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ABSTRACT
The jumbo squid, Dosidicus gigas, can survive extended forays into
the oxygen minimum zone (OMZ) of the Eastern Pacific Ocean.
Previous studies have demonstrated reduced oxygen consumption
and a limited anaerobic contribution to ATP production, suggesting
the capacity for substantial metabolic suppression during hypoxic
exposure. Here, we provide a more complete description of energy
metabolism and explore the expression of proteins indicative of
transcriptional and translational arrest that may contribute to
metabolic suppression. We demonstrate a suppression of total ATP
demand under hypoxic conditions (1% oxygen, PO2=0.8 kPa) in both
juveniles (52%) and adults (35%) of the jumbo squid. Oxygen
consumption rates are reduced to 20% under hypoxia relative to air-
saturated controls. Concentrations of arginine phosphate (Arg-P)
and ATP declined initially, reaching a new steady state (~30% of
controls) after the first hour of hypoxic exposure. Octopine began
accumulating after the first hour of hypoxic exposure, once Arg-P
breakdown resulted in sufficient free arginine for substrate. Octopine
reached levels near 30 mmol g−1 after 3.4 h of hypoxic exposure.
Succinate did increase through hypoxia but contributed minimally to
total ATP production. Glycogenolysis in mantle muscle presumably
serves to maintain muscle functionality and balance energetics
during hypoxia. We provide evidence that post-translational
modifications on histone proteins and translation factors serve as a
primary means of energy conservation and that select components
of the stress response are altered in hypoxic squids. Reduced ATP
consumption under hypoxia serves to maintain ATP levels, prolong
fuel store use and minimize the accumulation of acidic intermediates
of anaerobic ATP-generating pathways during prolonged diel forays
into the OMZ. Metabolic suppression likely limits active, daytime
foraging at depth in the core of the OMZ, but confers an energetic
advantage over competitors that must remain in warm, oxygenated
surface waters. Moreover, the capacity for metabolic suppression
provides habitat flexibility as OMZs expand as a result of climate
change.

KEY WORDS: Climate change, Vertical migration, Ocean
acidification, Critical oxygen partial pressure, Cephalopoda,
Epigenetics, Stress response, Antioxidant, Metabolic scaling
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INTRODUCTION
Dosidicus gigas (d’Orbigny 1835) (Ommastrephidae) is a large,
apex predator endemic to the Eastern Pacific Ocean (Markaida and
Sosa-Nishizaki, 2003; Nigmatullin et al., 2001; Nesis, 1983). Recent
interest in D. gigas is motivated, in part, by its poleward range
expansion, which may be associated with warmer periods following
El Niño/La Niña events and changing ecosystem interactions
including food availability, competition and predation (Zeidberg and
Robison, 2007). However, some recent studies have suggested a
link, whether direct or indirect, between the squid’s range expansion
and the ongoing deoxygenation in the Eastern Pacific (Stewart et al.,
2014; Rosa et al., 2013). Throughout much of the Eastern Tropical
Pacific, seawater PO2 declines with depth, from air saturation
(~21 kPa) near the surface to less than 5% (<1 kPa) at intermediate
depths (~250–800 m). These oxygen minimum zones (OMZs) are
naturally occurring but may be expanding geographically and
shoaling as a result of climate change (Bograd et al., 2008; Stramma
et al., 2008; Keeling et al., 2010). The hypoxia in OMZs is already
sufficient to restrict the vertical distribution of most apex predators
in the ocean (e.g. tuna, swordfish, marlin and sharks; Brill, 1994;
Prince and Goodyear, 2006; Vetter et al., 2008; Nasby-Lucas et al.,
2009; Stramma et al., 2011; Seibel, 2011), yet the horizontal extent
of the OMZ in the eastern Pacific closely mirrors the known
distribution of Dosidicus gigas (Nigmatullin et al., 2001).

The typical daily behavior of D. gigas involves vertical
migrations from near-surface waters at night to mesopelagic depths
(~300 m) during the daytime (Gilly et al., 2006; Zeidberg and
Robison, 2007; Matteson et al., 2009; Stewart et al., 2013; Stewart
et al., 2014). Recent work confirms that these squid are capable of
remaining active at night, maintaining routine metabolism and
activity levels down to a critical oxygen partial pressure (Pcrit) of
~1.6 kPa at 10°C (~10% air saturation) (Trueblood and Seibel,
2013; Gilly et al., 2006). Hypoxia tolerance is partly achieved via
adaptations of the respiratory protein hemocyanin that facilitate
oxygen loading of the blood at the gills despite a small
water–blood oxygen gradient (Seibel, 2013). These adaptations
facilitate buffering of the tissue oxygen partial pressure (PO2)
across a wide range of environmental PO2 values. However, the
PO2 typically encountered by D. gigas at depth during the daytime
is lower than its Pcrit. Routine oxygen consumption rates in
juveniles measured at subcritical PO2 (0.8 kPa) are only ~10% of
those measured in air-saturated seawater (Rosa and Seibel, 2008;
Rosa and Seibel, 2010). The measured accumulation of octopine,
an indicator of glycolytic flux in cephalopods, was insufficient to
meet the energy deficit. This led Rosa and Seibel (Rosa and Seibel,
2010) to postulate that total metabolism, including aerobic and
anaerobic ATP production, is substantially suppressed.
Suppression of total metabolism appears to be a prerequisite for
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the survival of prolonged bouts of O2 limitation (Guppy and
Withers, 1999; Hochachka and Somero, 1984; Bickler and Buck,
2007). Most hypoxia-tolerant organisms are capable of suppressing
ATP turnover by 40–95% and the duration of low oxygen
tolerance is proportional to the extent of metabolic suppression
(Hand, 1998). However, most species that are used as models of
metabolic suppression are relatively sluggish to begin with. A 50%
reduction in ATP usage is quite different for a snail than for an
active squid. Dosidicus gigas, like other ommastrephid and
loliginid squids, has an oxygen demand that, at equivalent size and
temperature, is higher than that of fishes and mammals (O’Dor and
Webber, 1986; Seibel, 2007; Seibel and Drazen, 2007; Trueblood
and Seibel, 2013).

Hallmarks of metabolic suppression include global suppression of
energy-intensive cellular processes such as transcription and
translation and the reprioritization of ATP use by vital cell functions
(Storey and Storey, 2004). Transcriptional control is achieved via
chromatin proteins, particularly histones, which exhibit characteristic
post-translational modifications (e.g. acetylation, phosphorylation,
methylation) indicative of the accessibility of DNA promoter regions
to transcriptional regulatory complexes (Morin and Storey, 2006).
With respect to translational competence, key molecular targets are
translation initiation factors (Klann and Dever, 2004). Post-
translational modifications and/or interaction with regulatory partners
control their accessibility, thereby influencing translational rates
(Gingras et al., 1999; Cuesta et al., 2000). Translational suppression
may also be regulated during the elongation phase by inhibition of a
translation elongation factor (Hizli et al., 2013). Transcriptional
regulation factors and translation initiation and elongation factors are
known to be important in other models of metabolic rate depression
(Larade and Storey, 2002; Hittel and Storey, 2002; Morin and Storey,
2006; Krivoruchko and Storey, 2010a; Krivoruchko and Storey,
2010b; Krivoruchko and Storey, 2010c; Tessier and Storey, 2010) and
were targeted in the present study as molecular indices of
transcriptional and translational suppression. Despite global
suppression of transcription and translation, a common organismal
response to environmental stress includes concomitant increases in
stress-responsive pathways such as antioxidant defenses and heat
shock proteins (HSP) (Storey, 1996; Storey and Storey, 2011;
Trübenbach et al., 2012b). As hypoxia-tolerant organisms reduce ATP
demand by reducing biosynthetic functions, a greater emphasis may

be placed on these macromolecule-preservation strategies.
Alternatively, antioxidant metabolites and HSP expression in hypoxia
may be a strategy to prevent post-hypoxic oxidative damage during
the squid’s night-time upwards migration to the surface ocean
(Trübenbach et al., 2012b).

