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INTRODUCTION

Body size is often cited as a ‘master trait’ control-
ling or serving as a proxy for many aspects of func-
tional diversity in phytoplankton, zooplankton, and
other guilds (Litchman & Klausmeier 2008, Kiørboe
& Hirst 2014). Allometric explanations have a long
pedigree in biology (Bergmann 1847, Kleiber 1932,
Brooks & Dodson 1965, Silvert & Platt 1978), and
the past decade has seen a flourishing of size-based
 theory-building and data meta-analysis in plankton
biology (Baird & Suthers 2007, Saiz & Calbet 2007,
Banas 2011, Edwards et al. 2012, Ward et al. 2012,
Wirtz 2012, Record et al. 2013, Andersen et al. 2015).
Marine pelagic copepods have been the focus of
much of this work, not only because of their abun-
dance and trophic importance in the world ocean
but also because their definite number of molts and

determinate growth make them good subjects for
quantification of ontogenetic patterns in the lab
(Forster et al. 2011). Numerous studies exist linking
copepod vital rates (development, growth, ingestion,
fecal pellet production, egg production) to size as
well as temperature and prey (Kiørboe & Sabatini
1995, Hansen et al. 1994, Hirst & Kiørboe 2002,
Bunker & Hirst 2004, Saiz & Calbet 2007, Kiørboe
& Hirst 2014).

Still, basic ambiguities remain in how growth rate,
development rate, and adult body size are linked
across copepod taxa. One can imagine an animal
becoming a large adult either by growing quickly or
maturing slowly; which of these ontogenetic models
is more appropriate? Is it fair to think of growth rate
as controlling adult size in this ontogenetic sense,
or should we rather think of growth (or metabolic
processes in general) as being controlled by body
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size, according to a general scaling like the often-
observed three-quarters or two-thirds power law?
Likewise, what are the causal relationships behind
the biogeography of copepod size, e.g. the fact that
the dominant Calanus spp. show a clear decline in
size from the Arctic to the subtropics? To what extent
is the large size of high-latitude Calanus a necessary
consequence of general laws, like the differential
temperature-dependence of growth and develop-
ment (Forster & Hirst 2012), and to what extent a
strategy or adaptation to a particular, contingent
combination of conditions (e.g. seasonality and prey
and predator patterns; McLaren 1966, Falk-Petersen
et al. 2009, Varpe 2012, Melle et al. 2014)?

These interpretive distinctions might appear rather
abstract as long as one is working in a descriptive
mode, but they have huge consequences for predic-
tive models, which need to be anchored in a mecha-
nistically correct understanding of which traits are
plastic and which are not as well as of which correla-
tions among traits or between traits and environ-
ments are ‘laws’ and which might prove transient.
The purpose of this study is to revisit the experimen-
tal literature on growth, development, and size in
copepods with these distinctions in mind, propose a
simple model of copepod ontogeny that formally dis-
tinguishes between fundamental constraints and
variable strategy choices, and then show how apply-
ing this model to existing laboratory rate data yields
a self-consistent picture and new hypotheses. The
endpoint of this analysis, as developed below, is the
suggestion that the overall allometry of growth and
development in copepods be decomposed into 3
 distinct mechanisms: (1) size-dependent variation in
specific growth rate during ontogeny (which follows
the classic three-quarters power law in Calanus
spp.); (2) variable regulation of development rate,
relative to a temperature-dependent baseline, partic-
ularly in large calanoids; (3) variable regulation of
growth rate, relative to a baseline dependent on both
temperature and a general three-quarters scaling,
particularly in cyclopoids like Oithona spp. and small
calanoids like Pseudocalanus spp. This differentia-
tion of mechanisms is a hypothesis in need of experi-
mental confirmation.

DATA SOURCES

Rate data were drawn from 45 published experi-
ments (Tables 1 & 2). We confined our review to lab-
oratory studies that observed growth and/or develop-
ment under food-saturated conditions over a large

fraction of the 13-stage development sequence. We
made exceptions to this standard for Neocalanus and
Rhincalanus spp., the largest taxa in the study,
because rearing experiments with large, long-lived
calanoids are especially difficult, and as a result, the
high end of the size spectrum has not been well
resolved in past reviews of this sort. Nine species
of Calanus, along with Neocalanus flemingeri/plum-
chrus, Neocalanus cristatus, Calanoides acutus, and
Rhincalanus gigas, constitute the ‘large calanoid’
 category in our statistical analyses, with adult sizes
50−2000 μg C. These along with Pseudocalanus
spp. and others in the 5−20 μg C size range compose
the calanoids as a whole. The data compilation also
includes 5 non-calanoid species <5 μg C: 4 cyclo -
poids (3 Oithona spp. and Oncaea mediterranea) and
the harpactacoid Microsetella norvegica. The dataset
is available in Microsoft Excel format in the online
Supplement at www.int-res.com/ articles/ suppl/ m558
p021_supp.xls.

