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INTRODUCTION

Diatoms are responsible for generating approxi-
mately 20% of global primary productivity (Nelson et
al. 1995, Field et al. 1998, Mann 1999); yet, estimates of
the total number of species are rough and range be-
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ABSTRACT: Phytoplankton species cannot always be
identified by their morphology using light microscopy,
which makes inferring the ecological and biogeochem-
ical importance of individual species a difficult task.
Here, a combination of microscopy and high-through-
put DNA sequencing was used to examine morphologi-
cally cryptic and pseudo-cryptic species in the diatom
genus Skeletonema from the Long-Term Plankton
Time Series in Narragansett Bay (NBay), where Skele-
tonema is  ecologically important, comprising up to
99% of microplankton cells in surface waters. The 28S
rDNA from mock phytoplankton communities compris-
ing known species was amplified and sequenced using
newly developed Skeletonema-specific primers. The
relative abundances of species in the sequence data
did not match expected abundances, suggesting that
28S copy number can vary greatly, even among closely
related  diatom species. The 28S rDNA was also ampli-
fied from 75 field samples collected from 2008 to 2013.
A total of 7 Skeletonema species were identified, in-
cluding 5 newly detected species from NBay. Skele-
tonema species composition was highly seasonal and
significantly correlated with water temperature. Winter−
spring and summer−autumn communities were signifi-
cantly different and characterized by low and high spe-
cies richness, respectively. Species abundance during
winter−spring was quantified by combining sequence
data with light microscopy counts, revealing Skele-
tonema marinoi as the numerically dominant species
during the winter−spring bloom. Seasonal variation in
Skeletonema composition suggests that, although mor-
phologically similar, species in this genus are likely
adapted to different environmental conditions, raising
the possibility that species composition of this important
bloom-forming genus may shift as water temperatures
in NBay increase due to anthropogenic influences.

High-throughout DNA sequencing revealed seasonal varia-
tion (2008–2013) in morphologically cryptic species diversity
(line, 4-point moving average) in the ecologically important
diatom genus Skeletonema (percent composition among
 species shown in different colors).

Image: T. A. Rynearson
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tween 12 000 and 200 000 (Guiry 2012, Mann & Van -
ormelingen 2013). Recent taxonomic efforts have de-
scribed many diatom species that are morphologically
cryptic (i.e. identical) or pseudo-cryptic (i.e. small
structural differences), including those in several eco-
logically important diatom genera such as Cyclotella
(Beszteri et al. 2005), Pseudo-nitzschia (Amato et al.
2007, Lundholm et al. 2012), Skeletonema (e.g. Ko -
oistra et al. 2008), Chaetoceros (e.g. Beszteri et al.
2005, Amato et al. 2007, Kooistra et al. 2010, Lund -
holm et al. 2012), Asterionellopsis (Kaczmarska et al.
2014) and Leptocylindrus (Nanjappa et al. 2013).

Because morphologically cryptic and pseudo-cryptic
species are difficult or impossible to identify using
routine methodology such as light microscopy, they
represent a major challenge in both documenting the
taxonomic diversity of marine waters (Sims et al.
2006) and understanding the impact of species com-
position on marine ecosystem function and biogeo-
chemical cycles. Molecular characterizations have
provided insights into the ecology of cryptic and
pseudo-cryptic species (denoted hereafter as cryptic
species), though studies of natural samples are lim-
ited. For example, targeted molecular analyses re -
vealed that cryptic species in the genus Pseudo-
nitzschia sampled from Puget Sound, Washington,
varied in their relative abundances over space and
time, and shifts in species composition were corre-
lated with different environmental conditions (Hub-
bard et al. 2014). Similarly, cryptic species of Pseudo-
nitzschia in the Gulf of Naples showed distinct
patterns of species occurrence over time (Ruggiero et
al. 2015). In the diatom family Leptocylindraceae, a
targeted analysis of small subunit rDNA revealed
unique temporal and geographical distributions of
individual cryptic species sampled from the north-
eastern Atlantic and Mediterranean coasts (Nanjappa
et al. 2014). On a broader geographic scale, a global
biogeography of species in the genus Skeletonema,
assessed using the large subunit of the rDNA, re -
vealed large-scale geographic distributions for some
species and, for others, ranges that appeared restricted
by temperature (Kooistra et al. 2008).

Field observations of species distributions have
been supported by physiological studies showing
 different growth rates among cryptic species in
response to environmental conditions such as tem-
perature and light (Kaeriyama et al. 2011), salinity
(Jackson et al. 1992) and nutrients (Maldonado et al.
2002). Studies of Pseudo-nitzschia have also de -
scribed how cryptic species respond to unique envi-
ronmental cues that induce sexual reproduction
(Quijano-Scheggia et al. 2009). The physiological

varia tion observed among cryptic species in the lab-
oratory, coupled with the few field studies of spatial
and temporal variation described above, suggest that
variation in cryptic species composition has impor-
tant ecological and biogeochemical implications.

The diatom genus Skeletonema contains both
cryptic and pseudo-cryptic species, and has a large
influence on coastal marine ecosystems. Skele-
tonema is cosmopolitan and is known to form large
blooms in coastal regions across the globe (e.g. Cleve
1900, Hasle 1973, Karentz & Smayda 1984, Cloern
et al. 1985, Castillo et al. 1995, Huang et al. 2007,
Borkman & Smayda 2009a), supporting food webs
and contributing significantly to carbon flux (Dea-
son 1980, Biddanda & Benner 1997). Historically, a
single species, Skeletonema costatum, was thought
to be the most ecologically important, but the genus
has since been subdivided into at least 10 marine
species (Guillard et al. 1974, Medlin et al. 1991, Sarno
et al. 2005, 2007, Zingone et al. 2005), leaving open
the question of how variation among species influ-
ences the ecology of coastal regions around the world.

