𝑡𝑡𝑐𝑐 < 𝑡𝑡 < 𝑇𝑇
               (16) 
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where 𝜎𝜎𝑠𝑠𝑠𝑠 and 𝜎𝜎𝑑𝑑𝑑𝑑 are peak systolic and diastolic stresses, respectively, 𝑡𝑡𝑐𝑐 is the twitch period, 𝑇𝑇 

is the pacing period. Thus, the pacing frequency is 1/𝑇𝑇. With 𝜎𝜎𝑐𝑐(𝑡𝑡) as the given input, the 

curvature 𝑐𝑐(𝑡𝑡) as a function of time can be obtained from Eq. (14) or (15). In the results 

presented below, parameters values are estimated from previous experiments  [10]: 𝜇𝜇 =0.001 

Pas, 𝑡𝑡𝑓𝑓 =  4 µm, 𝑡𝑡𝑏𝑏 =  20 µm, 𝐿𝐿 = 4 mm, 𝐿𝐿 = 2mm, 𝛼𝛼 = 13.2, 𝜎𝜎𝑠𝑠𝑠𝑠 = 20 kPa, 𝜎𝜎𝑑𝑑𝑑𝑑 = 8 kPa, 

𝜈𝜈 = 0.5, 𝐸𝐸 = 1.52 MPa, 𝜌𝜌 = 965 kg/m3. These values are used in all of the calculations unless 

specifically mentioned. 

 

Figure 2. Effect of pacing frequency on the dynamics of cantilever bending. The bending 

curvature is represented by the dimensionless quantity 𝑆𝑆(𝑡𝑡). The thinner line represents the 

normalized contractile stress. The thicker line is the steady-state solution from the linear dynamic 

model (Eq. (15)). 

 

Results 

The significance of viscous and inertia forces to the cantilever bending movement can be 

estimated by the following order-of-magnitude analysis. By using the approximation �̈�𝑐 𝑐𝑐⁄ ~𝑡𝑡𝑐𝑐−2, 

the ratio between the inertia force and the elastic recoiling force can be estimated as 

𝜍𝜍 = �3𝜌𝜌𝑡𝑡𝑏𝑏𝐿𝐿5𝑊𝑊�𝑐𝑐̈
�5𝐸𝐸�𝑡𝑡𝑏𝑏3𝐿𝐿𝑊𝑊�𝑐𝑐

~ 𝜌𝜌𝐿𝐿4

𝐸𝐸�𝑡𝑡𝑏𝑏2𝑡𝑡𝑐𝑐2
    (17) 

For the experimentally relevant parameter values (listed in the caption of Fig. 2), the ratio 𝜍𝜍 is 

calculated to be 0.005, which is two orders of magnitude smaller than one. The ratio between the 

viscous force and the elastic recoiling force can be estimated as 

𝜒𝜒 = �3𝐿𝐿5𝛼𝛼𝛼𝛼�𝑐𝑐̇
�5𝐸𝐸�𝑡𝑡𝑏𝑏3𝐿𝐿𝑊𝑊�𝑐𝑐

~ 𝛼𝛼𝛼𝛼𝐿𝐿4

𝐸𝐸�𝑡𝑡𝑏𝑏3𝑊𝑊𝑡𝑡𝑐𝑐
     (18) 
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For the same set of parameter values, the ratio 𝜒𝜒 is found to be 0.4, which is close to 1. These 

order-of-magnitude analyses indicate that, compared to the elastic recoiling force, the viscous 

force is comparable to the elastic recoiling force, while the inertia force is negligible. 

 

To facilitate the discussion of the modeling results, we introduce a dimensionless quantity 

𝑆𝑆(𝑡𝑡) = 1
𝜎𝜎𝑠𝑠𝑠𝑠

𝐸𝐸�𝑡𝑡𝑏𝑏2

6(1+𝑡𝑡𝑓𝑓 𝑡𝑡𝑏𝑏⁄ )𝑡𝑡𝑓𝑓
𝑐𝑐(𝑡𝑡) by dividing the left-hand side of Eq. (15) by the peak systolic stress 

𝜎𝜎𝑠𝑠𝑠𝑠. Note that 𝑆𝑆(𝑡𝑡) can be interpreted as the scaled curvature and it can also be interpreted as the 

predicted contractile stress from the curvature when using the modified Stoney’s equation (Eq. 