Development rate is defined as the reciprocal of
total development time from spawning to adulthood.
For studies that observed only a portion of develop-
ment, it was thus necessary to estimate what fraction
of total development time the observed stages repre-
sented. This estimation was made using the assump-
tion of equiproportionality (a single series of relative
stage durations) within broad size ranges. We used
results from Campbell et al. (2001) for species with
adult size on the order of ≥100 μg C (Calanus spp.
and Neocalanus spp.), results from Sabatini & Kiør-
boe (1994) for Oithona spp., and equal stage dura-
tions (isochronality) for Pseudocalanus spp., which
approxi mates the results of Lee et al. (2003). A num-
ber of studies published Belěhrádek functions rather
than raw development-time data (Table 1), and in
these cases, we simply use the fit as if it were data,
across the particular temperature range where it was
defined. Because Belěhrádek fits have so many
degrees of freedom, they generally match the source
data quite closely. In studies in which neither tabular
data nor a published fit were available, graphical
data from figures were digitized using GraphClick
software (www.arizona-software.ch/graphclick/) on
high-resolution scans, a method which introduces
only 0.5 to 1% additional error.

Mass-specific growth rate (Table 2) is in general
calculable from a time series of body weights, e.g.
average weight of individuals at each life stage and
the median time intervals between them. This rate
varies over the course of an individual’s ontogeny
as well as across taxa. Hirst et al. (2014) recently
showed that stage-specific rates are quite sensitive to
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the particular numerical scheme used to estimate
them from weight and stage-duration time series,
and where possible, we have used their revised esti-
mates in place of originally published rates. A num-
ber of growth rates were drawn from the review by
Kiørboe & Hirst (2014), although where not otherwise
indicated, mean growth rates were estimated by new
fits to the original weight and stage-duration time
series. The ontogenetic model which serves as the
basis for these fits is explained over the course of the
following 2 sections.

DEVELOPMENT RATE, ACROSS SPECIES AND
COMMUNITIES

Forster et al. (2011) found that food-saturated
development rate in copepods increased with tem-
perature according to—if one chooses this functional
form, as that study did not—an exponential law with
a Q10 of 3.0. The development-rate data in this study
(Fig. 1) are consistent with that mean Q10. Still, a
global fit of this sort, whatever the functional form,
necessarily glosses over a great deal of variation
at the species or population level. For example, 3
Calanus spp., which co-occur in some Atlantic Arctic
habitats, appear to have comparable sensitivity of
development rate to temperature but markedly dif-
ferent absolute development rates at a given temper-

ature (red lines, Fig. 1), a pattern of variation orthog-
onal to the community-level trend. If a particular ani-
mal’s development rate u at a particular temperature
T varies according to the following:

u(T) = u0Qd
T/10°C                           (1)

where Qd is an exponential base appropriate for
development, then we can ask whether the scaling
constant u0 itself shows patterns across taxa.

Before addressing that question, it is important to
consider exactly how the temperature correction is to
be done. Qd values vary markedly across the individ-
ual studies reviewed here: Campbell et al. (2001)
reports 3.4 for development of C. finmarchicus, and
refitting the Belěhrádek functions in Table 1 gives
values from 1.7 to 3.6. However, we postulate that
single-species Q10 values may be less meaningful
than they appear. Rearing experiments that measure
development rate across a range of temperatures
generally stop at the point where thermal stress lim-
its the number of individuals surviving and molting.
If these experiments were continued with good reso-
lution across the range of thermal stress, the result
would almost certainly be not monotonic (like Q10 or
Belěhrádek curves) but would rather be asymmetric
domes, rising and then falling off sharply. We found
only one rearing experiment in the literature that
quantified the decline in development rate past the
peak at the thermal optimum: Klein Breteler et al.

