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INTRODUCTION

Antarctic krill Euphausia superba (hereafter ‘krill’)
are key members of Southern Ocean ecosystems.
Krill serve as important prey to many megafauna; in
the West Antarctic Peninsula (WAP) region krill
make up over 90% of the diet of numerous species of
baleen whales and the brush-tailed Adélie, gentoo,
and chinstrap penguins, and over a third of the diet of
additional species of seals, birds, and fish (Quetin &
Ross 1991). These small pelagic crustaceans have a
huge global biomass, estimated at over 300 million

tons, with 70% of the stock found in the Atlantic
 sector from 0° to 90° W, encompassing the WAP
(Atkinson et al. 2008).

This huge biomass of krill in the Southern Ocean is
not distributed evenly on any spatial scale, with
strong patchiness on scales from thousands of kilo-
meters around the continent, to meters within and
between aggregations (Hamner & Hamner 2000,
Atkinson et al. 2008, Tarling et al. 2009). Krill are at
the ‘awkward boundary between plankton and nek-
ton’ (Atkinson et al. 2008, p. 2); their distribution can
be strongly influenced by current flows, but they are
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ABSTRACT: Antarctic krill Euphausia superba are a key component of food webs in the maritime
West Antarctic Peninsula, and their life history is tied to the seasonal cycles of sea ice and primary
production in the region. Previous work has shown a general in-shore migration of krill in winter
in this region; however, the very near-shore has not often been sampled as part of these surveys.
We investigated distribution, abundance, and size structure of krill in 3 fjordic bays along the
peninsula, and in the adjacent Gerlache Strait area using vertically stratified MOCNESS net tows
and ADCP acoustic biomass estimates. Krill abundance was high within bays, with net estimated
densities exceeding 60 krill m−3, while acoustic estimates were an order of magnitude higher. Krill
within bays were larger than krill in the Gerlache Strait. Within bays, krill aggregations were
observed near the seafloor during the day with aggregations extending to the sediment interface,
and exhibited diel vertical migration higher into the water column at night. We suggest these high
winter krill abundances within fjords are indicative of an active seasonal migration by krill in the
peninsula region. Potential drivers for such a migration include reduced advective losses and
costs, and availability of sediment food resources within fjords. Seasonally near-shore krill may
also affect stock and recruitment assessments and may have implications for managing the krill
fishery in this area.
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also strong swimmers, capable of sustained pleiopod
swimming speeds of 35 cm s−1 and escape velocities
in excess of 60 cm s−1 (Kils 1981, Hamner 1984).

Much of the research on krill distributions in
Antarctica has been focused on the productive and
more accessible summer season (Atkinson et al.
2008). A few studies have investigated patterns in the
seasonal distributions of krill, both in general and
along the WAP. The general paradigm for E. superba
in the WAP region has been that krill spend the sum-
mer feeding in aggregations along the shelf break
and in the waters beyond, with females laying eggs
into the deep waters beyond the shelf; while in the
fall and winter krill migrate to more in-shore areas
(Siegel 1988, Lascara et al. 1999, Nicol 2006, Atkin-
son et al. 2008). The smallest individuals have gener-
ally been found closest in-shore, where they may rely
on sea ice for refuge from predation or food resources
(Siegel 1988, Lascara et al. 1999, Lawson et al. 2004,
Atkinson et al. 2008). The ecological reasons for this
migration remain unclear, although it has been sug-
gested it may improve feeding or reduce advection
out of the favorable WAP region (Siegel 1988).

Many of the studies that have addressed seasonal
variations in krill distribution have observed much
lower levels of krill in winter as compared to other
seasons. This prominent absence of krill in winter,
with early studies indicating winter abundances of
just 0.086 krill individuals m−3, an order of magni-
tude fewer krill than summer, has been termed the
winter krill ‘vacuum’ (Siegel 1988). Later work has
continued to provide further evidence of this vac-
uum; Lascara et al. (1999), sampling broadly over
the WAP shelf outside the coastal islands, found
krill in winter at just one of their 25 acoustic sta-
tions, with total biomass estimates an order of mag-
nitude lower than those in the same region in sum-
mer. Seasonal sampling in Marguerite Bay also
observed much lower biomass in winter than in fall
(Lawson et al. 2004).

Unlike for smaller zooplankton, seasonal changes
in observed krill abundance cannot be a result of
population growth or contraction. Krill are long lived,
taking 2 to 3 yr to reach sexual maturity, with life -
spans estimated at 5 to 7 yr (Siegel 1987, Lascara et
al. 1999). Additionally, the fall/winter reduction in
krill abundance, and corresponding spring increase,
is evident in krill from a wide range of sizes (Siegel
1988, Atkinson et al. 2008). Given both the multiyear
life cycle of krill, and the parallel abundance patterns
amongst different age classes, the seasonal decline
and increase in observed krill abundance is more
likely to be due to krill entering and exiting the

 sampled waters. Limited near-shore sampling has
suggested this may be where large krill are found in
winter (Lawson et al. 2004).