Here, we examined Skeletonema species composi-
tion from Narragansett Bay (NBay), RI, USA, where
Skeletonema has an enormous impact on phyto-
plankton productivity. It is found in the bay through-
out the year and can dominate phytoplankton blooms
in every season (Borkman & Smayda 2009a). On
average, Skeletonema represents 49% of the phyto-
plankton community (>~10 µm) in NBay and can
comprise up to 99% during blooms (Windecker
2010). Previous studies have identified a high degree
of both genetic and physiological variability in Skele-
tonema sampled from NBay. For example, protein
variation among isolates revealed seasonal variation
in the genetic composition of what was then con -
sidered to be S. costatum (Gallagher 1980). In light
of the newly identified species in Skeletonema, we
hypothesized that the genetic variation observed in
NBay previously may have instead reflected the dif-
fering compositions and activities of multiple Skele-
tonema species. To test this hypothesis we addressed
3 questions in this study: (1) How many species of
Skeletonema exist in NBay? (2) Does Skeletonema
community composition vary seasonally? (3) Do shifts
in Skeletonema species composition correspond to
seasonal fluctuations in environmental variables? We
predicted that multiple cryptic species would be
identified in NBay, given that 2 had previously been
identified (Kooistra et al. 2008), and that there would
be a high correlation between environmental vari-
ables and community composition over a multi-year
time series.
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MATERIALS AND METHODS

Sample collection

NBay is a temperate estuary located on the east
coast of the USA and has a mean depth of 9 m. Be-
tween 2008 and 2013, surface water samples were
collected weekly from NBay (41° 34.2’ N, 71° 23.4’ W)
and 200 to 250 ml seawater were filtered in triplicate
onto 25 mm diameter, 0.22 µm pore size filters (EMD
Millipore), flash-frozen in liquid nitrogen and stored
at −80°C. These filtered field samples were collected
as part of the NBay Long-Term Plankton Time Series
(Graff & Rynearson 2011). When samples were not
available from the Long-Term Plankton Time Series
site, samples were collected, filtered and frozen as
 described above from the pier at the Graduate School
of Oceanography (41° 29.5’ N, 71° 25.2’ W). From this
archive of frozen filters, 75 dates were chosen for se-
quencing (see Table S1 in the Supplement at www.
int-res.com/articles/suppl/m556 p001_ supp.pdf): (1) for
each month of the time series, the sample with the
highest percentage of Skeletonema cells in the phyto-
plankton community (>~10 µm) was se lected for se-
quencing; in addition, (2) a series of  high-resolution
weekly samples were selected from 3 representative
bloom periods (winter bloom: December 2008 to
 January 2009; spring bloom: March to April 2010;
summer bloom: May to July 2013) (Table S1 in the
Supplement).

Method validation

In order to evaluate the utility of high-throughput
sequencing to identify closely related Skeletonema
species, mock phytoplankton communities were cre-
ated and sequenced. A total of 3 mock communities
were generated by mixing exponentially growing
cultures of 5 Skeletonema species in equal abun-
dances and adding this mixture in varying percent-
ages (80, 50 and 20%) to exponentially growing cul-
tures of 4 other phytoplankton species that were also
mixed in equal abundances. The cell concentration
of each cultured species was determined by light
microscope (Zeiss) and a Sedgewick-Rafter slide
(Cole-Parmer). Counts were conducted in triplicate
both before and after cells were mixed into the mock
communities to confirm actual community composi-
tion. The species used were Skeletonema dohrnii
(CCMP3373), S. grethae (CCMP1804), S. japonicum
(CCMP2506), S. marinoi (isolated from NBay on
1 January 2012), S. menzelii (CCMP793), Ditylum

brightwellii (isolated from Puget Sound on 12 May
2007), Heterocapsa triquetra (CCMP448), Thalassio -
sira pseudonana (CCMP1335) and T. rotula (CCMP -
3096). Each mock community comprised 4 × 106 cells
and was filtered and frozen as described in ‘Sample
collection’.

DNA extraction and amplification

For both mock community and field samples, DNA
was extracted from frozen filters using the DNeasy
Blood and Tissue Kit (Qiagen) according to the man-
ufacturer’s instructions, with the addition of a disrup-
tion step during cell lysis using approximately 50
triple-pure high-impact 0.5 mm zirconium beads
(KSE Scientific) per sample, before vortexing and
incubating in lysis buffer. A 325 bp fragment within
the D1 to D4 region of the large subunit (LSU) rDNA
gene was amplified using newly developed Skele-
tonema genus-specific primers (Table S2 in the
 Supplement) that distinguished among Skeletonema
species. The primers were identified using all avail-
able Skeletonema sequences in GenBank. The speci-
ficity of the primers to amplify all Skeletonema spe-
cies but no other protists was confirmed using both
an in silico analysis of a phylogenetically broad pro-
tist database and test amplifications in the laboratory
using an array of protists including diatoms, dino -
flagellates, ciliates and raphidophytes. The Skele-
tonema-specific primers did not amplify a fragment
with sufficient resolution to distinguish between S.
grethae and S. tropicum. Illumina adapters of vary-
ing length were added to the 5’ ends of the primers to
increase amplicon length diversity in the sequencing
pool and thus reduce sequencing error (Table S2).
DNA was amplified in 50 µl reactions containing a
final concentration of 1× BIO-X-ACT Short Mix (Bio-
line USA), 0.5 µM forward primer (0.125 µM each
of the 4 Illumina adapted primers), 0.5 µM reverse
primer (0.125 µM each of the 4 Illumina adapted
primers) and 1.25 to 5 µl template DNA. A 2-step
PCR consisted of a 1 min denaturing step at 94°C;
15 cycles of 94°C for 30 s, 61°C for 30 s and 72°C for
30 s; 15 cycles of 94°C for 30 s, 66°C for 30 s and 72°C
for 30 s; and a final step of 72°C for 10 min. The
annealing temperature (61°C) in the first step of the
PCR allowed the Skeletonema-specific component of
the primers to anneal to and amplify template DNA.
The first step contained just 15 cycles to avoid satura-
tion and better retain the species diversity present in
the template DNA. In the higher annealing tempera-
ture (66°C) second step, the 5’ adapter component of
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the primers annealed to and amplified only existing
amplicons.