Species Source Adult size −b −α aE−N6 Valid range aE−C5 Valid range
(μg C) (°C) (°C)

Calanus hyperboreus Corkett et al. (1986) ~1600 2.05 14.4 15 107 2−10
C. hyperboreus Jung-Madsen et al. (2013) ~1600 2.05 12.7 ~16 800 0−10
C. glacialis Corkett et al. (1986), ~300 2.05 12.97 9892 2−10

McLaren et al. (1988)
C. glacialis Jung-Madsen & Nielsen (2015) ~300 2.05 15.7 12 510 0−10
C. finmarchicus Campbell et al. (2001) 180 2.05 9.11 5267 4−12 15 047 8−12
C. finmarchicus Corkett et al.(1986) ~180 2.05 10.6 7110 2−10 18 168 10
C. finmarchicus Jung-Madsen & Nielsen (2015) ~180 2.05 13.7 10 105 0−10
C. helgolandicus Cook et al. (2007) ~115 2.05 6.01 4490 8−15 12 337 8−15
C. sinicus Uye (1988) 60 1.44 0.7 558 10−20 1258 10−20
C. abdominalis Slater & Hopcroft (2004) 20 1.58 8.7 1695 5−16 3167 5−16
Pseudocalanus acuspes McLaren et al. (1989) ~10 2.05 12.59 10 401 0−12 20 155 4−12
P. minutus McLaren et al. (1989) ~10 2.05 13.9 10 525 2−8 25 745 8
P. moultoni McLaren et al. (1989) ~10 2.05 12.03 10 332 2−8 20 126 8
P. newmani McLaren et al. (1989) ~10 2.05 11.3 7474 2−8 14 393 6−8
P. marinus Uye et al. (1983) 6 1.8 1 1756 10−25 3638 10−25
Microsetella norvegica Uye et al. (2002) 0.9 0.75 7.9 1303 21−27.5 2501 21−27.5

Table 1. Parameters for Belěhrádek functions reported in the literature, which predict development time D (in days) as a function
of temperature T as D = a(T − α)b. Results are given for the duration of embryonic and naupliiar development (aE−N6) and for com-
plete development through the end of the last pre-adult stage (aE−C5). The temperature ranges over which aE−N6 and aE−C5 were
originally defined are also given. Adult sizes marked with ~ are nominal or estimated from other studies, as opposed to measured
directly. aE−N6 for the study of Calanus hyperboreus by Jung-Madsen et al. (2013) is extrapolated from observations through N5
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Species Source Adult size Tempera- u0 Basis for u0 g0 Growth calculation notes
(μg C) ture (°C) (d−1) (d−1)

N. cristatus Liu & Hopcroft (2005), ~2100 3 0.0038 0.157 Field obs.
Vidal & Smith (1986)

C. hyperboreus Corkett et al. (1986) ~1600 10 0.0054 see Table 1*
C. hyperboreus Jung-Madsen et al. (2013) ~1600 10 0.0042 see Table 1*
R. gigas Shreeve & Ward (1998) 1600 3 0.0028 C1−C3* 0.113 Via Hirst et al. (2014)
C. acutus Shreeve & Ward (1998) 570 3 0.0108 C2−C4*
N. flemingeri/ Liu & Hopcroft (2005) ~400 5 0.0046 N1−adult 0.120 Field obs.; their Fig. 6b
plumchrus