Although krill are thought to move in-shore in
 winter, the most in-shore regions of the WAP have
been poorly sampled, and are missed by the ongoing
standardized sampling programs (PalLTER, NOAA
AMLR). The coast of the WAP is complex and convo-
luted, with a series of deep fjordic bays. Vessel and
gear safety considerations mean that standardized or
randomized transects of the type most often used in
broad scale surveys are typically not possible within
these areas (Johnston et al. 2012). Sampling within
Wilhelmina Bay has shown the presence of krill
‘super-aggregations’, suggesting this very near-
shore region may be important winter habitat for krill
(Nowacek et al. 2011).

In this project we used spatially adaptive sampling
with nets and acoustics to investigate the distribu-
tion, abundance, and size structure of krill within
Wilhelmina, Andvord and Flandres Bays and in
 adjacent comparison areas of the Gerlache Strait in
winter. By sampling krill in this poorly known very
near-shore region in winter we aimed to refine our
understanding of krill seasonal distributions, and the
implications of these distributions for the ecology and
life history of E. superba in the WAP region.

MATERIALS AND METHODS

Field collections

Sampling was carried out on the Research Vessel
Ice Breaker Nathaniel B. Palmer between May 16
and June 15, 2013, in Wilhelmina, Andvord and Flan-
dres Bays, in Gerlache Strait outside the bays, and at
Palmer Deep further off-shore (Fig. 1, Table 1).
Actual sampling locations were fairly tightly con-
strained based on bathymetry as observed with
multibeam sonar, and the need to maintain safe dis-
tances from coastlines and large icebergs over a
straight line run of 3 km for MOCNESS towing. At
each site, stations consisting of a CTD deployment for
hydrography and water collection, a 1 m2 Multiple
Opening Closing Net Environmental Sensing System
(MOCNESS) (Wiebe et al. 1976, 1985) deployment
for krill and larger zooplankton, a vertical tow with a
0.5 m 64 µm mesh ring net for mesozooplankton and
fecal pellets, and a camera deployment for krill
observations, were conducted during both day and
night. Palmer Deep was sampled only at night due to
time and weather limitations.
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CTD profiles were collecting using an SBE 911+
(SeaBird) CTD unit with dual salinity and temperature
sensors, an in situ fluorescence unit, and a carousel of
22 × 12-l Niskin bottles. Chlorophyll was measured
from Niskin collected water at 5 m depth with ex-
tracted pigments in triplicate on a TD-700  fluorometer
(Turner Designs) (Jespersen & Christ offersen 1987).

Mesozooplankton were sampled with a 64 µm
mesh 0.5 m diameter ring net towed vertically at
15 m min−1 from 200 m to the surface. This fine-mesh
net was used to sample the previously seldom sam-
pled smaller zooplankton, including copepod nauplii.
Cod end contents were preserved in 4% final con-
centration solution of sodium borate-buffered forma-
lin in seawater. No clogging was evident because of
the very low phytoplankton concentrations and vol-
ume filtered was calculated from the net mouth open
area and depth of the tow.

Vertically stratified samples of krill
were collected with a 1 m2 MOCNESS
equipped with nine 333 µm mesh
black nets. Two LED strobe lights
(Bright waters Instruments) were
attached to the frame above the net
mouth, and flashed continuously
throughout all tows at approximately
2 flashes per second with a nominal
light output of 3 W, in order to reduce
net avoidance behavior by krill
(Sameoto et al. 1993, Wiebe et al.
2004, Lawson et al. 2004). However,
despite the presence of bright strobes,
black nets, and no bridle or other
obstructions in front of the net open-
ing, some krill individuals may still
successfully avoid capture, and thus
these net catch densities must be con-
sidered as a minimum estimate of the
true krill abundance in the environ-
ment. The net was towed obliquely at
a 45° angle at 1.5 to 2 knots from 50 m
above the seafloor to the surface. Net
opening and closing depths varied
between tows and were determined
based on real-time information on the
vertical distribution of krill from the
Acoustic Doppler Current Profiler
(ADCP) data in order to maximize
vertical resolution of aggregation
structure. Such acoustic guided net
interval sampling allowed for sepa-
rate samples above, within, and
below krill aggregations, and pro-

vides more accurate information about in situ density
than fixed depth intervals that may sample both
aggregation and empty water within a single net.
Each net filtered between 53 and 900 m3 of water,
with larger volumes necessary in depth intervals and
locations where krill were less abundant.

Net catches were processed immediately. Catches
were split on board the ship using a bucket splitter (a
20 l cylinder with a 5 cm diameter tube extending
from the bottom to a T-junction with identical 5 cm
outflow tubes pouring into 2 separate 20 l cylinders),
as many times as required to produce a sample of
roughly 150 to 200 ml biovolume. Split samples were
preserved in a 4% final concentration solution of
sodium borate buffered formalin in seawater.