Technical replication of DNA extraction, amplifica-
tion and sequencing was determined using mock
community samples and randomly chosen field sam-
ples. Replicate DNA extractions were performed
using triplicate filters from the 3 mock communities
described above. DNA from each filter was ex -
tracted, amplified and sequenced separately. DNA
amplification replicates were generated using a sin-
gle DNA extract from the 15 June 2010 field sample.
Each triplicate PCR was sequenced separately. DNA
sequencing replicates were generated using the 4
September 2009 field sample. DNA was extracted
from a single filter and amplified in a single reaction
tube. The amplicons were divided into 3 aliquots and
se quenced separately. By measuring technical repli-
cation at these 3 steps, we evaluated not only the pre-
cision of the method but also the propagation of error
from extraction to sequencing.

High-throughput sequencing and analysis

PCR amplicons were purified using AMPure XP
beads (Beckman Coulter), quantified with the Qubit
high sensitivity DNA kit (Thermo Fisher Scientific)
and then used in a second round of PCR to attach
Nextera indices and adapters following the manufac-
turer’s instructions (Illumina). The 9 mock communi-
ties and 79 field samples (73 separate dates plus
 triplicates for 2 additional dates) were pooled and
quantified using the KAPA qPCR kit (Kapa Biosys-
tems) and then sequenced on a single flow cell on the
MiSeq platform (Illumina) using the MiSeq 500-cycle
(2 × 250 bp reads) kit at the University of Rhode
Island Genomics and Sequencing Center.

A total of 16.35 × 106 reads representing 88 ampli -
con library samples were generated, of which 9.15 ×
105 quality controlled reads are available at the Na-
tional Center for Biotechnology Information (NCBI)
(GenBank SRA accession SRP069748). A series of
tests were performed to select the optimal pipeline for
sequence analysis of closely related species. First,
quality filters and paired-end (PE) joining were con-
ducted using the USEARCH (Edgar 2010) fastq_
mergepairs algorithm. Raw reads were truncated from
each end to the first bp with a quality score of at least
Q30, either before or after PE reads were merged. At
this step, PE reads were allowed from 0 to 3 bp mis-
matches in the overlapping sequence. Second, reads
were either truncated to 315 bp (10 bp short of the
full length fragment) or left at their full length using

the USEARCH fastq_filter algorithm. Third, QIIME
 (Caporaso et al. 2010) was used to assign operational
taxonomic units (OTUs) using converted .fasta files
and the pick_open_ reference_ otus.py script. A mini-
mum match of 99% was used. A reference database
representing a suite of Skeletonema species was cre-
ated using Skeletonema 28S sequences obtained from
NCBI (Table S3 in the  Supplement).

Data analysis and statistical methods

For each sample, the percent sequence reads cor-
responding to each species was determined. Species
represented by <0.1% of the sequence reads in a
sample were considered potential sequencing errors
(due to the high degree of similarity among Skele-
tonema 28S sequences) and removed from the sam-
ple. Community analysis was performed in PRIMER
v.6.1.6 (Clarke et al. 2014). A Bray-Curtis similarity
matrix was produced using the percent composition
data and the CLUSTER analysis tool was used to
visualize similarity among seasonal samples ob tained
during winter (December to February), spring (March
to May), summer (June to August) and autumn (Sep-
tember to November). An analysis of similarities
(ANOSIM) was used to test for differences in relative
species composition with season.

Biological and environmental data were obtained
from a variety of sources. Cell counts of Skeletonema
spp. (Table S1 in the Supplement), surface tempera-
ture, surface salinity, and concentrations of dissolved
inorganic nitrogen (DIN), dissolved inorganic phos-
phorus (DIP) and silicic acid (Si) were obtained from
the NBay Long-Term Plankton Time Series, and from
the Marine Ecosystems Research Laboratory (http://
www.gso.uri. edu/ merl/merl.html) when data were
not available from the time series. Photosynthetically
active radiation (PAR) data were obtained from the
National Estu arine Research Reserve NBay station
(41° 38.22’ N, 71° 20.34’ W) (http://cdmo.baruch. sc.
edu/). Surface salinity and DIN concentrations were
log transformed and all data were normalized. An
 environmental PCA was constructed and correlated
with the community similarity matrix using the BIO-
ENV analysis in PRIMER v.6.1.6 (Clarke et al. 2014).

Calculation of absolute species abundance 
for winter samples

For a subset of the samples, absolute species abun-
dance was calculated. To generate the conversions
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from relative to absolute species abundance, the
sequence data from mock communities was utilized.
Each Skeletonema species was expected to comprise
20% of sequence reads, because the 5 species were
added in equal proportions. A transformation coeffi-
cient for each species was obtained by dividing the
number of expected sequence reads by the observed
number of sequence reads. The transformation coef-
ficients for each species were averaged across all 9
samples to obtain a single coefficient for each of the 5
species used in the mock communities.

Because transformation coefficients could only be
determined for the 5 species used in the mock com-
munities, we focused on winter and spring samples
(generally December to April) that contained only
those species and no others. For each sample, the
number of sequence reads for each species was mul-
tiplied by its corresponding transformation coeffi-
cient. These transformed sequence read numbers
were converted to percent composition values. Finally,
percent composition was applied to absolute Skele-
tonema cell counts from each field sample to obtain
abundance (cells l−1) of individual species.

RESULTS

Selection of an optimal sequence analysis method

Owing to the close genetic relationship among
Skeletonema species (42 bp changes along the 325 bp
fragment, with a maximum sequence similarity of
99%), computational steps were tested to identify the
most accurate method of processing sequence reads
from very closely related species. These tests were per -
formed on a single mock community containing equal

concentrations of 5 species: Skeletonema dohrnii, S.
grethae, S. japonicum, S. marinoi and S. menzelii.
First, PE reads were joined and then truncated using
a quality filter of Q30. This approach identified 2 spe-
cies that were not part of the mock community—S.
potamos and S. pseudocostatum (1 and 8% of reads,
respectively; Fig. 1)—and included reads that could
not be identified to species (Skeletonema sp.) or had
no BLAST hit with species in our custom Skeletonema
reference database (0.3 and 0.2% of reads, respec-
tively). Based on these results, we applied the Q30
 filtering before joining PE reads. Quality filtering of
reads before joining PE reads yielded matches only to
species that were part of the mock communities.
Merged reads were truncated to 315 bp (10 bp short
of the full fragment length), which removed only
highly conserved bps with no phylogenetic informa-
tion and ensured that the length of all reads did not
exceed the length of any reference sequences. An
 additional quality filter, varying the number of mis-
matches allowed in the overlapping region, did not
have a noticeable effect (data not shown).