Here, we exposed squid ranging from 0.01 to 3.0 kg to normoxic
(PO2=21 kPa) and subcritical oxygen levels (PO2=0.8 kPa) at
temperatures consistent with its deeper daytime habitat depth to
investigate the metabolic and molecular response to hypoxia.
Specifically, we investigated: (i) routine metabolic rates, (ii)
accumulation of anaerobic metabolites (octopine, arginine,
succinate), (iii) depletion of energy reserves (glycogen, phosphagens
and ATP), (iv) the regulation of proteins associated with ATP-
expensive processes and (v) stress-response pathways such as HSPs
and antioxidant metabolites, which we hypothesize parallel
metabolic rate depression in the jumbo squid. The experimental
design also allowed us to determine the time course of metabolic
changes with prolonged hypoxic exposure.

RESULTS
Oxygen consumption
Oxygen consumption rates (ṀO2, mol O2 g−1 h−1) declined with
increasing body mass (M) according to the power equation
ṀO2=B0Mb, where B0 is a normalization constant independent of
body mass and b is a scaling coefficient that describes the slope of
the relationship (Fig. 1). Normoxic treatments scaled as
ṀO2=12.1M–0.11 while hypoxic treatments are described by
ṀO2=2.4M–0.12. The scaling coefficients were shallow and did not
depend significantly on the measurement PO2. However, the
normalization constant in hypoxia (B0=2.4) was significantly lower
(~80%) than that in normoxia (ANCOVA, P<0.001). Mean ṀO2 are
presented for hypoxic and normoxic juvenile (5.4–13.3 g wet mass)
and adult (2–4 kg wet mass) squid in Table 1.

Metabolite accumulation
The concentrations of ATP, arginine phosphate (Arg-P), octopine,
succinate and related metabolites in mantle tissue are presented as
means (±s.d.) in Table 1 and as a function of the duration of
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List of symbols and abbreviations
AEE anaerobic energy equivalents
Arg-P arginine phosphate
4EBP eukaryotic translation initiation factor 4E binding protein 1
eIF4G eukaryotic translation initiation factor 4G
eIF2α eukaryotic translation initiation factor 2 alpha
eIF4E eukaryotic translation initiation factor 4E
eEF2K eukaryotic elongation factor 2 kinase
eEF2 eukaryotic elongation factor 2
GSH glutathione
HSP heat shock protein
M body mass
ṀO2 oxygen consumption rate
OMZ oxygen minimum zone
P50 PO2 at 50% hemocyanin O2 saturation
PCO2 CO2 partial pressure
Pcrit critical oxygen partial pressure
Pi inorganic phosphate
PO2 oxygen partial pressure 
PEP phosphoenolpyruvate
ROV remotely operated vehicle
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Fig. 1. Routine oxygen consumption rate (ṀO2) of Dosidicus gigas as a
function of body mass in air-saturated (PO2=21 kPa) and hypoxic
(PO2=1.0 kPa) water at 10°C. Colors represent measurements using different
methods in different studies: black, end-point methods (Seibel, 2007); blue,
flow-through (Rosa and Seibel, 2010) (present study); red, flow-through
(present study); and green, continuous (Trueblood and Seibel, 2013). Solid
line, filled symbols, 21 kPa; dashed line, open symbols, 1.0 kPa. Metabolism
under normoxia scaled as ṀO2=12.1M–0.11 (where M is body mass) while
under hypoxia, metabolism was described by ṀO2=2.4M–0.12.
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exposure to PO2=0.8 kPa in Figs 2 and 3. Despite the variation in
metabolite levels with exposure duration, there were significant
differences in all investigated metabolite concentrations comparing
mean normoxic (those run continuously in air-saturated water) and
hypoxic (those exposed for any duration to 1% oxygen) conditions

in both juveniles and adults (P<0.05, t-test). While the absolute
values of some metabolites differed between juveniles and adults,
the patterns of accumulation and relative changes were similar in the
two life stages. They are discussed in combination here and
separately below. In both juveniles and adults, the concentration of
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Table 1. Metabolic changes in juvenile and adult Dosidicus gigas during hypoxic exposure
Normoxic (PO2=21 kPa) Hypoxic (PO2=0.8 kPa)

Juvenile Adult Juvenile Adult

Mass (g) 10.0±3.3 722±141 9.7±3.1 939±390
Hypoxic exposure (h) 0 0 1.3–3.3 2.1–4.3
ṀO2 (µmol O2 g−1 h−1) 18.2±7.7 13.1±5.5 3.7±1.7 1.3±0.6
Metabolites (µmol g−1)

Octopine 3.8±1.0 4.9±3.0 17.8±9.8 18.1±14.4
Arginine 40.5±9.0 25.1±6.8 25.4±11.2 30.1±9.7
Arg-P 25.2±5.3 41.9±18.6 7.2±2.5 4.7±2.9
Succinate 0.2±0.1 0.9±0.2 0.5±0.2 1.8±0.5
ATP 5.6±0.5 8.5±1.6 1.4±0.3 2.6±1.6

pHi – 7.54±0.04 – 7.39±0.05
pHe – 7.36±0.19 – 7.89±0.09
PCO2 (kPa) – 3.84±1.55 – 4.63±2.14
Total metabolism (ATP equivalents h−1) 82.2 53.58 39.64 34.94
% Suppression (relative to control) 52 35

Mean (±s.d.) oxygen consumption rates (ṀO2) and metabolite concentrations in mantle muscle tissue following normoxic and hypoxic exposure in squid at
10°C. Total metabolism was calculated accounting for the metabolite production and exposure time of each individual squid and cannot be derived precisely
from the mean metabolite concentrations in this table.
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Fig. 2. Juvenile and adult D. gigas metabolite measurements during exposure of up to 4 h in 1% oxygen. Data at time zero are from squid run
continuously in air-saturated water. Open symbols, juveniles; filled symbols, adults. (A) Arginine phosphate (Arg-P) and (B) ATP declined within the first 1–2 h
but then remained constant. (C) Octopine increased in adults (2.5e0.72x, R2=0.82) and juveniles (3.3e0.67x, R2=0.83). (D) Succinate increased significantly in
juveniles (0.19e0.42x, R2=0.21) but not in adults with increasing exposure to hypoxia.



Th
e 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

2558

inorganic phosphate (Pi) more than doubled during hypoxia (data not
shown). The Arg-P concentration displayed a drop by almost 90%
and ATP was reduced to 30% of the control concentration by the end
of the longest exposures. The drop in Arg-P was mirrored by the rise
in free arginine, which was ultimately incorporated into octopine
(Fig. 2A,C). Octopine was elevated 4-fold (to ~30–40 μmol g−1 wet
mass) by the end of the experiment relative to normoxic controls
(5 μmol g−1; Fig. 2C, Table 1). Intracellular succinate concentration
accumulated exponentially with hypoxic exposure and was doubled,

relative to controls, in the longest durations (Fig. 2D). Intracellular
glycogen levels, measured only in adults, also declined significantly
during hypoxia compared with normoxic conditions (mean control
value was 324.8±80.7 and mean hypoxia value was 73.9±9.6 μmol
glucosyl units g−1 wet mass).