The ship-mounted ADCP, a narrow band 153 kHz
system mounted in a seawater-filled acoustic win -
dow, was configured for both current and volume

117

Fig. 1. MOCNESS tow locations. Tows 18 and 19 occurred at the same location 
at different times

MOC Location Latitude, longitude Date Time
tow (local)

22 Wilhelmina Bay 64° 36.01’ S, 62° 14.55’ W June 3 16:18
24 Wilhelmina Bay 64° 34.86’ S, 62° 15.93’ W June 4 11:38
7 Andvord Bay 64° 48.23’ S, 62° 41.56’ W May 23 22:13
8 Andvord Bay 64° 50.89’ S, 62° 35.82’ W May 24 09:41
14 Flandres Bay 65° 03.88’ S, 63° 19.11’ W May 29 21:47
15 Flandres Bay 65° 00.92’ S, 63° 15.28’ W May 30 09:16
19 Gerlache Strait 64° 51.94’ S, 63° 46.12’ W May 31 20:35
18 Gerlache Strait 64° 51.93’ S, 63° 46.30’ W May 31 11:28
20 Palmer Deep 64° 54.62’ S, 64° 13.78’ W June 1 05:46

Table 1. MOCNESS station information: dates are in 2013; time is local 
24 h time (GMT − 4 h)
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backscattering measurements. Both the pulse and
bin lengths were set at 8 m, and the blank-after-
transmission was set to 4 m. Volume backscattering
measurements were acquired at approximately
1 Hz throughout the entire cruise. Because of
 technical difficulties in calibrating a ship-mounted
ADCP, the absolute estimates of biomass from
backscattering measurements were reached em -
pirically by comparison with estimates from other
calibrated methods (Flagg & Smith 1989, Zhou et
al. 1994, Brierley et al. 1998, Nowacek et al. 2011).
During ADCP data processing, corrections for
absorption and range were made based on the
standard sonar equation (Flagg & Smith 1989, Zhou
et al. 1994). Automatic Gain Control (Kc) in the
ADCP sonar equation was corrected using the
equation developed from least squares fitting, mini-
mizing the difference between a calibrated SIM-
RAD EK-60 and ADCP biomass estimates (Nowacek
et al. 2011, Espinasse et al. 2012). Power into water
(K2) was based on the manufacturer’s value. To
convert volume backscattering measurements to
biomass, krill target strengths were estimated
based on the mean and standard deviation of krill
length analyzed from MOCNESS samples, litera-
ture values on the orientation and material proper-
ties of krill, and the deformed cylinder model (Chu
et al. 1993, Chu & Wiebe 2004, Lawson et al. 2006).
ADCP backscattering data in dB were converted to
biomass wet weight (WW) concentrations of krill in
g m−3 using a prolate spheroid model and the den-
sity of an individual krill approximately 1 g WW
cm−3. Because the real K2 and Kc are unknown, the
 measurements of backscattering and estimates of
krill biomass should be treated as a relative metric,
which can be used for analysing spatial variability
rather than being an absolute measure of krill
 biomass.

Laboratory processing

In the laboratory, subsamples of 64 µm net catches
were taken with a 5 or 10 ml Stempel pipet, for a tar-
get sample size of 200 individuals and all zooplank-
ters, including any early life stage euphausiids, were
identified and enumerated. Krill fecal pellet length
and diameter were measured from photographs of
Stempel samples in ImageJ (Schneider et al. 2012).

MOCNESS catches were further split if necessary
in the lab for a final target sample size of 100 Eu -
phau sia superba individuals using a box splitter. The
final counted sample ranged from the full net catch to

a 128th split. All krill which could be visually identi-
fied without magnification were counted from these
splits, setting an operational lower size limit of 5 mm
Standard Length, thus including adult and furcillia
stages. Krill of >5 mm in length will be quantitatively
retained by the 333 µm MOCNESS mesh (maximum
mesh opening along diagonal = 471 µm; minimum
diameter of a 5 mm long krill, given a 1:8 aspect ratio
= 625 µm; Zhou & Dorland 2004). For each krill indi-
vidual, Standard 1 Length (anterior tip of telson to
posterior end of uropods) was measured to the near-
est 0.5 mm (as per Everson 2000), and individual krill
were dried at 60°C for ≥24 h and weighed on a
BP310S microbalance (Sartorius).