C. glacialis Corkett et al. (1986), ~300 10 0.0073 see Table 1*
McLaren et al. (1988)

C. glacialis Jung-Madsen & Nielsen (2015) ~300 10 0.0067 see Table 1*
C. acutus Atkinson (1998) 270 3 0.0080 E−C4*
C. finmarchicus Campbell et al. (2001) 180 12 0.0092 see Table 1 0.138
C. finmarchicus Corkett et al. (1986) ~180 10 0.0091 see Table 1
C. finmarchicus Jung-Madsen & Nielsen (2015) ~180 10 0.0068 see Table 1
C. glacialis Escribano & McLaren (1992) 160 3 0.0055 C4−adult* 0.137 Via Kiørboe & Hirst (2014)
C. chilensis Escribano et al. (1997) ~150 18 0.0077 C3−adult* 0.100 Via Kiørboe & Hirst (2014)
C. marshallae Peterson (1986) 120 10.1 0.0053 0.085
C. helgolandicus Cook et al. (2007) ~115 15 0.0080 see Table 1
C. helgolandicus Rey-Rassat et al. (2002) 115 15 0.0079 0.155
C. pacificus Landry (1983) ~100 15 0.0097
C. australis Peterson & Painting (1990) 100 19.5 0.0073
C. pacificus Vidal (1980) 100 15.5 0.0075 C2−adult* 0.156
C. sinicus Uye (1988) 60 20 0.0069 see Table 1 0.089 Hirst et al. (2014)
C. carinatus Peterson & Painting (1990) 54 19.5 0.0098
C. abdominalis Slater & Hopcroft (2004) 20 16 0.0086 see Table 1 0.122 From 7°C data
C. typicus Fryd & Haslund (1991) 11.25 17 0.0096 0.092 Via Kiørboe & Hirst (2014)
P. acuspes McLaren et al. (1989) ~10 12 0.0094 see Table 1
P. minutus McLaren et al. (1989) ~10 8 0.0090 see Table 1
P. moultoni McLaren et al. (1989) ~10 8 0.0096 see Table 1
P. newmani McLaren et al. (1989) ~10 8 0.0125 see Table 1
P. elongatus Klein Breteler et al. (1995) ~10 15 0.0100
Pseudocalanus sp. Landry (1983) ~10 15 0.0091
E. herdmani Escribano & McLaren (1992) 10 10 0.0073 C1−adult* 0.086 Via Kiørboe & Hirst (2014)
T. longicornis Klein Breteler et al. (1982) ~8 15 0.0113 0.098 Hirst et al. (2014)
C. hamatus Klein Breteler et al. (1982) ~8 15 0.0113 0.087 Hirst et al. (2014)
P. newmani Lee et al. (2003) 7.9 15 0.0076 N1−adult 0.038
C. hamatus Fryd & Haslund (1991) 7.2 17 0.0088 0.070 Via Kiørboe & Hirst (2014)
Pseudocalanus sp. Klein Breteler et al. (1982) ~7 15 0.0107 0.065 Hirst et al. (2014)
P. marinus Uye et al. (1983) 6 25 0.0062 see Table 1 0.045 From 20°C data;

via Hirst et al. (2014)
Pseudocalanus sp. Vidal (1980) 5 15.5 0.0088 C2−adult* 0.064
A. tonsa Berggreen et al. (1988) 5 17 0.0124 0.060 Via Kiørboe & Hirst (2014)
A. tonsa Klein Breteler et al. (1982) ~5 15 0.0107 0.085 Hirst et al. (2014)
O. mediterranea Paffenhöfer (1993) 1.3 20 0.0038 0.027 Via Kiørboe & Hirst (2014)
M. norvegica Uye et al. (2002) 0.9 27.5 0.0100 see Table 1 0.036 see their Fig. 11
O. similis Sabatini & Kiørboe (1994) 0.6 15 0.0098 0.043
O. davisae Uchima (1985) ~0.3 20.5 0.0053 Via Sabatini & Kiørboe (1994)
O. nana Haq (1965) ~0.3 20 0.0058 Via Sabatini & Kiørboe (1994)
O. colcarva Lonsdale (1981a,b) ~0.3 15 0.0074 Via Sabatini & Kiørboe (1994)
O. davisae Almeda et al. (2010) ~0.3 28 0.0057 N1−N6* 0.014 Via Kiørboe & Hirst (2014)

Table 2. Relative development rate u0 (see Eq. 1), relative growth rate g0 (see Eq. 4), and ancillary data for all species included in this
review. Adult sizes marked with ~ are nominal or based on other studies. For studies which give development series for multiple temper-
atures, only the highest-temperature treatment (or in the case of Klein-Breteler et al. [1995], the treatment in which the highest rate was
recorded) is given. All data are from food-replete conditions, and all are from laboratory as opposed to field observations, with the ex -
ception of g0 for Neocalanus spp. In some cases, u0 was extrapolated from a subset of life stages (noted under ‘Basis for u0’) under the
assumption of equiproportionality, as discussed in the text. *Estimates based on observations of less than half of the development period
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(1995) (Fig. 1). A handful of studies have begun to
resolve the falling side of the temperature response
for ingestion rate (Møller et al. 2012, Alcaraz et al.
2014), but in the absence of clear empirical guidance,
an ambiguity has grown up in the theoretical litera-
ture between expectations of monotonic, rising
responses to temperature and domelike, ‘thermal
window’ re sponses (Pörtner 2002).

We speculate that the confusion here is mainly a
matter of scale, following the model that Eppley
(1972) showed phytoplankton growth rate to follow,
in which vital rates in individual species or popula-
tions show window-like responses to temperature,
while the outer envelope of these individual re -
sponses rises according to a Q10 law (Fig. 2). Alcaraz
et al. (2014) proposed that the thermal-window re -
sponse they observed in C. glacialis ingestion might
be a template for community-level patterns as well,
but one can show that if a community in a given envi-
ronment is assembled from populations at a range of
points relative to their thermal optima, the commu-
nity response will follow the same power law as the
metacommunity upper bound, for a wide range of
assumptions regarding the shape of the population-
level temperature response curve.