There was no significant difference between juveniles and adults
in the levels of octopine at any particular duration of hypoxic
exposure or in its rate of accumulation between juveniles and adults
(ANCOVA, P>0.05; Fig. 2C). While the rates of accumulation were
similar in juveniles and adults, the total succinate levels were
significantly higher in adults (ANCOVA, P<0.05; Fig. 2D).
Similarly, control levels of both ATP and Arg-P were significantly
higher in adults and both declined by ~60% after 1 h of hypoxic
exposure (Fig. 2A,B). Arg-P levels in juveniles declined by an
additional 50% over the next few hours while adult levels remained
constant following the initial decline.

Total metabolism
Under hypoxia, the total metabolic rate, measured as the sum of
ATP derived from pathways that result in anaerobic energy
equivalents (AEE) and the ATP derived from oxidative
phosphorylation, was reduced by 52% and 35% compared with
that measured in air-saturated seawater in juvenile and adult squid,
respectively. The contribution of ATP and Arg-P to AEE was high
in the early stages of hypoxic exposure while the glycolytic
(octopine) and mitochondrial (succinate) contribution increased
following 1 h of exposure (Fig. 2). These contributions offset each
other such that the total anaerobic contribution to ATP
consumption was constant during hypoxic exposure and accounted
for ~50% of the total metabolic rate under hypoxia (Fig. 3). ṀO2
declined slightly with continuing exposure to hypoxia. As a result,
the total metabolic rate also declined slightly through the
experimental hypoxia treatment (Fig. 3A,B). AEE production was
significantly higher in hypoxic adults (27.26±3.33 μmol l−1

ATP g−1 h−1) than in hypoxic juveniles (19.92±4.16 μmol l−1

ATP g−1 h−1; t-test; P<0.05).

Acid–base balance
The intracellular pH (pHi) values in the mantle tissue of the adult
normoxic control animals varied between 7.46 and 7.62 with a mean
(±s.d.) of 7.55±0.04. In the hypoxic adults, pHi varied from 7.31 to
7.50 and the mean was 7.39±0.05 (Table 1). pHi declined
progressively during continuing hypoxic exposure. Because
octopine increased exponentially with hypoxic exposure duration,
pHi and octopine are correlated, but not linearly (Fig. 4A). Under
hypoxia the intracellular CO2 partial pressure (PCO2, mean ± s.d.:
0.61±0.28 kPa) was not significantly different (P>0.05) from that
under normoxia (mean ± s.d.: 0.51±0.20 kPa). Extracellular
(hemolymph) pH (pHe) increased significantly during hypoxia from
7.36±0.19 under control conditions to 7.89±0.09 in the hypoxic
treatment (P>0.05). Changes in pHi and pHe showed a negative
linear correlation (Fig. 4B).

Gene and protein expression
In adult mantle muscle, the relative phosphorylation and acetylation
on histone H3 decreased significantly during hypoxia to 74% of
control values while phosphorylation levels alone were unaltered
(Fig. 5A). The expression pattern of translation-specific proteins in
mantle muscle (Fig. 5B) was different from that in all other tissues
(branchial heart, gill and brain) and, as a result, additional targets
were measured to further elucidate the muscle-specific response.
The phosphorylation state of 4EBP (eukaryotic translation initiation
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Fig. 3. Aerobic and anaerobic contribution to total ATP production
during exposure to hypoxia in D. gigas. (A,B) Contribution of aerobic (ṀO2,
open circles) and anaerobic energy equivalents (AEE; octopine, Arg-P, ATP
and succinate as ATP μmol g−1 h−1; open squares) to total metabolism (filled
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accumulation (circles) of AEE in juveniles (filled symbols) and adults (open
symbols).
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factor 4E binding protein 1) and HSP27 was significantly enhanced
(values in hypoxia were 1.5-fold and 1.3-fold higher than controls,
respectively), the phosphorylation state of eEF2 (eukaryotic
elongation factor 2) decreased significantly (values in hypoxia were
48% of controls), and all other targets remained unchanged,
including eIF4G (eukaryotic translation initiation factor 4G), eIF2α
(eukaryotic translation initiation factor 2 alpha), eIF4E (eukaryotic
translation initiation factor 4E) and eEF2K (eukaryotic elongation
factor 2 kinase).

In branchial heart, the relative phosphorylation and acetylation on
histone H3 during hypoxia was 50% of control values while relative
changes of the phosphorylation state alone were unaltered (Fig. 6A).
With respect to the translation-related targets; a strong decrease in
4EBP was observed (values in hypoxia were 21% of controls) and
all other targets remained unchanged (Fig. 6B). In the brain, the
phosphorylation of histone H3 and 4EBP decreased significantly
(values in hypoxia were 58% and 56% of controls, respectively), the
phosphorylation state of HSP27 had the opposing pattern showing
an increase during hypoxia (2-fold higher than controls), and all
other targets remained unchanged (Fig. 7A,B). In the gill, post-
translational modifications on histone H3 decreased to 62%
(phospho) and 60% (phospho/acetyl) of control values (Fig. 8A). A
decrease in the phosphorylation of 4EBP was also seen; however,
this was the only translation-related target to change significantly
(41% of control values, Fig. 8B).

Molecular indices of the stress response
Compared with control values, the antioxidant capacity in adults was
55%, 54% and 55% lower in muscle, heart, and brain during
hypoxia, respectively (Fig. 9). The relative expression levels of HSP
proteins were assessed by immunoblotting in D. gigas muscle
comparing control and hypoxic conditions. Fig. 10 shows a
significant decrease in the relative expression of HSP25, HSP40 and
HSP60 during hypoxia (values in hypoxia were 46%, 75% and 62%
of control values, respectively) while all other targets remained
unchanged. Other targets included: GSH (glutathione) and GTP.

DISCUSSION
The vertical and horizontal distribution of D. gigas is closely
associated with the OMZ in the Eastern Pacific (Gilly et al., 2006;
Rosa and Seibel, 2010). In the Gulf of California, the species spends
night-time hours feeding actively in the upper water column
(50–150 m) (Benoit-Bird et al., 2012) where PO2 varies with depth but
does not reach critical levels (Pcrit=1.6 kPa, 10°C) (Trueblood and
Seibel, 2013). During the daytime, however, D. gigas migrates below
200 m, where PO2 is often below Pcrit. Our results shed light on the rate
of energy usage, and on the ultimate metabolic sources and sinks of
that energy, at these deeper, severely hypoxic depths. We reveal a
substantial suppression of total metabolism that provides an advantage
over similarly active predators. The high affinity respiratory protein
in the blood facilitates some continued oxygen extraction from
hypoxic waters (Seibel, 2013), which accounts for ~20% and 50% of
the total metabolism in the adult and juvenile squid, respectively, at
subcritical oxygen levels (Fig. 3). The capacity for metabolic
suppression is key to survival in the OMZ. Most active squids
(Loliginids and Ommastrephids) show relatively little capacity for
hypoxia tolerance (Wells, 1990; Bridges, 1994; Finke et al., 1996).
However, the ommastrephid Sthenoteuthis in the Arabian Sea and
Gonatus onyx in the California Current also migrate daily into OMZs
and likely have similar physiological strategies to those shown here
(Shulman et al., 2002; Hunt and Seibel, 2000).