(1)). The steady state solution of Eq. (15) (i.e., the linear dynamic model) is plotted in Fig. 2, in 

which the dimensionless quantity 𝑆𝑆(𝑡𝑡) and the normalized contractile stress 𝜎𝜎𝑐𝑐(𝑡𝑡) 𝜎𝜎𝑠𝑠𝑠𝑠⁄  are 

plotted. The solutions for different pacing frequencies (1 𝐻𝐻𝑧𝑧, 2 𝐻𝐻𝑧𝑧, 3 𝐻𝐻𝑧𝑧, and 4 𝐻𝐻𝑧𝑧) are placed 

together in the time domain for the ease of comparison. For the steady state solution 𝑆𝑆(𝑡𝑡) at each 

frequency, we denote the maximal and minimal values by 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 and 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚, respectively. The true 

maximal and minimal contractile stress is defined by the peak systolic stress 𝜎𝜎𝑠𝑠𝑠𝑠 and the diastolic 

stress 𝜎𝜎𝑑𝑑𝑑𝑑, respectively. We can see from Fig. 2 that 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 ≥ 𝜎𝜎𝑑𝑑𝑑𝑑 while 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 𝜎𝜎𝑠𝑠𝑠𝑠. Therefore, in 

the previous experiments when using the static models such as the modified Stoney’s equations 

to predict the contractile stress, the diastolic stress will be over-estimated, while the peak systolic 

stress will be under-estimated. Mechanically, these results can be interpreted as follows. For 

𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 𝜎𝜎𝑠𝑠𝑠𝑠, it is because when the muscle tissue contracts to bend the cantilever, the cantilever 

only bends to a less extent (compared to a static equilibrium case) due to the viscous force. For 

𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 ≥ 𝜎𝜎𝑑𝑑𝑑𝑑, at the end of the elastic recoiling, for sufficiently high pacing frequency, the next 

contraction cycle starts before the cantilever recoils all the way to the lowest position in a static 

situation. In addition, there is also a slight phase shift between the input (contractile stress) and 

the output (the curvature), as shown in Fig. 2. 
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Figure 3. Effects of the dynamic viscosity 𝜇𝜇 on 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 and 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥. (A) Solutions of the linear 

dynamic model (Eq. (15)). (B) Solution of the nonlinear dynamic model (Eq. (14)). Both panel A 

and B share the same legend.  

Figure 3 plots 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 and 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 as functions of the pacing frequency for different values of 

viscosity and for the linear and nonlinear dynamic models. The upper bound of the pacing 

frequency in x-axis is set to be 1/𝑡𝑡𝑐𝑐, which is the maximal pacing frequency at which there is no 

overlap between the adjacent contraction-relaxation cycles. It can be seen that, both 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 and 

𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 increase with the increasing of the pacing frequency. This is because the faster the pacing 

frequency, the earlier the next contraction starts, yielding larger 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚. At faster pacing frequency, 

the increase of 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 yields a higher starting position for the next contraction cycle, thus 

increasing 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥. Denoting the difference between 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 and 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 by ∆𝑆𝑆𝑡𝑡𝑡𝑡 (i.e., ∆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 −

𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚), ∆𝑆𝑆𝑡𝑡𝑡𝑡 is shown to decrease with increasing the pacing frequency, which is because the 

increase of 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 outnumbers the increase of 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥. Furthermore, Fig. 3 shows as the viscosity 

becomes larger, the difference between 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 and 𝜎𝜎𝑑𝑑𝑑𝑑 becomes greater. This is also the case for 

the difference between 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 and 𝜎𝜎𝑠𝑠𝑠𝑠. Because (𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 − 𝜎𝜎𝑑𝑑𝑑𝑑) and �𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 − 𝜎𝜎𝑠𝑠𝑠𝑠� represent the 

system error when the static models are used to predict the contractile stress from the curvature, 

we see that the system error increases with the viscosity of the culture media. Comparing the 

results of the nonlinear dynamic model (Fig. 3B) with the linear one (Fig. 3A), in the nonlinear 



11 
 

case the effect of the viscous force on deviating 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 and 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 from 𝜎𝜎𝑠𝑠𝑠𝑠 and 𝜎𝜎𝑑𝑑𝑑𝑑, respectively, is 

even larger.  