Based on the results described above, the analysis
pipeline applied to all field and mock community
samples included (1) Q30 trimming before merging
PE reads and elimination of sequences containing
one or more mismatches in the overlapping region
using the USEARCH fastq_mergepairs algorithm; (2)
truncation of contigs to 315 bp using the USEARCH
fastq_filter script; and (3) a 99% sequence match to a
set of reference sequences and 2 mismatches using
the QIIME pick_open_ reference_ otus.py script. Se -
quences were assigned to their best match in the
database, allowing the pipeline to  distinguish be -
tween sequences with as little as 1 bp difference
between them (e.g. S. dohrnii and S.  marinoi).

5

Fig. 1. Composition of Skeleto -
nema sequences recovered from 3
mock phytoplankton communities.
The leftmost bar represents the ex-
pected composition for all samples.
The test analysis was run on Repli-
cate (Rep) 1 of the 80% Skele-
tonema mock community and in-
cluded Q30 filtering after paired
end (PE) reads were joined. The
remaining bars illustrate triplicate
mock communities comprising 80,
50 and 20% Skeletonema using
the following analysis parameters:
Q30 filtering before joining of PE
reads and truncation of merged 

reads to 315 bp
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Using this method, an average of 10 274 quality con-
trolled reads per sample were recovered from each
sequenced field sample or mock community (range of
112 to 33 181 reads per sample). All quality controlled
reads from both mock and field communities were as-
signed to species in the reference database and thus
de novo clustering was not implemented, although
the QIIME script to pick OTUs would have done this
automatically had there been unassigned reads fol-
lowing OTU assignment to the reference database.
For each species in the reference database, no more
than 2 OTUs per species were identified.

Mock communities and propagation 
of technical errors

A total of 3 mock communities were created in trip-
licate by mixing equal numbers of 5 Skeletonema
species in various percentages (20, 50 and 80%) with
4 other phytoplankton species. Triplicate cell counts
conducted immediately prior to harvesting and DNA
extraction confirmed that the targeted compositions
were obtained in the mock communities. In the
sequencing data, all 5 Skeletonema species and none
of the other phytoplankton species were detected,
confirming that the primers when used in conjunc-
tion with high-throughput sequencing were both
specific to the genus Skeletonema and amplified a
region that could be used to distinguish among spe-
cies (Fig. 1). Skeletonema species composition did
not vary significantly among the 3 mock communities
(ANOVA, p < 0.01) and was not affected by the
absolute concentration of Skeletonema cells in each
sample (Fig. 1). Although each species was expected

to comprise 20% of the sequence reads regardless of
the total contribution of Skeletonema to the phyto-
plankton community, the observed percent composi-
tion for each Skeletonema species actually ranged
from 2.2 to 46.7% (Table 1) and differed significantly
from the expected community composition (chi-
squared goodness of fit test, 4 df, χ2 > 43% and p <
0.001 for all 3 communities).

Technical replication was evaluated at 3 points:
extraction, amplification and DNA sequencing. Ex -
traction replicates were generally associated with
low levels of variance, defined here as a coefficient of
variation (CV) <15% (Table 1). Amplification and
sequencing triplicates, conducted using field sam-
ples, also had low levels of variance with a CV <15%,
except for species that represented a small fraction
(<1.5%) of the sequence reads. These low abun-
dance species included S. dohrnii and S. japonicum
in the amplification replicates and S. menzelii in the
sequencing replicates.

Abundance, composition and seasonality of
 Skeletonema in NBay

Abundance of Skeletonema in NBay between
December 2008 and December 2013 ranged from 0
to 4.8 × 107 cells l−1 (Fig. 2). The timing of the major
Skeletonema bloom varied from year to year, with
large blooms (approximately 1.5 to 4.8 × 107 cells l−1)
occurring in late summer−autumn of 2009, winter−
spring of 2010 and 2012, and early−mid summer
of 2011 and 2013. Smaller blooms occurred during
late summer 2010, winter−spring of 2011 and 2013,
and early summer 2012. During blooms, Skeletonema

6

Species Extraction Extraction Extraction Amplification Sequencing 
triplicates triplicates triplicates triplicates triplicates 

(20% Skeletonema) (50% Skeletonema) (80% Skeletonema) (Jun 2010) (Sep 2009)

S. costatum – – – 0.00 ±0.00 0.00 ± 0.00
S. dohrnii 25.25 ± 3.40 27.05 ± 2.39 27.70 ± 8.02 1.32 ±0.29 38.95 ± 0.53
S. grethae/tropicuma 2.23 ± 0.29 2.26 ± 0.29 2.48 ± 0.34 12.09 ±0.05 57.67 ± 0.52
S. japonicum 45.61 ± 4.16 38.31 ± 2.10 46.69 ± 5.83 0.10 ± 0.10 0.29 ± 0.04
S. marinoi 7.83 ± 0.50 8.06 ± 0.70 7.65 ± 0.66 7.54 ± 0.25 0.76 ± 0.11
S. menzelii 19.08 ± 1.27 24.33 ± 5.41 15.48 ± 3.15 3.71 ± 0.49 0.39 ± 0.08
S. pseudocostatum – – – 75.24 ± 0.92 1.93 ± 0.28
aS. grethae was added to mock communities

Table 1. Technical replication at 3 steps in the protocol: DNA extraction, amplification and sequencing. Values (%) represent
the average ± SD of triplicates. Mock communities were used for DNA extraction triplicates and field samples were used for
amplification and sequencing triplicates. The 3 mock communities comprised 20, 50 and 80% Skeletonema cells and did
not include Skeletonema costatum or S. pseudocostatum cells. The expected composition for each species in the mock 

communities was 20%. Bold: >15% CV among triplicate measurements
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often dominated the entire phytoplankton commu-
nity (>~10 µm), comprising up to 99% of all cells (see
Table S1 in the Supplement).