Oxygen consumption and transport
Normoxic ṀO2 in D. gigas was near 10 μmol O2 g−1 h−1 (10°C),
among the highest of any marine animal (Seibel and Drazen, 2007).
Moreover, because of the shallow scaling slope [b=–0.11 (Seibel,
2007)] (Fig. 1) relative to fishes [for example, b=–0.21 (Clarke and
Johnston, 1999)], the difference in the rate of metabolism between
squids and fishes is especially pronounced at larger sizes. We found
that, in agreement with previous studies (Rosa and Seibel, 2010),
aerobic metabolism is substantially reduced (~85% and 75% in
adults and juveniles, respectively) at oxygen levels below the Pcrit

(Fig. 1) in both juvenile and adult squid across six orders of
magnitude size range.

pHe and oxygen provision in hypoxia
During exposure to hypoxia, we found that an alkalosis (ΔpH≈0.5)
developed in the blood. Conventional knowledge would suggest that
this rise in pHe might be caused by a rise in ventilation and also by
proton exchange with the hemocyanin. Hypoxia has been shown to
induce hyperventilation in the cuttlefish Sepia officinalis (Johansen
et al., 1982) and a similar rise in blood pH has been observed in
other cephalopods under conditions of insufficient oxygen supply
(Houlihan et al., 1982; Johansen et al., 1982; Pörtner et al., 1990;
Pörtner et al., 1991; Pörtner et al., 1993). However, ventilation and
locomotion are directly coupled in squids (Wells, 1990). Therefore,
hyperventilation would also strongly increase energy costs in D.
gigas and make it counter-productive in the OMZ. Furthermore, the
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OMZ is characterized by elevated CO2 and low pH, further
diminishing the utility of hyperventilation to reduce pHe (note that
under natural conditions, where hypercapnia in the OMZ counteracts
the alkalosis, the change in pHe could be smaller than that observed
here under CO2-free conditions). In fact, a dramatic reduction of the
ventilation rate during hypoxia was found in juveniles during
hypoxic exposure (Trübenbach et al., 2012a), which is correlated to
the metabolic depression. The alkalosis occurs at the expense of pHi

(Fig. 4) and likely derives from HCO3
– transported from the tissue

into the blood (Pörtner et al., 1991).
The blood alkalosis observed would increase the affinity of

hemocyanin for oxygen, enhancing the oxygen-carrying capacity of
the blood in hypoxic waters. At 10°C, a blood pH of 7.9 would
provide a P50 (PO2 resulting in 50% hemocyanin O2 saturation) of
0.4 kPa, about half the PO2 achieved during the current experiments
and approaching the lowest PO2 experienced in the Gulf of
California (Seibel, 2013). Assuming the blood pH was also 7.9 by
the end of the closed-respirometry experiments of Trueblood and
Seibel (Trueblood and Seibel, 2013), the critical PO2 during resting
metabolism (1.6 kPa or 2% oxygen) was reached at a blood O2

saturation of ~80% (cf. Seibel, 2013). However, those experiments
were carried out in closed chambers starting with air-saturated water
such that CO2 concentrations would have been elevated. Oxygen
saturation was likely near 60% at Pcrit. Oxygen availability to the
tissues under more extreme hypoxia must be dependent primarily on
the low tissue PO2, in conjunction with the high cooperativity of
oxygen binding, that facilitates oxygen off-loading.

A comparative view of findings in Illex illecebrosus, Loligo pealei
and D. gigas indicates that the P50 is highly tuned to the active mode
of life in muscular squid, in relation to the modulation of pHe and
ambient conditions (Redfield and Goodkind, 1929; Pörtner, 1990;
Pörtner, 1995; Seibel, 2013). In other words, blood O2 transport sets
the whole-animal Pcrit in squids and the Pcrit is highly dependent on
pHe. Low P50 values are required to maintain oxygen-carrying
capacity from hypoxic waters just above the OMZ and oxygen
release to the tissues is made possible by tight control of pHe.

Anaerobic energy production
The rate of anaerobic metabolism was approximately constant for
the duration of the hypoxic exposure (Fig. 3), but the anaerobic
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Fig. 5. Changes in mantle muscle protein levels during hypoxic exposure. Levels of p-H3S10, p-H3S10/A-H3K9, eIF4E, 4EBP (and phospho T45), eIF2α
(and phospho S51), eEF2 (and phospho T56) and HSP27 (and phospho S82) during control and hypoxia in D. gigas are shown. (A) Levels of transcription-
related proteins p-H3S10 and p-H3S10/A-H3K9. (B) Levels of translation-related proteins p-4EBP T45, p-eIF2α S51, p-eEF2 T56 and p-Hsp27 S82.
(C) Representative western blots. Histograms show mean normalized band densities (±s.e.m., N=5 independent trials on tissue from different animals). Data
were analyzed using Student’s t-test; asterisks denote values are significantly different from controls, P<0.05.
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sources of ATP varied with the duration of hypoxic exposure. While
the absolute values of ATP provided by anaerobic metabolism varied
between juveniles and adults, the relative changes during the
experiment were similar. Within the first 90 min, the phosphagen
(Arg-P) and ATP stores were diminished to about 30% of their initial
values. These metabolites reached a new steady state that was
maintained during continuing hypoxia. The decrease in Arg-P was
mirrored by an increase in free arginine after the first hour of
exposure to hypoxia. However, arginine dropped steadily during the
remainder of the experiment, presumably as it was used in the
formation of octopine (Fig. 2). The preferred end-product of
glycolysis is pyruvate, which reacts with arginine, forming octopine
(Grieshaber et al., 1994). This delayed onset of octopine formation
is consistent with the findings of Kreutzer et al. (Kreutzer et al.,
1989) that opine formation operates near equilibrium and that during
hypoxia, opines accumulate according to the concentration of their
amino acid precursors. As arginine accumulated, octopine formation
was facilitated.

Upregulated glycolysis and accumulation of octopine supplement
energy demand following the first hour of hypoxic exposure
(Fig. 2C). Glycogen appeared to be the main biochemical substrate
during the hypoxic exposure, consistent with previous studies on
marine animals (Blazka, 1960; Hochachka and Somero, 1984;
Grieshaber et al., 1994). In hypoxia-tolerant organisms, glycogen
fermentation is coupled to the transamination of free amino acids (L-
aspartate and L-glutamate) by generating succinate and ATP (via
malate and fumarate synthesis). Succinate can also be directly
produced during sustained severe hypoxia under progressive
acidosis at the phosphoenolpyruvate branchpoint (via direct
conversion from phosphoenolpyruvate to oxaloacetate instead of
pyruvate), as this pathway elevates ATP production (2.5 mol
ATP mol−1 L-aspartate/succinate) (Grieshaber et al., 1994). Under

low PO2, the respiratory chain will become oxygen limited and
succinate accumulates. Thus, succinate is an indicator of the onset
of an anaerobic metabolism within the mitochondria (Grieshaber et
al., 1994). Succinate, in our study, significantly increased following
the first hour of hypoxia exposure (Fig. 2D), but contributed only
minimally to total ATP production (Table 1). This may indicate that
some fraction of mitochondria remained aerobic, in line with
sustained, low levels of aerobic metabolism and hemocyanin
functioning.

Metabolic suppression
We demonstrate a 52% and 35% suppression of total ATP demand
under hypoxic conditions in juvenile and adult squid, respectively
(Table 1). Approximately 50% of the suppressed energy demand is
met aerobically in juveniles compared with only about 30% in
adults. This apparent difference between juveniles and adults may
reflect subtle allometric differences in oxygen demand (Fig. 1)
(Seibel, 2007) or limitations on glycolytic ATP production at small
size (cf. Childress and Somero, 1990). Regardless, reduced ATP
consumption serves to protect energy status and fuel stores, and to
minimize the accumulation of acidic intermediates of anaerobic
ATP-generating pathways during prolonged, diel forays into the
OMZ.