Data processing

Krill fecal pellet volume was calculated assuming a
cylindrical shape and carbon estimated from the
 volume measurements using a factor of 0.058 mg C
mm−3 (Gonzalez 1994, as cited in Dubischar &
 Bathmann 2002), and an 80% carbon assimilation
efficiency, a mid-range estimate from a rather wide
range reported in the literature (Atkinson et al.
2012b). With fecal pellet sinking rates of around
300 m d−1 (Atkinson et al. 2012a) and the strong diel
vertical migration observed, these fecal pellets most
likely represent krill feeding over somewhere
between 12 and 24 h. To calculate the feeding rate
necessary to produce the observed fecal pellets,
highest and lowest fjord krill abundances were
 combined with lowest and highest fjord fecal pellet
concentrations, respectively, to determine a range of
feeding rates.

MOCNESS net catch data were used to calculate
numbers and biomass of krill in each 2.5 and 5 mm
length increment size fraction per m3 of water filtered
in each depth interval and per m2 of integrated water
column. Water column biomass estimate calculations
used the conservative approach of assuming no krill
were present in the unsampled, deepest part of the
water column. Length−weight analysis was con-
ducted as quality control on the data with MatLab’s
curve-fitting toolbox, and extreme outliers (n = 4)
were removed as potentially erroneous. Differences
in the length frequency distributions between tows
were investigated by analyzing individual length
data from each tow. Because some tows exhibited
multiple peaks and were thus not normally distrib-
uted, we used both parametric and non-parametric
ANOVA (Kruskal-Wallis) tests, followed by pairwise
Tukey test comparisons between tows.
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ADCP backscatter data were observed qualita-
tively in real-time at sea, and were further examined
in the laboratory by qualitatively examining profiles
of 2−4 h blocks of time throughout the cruise. Broad-
scale spatial patterns were observed from water-
 column integrated acoustic backscatter. Binned and

processed ADCP data (8 m depth bins from 32 to
400 m depth, and 6 min time bins) were used for
quantitative analyses. ADCP backscatter was ana-
lyzed to investigate patterns in the depth of krill
aggregations. For each time interval the depth of
maximum biomass was found in the ADCP record.
These calculations excluded the 4 m immediately
above the seafloor, as determined by Knudsen
echosounder, due to potential noise from side-lobes
of the ADCP beams, and excluded any time interval
in which the maximum biomass did not exceed 50 g
m−3, as such time intervals may indicate areas with-
out krill or bad data due to bow-thruster noise. An
ANOVA was used to investigate spatial differences
in peak biomass density and diel variations in the
depth of the biomass peak.

RESULTS

Hydrography and chlorophyll

The surface mixed layer ranged from 5 to 50 m in
depth, with temperatures in the mixed layer ranging
from −1.7°C to +0.5°C over the course of sampling,
and mixed layer salinities between 33.4 and 34.4 psu
(Fig. 2). Mixed layer water column properties were
consistent with Antarctic Surface Water, while below
the pycnocline warmer and saltier waters were ob -
served, consistent with modified Circumpolar Deep
Water (Lawson et al. 2004). This layer of Antarctic
surface water was much more distinct within fjords
than offshore, where pycnoclines were less sharp
in the Gerlache and Palmer Deep Stations. Mixed
layer chlorophyll was uniformly low throughout the
study, with all values below 0.4 µg l−1 as determined
from fluorometric measurements of ex tracted pig-
ments (Table 2), and no clear chlorophyll maxima
were observed from in situ fluorescence measure-
ments.
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Fig. 2. CTD profiles of the areas sampled for krill. Temp:
temperature (°C), Salinity is in psu; density is sigma-t in 

kg m−3

Location n Chl a (µg l−1)

Wilhelmina 2 0.33 ± 0.02
Andvord 4 0.33 ± 0.02
Flandres 3 0.24 ± 0.01
Gerlache 6 0.27 ± 0.02
Palmer Deep 1 0.20 ± 0.04

Table 2. Water column chlorophyll a (mean ± SD) from the
different sampling locations (n = number of stations per
location) for cruise NBP1304. Four depths were sampled at

each station, with all samples in triplicate
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Mesozooplankton

Almost no larger copepods were captured with
the MOCNESS net. No early life stages of euphausi-
ids were observed in the ring net samples. Zoo-
plankton abundance is shown from the vertical net
tows with 64 µm ring net: abundances in the bays
were very low, with between 45 and 226 ind. m−3

(Table 3), while in Gerlache Strait abundances were
higher (1122 ind. m−3). The sample from Palmer
Deep was lost. Zooplankton samples were domi-
nated by the small cyclopoid Oithona and the poe-
cilostomatoid Oncaea. Other copepods present, but
at very low abundances (<4 ind. m−3), included
Microcalanus pygmaeus, Scolocithricella, Metridia
and Euchaeta, and unidentified calanoid and
cyclopoid nauplii. Metridia were predominantly M.
gerlachii, but also included the smaller M. lucens,
as confirmed by 18S rDNA sequencing (methods as
per Durbin & Casas 2014). At the Gerlache Strait
stations the same taxa were observed but in abun-
dances higher than those observed within the bays
(Table 3).