Analysis of sequence data from 75 field samples
revealed that 7 species of Skeletonema were present
in NBay between December 2008 and December
2013: S. costatum, S. dohrnii, S. grethae/tropicum, S.
japonicum, S. marinoi, S. menzelii and S. pseudo-
costatum. Note that S. grethae could not be distin-
guished from S. tropicum using the primer set uti-
lized here. Sequences identified as S. costatum only
appeared on 10 August 2009 and comprised 0.3% of
the sequence reads.

There was little intraspecific variation in LSU
sequence reads. Four species were represented by
just a single LSU sequence or ribotype: S. costatum,
S. japonicum, S. marinoi and S. pseudocostatum. The
remaining 3 species, S. dohrnii, S. grethae/ tropicum
and S menzelii, were each represented by 2 LSU
ribotypes differing by <1.23%, matching previously
identified variation within species. In S. dohrnii,
there is low variability across the entire published
28S, and the primers used here target a region that
encompasses the 2 known ribotypes. In S. menzelii,
there are 4 ribotypes represented in the published
28S. The primer target region can distinguish among
3 ribotypes, 2 of which were detected in this study. In
the S. grethae/tropicum group, there are 3 ribotypes
in the target region; one is shared between the 2 spe-
cies and it was the most frequently identified ribo-
type in the dataset. An additional 2 ribotypes differ
by 1 bp and are unique to S. tropi cum. One of those

was identified in the dataset but only
rarely (never >0.1% of reads in a given
sample).

Percent composition of sequence reads
was used to analyze community composi-
tion. As data from mock communities re -
vealed that species like S. japonicum were
overrepresented while others, like S. ma -
rinoi, were underrepresented in sequence
data (Fig. 1), it was not appropriate to
treat percent composition of sequence
reads as equivalent to percent composi-
tion of species abundance. Instead, per-
cent composition of sequence reads was
used to evaluate relative change over time
in community composition.

There were large temporal shifts in Ske -
letonema community composition (Fig. 3).
Samples from winter and spring months
generally comprised a single species (S.
marinoi) and occasionally other species,

especially S. dohrnii, S. japonicum and S. menzelii.
Samples from summer and autumn months com-
prised a more diverse community of Skeletonema.
Species composition differed significantly between
seasons (p = 0.001) with the exception of winter vs.
spring and summer vs. autumn (p > 0.05) (Table 2).
Field samples were clustered into 2 distinct groups,
one primarily comprising winter and spring samples,
and the other summer and autumn samples (Fig. 4).
Winter and spring communities clustered together
more tightly than did summer and autumn communi-
ties, reflecting the relatively stable community com-
position in winter−spring and the more diverse and
 temporally dynamic species composition in summer−
autumn. Only a few samples did not cluster as ex -
pected. For example, 2 samples from December 2011
(12/7/11 and 12/28/11, dates given as mm/dd/yy) clus-
tered with summer and autumn samples. They were
collected when water temperatures were nearly dou-
ble the typical temperature for that time of year
(11.5°C compared to typical early December temper-
atures of ~5°C). Similarly, a sample collected in Oc -
tober 2013 (10/28/13) clustered with winter–spring
samples when water temperature was lower than
normal. Other exceptions to the seasonal clustering
pattern occurred in months bordering the transi -
tion from winter−spring to summer−autumn (5/27/09,
6/23/09, 6/6/11, 6/6/13 and 11/23/09, 11/16/10,
11/20/13). The only exception that could not be ex -
plained by water temperature was a sample collected
in January 2013 (1/2/13) when water temperatures
were normal for that time of year (1.8°C).
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Fig. 2. Abundance of Skeletonema (solid line) and all phytoplankton
(>~10 µm; dashed line) cells in Narragansett Bay (NBay) from December
2008 to December 2013 (no data available March to April 2012 and
 August to December 2012). Skeletonema is an important primary pro-
ducer in the Bay, at some points comprising up to 99% of the total micro-

plankton cells
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Like community composition, species richness also
shifted with season. There was a general shift in
 species richness between May and June where low
species richness (~2 species) during winter–spring
months transitioned to higher species richness (5 to
6 species) during summer–autumn months (Fig. 3).
Although there were exceptions, this general shift in
species richness was consistent from year to year.

High temporal resolution of species composition
during 3 bloom periods

Three sets of high-resolution (weekly) samples
 collected during Skeletonema blooms revealed that

 species composition varied dramatically with season.
During the 2009 winter bloom, 9 weekly samples
were analyzed between December 2008 and February
2009. Chl a concentrations reached 6.9 µg l−1 and
Skeletonema comprised up to 95% of the >~10 µm
phytoplankton community (Table S1 in the Supple-
ment). During that time period, sequence reads were
dominated by S. marinoi (see results regarding quan-
titative assessment of S. marinoi below) (Fig. 5A). A
spring bloom in March to April 2010 had similar chl a
concentrations and dominance by Skeletonema in the
phytoplankton. Sequence reads from these samples
were also dominated by S. marinoi over a period of
5 wk (Fig. 5B). The May to July 2013 summer bloom
contrasted starkly from winter blooms. Chl a reached
a peak of 23.5 µg l−1 and Skeletonema comprised up to
98% of phytoplankton cells. In terms of species com-
position, the summer bloom was more diverse (6 spe-
cies present) and changed distinctly over time, with
sequences dominated by S. marinoi then S. menzelii,
followed by a mixture of 4 species (Fig. 5C).