Metabolic suppression is typically achieved by shutting down
expensive cellular activities including biosynthetic pathways and ion
pumping (Hand, 1998; Buck and Hochachka, 1993; Lutz and
Nilsson, 1997; Brooks and Storey, 1997). For example, protein
synthesis and gene transcription are energy-expensive processes,
consuming a substantial portion of the total ATP turnover of all cells
and organs (Hochachka and McClelland, 1997). As a result,
regulatory mechanisms that suppress cellular gene/protein
expression ensure that reductions in ATP supply are matched with
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Fig. 6. Changes in branchial heart protein levels during hypoxic exposure. Levels of p-H3S10, p-H3S10/A-H3K9, p-4EBP T45, p-eIF2α S51, p-eEF2 T56
and p-Hsp27 S82 during control and hypoxia in D. gigas are shown. (A) Levels of transcription-related proteins p-H3S10 and p-H3S10/A-H3K9. (B) Levels of
translation-related proteins p-4EBP T45, p-eIF2α S51, p-eEF2 T56 and p-Hsp27 S82. (C) Representative western blots. Other information as in Fig. 5.
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reduced ATP demand (Frerichs et al., 1998; Morin and Storey, 2006;
Krivoruchko and Storey, 2010b). In this capacity, ATP
concentrations are homeostatic in those species that must survive
extended bouts of energy limitation (Nilsson and Lutz, 2004).
Turtles and carp that tolerate complete anoxia in frozen ponds over
winter maintain ATP concentrations at control levels for several
months (Nilsson and Lutz, 2004). Similarly, bivalves maintain ATP
concentrations for weeks when exposed to air during low tide (De
Zwaan et al., 1991; De Zwaan, 1991). ATP levels fell to a new
steady-state level in the present study. In contrast, ATP levels fall to
zero within minutes in the absence of oxygen in mammalian systems
(Nilsson and Lutz, 2004).

We demonstrated that, similar to other hypometabolic organisms,
the jumbo squid exhibits mechanisms that act to globally inhibit
transcription and translation, likely resulting in substantial energy
savings during hypoxia. At the transcriptional level, all tissues in the
present study displayed evidence of chromatin condensation,
suggesting a lower rate of transcription during hypoxic conditions
(Figs 5–8). Lysine acetylation neutralizes the positive charge
normally present on histone tails, thereby reducing affinity with the
negatively charged DNA backbone. Consequently, decreases in post-
translational modifications on histone tails observed in the present
study during hypoxia would result in condensation of DNA:histone
interactions, rendering DNA less accessible to transcription factors
(Strahl and Allis, 2000). Phosphorylation of the Ser10 residue on
histone H3 is also involved in chromosome condensation and its
close proximity with other modifiable amino acids enables an
interaction between other post-translational modifications (Nowak
and Corces, 2004). In particular, muscle, heart and gill tissue all
demonstrated a relative decrease in multisite post-translational
modifications on histone tails. Acetylation of Lys9 (or Lys14)

influences Ser10 phosphorylation and this combination could serve
to amplify the signal, causing greater changes in overall charge
density that lead to greater changes in chromatin structure (Rea et
al., 2000; Strahl and Allis, 2000). In muscle tissue in particular, this
signal amplification most likely plays a vital role in conserving ATP
stores during hypoxia.

Translational suppression is clearly regulated at several
checkpoints and this feature allows the organism to fine tune protein
synthesis depending on the type of stress and/or tissue-specific needs
(Anderson and Kedersha, 2002; Sudhakar et al., 2000; Klann and
Dever, 2004). Interestingly, three of the four tissues measured
revealed a common mechanism of achieving translational
suppression during hypoxic conditions in D. gigas. The heart, brain
and gills (Figs 6–8) all showed decreases in the phosphorylation
state of 4EBP. When phosphorylated, this protein releases its
inhibitory interaction with initiation factors, thus enhancing
translation (Gingras et al., 1999). Indeed, 4EBP accumulates in
hypoxic cells (Hidalgo et al., 2012) and its upstream regulatory
kinase is inhibited through multiple pathways during hypoxia
(Wouters and Koritzinsky, 2008). Additionally, the brain showed an
increase in the phosphorylation state of HSP27, which may stabilize
mRNA (Knapinska et al., 2011) and inhibit translation (Cuesta et al.,
2000). The observed changes in the phospho-state of these proteins
may be sufficient to markedly lower the rates of protein synthesis in
these three tissues.

With respect to translation-specific components, the mantle
muscle showed a unique expression pattern that was distinct from
that of the other tissues observed (Fig. 5). The total protein levels of
all translation initiation/elongation targets measured, including
4EBP, remained unchanged. There may be advantages to
maintaining basal levels of select translation-specific components in
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Fig. 7. Changes in brain protein levels during hypoxic exposure. Levels of p-H3S10, p-H3S10/A-H3K9, p-4EBP T45, p-eIF2α S51, p-eEF2 T56 and 
p-Hsp27 S82 during control and hypoxia in D. gigas are shown. (A) Levels of transcription-related proteins p-H3S10 and p-H3S10/A-H3K9. (B) Levels of
translation-related proteins p-4EBP T45, p-eIF2α S51, p-eEF2 T56 and p-Hsp27 S82. (C) Representative western blots. Other information as in Fig. 5.
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muscle during hypoxia as, upon return to relatively oxygenated
shallower environments, jumbo squid must escape from predators
and actively forage. Additionally, the relative phosphorylation levels
of 4EBP increased in muscle during hypoxia and the
phosphorylation of eEF2 was significantly decreased. It is quite
possible that either HSP27-dependent inhibition of protein synthesis
or other mechanisms not identified here also contribute to
translational suppression. In summary, hypoxic mantle muscle most
likely achieves substantial energy saving by reducing the rate of

transcription, yet components of the translational apparatus exhibit
non-canonical regulatory mechanisms requiring further studies.

Many organisms that transition through states of reduced
metabolic rate exhibit alterations in their cellular detoxification and
cytoprotective pathways as a means of viability extension (Storey,
1996; Storey and Storey, 2011). In D. gigas, the antioxidant capacity
decreased significantly in three tissues (mantle muscle, branchial
heart and brain). These data suggest that antioxidant defense
strategies may be more important during re-entry into oxygen-rich
environments. This hypothesis is supported by data on juvenile
squids showing upregulation of antioxidant enzymes during
reoxygenation following hypoxic treatment [e.g. catalase,
superoxide dismutase, glutathione-S-transferase and glutathione
peroxidase (Trübenbach et al., 2012b)]. Except for p-HSP27, all
other HSPs studied in muscle either decreased significantly (HSP25,
HSP40 and HSP60) or remained unaltered (HSP47 and HSP79).
While it is possible that simply maintaining basal expression levels
is sufficient for effective cytoprotection, further studies are needed
elucidate pathways that contribute to cellular survival during
hypoxia.