This logic suggests that temperature correction
should be applied differently depending on whether it

is in service of a population-level or community-
level question. For population-level questions, a
population-specific Qd in Eq. (1) is of course most
appropriate and most likely will give results that
reflect the position and shape of the thermal win-
dow. However, to explore community-level pat-
terns in the physiology of animals in near-optimal
conditions, the most consistent approach is to
retain only the highest-temperature treatment
from each single-species study—this serves as an
estimate of the peak of each thermal window—and
use the community-level Qd = 3.0 Forster et al.
(2011) for all species. This method yields values for
u0 (Eq. 1) that indicate whether the optimal devel-
opment rate of a species is high or low relative to
the community. This is our primary interest in this
study, and we will use u0 to refer to a ‘relative de-
velopment rate’ defined using the community-level
Qd in this way, as opposed to a rate temperature-
corrected to 0°C for a specific population, u |T =0°C.
In general, the distinction is not important to the re-
sults below, although it does make a difference to
the interpretation of fine-scale differences between
some species pairs (e.g. C. finmarchicus and C.
glacialis: Fig. 1; Jung-Madsen & Nielsen 2015).
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Relative development rate u0 varies from
0.0028 to 0.0125 d−1 across the full spectrum
of diversity reviewed here (Fig. 3), corre-
sponding to  food-saturated development
times of 80 to 360 d at 0°C or 15 to 70 d at
15°C. The variation within each of the best-
represented individual genera (Calanus,
Pseudocalanus, and Oithona) is comparable.
Across the full size spectrum, u0 is uncorre-
lated with adult size Wa, but they are in fact
significantly  correlated at finer scales: across
all cala noids, across the large cala noids, and
across Calanus in particular (Table 3).
Slower development is associated with
larger adult sizes, as in the set of 3 co-occur-
ring Calanus spp. highlighted in Fig. 1.

One could imagine both causal and non-
causal reasons for this correlation to occur.
The most obvious causal explanation is
that growth at a given rate, sustained over
a longer number of days, necessarily would
produce a larger final size. Non-causal
explanations might well invoke the huge
contrasts in life-history strategy across the
calanoid size spectrum: all else being equal,
one would expect rapid ontogenetic de -
velopment to have a different significance
to a continuously reproducing population of
Pseudocalanus than to a population of C.
hyperboreus with a strategy of extended dia-
pause and a multi-year life cycle. To make
further sense of the significance of variations
in u0, we need to consider growth rate,
development rate, and size together in a uni-
fied framework.

GROWTH RATE, ACROSS ONTOGENY 
AND DIVERSITY

The same questions regarding species- and com-
munity-level temperature response arise for growth
rate g as for development rate u, and we have
addressed the problem of temperature correction the
same way, with a method that is most appropriate for
community-scale questions: retaining only the maxi-
mum-rate treatment from each study (usually the
highest-rate treatment) and applying a community-
level exponential base of Qg = 2.5 (Forster et al.
2011). The question then arises: can growth rate be
corrected for size in an analogous way? Kiørboe &
Hirst (2014) found that growth in pelagic hetero-
trophs, across many taxa and 14 orders of magnitude

in body carbon, follows an allometric power law with
exponent close to 0.7. That research is only the latest
in a series of studies going back to Kleiber (1932) that
have proposed the same. Accordingly, we might
decompose interspecific variation in growth rate into
a part that follows this general allometric law and a
part that does not. This can be written as follows:
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cant regression lines (p < 0.05) between u0 and Wa are shown for
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u0 g0 g0/u0 ln (g0/u0)

Calanus spp. 0.32
Large calanoids (>50 μg C) 0.38 0.86 0.78
All calanoids (>5 μg C) 0.47 0.55 0.86 0.88
All species 0.70 0.81 0.90

Table 3. Pearson’s r2 between log body size lnWa and various
rate metrics, for 4 subsets of the species reviewed here. Only
significant (p < 0.05) correlations are shown. Sample sizes
range 16−47 for relative development rate u0 and 7−26 for 

metrics involving relative growth rate g0
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                         (2)

where –g and
––
W are the mean specific growth rate

and size over the course of an individual’s ontogeny,
θ = 0.7, and g0 is a relative growth rate that repre-
sents whether an individual’s growth should be
thought of as fast or slow once the most fundamental
biophysical patterns (both temperature dependence
and size dependence) have been accounted for. Note
that in our discussion, as in the wider literature, this
growth law is sometimes described in terms of the
scaling of specific rates like –g (i.e. θ − 1 ≈ −0.3 in our
notation) and sometimes in terms of the scaling of
absolute mass fluxes (θ itself).