Effect of environmental conditions 
on community composition

Between December 2008 and December 2013, tem-
perature in NBay ranged between 0 and 24.6°C.
Salinity ranged from 14.1 to 32; it should be noted that

8

Fig. 3. Composition of Skeletonema sequence reads from December 2008 to December 2013 in NBay. Data include monthly
 samples as well as high-resolution weekly samples, which occurred during December 2008 to January 2009, March 2010 to April
2010 and May 2013 to July 2013. Samples were not collected in July 2011, February to April 2012 (white bar) and December 2012

Winter Spring Summer Autumn

Winter – 0.009 0.581 0.578
Spring 0.264 – 0.591 0.533
Summer 0.001 0.001 – 0.023
Autumn 0.001 0.001 0.247 –

Table 2. Pairwise similarity between Skeletonema commu-
nities collected during different seasons (ANOSIM). The top
triangle of cells represents R values (global R = 0.386) and
the lower triangle represents p-values (bold: significantly
different at p ≤ 0.05). Community composition was signifi-
cantly different among all seasons except be tween winter 

and spring, and between summer and autumn
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the minimum salinity occurred in April 2010 and coin-
cided with severe rains and heavy influx of  freshwater
to NBay. Salinity most often ranges from 27 to 32.
Concentrations of DIN ranged from 0.14 to 18.92 µM,
DIP from 0.04 to 1.31 µM and Si from 0.08 to 38.12 µM.
PAR ranged from 18 to 636 µmol photons m−2 s−1.
BIOENV analysis showed that surface temperature
and DIP were significantly correlated with species
composition and explained 48.0% of the variation in
Skeletonema communities (p = 0.01) (Table 3). Tem-
perature alone explained 46.2% of the variation in
species composition. Salinity, Si and DIN did not ex-
plain any significant variation in species composition.

Contribution of Skeletonema marinoi to
winter–spring communities

Transformation coefficients were determined for
the 5 species added to mock communities (S. dohrnii,
S. grethae/tropicum, S. japonicum, S. marinoi and S.
menzelii) and then used convert relative sequence
reads to absolute cell abundance for samples collected
during winter−spring months that comprised only those
species (Table 4). Other months were not considered
as they contained 2 species not included in mock com-
munities and for which no transformation coefficients
were obtained (S. costatum and S. pseudocostatum).

The calculation of transformation coefficients yielded
abundance estimates for mock communities that dif-
fered by 2%, at most, from their actual composition.

Application of transformation coefficients to field
samples and combination with Skeletonema cell
counts revealed that winter–spring months were nu-
merically dominated by S. marinoi, when it generally
exceeded 80% of the community composition (Fig. 6).
Other Skeletonema species were not dominant in
winter–spring communities, with the exception of
No vember 2011. In November 2011, S. menzelii com-
prised 88% of the community (Fig. 6D). It is important
to note that S. menzelii cell size is typically less than
10 µm and may not typically be captured in cell count
observations, but that it was only detected in high
abundance in the sequence data in November 2011,
when both Skeletonema abundance and overall phyto -
plankton abundance were low (Fig. 6D).

DISCUSSION

Evaluating community composition 
of cryptic species

High-throughput DNA sequencing of a segment of
the LSU rDNA was effective in characterizing a mar-
ine diatom community consisting of closely related,

9

Fig. 4. Dendrogram representing the Bray-Curtis similarity of Skeletonema species composition. Samples are categorized by
season (winter, blue; spring, green; summer, orange; autumn, red). Shorter branch lengths represent samples that are more 

similar and longer branch lengths represent samples that are more dissimilar. Dates given as mm/dd/yy
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morphologically cryptic and pseudo-cryptic Skeleto -
nema species. Other regions of the ribosomal cistron,
such as the commonly used small subunit (SSU) V4
and V9 regions, are very effective for identifying
diversity across broad taxonomic ranges (Stoeck et
al. 2010, de Vargas et al. 2015). However, the SSU
would not have been variable enough to detect the
different species of Skeletonema examined here.
Conversely, the LSU species database across broad
taxonomic divisions is far smaller than the SSU data-
base. As a result, the choice of genetic marker used
for high-throughput sequencing should be  tailored to
the  taxonomic resolution of interest and the magni-
tude of the database available.

To assess the extent of error in our high-throughput
sequencing approach, replicate measures for DNA
extraction, amplification and sequencing were con-
ducted (reviewed in Robasky et al. 2014). Variation in
the relative abundance of each species associated
with replicate amplification and sequencing was low,
and tended to affect only low-abundance species
(<1.5% composition), whereas variation associated
with replicate DNA extractions was larger and

affected species that represented a  moderate fraction
of sequence reads (on average ~22% composition).
Although DNA extraction represented the largest
source of error in estimating the relative abundance
of species, the average CV at this step was only
12.7%, which is comparable to variation observed in
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Date

S. japonicum

S. marinoi

S. dohrnii

S. grethae/tropicum

S. menzelii

S. pseudocostatum

Dec 9 Dec 17 Dec 22 Dec 30 Jan 13 Jan 20 Jan 27 Feb 2 Feb 9
2008 2009

May 21 May 28 Jun 6 Jun 11 Jun 19 Jun 24 Jul 3 Jul 8 Jul 15 Jul 22
2013

Mar 29 Apr 5 Apr 13 Apr 20 Apr 27
2010

A

B

C

Fig. 5. Skeletonema species
composition during high-resolu-
tion, weekly sampling of a (A)
winter bloom (8 wk), (B) spring
bloom (4 wk) and (C) summer 

bloom (9 wk)

No. of       Corre-  Variables
variables   lation

2                0.480   Surface temperature, DIP
1                0.462   Surface temperature
3                0.422   Surface temperature, average PAR, DIP
2                0.412   Surface temperature, Si
3                0.405   Surface temperature, DIP, Si
3                0.393   Surface temperature, surface salinity, DIP

Table 3. Correlation of NBay environmental conditions with
Skeletonema species composition (BIOENV). A total of 6 envi-
ronmental variables were analyzed: surface temperature (°C),
surface salinity, average PAR (µmol photons m−2 s−1), DIN (µM),
DIP (µM) and Si (µM). Surface temperature and DIP combined
explained 48% of the variability in community structure, al-
though temperature alone explained 46%. The global BEST 

match permutation test had ρ = 0.480 and p = 0.01
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microscopy studies based on cell counts of 400 cells
per sample (Lund et al. 1958).