Ecological implications
Dosidicus gigas’ migration in the Gulf of California is closely
matched to that of its primary prey, myctophid fishes (Markaida and
Sosa-Nishizaki, 2003; Markaida et al., 2008). Furthermore, its
expansion into the California Current was coincident with reductions
of hake and groundfish populations (Zeidberg and Robison, 2007).
These observations have led some to speculate that vertical and
horizontal movements facilitate continuous feeding, day and night,
in support of high rates of growth and activity (Gilly et al., 2012).
However, metabolic suppression and the inefficiency of the
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Fig. 8. Changes in gill protein levels during hypoxic exposure. Levels of p-H3S10, p-H3S10/A-H3K9, p-4EBP T45, p-eIF2α S51, p-eEF2 T56 and p-Hsp27
S82 during control and hypoxia in D. gigas are shown. (A) Levels of transcription-related proteins p-H3S10 and p-H3S10/A-H3K9. (B) Levels of translation-
related proteins p-4EBP T45, p-eIF2α S51, p-eEF2 T56 and p-Hsp27 S82. (C) Representative western blots. Other information as in Fig. 5.
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Fig. 9. Antioxidant capacity in mantle muscle, branchial heart and brain
of D. gigas during control and hypoxia. Antioxidants measured in the
assay include glutathione (GSH), ascorbate, vitamin E, bilirubin and urate.
Data are presented as equivalents of Trolox (means ± s.e.m., N=5
independent trials on tissue from different animals). Data were analyzed
using Student’s t-test; asterisks denote values are significantly different from
controls, P<0.05.
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anaerobic pathways that partially offset the ATP deficit would
presumably preclude active feeding at the deeper end of its diel
migration into the OMZ. Anoxia-tolerant turtles depress metabolism
in brain tissue to such an extent that they are nearly comatose
(Nilsson, 2001). The fact that brain (and other tissues; Figs 6–8)
showed decreases in the phosphorylation state of 4EBP suggests that
brain activity may similarly be reduced during daytime. While
squids have been seen with remotely operated vehicles (ROVs)
attempting to feed within the OMZ, this is likely an unnatural
behavior promoted by the lights of the ROV. The feeding was
sluggish and often unsuccessful (B.A.S., personal observation).
Activity cycles, scope for activity (Rosa and Seibel, 2010),
ventilation rates (Trübenbach et al., 2012a) and maximum vertical
speeds (Gilly et al., 2012) are all reduced in low oxygen. All of these
observations point to a sluggish, non-feeding mode of existence in
the OMZ during the daytime.

The depths achieved during the daily migration appear to be
somewhat flexible and may be influenced by a number of factors
including oxygen, temperature and light levels (Gilly et al., 2012).
One tagged individual squid remained at depth continuously for
several days (Gilly et al., 2006), although it remained just above
its critical PO2 during most of that time period. Other individuals
hover near the critical PO2 and move in and out of critical oxygen
levels during the daytime. However most individuals spend their
entire daytime (up to ~8 h) at depths with oxygen levels clearly
below their Pcrit. So while metabolic suppression is not an obligate
behavior, it does appear to be an important component of their
physiological repertoire. Individuals tagged in the California
Current dived somewhat deeper, still achieving depths with PO2

near or below their Pcrit (Stewart et al., 2013). This suggests that
oxygen, rather than food availability, may dictate their daytime
depth. We know that metabolic suppression is triggered by the
oxygen itself and not by low temperature or elevated carbon
dioxide (Rosa and Seibel, 2008; Rosa and Seibel, 2010). If oxygen
has contributed to D. gigas’ range expansion into the California
Current, it is likely driven by indirect effects on the night-time
distributions of prey species into shallower water where the prey,
like the squid, must return each night. The prey may be
compressed between low oxygen and high temperature into a zone
that provides high-density foraging opportunities for these squid
(Koslow et al., 2011; Stewart et al., 2014). While D. gigas are
extremely flexible predators and may benefit from climate change
(Hoving et al., 2013), they may be intolerant of the synergistic
effects of either low oxygen or ocean acidification with high
temperatures (Rosa and Seibel, 2008; Alegre et al., 2014). All
three variables reduce the efficacy of oxygen transport while
temperature elevates oxygen demand.

MATERIALS AND METHODS
Specimen collection
Juvenile (5.4–13.3 g wet mass) and adult (2–4 kg wet mass) squid were
collected using dip-nets and jigs, respectively, in the Gulf of California
(27°N, 111°W; 28°N, 113°W) on the surface at night, in June 2011 (aboard
the R/V New Horizon, Scripps Institute, CA, USA) and were immediately
transferred to 10°C seawater aquaria on board the vessel.

Experimental procedure
Animals were placed in flow-through respirometry chambers and allowed
to acclimate for 8–12 h before starting measurements of oxygen
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Fig. 10. Changes in the protein levels of HSP25, HSP40,
HSP47, HSP60 and HSP70 during control and hypoxia in
mantle muscle of D. gigas. (A) Levels of stress-responsive
HSP proteins. (B) Representative western blots. Other
information as in Fig. 5.
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consumption. Juvenile chambers were immersed in temperature-controlled
water baths (Lauda, Lauda-Königshofen, Germany) as described previously
(Rosa and Seibel, 2010; Rosa and Seibel, 2008). Adult chambers
(transparent PVC, length 130 cm, diameter 16 cm) were immersed in a water
basin (180×90 cm) connected to a chiller. For both juveniles and adults,
filtered (0.2 μm) and treated (50 mg l−1 streptomycin) seawater was pumped
(peristaltic pumps or Mag Drive pump, model WMD-20RLT-115, IWAKI,
Tokyo, Japan) from a water-jacketed, gas-equilibration column (multiple
columns in the case of the adults) through the respirometers at a constant
flow rate (120 ml min−1 for juveniles and 3 l min−1 for adults). Following the
normoxic acclimation period, the PO2 in the seawater was either maintained
(control, 21% O2) or reduced (hypoxic treatment, 1% O2) via equilibration
with a certified gas mixture containing 1% O2, balance nitrogen. These
treatments were maintained for up to 3.25 h. Oxygen concentrations were
recorded at the entrance and the exit of each chamber with two Clarke-type
O2 electrodes connected to a 928 Oxygen Interface (Strathkelvin
Instruments, North Lanarkshire, UK). The system was calibrated using air-
and nitrogen-saturated seawater and checked for electrode drift and for
microbial oxygen consumption before and after each trial. All experiments
were carried out in darkness and at atmospheric pressure. Afterwards,
specimens were weighed on board ship, using a motion-compensated
precision shipboard balance system (Childress and Mickel, 1980) for
juveniles and hanging spring scales for adults. Tissues (mantle muscle, gill,
branchial heart and brain) were excised, wrapped in aluminium foil and
frozen in liquid nitrogen until biochemical assays could be performed in the
home laboratory.

Metabolite measurements
In juveniles, anaerobic metabolites (octopine and succinate) and the
phosphagen pool (Arg-P) were quantified spectrophotometrically via
conversion of NAD+/NADH at 339 nm (Shimadzu, UV-1800) according to
standard enzymatic procedures (see Gäde, 1985a; Gäde, 1985b; Beutler,
1989). The method entailed the preparation of perchloric acid (3 mol l−1)
extracts from frozen mantle tissues and determinations were made
immediately after neutralization with KHCO3. The octopine measurement
is based on the oxidation of octopine to pyruvate and arginine by octopine
dehydrogenase in the presence of NAD+, whereas the increase in NADH is
proportional to the amount of octopine (Gäde, 1985a). Phosphagens were
quantified indirectly via arginine after phosphagens (arginine phosphates)
had been converted to arginine via acid hydrolysis (Arg-
P=Σarginine–arginine). Arginine is reductively condensed with pyruvate to
octopine by the action of octopine dehydrogenase and the decrease in
NADH concentration is proportional to the amount of arginine (Gäde,
1985b). Succinate was quantified via a succinic acid kit (Megazyme,
Ireland) according to Beutler (Beutler, 1989). The measurement is based on
the conversion of succinate to succinyl-CoA in the presence of ATP and
succinyl-CoA synthetase with the concurrent formation of ADP and Pi. ADP
reacts with phosphoenolpyruvate (PEP) to form pyruvate and ATP in the
presence of pyruvate kinase. The pyruvate produced is reduced to L-lactate
by L-lactate dehydrogenase in the presence of NADH by forming NAD+.
The amount of NAD+ formed is stoichiometric with succinate and the
decrease in NADH adsorption used to determine succinate.