 

Figure 4.  Effect of the thickness of the substrate layer 𝑡𝑡𝑏𝑏 on 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 and 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥, the linear dynamic 

model is used for the calculations.  

 

From the scale analysis in Eq. (18), the ratio between the viscous force and the elastic recoiling 

force can be tuned by changing the thickness of the substrate layer. Figure 4 plots 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 and 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 

as functions of the pacing frequency for different thicknesses of the substrate layer, in which one 

can see that both (𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚 − 𝜎𝜎𝑑𝑑𝑑𝑑) and �𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 − 𝜎𝜎𝑠𝑠𝑠𝑠� decrease with increasing of the thickness 𝑡𝑡𝑏𝑏. 

This is simply because increasing the thickness of the substrate layer will decrease the ratio 𝜒𝜒 

between the viscous force and the elastic recoiling force (Eq. (18)), thus decreasing the system 

error when the static models are used to predict the contractile stress from the curvature. 

However, increase the thickness of the substrate layer will reduce the signal strength (i.e., 

decreasing the dynamic range of the bending curvature of the cantilever). Therefore, an optimal 

thickness of the substrate layer exists, at which the best accuracy of the contractility 

measurement can be achieved. 

 

Conclusions 
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In this work, we have developed an analytical model to solve for the relation between the 

cantilever bending curvature and the muscle contractile stress for the biohybrid cantilever 

system. Although in the present model, only one layer of flat substrate material is considered, the 

analytical approach can be readily extended to micro-molded hydrogel cantilevers  [16] and 

multi-layer cantilevers by describing the strain energy of bending in each layer. We have shown 

that, due to the presence of the viscous force acting on the cantilever, the quasi-static relation 

between the curvature and the contractile stress (Eq. (1)) is no longer valid and results in a 

system error between the estimated and true values of muscle contractility. The modeling results 

show that, for the same muscle tissue, the minimal and maximal curvatures of the cantilever 

changes with the pacing frequency.  When using a static model to calculate the contractile stress 

from the measured curvature, the calculated diastolic stress will be larger than the true diastolic 

stress, while the calculated peak systolic stress will be smaller than the true values. The 

calculated twitch stress will be smaller than the true value. In addition, the error for the diastolic 

stress is smaller at the lower pacing frequency, while the error for the peak systolic stress is 

bigger at the lower pacing frequency (Fig. 3). Our work suggests that dynamic models can be 

used to calculate the muscle contractility with higher accuracy.  On the other hand, in the cases 

where the static models are highly favored in the experiments by virtue of its simplicity and the 

need of less number of parameters, dynamic models can be used to optimize the parameters such 

that the error due to the use of the static models is minimized. 

 

References 

[1] A. Agarwal, Y. Farouz, A. P. Nesmith, L. F. Deravi, M. L. McCain, and K. K. Parker, 

Micropatterning Alginate Substrates for in Vitro Cardiovascular Muscle on a Chip 

(2013), pp. 3738–3746. 

[2] A. Agarwal, J. A. Goss, A. Cho, M. L. McCain, and K. K. Parker, Microfluidic Heart on a 

Chip for Higher Throughput Pharmacological Studies (2013), pp. 3599–608. 

[3] A. P. Nesmith, A. Agarwal, M. L. McCain, and K. K. Parker, Human Airway Musculature 

on a Chip: An in Vitro Model of Allergic Asthmatic Bronchoconstriction and 

Bronchodilation (Royal Society of Chemistry, 2014), pp. 3925–3936. 