The analysis pipeline utilized here was further val-
idated using mock communities of known com -
position. This allowed for evaluation of a variety of
quality controls to reduce false reads and  mis-
identifications. One technique that was notably dif-
ferent in this study compared to others was the
 application of Q30 trimming, which is typically rec-
ommended after merging PE reads (Bokulich et al.

2013). Here, mock communities contained spurious
species (i.e. Skeletonema sp. and the freshwater S.
potamos) when trimming after merging PE reads.
Trimming prior to merging PE reads eliminated spu-
rious species. As bps reflective of genetic variation
mostly occurred in the middle of the amplicon where
forward and reverse reads overlapped, it is possible
that Q30 trimming before merging reads eliminated
low-quality bps that were otherwise included in the
merged sequences.

11

Species Sequence Composition Transformation Sequence reads Composition after 
reads (N) of reads (%) coefficient after transformation (N) transformation (%)

Skeletonema japonicum 7834 43 0.465 3647 20
S. marinoi 1496 8 2.56 3833 21
S. dohrnii 5201 28 0.773 4019 22
S. grethae 399 2 8.71 3478 19
S. menzelii 3395 19 1.08 3660 20

Table 4. Transformation of a single mock community sample from relative percent composition to absolute percent composi-
tion to demonstrate the method applied to field samples. Using data from mock field communities, transformation coefficients
were calculated to convert relative percent composition data into absolute abundance data. Average transformation coeffi-
cients were calculated using sequence data from all 9 mock field samples and then multiplied by individual sequence read
counts for each sample. As species were added in equal proportions to the mock field communities, the actual composition was 

20% for each species

Fig. 6. Quantitative assessment of Skeletonema species composition during winter−spring in NBay in (A) 2008 to 2009,
(B) 2009 to 2010, (C) 2010 to 2011, (D) 2011 to 2012 and (E) 2012 to 2013. Only time periods containing the 5 species for 

which transformation coefficients could be calculated are included
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Mock communities revealed that closely related
Skeletonema species could be detected and distin-
guished in mixed phytoplankton communities; how-
ever, sequence read abundances did not match
expected abundances. For example, abundances
for Skeletonema japonicum were overestimated by
2.2-fold, while S. marinoi and S. grethae/tropicum
were underestimated by 2.5-fold and 8.6-fold, re -
spectively, based on the percentage of observed vs.
expected sequence reads. A likely cause for the bias
is variation in LSU rDNA copy number among spe-
cies, which can lead to differential amplification in
PCR and result in sequence read abundances that do
not match species abundances. The number of rDNA
cistron copies per species varies from 1 to 12 000 for a
variety of algal taxa, including diatoms (Zhu et al.
2005). For example, within the diatom genus Thalas-
siosira, copy number can vary by 10-fold among
 species (Zhu et al. 2005). Little work has been done
to investigate copy number variation among Skele-
tonema species, although LSU copy number in S.
marinoi was estimated at 61 copies per cell (Ellegaard
et al. 2008). By combining that estimate with the
transformation coefficients identified here, we esti-
mate that copy number of the 5 species used in the
mock communities ranged by ~20-fold, from 11 to
208 copies per cell.

Seasonal variation in Skeletonema
community composition

Here, 7 species of Skeletonema were detected in
NBay, 5 of which had not been detected previously
(S. costatum, S. dohrnii, S. marinoi, S. menzelii and S.
pseudocostatum). S. grethae and S. japonicum were
previously identified in NBay via single cell isolates
(Kooistra et al. 2008). Some of the newly detected
species have been found in nearby estuaries, such as
S. marinoi in Long Island Sound and S. menzelii off
the coast of Cape Cod (Kooistra et al. 2008). S. costa-
tum, S. dohrnii and S. pseudocostatum have all been
previously identified in the Northeast Atlantic (NCBI
accession EF433522.1; Kooistra et al. 2008). S. trop-
icum has been isolated primarily from subtropical
waters, including the Gulf of Mexico (Sarno et al.
2005). The diversity of Skeletonema observed in
NBay is similar to that found in coastal waters around
Japan, where up to 11 species have been identified
using cloning and sequencing techniques (Yamada
et al. 2010, Yamada et al. 2013, Yamada et al. 2014).
This is in stark contrast to previous studies of Skele-
tonema in other regions, such as the  Skagerrak−

Kattegat and Baltic Sea, showing that S. marinoi
appears to be the sole representative of the genus
there (e.g. Godhe et al. 2006, Ellegaard et al. 2008,
Godhe et al. 2013).

Pronounced seasonal changes in species diversity
were observed within NBay. Comparison of species
compositions from different seasons revealed 2
 significantly different communities; a winter–spring
community and a summer–autumn community. The
most noticeable difference between the seasonal
communities was the low species richness during
winter–spring, when S. marinoi was the primary spe-
cies in NBay, compared to higher species richness
and more temporally dy namic community composition
during summer–autumn. Previous research in NBay
on what was thought to be S. costatum detected
 significant genotypic differences between winter−
spring and summer−autumn isolates (Gallagher 1980).
Based on the high-throughput se quencing data, S.
costatum is all but absent in NBay (appearing on just
1 sampling date and comprising 0.3% of reads),
 suggesting that previous observations of S. costatum
were of other species in the genus. Furthermore, the
sequencing data suggest that protein variation among
seasonal isolates, identified using allozymes, most
likely captured inter- rather than intra-specific varia-
tion in the genus Skeletonema.

The pace of temporal variation in Skeletonema
species composition in NBay depended on season.
Data analyzed from high-resolution weekly samples
collected during winter, spring and summer blooms
suggested that winter and spring blooms tended to
have consistent species composition over weeks to
months, whereas summer blooms were much more
dynamic, with shifts in relative species abundance
occurring weekly. Rapid changes in species composi-
tion over a period of weeks could be due to stochastic
effects. However, given the observation of physio -
logical variation within the genus (Kaeriyama et al.
2011), it is more likely that rapid compositional
changes may indicate that diversification within the
genus Skeletonema has led to species with finely
tuned differences in their physiologies, allowing the
genus to dominate the microplankton across a range
of environmental conditions.