Krill fecal pellets

Krill fecal pellets were observed in all of the bay
samples, but not in Gerlache Strait. Estimated fecal
pellet carbon was 27.5, 81, and 29.7 mg C m−2, in
 Wilhelmina, Andvord and Flandres Bays, respec-
tively. Thus the observed fecal pellets correspond to
an estimated consumption rate of 0.035−1.21% of the
krill biomass approximately daily.

Krill from net sampling

In total, 4047 krill were counted and measured
from 56 discrete depth interval nets in 9 tows encom-
passing 3 bays and the more off-shore Gerlache
Strait and Palmer Deep regions. Krill collected in
MOCNESS tows were almost exclusively E. superba,
with less than 5 individuals of Euphausia crystal-
lorophias and Thysanoessa macrura encountered
over the entire cruise. These other species of krill
were not included in any analysis, and ‘krill’ is used
throughout the remaining results and discussion to

mean exclusively E. superba. Krill
ranged in length from 9 to 51 mm
and in dry weight from 0.001 to
0.217 g.

The distribution of krill lengths
showed a strong peak at sizes of
27.5 to 32.5 mm, with a smaller
secondary peak at 12.5 to 15 mm
(Fig. 3). Krill from the larger size
peak were found mainly within
the bays, but were present in all
tows, while the smallest size
classes, representing young-of-
the-year (YOY) individuals, were
mainly observed in the Gerlache
Strait and Palmer Deep stations
(Fig. 3). Not only did these more
off-shore Gerlache and Palmer
Deep tows have the highest rela-
tive abundances of krill in the
smallest size fractions, they also
had the highest total abundances
of krill less than 20 mm in length
(Fig. 3). Mean krill lengths were
significantly different (p < 0.01)
between all of the in-shore tows
and the Palmer Deep and Ger-
lache Strait Day tows and these
differences were robust to the
choice of statistic (ANOVA/

120

Zooplankter Wilhelmina Andvord Flandres Gerlache

Ctenocalanus citer, C1−C5 0.29 ± 0.58 0.00 0.45 ± 0.60 0.00
Euchaeta sp., C1−C5 0.15 ± 0.38 0.00 0.16 ± 0.19 0.00
Metridia spp., nauplii 0.07 ± 0.19 0.00 2.96 ± 1.58 57.30
Metridia spp., C1−C5 0.87 ± 1.16 0.00 2.10 ± 1.63 6.37
Metridia spp., C6F 0.00 ± 0.00 0.00 0.51 ± 0.30 0.00
Microcalanus pygmaeus, C1−C5 0.55 ± 0.78 2.04 4.01 ± 1.11 12.73
Microcalanus pygmaeus, C6F 0.07 ± 0.19 0.00 1.05 ± 1.07 0.00
Microcalanus pygmaeus, C6M 0.00 ± 0.00 0.00 0.00 ± 0.00 1.27
Scolecithricella sp., C1−C5 2.29 ± 2.68 0.00 3.60 ± 2.35 15.28
Scolecithricella sp., C6F 0.25 ± 0.39 0.00 0.64 ± 0.76 0.00
Scolecithricella sp., C6M 0.00 ± 0.00 0.00 0.06 ± 0.13 0.00
Calanoid spp., nauplii 2.51 ± 4.05 0.51 12.16 ± 7.27 324.68
Calanoid spp., C1−C5 0.04 ± 0.10 0.00 4.90 ± 2.57 39.47

Oncaea sp., C1−C5 33.88 ± 19.78 19.35 34.63 ± 10.1 229.18
Oncaea sp., C6F 4.15 ± 3.70 0.51 15.53 ± 4.61 1.27
Oncaea sp., C6M 17.21 ± 24.84 1.02 19.03 ± 8.59 8.91

Oithona sp., C1−C5 32.91 ± 19.78 21.90 84.57 ± 35.2 351.41
Oithona sp., C6F 5.34 ± 1.94 2.04 6.11 ± 2.54 3.82
Oithona sp., C6M 0.04 ± 0.10 0.00 0.06 ± 0.13 0.00
Cyclopoid spp., nauplii 11.59 ± 12.38 5.09 33.65 ± 18.4 71.30

Harpacticoid copepod spp. 0.47 ± 0.43 0.00 0.73 ± 0.92 0.00

Total 112.68 ± 45.18 52.46 226.54 ± 66.8 1122.99

Table 3. Zooplankton abundance (no. m−3, mean ± SD) for sampling locations
 during cruise NBP1304. Samples were collected with vertical hauls of a 0.064 µm
mesh 0.5 m diameter net. In Wilhelmina Bay and Flandres Bay 7 and 4 samples
were collected, respectively, while Andvord Bay and Gerlache Strait results
 represent a single tow each. C1−C5, C6F/M: Copepodite stages 1−5, copepod 

adult stage 6 female/male, respectively
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Kruskal-Wallis). Palmer Deep and Gerlache Strait
Day were significantly different from each other with
ANOVA, but not with Kruskal-Wallis. The one other
off-shore tow, Gerlache Strait Night (tow 18) was
 significantly different from all in-shore stations under
ANOVA, but not significantly different from And-
vord Bay night (tow 7) under Kruskal-Wallis (while
still significantly different from all other bay tows).
Within the bay stations, no clear patterns were

observed in length distributions, with most tows not
significantly different from each other under either
analysis.