Comparing trajectories of growth rate vs. size g(W)
across species in our dataset (Fig. 4, Table 4) shows 2
things. First, there does indeed appear to be system-
atic variation in g0 across the copepod size spec-
trum. A line fit across Oithona, Pseudocalanus, and
Calanus does not have a slope corresponding to θ ≈
0.7, which in Fig. 4 is exemplified by the allometric
law for copepod ingestion rate found by Saiz & Cal-
bet (2007) (dashed line), whose intercept has been
converted to growth rate assuming a growth effi-
ciency (ratio of ingestion to growth) of 0.3 and tem-
perature-corrected down from an assumed average

of 10°C. This discrepancy between Oithona and
Pseudo calanus rates and the presumed general trend
has been noted before (Paffenhöfer 1993, Liu &
Hopcroft 2008). Second, it also is evident that the
allometric slope that applies over an individual’s
ontogeny is not necessarily the same as that which
describes interspecific differences (Glazier 2005, 2006).
After temperature correction, the ontogenetic g(W)
curves for Calanus spp. (red lines: Fig. 4) appear con-
sistent with the adjusted Saiz & Calbet (2007) curve
in both slope (θ = 0.7) and intercept. Other species,
however, show exponential growth (θ = 1), and
indeed Hirst & Forster (2013), in a separate review,
found that an exponential-growth model (θ = 1) best
fit the ontogeny of copepod species overall.

In general, one could describe ontogenetic change
in body size W with the following relation:

                                        
(3)

such that
                                                                                         

                                    
(4)

over most of an individual’s development. (Properly
speaking, during the non-feeding stages dW/dt < 0
for total carbon and dW/dt = 0 for nitrogen or struc-
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efficiency of 30% and an ambient temperature of 10°C. Slopes of log-log regressions to the data in (b) are shown in Table 4
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tural biomass, but this issue has been ignored for sim-
plicity.) Here, g0i and θi are individual or species-spe-
cific traits, and averaging Eq. (4) over egg−adult de-
velopment would allow one to define the relationship
between these traits and the value of g0 in Eq. (2).
However, because our dataset does not re solve varia-
tion in θi with much precision, and the recent
literature on this topic (Glazier 2006, Hirst & Forster
2013) does not suggest a hypothesis consistent with
Table 4, in what follows we will make the greatly sim-
plifying assumption that θi = θ = 0.7 and g0i = g0: that
is, that the ontogenetic and the most general interspe-
cific scalings are the same. Because g0 is still allowed
to vary, this assumption still leaves room for a
different scaling at an intermediate scale of diversity.
Indeed, Kiørboe & Hirst (2014) found that although θ =
0.7 proved a good descriptor across pelagic hetero-
trophs as a whole, variation across the copepods or
across the calanoid copepods was flatter, similar to the
Oithona−Calanus pattern in Fig. 4 noted above.

With θi = θ and g0i = g0, integrating Eq. (3) yields the
following relation:
                                                                                         

                                    
(5)

where u is, as before, the reciprocal of the total
egg−adult development time, and ƒƒ is the fraction of
that time spent in feeding stages. Combining this
with Eq. (1) gives the following:

                                                                                         
                                    

(6)

where We is egg weight. If we assume We << Wa, this be -
comes a convenient, approximate formula for adult size:

                                                                                         
                                    (7)

This model assumes food-saturated
conditions, al though one could straight-
forwardly incorporate models of the
functional responses of growth and
development under food limitation (cf.
Eq. 12 in Record et al. 2013).

Eq. (7) allows a number of patterns
to co-occur on different scales. First, it
assumes that an individual’s growth is
size-dependent, following a general scal-
ing sensu Kleiber (1932). Second, it incor-
porates the Forster & Hirst (2012) view of
the ‘temperature-size rule’ (At kinson
1994) in which all else being equal,
within one species, individuals reared at
higher temperatures have smaller adult

sizes because of the difference in Q10 values for
growth and development. Finally, it allows u0 and g0

to vary freely among taxa and predicts that adult size
is a sensitive function of the ratio of these traits,
rather than depending on either one alone.