The extraction of nucleotides was performed according to the procedure
of Mendes et al. (Mendes et al., 2001) after some modifications. Nucleotides
were extracted by homogenizing 500 mg of muscle with 2.5 ml of 0.6 mol l−1

perchloric acid at 0°C for 1 min with a Polytron homogenizer at 20,000 rpm.
The homogenate was centrifuged (20,000 g, 10 min, 0°C) and 2 ml of the
supernatant neutralized to pH 6.9 with 1 mol l−1 potassium hydroxide
solution. The extract was maintained at 0°C for 30 min, then potassium
perchlorate was removed by filtration using a syringe with a 0.2 μm filter.
Aliquots were blast frozen (2 h) in 3 ml vials at −80°C and stored at the
same temperature until analysis.

For juvenile squid, adenylate analysis was done with a high performance
liquid chromatographic method similar to that reported by Ryder (Ryder,
1985). A Hewlett-Packard 1050 HPLC system and a fixed wavelength
detector (MWD HP-1050 Series) set to monitor at 254 nm were used.
Separations were done with a Hewlett-Packard LiChrosorb Reverse Phase-
18 column (10 mm, 200×4.6 mm) operated isocratically at 30°C and

1.6 ml min–1 with a mobile phase composed of 0.1 mol l−1 phosphate buffer
with a pH of 6.90. Nucleotides (i.e. ATP standards) were obtained from
Sigma.

For adults, adenylates (ATP), phosphagen (Arg-P) and octopine levels
were measured using capillary electrophoresis. The prepared perchloric
acid extracts of the samples were unfrozen and diluted 1:4. Before analysis
by capillary electrophoresis, the samples were filtered and uric acid (2 g l−1

mixed 1:10 with sample) was added as an internal standard (P/ACETM

System MDQ capillary electrophoresis, Beckmann Coulter GmbH,
Krefeld, Germany). The separation was performed using 40 mmol l−1

borate buffer with additional 10 mmol l−1 NaCl for a better resolution of
the ATP peak. Initial metabolite concentrations in the mantle tissue
(μmol g−1 wet mass) were calculated considering the dilution during
extract preparation.

Total metabolism calculations
The terms ‘O2 consumption’ and ‘metabolic rate’ are often used
interchangeably, but the total metabolic rate is actually the combined energy
production by aerobic and anaerobic pathways. Aerobic production of
energy, in ATP equivalents, is 6 ATP molecules per O2 molecule consumed.
Anaerobic production is accounted for by AEE and measured by the
increase in the anaerobic end-products octopine and succinate plus the
concentration changes in ATP and the phosphagen via the following
equation (modified from McDonald et al., 1998):

AEE = 1.5(∆octopine) + ∆ATP + ∆Arg-P + 2.5(∆succinate) . (1)

The term 2.5(∆succinate) was added according to Grieshaber et al.
(Grieshaber et al., 1994), as anaerobic degradation of 1 mol of free amino
acid L-aspartate results in 1 mol succinate by generating 2.5 mol ATP.

Acid–base measurement
The mantle of adult squid was cut open with a scalpel along the
anterior–posterior axis on the ventral side. A blood sample was drawn from
the gill artery (O2 rich) using sterile 1 ml plastic syringes. The arterial pH
(pHe) of the sample was then measured with a flow-through pH electrode
(Microelectrodes Inc.) and meter (Orion model 720A) at 10°C. Before
measurement, the pH-meter was calibrated with NBS pH standards of
pH 7.00 and pH 10.00, respectively.

pHi and tissue CO2 concentration were measured in adult mantle tissue
using the homogenate method described previously (Pörtner et al., 1990).
To avoid changes in pH during measurement, potassium fluoride (KF) and
nitrilotriacetic acid (NTA) were added to remove Mg2+ and Ca2+ ions. These
ions are essential for the activity of kinases and ATPases. As the cellular H+

concentration is almost exclusively affected by ATP-dependent metabolism,
the inhibition of the involved enzymes conserves pHi. Medium parameters
were adopted from the ommastrephid squid I. illecebrosus used by Pörtner
et al. (Pörtner et al., 1990) (0.16 mol l−1 KF, 2.9 mmol l−1 NTA).

Briefly, the tissue (200–250 g) was ground to fine powder under liquid
nitrogen and mixed with KF/NTA medium. The mixture was homogenized
at 0°C for 1 min with an ultrasound rod (Branson Sonifier 450, Hielscher
Ultrasound GmbH, Teltow, Germany) and centrifuged at 10,000 g for 1 min.
Optical pHi determination in the supernatant was done with a fiberglass
optode (PreSens Needle-Type-Housing-pH-Microsensor, PreSens GmbH,
Regensburg, Germany) at incubation temperature (10°C). The optode was
calibrated beforehand with NBS pH standards of elevated ionic strength
(I=0.16 mol l−1) reflecting tissue conditions and a pH-meter (pH 3310, WTW
GmbH, Weilheim, Germany). The pH-meter itself was calibrated with NBS
pH standards (I=0.1 mmol l−1, pH 6.923 and 7.472 at 10°C).

After the pHi measurement, 50 μl of supernatant was drawn with a gas-
tight syringe and injected into a closed vial containing 3 ml 0.1 mol l−1 HCl
for release of CO2. CO2 measurements were made via gas chromatograph
(6890N Network GC System, Agilent Technologies GmbH, Böblingen,
Germany). From the measured CO2 concentration in the supernatant, the
tissue CCO2 and PCO2 were calculated as described previously (Pörtner et al.,
1990). pK″′ and αCO2 were derived from the equations of Heisler (Heisler,
1986) using the values applied by Pörtner et al. (Pörtner et al., 1990). For 
I. illecebrosus mantle tissue (I=0.16 mol l−1, [Na+]=0.015 mol l−1,
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[protein]=200 g l−1, 0.560 mol l−1). These values were derived from
intracellular ion measurements by Robertson (Robertson, 1965).

Protein expression, glycogen content and antioxidant capacity
Homogenate preparation and protein extraction
Samples of frozen tissues (mantle muscle, branchial heart, brain and gill) from
two sampling points (control and hypoxia) were separately extracted (N=4
samples from different animals). Tissues were quickly weighed, crushed into
small pieces under liquid nitrogen, and then homogenized 1:4 w:v using a
Polytron PT10. Homogenization was performed in ice-cold homogenizing
buffer (20 mmol l−1 Hepes, 200 mmol l−1 NaCl, 0.1 mmol l−1 EDTA,
10 mmol l−1 NaF, 1 mmol l−1 Na3VO4, 10 mmol l−1 β-glycerophosphate) with
1 mmol l−1 phenylmethylsulfonyl fluoride (BioShop) and 1 μl protease
inhibitor cocktail (BioShop) added immediately before homogenization. Each
sample was centrifuged for 10 min (12,000 g, 4°C) and the supernatant was
removed. Samples were prepared for western blotting used the Coomassie
Blue dye-binding method (Bio-Rad Laboratories, Hercules, CA, USA) using
an MR5000 microplate reader to determine protein concentration. Samples
were adjusted to a constant 10 μg μl−1 by addition of small amounts of
homogenizing buffer and then aliquots were combined 1:1 v:v with 2×SDS
loading buffer (100 mmol l−1 Tris-base pH 6.8, 4% w:v SDS, 20% v:v
glycerol, 0.2% w:v Bromophenol Blue, 10% v:v 2-mercaptoethanol) and
boiled for 5 min. Final protein samples (5 μg μl–1) were stored at −40°C until
use.