Krill abundances were much higher in the in-shore
stations than in the Gerlache and Palmer Deep
 stations (Fig. 4, Table 4). Highest krill biomass was
observed in  Wilhelmina and Flandres Bays at night,
with 506 and 308 g DW m−2, respectively. Lowest
abundances and biomass were observed at Palmer
Deep and the Gerlache Strait at night.

Vertical patterns of krill abundance showed both
diel and spatial differences (Fig. 5). Within Wilhel -
mina, Andvord, and Flandres Bays a diel pattern was
observed with krill more concentrated and deeper
during the day, and relatively more dispersed and
shallower at night (Fig. 5, Table 4). In the Gerlache
Strait krill were concentrated in the upper 200 m of
the water column during both day and night. No data
are presented for Palmer Deep depth intervals 100−
150 or 500−700 m as the cod-ends were lost at sea.

Acoustic sampling of krill

General observations from the acoustic data were
similar to patterns observed in MOCNESS tow
catches. Although acoustic data are not able to sam-
ple the uppermost (<24 m) or lowermost (>424 m)
parts of the water column, MOCNESS catches indi-
cated that the shallowest depths contained relatively
few krill individuals, and where seafloor depths
exceeded ADCP sampling depths few krill were
caught in these deepest layers, suggesting acoustic
observations sampled the majority of the krill bio-
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mass throughout the cruise. No mesozooplankton
were present in high enough abundances to have a
significant impact on ADCP estimates of krill bio-
mass, and we therefore consider all backscatter to
have come from E. superba.

Krill abundance was higher within bays than in the
Gerlache Strait and off-shore regions (Fig. 6). Peak
krill abundance was statistically significantly differ-

ent between each of the bays and the off-shore
region (p < 0.01), with abundances decreasing from
Andvord to Wilhelmina, and then Flandres Bays,
with lowest peak abundances in the Gerlache Strait
and Palmer Deep off-shore region. During the day
within bays, krill were typically concentrated in
dense layers 50 to 100 m thick in the deepest part of
the water column. Acoustically estimated biomass
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Tow No. of krill Length DW Total DW Weighted mean
analysed (mm) (g) (g m−2) depth (m)

Wilhelmina
Night 513 30.24 ± 0.439 0.039 ± 0.019 506.843 182
Day 491 28.33 ± 0.606 0.035 ± 0.02 242.128 293.5

Andvord
Night 265 26.37 ± 1.012 0.037 ± 0.035 10.399 100.3
Day 286 30.82 ± 0.705 0.045 ± 0.029 84.558 231.7

Flandres
Night 443 29.30 ± 0.433 0.038 ± 0.02 348.138 161.3
Day 453 28.63 ± 0.701 0.036 ± 0.023 80.059 182.4

Gerlache
Night 645 14.56 ± 0.302 0.006 ± 0.008 1.73 133.4
Day 578 24.68 ± 1.002 0.034 ± 0.033 9.114 95.5

Palmer Deep
Night 373 16.55 ± 0.64 0.010 ± 0.014 2.41 248.3

Table 4. Krill length and weight (mean ± SD), for each tow, number of krill analyzed and overall abundance for each tow. Total
DW: water column total dry weight biomass of krill; weighted mean depth: index of the depth at which krill were located,  

calculated as the sum over all nets in a tow of [(net krill m−2)/(water column krill m−2)] × (mean depth of net) 

Fig. 5. Vertical profiles of size fractions of krill. Please note that the abundance scale is different in each plot to show details.
Shade indicates the standard length of krill individuals, with the larger krill in the fjords (Wilhelmina, Andvord, Flandres), the 

small krill off-shore (Palmer Deep, Gerlache), and no consistent vertical partitioning by size
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concentrations within these layers were at times in
excess of 1000 g WW m−3. Where the seafloor was
shallower than 300 m, these aggregations were
extended down to the sediment interface; where the
seafloor was deeper, the aggregations tended to
 separate from the sediment but stay deep in the
water column, typically between 200 and 300 m. At
night the krill tended to come up in the water column

and form less dense aggregations. These night-time
aggregations were typically most abundant between
100 and 200 m depth (Fig. 7) The depth of peak krill
abundance was significantly different (ANOVA p <
0.001) between day, night, and twilight periods, with
deepest mean peak depths in the day (10:00 to
14:00 h, 239.5 m), shallowest mean peak depths at
night (16:00 to 08:00 h, 162.6 m), and intermediate
depths at twilight (08:00 to 10:00 h and 14:00 to
16:00 h, 207.5 m) (Fig. 7). Outside of the bays in the
Gerlache Strait area acoustic krill biomass estimates
were generally very low, with the few observations of
higher biomass close to the coasts (Fig. 6).