We showed above that u0 is correlated with adult
size among calanoids but not more broadly (Fig. 3).
Calculating g0 from Eq. (4) shows a complementary
pattern (Table 2, Fig. 5), in which g0 is correlated
with adult size across the size spectrum as a whole
but not across the >50 μg C portion of the size spec-
trum or Calanus spp. (Table 3). Across all these
scales of diversity, the ratio g0/u0 is significantly cor-
related with adult size and better correlated with
adult size than u0 or g0 alone.

Eq. (7) in fact predicts a very specific relationship be-
tween ln(g0 /u0) and lnWa, in which both the slope and
intercept of the power law are controlled by (but dif-
ferent from) the allometric exponent θ. Assuming θ =
0.7, ƒƒ = 0.85 (as in C. finmarchicus; Campbell et al.
2001), and T = 15°C (the mean experimental tempera-
ture in our dataset; Table 2) gives a theoretical predic-
tion that matches observations almost exactly in its
slope (0.29 vs. 1 − θ = 0.3), although the intercept is
 biased by 11%. Note that the exponent relating Wa to
g0/u0 in Eq. (7) is so high ((1 − θ )−1 ≈ 3.3) that only
±10% uncertainty in g0 and u0 individually yields 4-
fold uncertainty in the predicted Wa. Thus, no matter
how good or poor the statistics, applying Eq. (7) in prac-
tice will always in volve an element of ad-hoc fitting.

One potential circularity in these results is that size
enters the calculation of g0 according to Eq. (2), and
so we need to ask whether the observed correlations
between size and g0 and g0/u0 are simply reflecting
this hidden dependence back to us. To rule out this
possibility, we note that Eq. (7) can be rewritten as
follows:
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Species Source Adult size θ 95% CI

C. finmarchicus Campbell et al. (2001) 180 0.67 ±0.3
C. marshallae Peterson (1986) 120 ~0.8
C. helgolandicus Rey-Rassat et al. (2002) 115 0.75 ±0.4
C. pacificus Vidal (1980) 100 0.68 ±0.1
C. sinicus Uye (1988) 60 1.0 ±0.2
P. elongatus Klein-Breteler et al. (1982) 10 0.74 ±0.2
P. newmani Lee et al.(2003) 7.9 ~1
Pseudocalanus sp. Vidal (1980) 5 0.87 ±0.2
O. similis Sabatini & Kiørboe (1994) 0.6 0.68 ±0.3

Table 4. Allometric exponent θ for growth rate, over the ontogeny of a num-
ber of species: see Eq. (3) and Fig. 4. Uncertainty bounds are given for all
except Lee et al. (2003) and Peterson (1986) because these estimates of
θ are based on published fits to g (W) rather than individual measurements
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(8)

where ga is relative growth rate scaled to adult
size g0Wa

θ−1 (which might be interpreted bio-
logically as potential egg production rate, if
upon maturation egg production replaces growth
in an otherwise similar metabolic energy bal-
ance, as modelers often assume). As predicted
by Eq. (8), in our dataset, ga and u0 are signifi-
cantly correlated (r 2 = 0.62), their ratio is not
significantly correlated with Wa, and their ratio
is in fact quantitatively consistent with Eq. (8):
0.24 ± 0.06 vs. a prediction of 0.19.

Another potential concern is the fact that we
have approximated We out of the solution
between Eqs. (6) & (7), whereas other studies
and other growth models (e.g. Huntley & Lopez
1992) have considered We to be fundamental to
adult size variation. The post-hoc justification
for this simplification comes from a sensitivity
calculation based on Eq. (7) and the empirical
power-law relationship be tween egg and adult
size for broadcast spawners determined by
Kiørboe & Sabatini (1995). Combining these
and calculating the following ratio:
                                                                               

                           
(9)

yields the result that it takes a change in egg
size of 50−110% (depending on Wa) to have the
same effect on Wa as a 10% change in g0.

EVOLUTIONARY RECIPES FOR A  COPEPOD
SIZE SPECTRUM

On one level, the analysis above gives the
impression of a metacommunity of marine
copepods that has filled a broad trait space (rel-
ative development rate × relative growth rate;
Fig. 6). The growth model Eq. (7) implies that a
given size class of copepods might comprise a
spectrum of combinations of growth and devel-
opment rates, and indeed, among e.g. Calanus
spp., we can find examples of slower-growing/
slower-developing and faster-growing/ faster-
developing species that have comparable adult
sizes. Still, some amount of variation of this sort
is statistically inevitable in an empirical study,
and the uncertainties in our reconstruction of u0

and g0 are large. If one is inclined to look for an
idealization of diversity patterns in this trait
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space, the regressions summarized above (Table 3)
suggest a hypothesis: Evolution produces large cope-
pods by reducing development rate and produces
small copepods by reducing growth rate.