Western blotting
The relative expression levels of proteins that are involved in modulating
the rate of transcription (histone H3) and translation (4EBP, eIF2, eIF4E,
eEF2, HSP27) were assessed by immunoblotting in four tissues (muscle,
heart, brain and gill), comparing control and hypoxic sampling points of
D. gigas (Figs 5–7). Post-translational modifications of these targets are
indicative of rates of transcription and translation; phosphorylation/
acetylation of histones at Ser10/Lys9 and phosphorylation of 4EBP at
Thr45 result in enhanced transcription and translation, respectively (Strahl
and Allis, 2000; Gingras et al., 1999). In contrast, phosphorylation of eIF2
at Ser51 (Sudhakar et al., 2000), eEF2 at Thr56 (Hizli et al., 2013) and
HSP27 at Ser82 (Cuesta et al., 2000) is correlated with translational
suppression.

Equal amounts of protein from each sample were loaded onto 8–12%
SDS-polyacrylamide gels and run at 180 V for 45 min in 1×Tris-glycine
SDS running buffer [as described previously (Zhang and Storey, 2012)].
Proteins were then transferred by electroblotting at 160 mA using transfer
buffer (25 mmol l−1 Tris pH 8.5, 192 mmol l−1 glycine and 10% v/v
methanol) at room temperature. For targets <25 kDa we used 0.2 μm PVDF
membranes and transferred for 1 h, while for targets >25 kDa we used
0.45 μm PVDF membranes and transferred for 1.5 h. Membranes were
blocked with milk (2.5% w:v) made up in TBST (20 mmol l−1 Tris base
pH 7.6, 140 mmol l−1 NaCl, 0.05% v/v Tween-20) on a rocker for 20 min in
order to reduce background and non-specific binding of antibodies.
Membranes were probed with specific primary antibodies, diluted in TBST,
at 4°C overnight. Antibodies were purchased from Cell Signaling (histone
H3, eIF4E, 4EBP, eEF2), GenScript (eIF2α, HSP27) or Stressgen (HSP40,
HSP47, HSP60, HSP70) and were used at 1:1000 v:v dilution in TBST.
Membranes were then probed with either HRP-linked anti-mouse IgG
secondary antibody (~1:4000 v:v dilution) or HRP-linked anti-rabbit IgG
secondary antibody (~1:8000 v:v dilution). All membranes were washed
three times between incubation periods in TBST for ~5 min per wash. Bands
were visualized by enhanced chemiluminescence (H2O2 and Luminol) and
then blots were restained in Coomassie stain (0.25% w/v Coomassie
Brilliant Blue, 7.5% v/v acetic acid, 50% methanol) to visualize all protein
bands. Antibodies each cross-reacted with strong bands on the immunoblots
at the expected molecular masses for histone H3 (17 kDa), eIF4E (25 kDa),
4EBP (19 kDa), eIF2α (36 kDa), eEF2 (95 kDa), HSP27 (27 kDa), HSP40
(40 kDa), HSP60 (60 kDa) and HSP70 (70 kDa).

Glycogen and antioxidant capacity assay
The glycogen assay kit was purchased from Cayman Chemical Company
(cat. no. 700480, Ann Arbor, MI, USA). As per the manufacturer’s

directions, samples were homogenized in ice-cold glycogen assay buffer,
centrifuged (800 g, 10 min, 4°C), the supernatant collected and the gram wet
mass recorded for each sample. A vial of lyophilized glycogen was
reconstituted in glycogen assay buffer (phosphate-buffered saline containing
protease inhibitor, pH 7.0) to a final concentration of 200 μg ml–1 and
vortexed. The standard curve combined increasing amounts of the
reconstituted glycogen diluted in glycogen assay buffer and used the
following concentrations: 0, 2.5, 5, 10, 15, 20, 30 and 40 μg ml −1. The
standard wells were prepared by adding 10 μl of standard and 50 μl of
reconstituted hydrolysis enzyme solution (lyophilized powder of
amyloglucosidase reconstituted in a 50 mmol l−1 acetate glycogen hydrolysis
buffer, pH 4.5). The sample wells (muscle only) were prepared by first
diluting the stock 1:10 v:v in glycogen assay buffer and adding 10 μl of
sample per well. The sample background wells were prepared by adding
10 μl of the same diluted sample and 50 μl of the glycogen hydrolysis buffer
(without amyloglucosidase). The plate was covered and incubated for
30 min at 37°C to allow for full glycogen hydrolysis. The developer was
prepared by combining the following components: 0.5 ml fluorometric
detector (lyophilized powder of 10-acetyl-3,7-dihydroxyphenoxazine,
reconstituted in 100 μl DMSO and 400 μl assay buffer), 2.5 ml enzyme
mixture (lyophilized enzyme mixture reconstituted in 2.5 ml assay buffer)
and 5 ml assay buffer. Following a 30 min incubation, 150 μl of developer
was added to all wells including the standard, sample and sample
background wells. The plate was covered, incubated (15 min, 37°C), and
then read in a Cary Eclipse Fluorescence Spectrophotometer (Agilent
Technologies, Mississauga, ON, Canada). An excitation wavelength of
530–540 nm and an emission wavelength of 585–595 nm were used.

The antioxidant capacity was assessed in three tissues (muscle, heart, brain)
of D. gigas comparing control and hypoxic experimental conditions (Fig. 9).
The capacity of the antioxidants in the sample (e.g. GSH, ascorbate, vitamin
E, bilirubin and urate) to prevent ABTS oxidation was compared with that of
Trolox and was quantified as mmol l−1 Trolox equivalents. The antioxidant
assay kit was purchased by Cayman Chemical Company (cat. no. 709001) and
the experimental procedure followed the manufacturer’s directions. A vial of
lyophilized Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid)
and Chromogen (ABTS) was reconstituted in HPLC-grade water while
metmyoglobin was reconstituted in antioxidant assay buffer (5 mmol l−1

potassium phosphate, pH 7.4, containing 0.9% sodium chloride and 0.1%
glucose) and vortexed. The standard curve combined increasing amounts of
the reconstituted Trolox diluted in assay buffer with the following
concentrations; 0, 0.045, 0.090, 0.135, 0.18, 0.225 and 0.330 mmol l−1. The
standard wells were prepared by adding 10 μl of a Trolox preparation, 10 μl
of metmyoglobin and 150 μl of Chromogen per well. The sample wells were
prepared by first diluting the stock 1:10 v:v in assay buffer (muscle, heart and
brain) and adding 10 μl of sample, 10 μl of metmyoglobin and 150 μl of
chromogen per well. The reactions were initiated by adding 40 μl of hydrogen
peroxide working solution (441 μmol l−1) and the samples were incubated on
a shaker for 5 min at room temperature. The absorbance was read at 750 nm
using a Multiskan plate reader (Thermo Scientific, Ottawa, ON, Canada).
Antioxidants measured in the assay include GSH, ascorbate, vitamin E,
bilirubin and urate.

Statistics
Because metabolism varied with the duration of exposure to hypoxia, all
metabolite data are expressed individually as a function of time and analyzed
using best fit models. However, glycogen content, antioxidant capacity and
immunoblots (see ‘Protein expression, glycogen content and antioxidant
capacity’, above) are expressed as means (±s.e.m.) of pooled data.
Significant differences in metabolite concentrations and oxygen
consumption rates between hypoxia (0.8 kPa PO2) and normoxia (21 kPa
PO2) were assessed using Student’s t-tests or, for relationships to exposure
duration, ANCOVA, and significance was assessed at P<0.05. Band
densities on chemiluminescent immunoblots were visualized using a Chemi-
Genius BioImaging system (Syngene, Frederick, MD, USA) and quantified
using the associated Gene Tools software. Immunoblot band density in each
lane was standardized against the summed intensity of a group of
Coomassie-stained protein bands in the same lane; these were chosen
because they did not show variation between different experimental states
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and were not located close to the protein bands of interest. Statistical testing
of standardized band intensities and antioxidant capacity used Student’s t-
test (P<0.05).
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