DISCUSSION

Very high densities of Euphausia superba, in
excess of 8000 individuals and 1700 g WW biomass
m−2, were observed in the coastal fjords of the WAP
in winter. Previous work in these coastal embay-
ments has also suggested their importance as winter
habitat for krill (Zhou et al. 1994, Zhou & Dorland
2004, Lawson et al. 2004, 2008, Friedlaender et al.
2013). As early as 1938 the importance of these areas
as krill habitat were noted, with ‘E. superba in mil-
lions a yard or two from the shore near Andvord Bay’
(Bagshawe 1938, as cited in Marr 1962). In adjacent
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more open water areas in the Gerlache Strait and
Palmer Deep krill abundances were orders of magni-
tude lower (1−9 g WW m−2). This relative lack of krill
in winter in the more commonly sampled Gerlache
Strait and off-shore areas has also been previously
observed, with shelf-wide density estimates of only
2 g WW m−2 (Siegel et al. 2013) and 8 g WW m−2 (Las-
cara et al. 1999). Our abundance estimates are based
on 2 independent methods (nets and acoustics) indi-
cating that the high values observed within fjords
very likely show true areas of high krill concentra-
tions.

If we consider the average values of the more off-
shore areas from our MOCNESS sampling (Palmer
Deep and Gerlache Strait) to be representative of
krill densities over the shelf as a whole, and the
densities observed within the 3 sampled fjords (Wil-
helmina, Andvord, and Flandres) to be representa-
tive of the fjordic bays along the WAP overall, we
estimate that close to 90% of the total krill biomass
in the WAP region may be present within fjords in
winter. This is despite the shelf region being an
order of magnitude larger in extent (~200 km wide
vs. 20 km wide) than the fjords, and containing well
over an order of magnitude more potential habitat
due to greater depth. This concentration of krill
within WAP fjordic bays in winter is in stark
contrast to summer and fall, when krill are abundant
over the shelf, and are more typically concentrated
into small schools with large areas of empty water
between schools (Lascara et al. 1999, Lawson et al.
2008), while within fjords only small aggregations
are observed (E. G. Durbin & M. Zhou unpubl.
data). In the remainder of the discussion we con-
sider potential reasons and mechanisms for the
observed high winter densities in fjords.

Advection into fjords

Krill are often modeled as passive drifters, and
their presence in fjords and canyons may be driven
by advection (Schofield et al. 2013, Bernard & Stein-
berg 2013). Canyons can interrupt the along-shelf
flow, serving as conduits for cross-shelf exchange
(Allen & Durrieu de Madron 2009). Such cross shelf
flow can transport krill into canyons, and retain them
in those areas (She & Klinck 2000). High concentra-
tions of euphausiids have been observed in canyons
and shelf break regions globally (e.g. Gulf of St.
Lawrence: Simmard et al. 1986, Sourisseau et al.
2006, 2008; Georges Bank: Greene et al. 1988, Jech &
Michaels 2006; Bering Sea: Coyle & Cooney 1993;

WAP: Lawson et al. 2004). Along the WAP, concen-
trations of krill in canyons have been particularly
noted at the head of Palmer Deep Canyon (Bernard &
Steinberg 2013), and at the head of the canyon north
of Livingstone Island (Warren et al. 2009). This
 concentration of krill in canyons is not however uni-
versal, with low krill backscatter observed near
 Marguerite trench, as compared to the surrounding
areas (Lawson et al. 2004, 2008).

While advection certainly plays a role in E. superba
distributions, it does not appear that cross-shelf
advection in fjordic canyons is the most plausible
explanation for the high winter abundance observed
within the WAP fjords. The along-shelf coastal cur-
rent and the canyon bathymetry are present year
round, yet krill are abundant in fjords only in winter.
Additionally, the biomass of krill present in the
fjords, and the very low abundances observed across
the shelf, both in the present work and in more
extensive surveys (Siegel 1988, Lascara et al. 1999),
suggest krill from across the shelf are moving into
fjords in winter, whereas advective flows in canyons
would likely impact only those krill closest to the
fjord mouths. Thus, an alternative factor must be at
least partially responsible for the observed high
 winter densities within fjords.