Effect of environmental conditions 
on community composition

Water temperature was the single most important
environmental condition that correlated with Skeleto -
nema community composition. Temperature is thought
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to influence phytoplankton species richness and div -
ersity (Graham et al. 2004), in part because tempera-
ture strongly influences the growth rates of individ-
ual species (Thomas et al. 2012), including those in
the genus Skeletonema. A comparison of growth
rates under different temperatures revealed that cul-
tures of S. marinoi grew faster than other Skele-
tonema species at the lowest tested temperatures (10
and 15°C) (Kaeriyama et al. 2011). This could explain
the dominance of S. marinoi in winter–spring sam-
ples, although wintertime temperatures in NBay
drop into the single digits, lower than previously
examined. Earlier work in NBay on what was thought
to be S. costatum revealed significant differences in
growth rates and chl a concentration per cell in iso-
lates collected from different seasons (Gallagher
1982). Now that at least 7 species of Skeletonema
have been identified from NBay, it is likely that pre-
viously observed differences in physiological char -
acteristics were associated with variation among
 species.

Water temperatures in NBay can reach up to 25°C.
It has been hypothesized that transport of warm, Gulf
Stream waters into NBay could allow tropical and
sub-tropical species that are more adapted to warm
temperatures to enter the Bay during summer months
(Borkman & Smayda 2009b). Water transport could
provide an opportunity for species like S. tropicum to
enter the bay, occupy seasonal niches, and thus
affect the magnitude and composition of Skeleto -
nema blooms. At this time, it is unclear if S. tropi cum
is part of the NBay Skeletonema community, due to
lack of resolution between S. grethae and S. trop-
icum LSU rDNA sequences analyzed here. Skeleto -
nema grethae is a temperate species and has been
previously isolated from NBay (Sarno et al. 2005,
Kooistra et al. 2008). In contrast, S. tropicum has been
found in marine and brackish environments, mostly
clustered near low latitudes (Hulburt & Guillard
1968, Kooistra et al. 2008). With an optimum growth
rate at 25°C and cessation of growth below 13°C
(Hulburt & Guillard 1968, Kaeriyama et al. 2011), S.
tropicum could thrive in NBay only during summer
months. S. grethae/tropicum sequences were observed
generally between May and October, when tempera-
tures range from 12 to 25°C, providing the opportu-
nity for both the temperate and tropical species to
thrive. These 2 species are typically distinguishable
by their chloroplast composition, as S. tropicum has
numerous and more visible chloroplasts than S.
grethae (Sarno et al. 2005). Future analyses should
take into account occasions where microscopy is a
solution for unresolved sequences.

Quantifying  morphologically cryptic 
species in the field

It has been particularly challenging to quantify
species that are morphologically cryptic from field
samples, at least at the level of the light micro-
scope. Here, we combined multiple approaches to
ultimately extract quantitative abundance data on
 cryptic species from field samples by combining
genus-level cell counts with high-throughput DNA
sequence data and transformation coefficients based
on mock communities. This multi-pronged approach
was applied to samples collected during winter−
spring months of each year, revealing that S. marinoi
is the numerically dominant winter−spring bloom
species in NBay. At times, we found that S. marinoi
comprised up to 99.86% of Skeletonema cells in the
bay during winter−spring blooms (e.g. 2 February
2010) and is present at cell numbers of up to 4.8 ×
107 cells l−1. Phytoplankton count data combined with
the transformed sequence data illustrated that during
the winter− spring bloom, S. marinoi was not only the
dominant Skeletonema species but also the dominant
microplankton species in the entire phytoplankton
community. The consistent dominance of S. marinoi
during the winter−spring bloom over 5 yr highlights
the importance of a single species to the functioning
of NBay.

The disconnect between species abundances ob -
tained using microscopy vs. amplicon sequencing
has been observed previously and identified as an
important consideration in the improvement of stud-
ies aiming to taxonomically resolve samples using
molecular methods (e.g. Wollschläger et al. 2014).
For example, using mock communities we found
that there could be nearly a 10-fold difference in the
 percent composition of a species observed in the
sequencing data vs. the actual percent composition.
The mismatch in species abundances between cell
counts obtained using microscopy vs. amplicon se -
quencing has been noted rarely, but should be
an important consideration in any study aiming to
quantify community structure using high-throughput
sequencing.

CONCLUSIONS

Although they are rarely used in high-throughput
DNA sequencing surveys (Degnan & Ochman 2012),
the mock communities utilized here served to en -
hance the ecological relevance of high-throughput
sequencing data. The mock communities allowed for
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validation of analysis pipelines, leading to the elimi-
nation of spurious species that would have otherwise
been included in analyses, and provided insights into
the extent of copy number variation in the rDNA
cistron among species, even those that are very
closely re lated. Finally, mock communities were used
to obtain transformation coefficients that were then
applied to field samples, yielding a quantitative
assessment of abundance among cryptic species.

The 5 yr time series of field samples analyzed here
revealed that different Skeletonema species inhabit
different seasonal niches, with Skeletonema marinoi
dominating the community in the winter and spring,
and other species, such as S. menzelii and S. pseudo-
costatum, occurring in summer and autumn. The sea-
sonal change in diversity was significantly correlated
with water temperature and may be due to species-
specific growth responses to temperature that exist
among Skeletonema species (Kaeriyama et al. 2011).
The association of community composition with
water temperature indicates that on-going environ-
mental change has the potential to shift Skeletonema
species compositions in NBay. For example, over the
past 50 yr, NBay has warmed significantly, with win-
tertime increases of 1.6 to 2°C (Nixon et al. 2009).
Over this same time period, shifts in Skeletonema
abundance were observed, with a nearly 2-fold drop
in occurrence in the 1980s (Borkman & Smayda
2009a). Long-term changes in Skeletonema abun-
dance may be related to the composition of cryptic
species, potential physiological differences among
species and long-term temperature changes in sur-
face waters. Future work should aim to examine fac-
tors influencing the composition of morphologically
cryptic species complexes like Skeletonema in order
to ultimately understand and project future changes
to marine phytoplankton communities.
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