13 
 

[4] A. Grosberg, A. P. Nesmith, J. A. Goss, M. D. Brigham, M. L. McCain, and K. K. Parker, 

Muscle on a Chip: In Vitro Contractility Assays for Smooth and Striated Muscle (Elsevier 

Inc., 2012), pp. 126–135. 

[5] A. W. Feinberg, A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. 

Parker, Muscular Thin Films for Building Actuators and Powering Devices (2007), pp. 

1366–70. 

[6] J. Xi, J. J. Schmidt, and C. D. Montemagno, Self-Assembled Microdevices Driven by 

Muscle (Nature Publishing Group, 2005), pp. 180–184. 

[7] K. Wilson, M. Das, K. J. Wahl, R. J. Colton, and J. Hickman, Measurement of Contractile 

Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and 

Muscle Performance Enhancement (2010). 

[8] V. Chan, J. H. Jeong, P. Bajaj, M. B. Collens, T. A. Saif, H. Kong, and R. Bashir, Multi-

Material Bio-Fabrication of Hydrogel Cantilevers and Actuators with Stereolithography 

(2012), pp. 88–98. 

[9] L. Ricotti and A. Menciassi, Bio-Hybrid Muscle Cell-Based Actuators (2012), pp. 987–

998. 

[10] G. Wang, M. L. McCain, L. Yang, A. He, F. S. Pasqualini, A. Agarwal, H. Yuan, D. 

Jiang, D. Zhang, L. Zangi, J. Geva, A. E. Roberts, Q. Ma, J. Ding, J. Chen, D.-Z. Wang, 

K. Li, J. Wang, R. J. A. Wanders, W. Kulik, F. M. Vaz, M. A. Laflamme, C. E. Murry, K. 

R. Chien, R. I. Kelley, G. M. Church, K. K. Parker, and W. T. Pu, Modeling the 

Mitochondrial Cardiomyopathy of Barth Syndrome with Induced Pluripotent Stem Cell 

and Heart-on-Chip Technologies (Nature Publishing Group, a division of Macmillan 

Publishers Limited. All Rights Reserved., 2014), pp. 616–23. 

[11] C. A. Klein, How Accurate Are Stoney’s Equation and Recent Modifications (2000), p. 

5487. 

[12] M. Böl, S. Reese, K. K. Parker, and E. Kuhl, Computational Modeling of Muscular Thin 

Films for Cardiac Repair (2009), pp. 535–544. 



14 
 

[13] J. Shim, A. Grosberg, J. C. Nawroth, K. Kit Parker, and K. Bertoldi, Modeling of Cardiac 

Muscle Thin Films: Pre-Stretch, Passive and Active Behavior (Elsevier, 2012), pp. 832–

841. 

[14] S.-J. Park, M. Gazzola, K. S. Park, S. Park, V. Di Santo, E. L. Blevins, J. U. Lind, P. H. 

Campbell, S. Dauth, A. K. Capulli, F. S. Pasqualini, S. Ahn, A. Cho, H. Yuan, B. M. 

Maoz, R. Vijaykumar, J.-W. Choi, K. Deisseroth, G. V. Lauder, L. Mahadevan, and K. K. 

Parker, Phototactic Guidance of a Tissue-Engineered Soft-Robotic Ray (2016), pp. 158–

162. 

[15] S. Timoshenko and S. Woinosky-Krieger, Theory of Plates and Shells Classic (1959). 

[16] M. L. McCain, A. Agarwal, H. W. Nesmith, A. P. Nesmith, and K. K. Parker, 

Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues 

(Elsevier Ltd, 2014), pp. 5462–5471. 

[17] F. M. White, Viscous Fluid Flow, 2nd ed. (McGraw-Hill, 1991). 

  

 


	University of Rhode Island
	DigitalCommons@URI
	2016

	The effect of viscous force on the prediction of muscle contractility in biohybrid cantilever-based experiments
	Bahador Marzban
	Hongyan Yuan
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use
	Citation/Publisher Attribution


	tmp.1550675774.pdf.6HtLc