This hypothesis is appealing because it suggests
(hazy) maximum rates for development and growth,
general constraints beneath which many lower-energy
strategies are possible. C. finmarchicus appears to be
an example of an organism near the upper limit for
both growth and development, for its size and for the
temperatures in which it is found. Its foraging and
reproductive strategies can be taken as the high-risk/
high-reward end-member of a spectrum that extends
down to small, ambush-feeding,  sac-spawning or -
ganisms like Oithona spp. that trade energy gain and
fecundity for reduced mortality (Kiørboe & Hirst
2014). At the opposite end of the size spectrum, the
largest, high-latitude calanoid species such as C.
hyperboreus and Neocalanus flemingeri/ plumchrus
also take low-energy strategies  compared with C.
finmarchicus, surviving short, unpredictable sea-
sons of prey availability through adap tations like
multi-year life cycles and high starvation tolerance
(Conover 1988, Falk-Petersen et al. 2009, Sainmont
et al. 2014). These examples hint at the variety of
ways in which copepod diversity might be generated,

across the entire size spectrum, by adjusting one or
another process relative to a metabolically deter-
mined maximum.

Still, without further experimental elaboration, this
hypothesis is only an evolutionary ‘just so’ story.
Much empirical work remains to be done testing the
division we have proposed between general allomet-
ric/metabolic scalings and species-level traits (u0, g0)
that regulate growth and development relative to
these scalings. More experiments along the lines of
Møller et al. (2012) and Alcaraz et al. (2014) that care-
fully resolve both the rising and falling side of the re-
sponse of zooplankton vital rates to temperature
would confirm or reject the conceptual model de-
picted in Fig. 2, particularly if these experiments re-
solved an intermediate scale of diversity, e.g. for far-
flung populations of a cosmopolitan species like C.
finmarchicus that have adapted to contrasting tem-
perature regimes. Beyond this, we need to better
 understand what mechanisms underlie u0 and g0,
which can be thought of most generally as the devia-
tion of particular species (or individuals) from global
scaling laws. Most crucially, is g0 fundamentally a be-
havioral trait like ambush vs. cruise feeding (Kiørboe
2011) or a metabolic one? It is also possible that other
traits we did not address in this review, such as rela-
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tive egg size or responses to food limitation, deserve a
more central place in the theory of adult-size
diversity than we have given them here. A more
mechanistic theory might need to elaborate the
scheme used here by distinguishing naupliiar from
copepodid development because differences between
congeners often appear only at late stages. Likewise,
a more mechanistic theory would treat development
not just as the passage of time, as in the theory above,
but rather as an energetic investment that competes
with growth during each individual life stage. Some
distance down this chain of investigations, one can
imagine isolating the genetic correlates of g0 and u0

sufficiently well to determine their actual phylogeny.

CONCLUSION

Most reviews of allometric or  temperature-
dependent patterns in the plankton have focused on
best fits and central tendencies. Here, we have
attempted to push one step further, taking the gen-
eral scalings more-or-less as given (Qd, Qg, and θ,
checked for consistency with our dataset but based
on more general reviews) and instead focusing on
interpretation of the residuals around these general
scalings (u0, g0). The ontogenetic relationship among
growth, development, and size (Eq. 3) generated
testable predictions (Eqs. 7 & 8) that we used as
 further consistency checks on our decomposition of
measured rates (u, g) into general scalings and spe-
cies-specific traits (u0, g0).

The results suggest that while body size might act
as a control on growth rate during ontogeny, and
while it might set an overall ceiling on growth rate
(there appear to be no copepods with a g0 twice that
of C. finmarchicus, for example), in general it is more
apt to think of growth rate as a free, contingent strat-
egy that controls adult size, rather than being con-
trolled by it allometrically. Furthermore, it appears
that adult size is regulated by growth-rate variations
on one scale of copepod diversity and by develop-
ment-rate variations on another, finer scale.

Many questions remain regarding what pressures
and tradeoffs guide a population through the growth/
development/size trait space in evolutionary time,
either in the sense of historical phylogeny or future
adaptation to the anthropocene. What the analysis
above makes clear is the need for an approach that
places life history and behavior—context without
which variations in growth and development cannot
be understood as strategies—on a level with funda-
mental metabolic considerations.
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