Active in-shore seasonal migration

We suggest that rather than a purely physical
aggregating mechanism, the most likely process
leading to krill aggregation in fjords in winter is
active migration as part of an overwintering strategy.
Active migration has previously been suggested as a
mechanism for the observed seasonal differences in
krill spatial distributions, and modeling suggests
active directed movements by krill significantly
enhance their growth and reproductive sucess
(Siegel 1988, 2005, Lawson et al. 2004, Richerson et
al. 2015). These earlier studies suggesting such an
active inshore migration did not sample the very near
shore region studied here, and thus found lower
overall abundances in winter as compared to other
seasons (Marr 1962, Siegel 1988, 2005, Lawson et al.
2004). This new data showing very high densities
and abundances of krill within the coastal fjords sup-
ports the concept of an active seasonal on-off shore
migration, and helps to account for the previously
missing krill in winter. Krill are sometimes classified
as ‘micronekton’ rather than plankton because of
their swimming abilities. On small spatial scales, krill
swimming is important in maintaining desired loca-
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tions, likely associated with opportunities for feed-
ing, reproduction or reduced predation risk (Mackas
et al. 1997, Tarling et al. 1998, Zhou et al. 2005). Krill
have also been observed to use their swimming abil-
ities in large-scale movements. Krill have been
observed swimming against a current and swarms
use this ability to maintain positions even in the main
flow of the Antarctic Circumpolar Current (Marr
1962, Tarling & Thorpe 2014). In East Ant arctica krill
swarm movements have been tracked over multiple
weeks, covering distances up to 185 km (Kanda et al.
1982). These aggregations migrated at speeds of 0.11
to 0.13 m s−1, at which speeds krill could move from
the shelf edge to the inner area of a coastal fjord in
2 to 3 wk.

Minimizing advective losses

An active migration such as we hypothesize for
krill in the WAP would require energy expenditure
by the krill, and thus for such a strategy to have
developed and become widespread in the population
it must offer significant benefits to krill survival or
reproduction. One potential benefit to krill of
 spending the winter within fjords is the minimiza-
tion of advective losses from the favorable WAP
region or minimization of energetic expenditures
from counter-current swimming to maintain position.
The WAP is a highly productive area, with high pri-
mary productivity fed by nutrient enrichment from
circumpolar deep water (Ducklow et al. 2007). It
would thus be beneficial for krill to stay within the
WAP region. It remains unclear to what extent this is
the case, with indications that krill within the WAP
region are a self-sustaining population (Quetin &
Ross 2003), and models suggest that krill may com-
plete their full life cycle there (Hofmann & Hus-
revoglu 2003), but also that krill populations within
the WAP area may be maintained by both local
recruitment and advective input of larvae from other
regions (Piñones et al. 2013).

The WAP area is a highly advective environment,
with the Antarctic Circumpolar Current carrying
water, and potentially krill, to the northeast and out
of the area, while the coastal current could advect
individuals away to the southwest (Nicol 2006).
Entering bays, in which current flows are much lower
than in the Bransfield Strait and broader shelf region,
would prevent krill from being advected out of the
area, or allow krill to reduce energy expenditures on
swimming to maintain position. Reduced advection
out of the WAP area, or energy savings from reduced

maintenance swimming, may be particularly bene -
ficial during the winter season with low food
resources. In Marguerite Bay, in fall and winter, krill
are most abundant where currents and current sheer
are lowest (Lawson et al. 2008), which might suggest
krill selecting retentive environments as habitat. In
addition to the broadscale current flows, katabatic
winds blowing down the glaciers and over the fjords
may move surface waters offshore. Krill within fjords
were observed not to be present within these surface
layers of cold fresh water, while in the more offshore
areas without such strong stratification and katabatic
winds, they were present in even the shallowest lay-
ers. This is consistent with a strategy of minimizing
advective losses.

Differences between individuals in swimming abil-
ity may also play a role in the different benefits of
such minimization of advection to each krill. Krill
swimming ability is a function of length with maxi-
mal sustained speeds around 8 body lengths s−1(Kils
1981). As a result krill will segregate by size while
migrating. Within fjords, krill length distributions
showed a single peak, with slight indications of a
higher secondary peak in Andvord Bay. This peak
length corresponds to krill of age 1+, that is those
hatched around January 2012. Smaller YOY krill
were observed in the further off-shore samples, and
larger krill corresponding to age 3 and greater were
very rare in our sampling. It is possible that the small-
est and youngest individuals are not able to make a
seasonal migration all the way into the fjords (al -
though other possibilities are discussed below). Larger
krill may find maintaining position against a current
to be less of a metabolic burden than age 1+ krill, and
may choose to stay in an area with fewer predators
than the coastal fjords. The observed abundance of
age 1+ krill could also be related to multiyear pat-
terns in krill recruitment, as 2013 was a particularly
high recruitment year for krill in the WAP region
(Steinberg et al. 2015), although the lack of a strong
age 2+ year class within the fjords suggests recruit-
ment variability is not the full explanation for the
observed length distributions as 2012 was also a
strong krill recruitment year (Steinberg et al. 2015).

Near-shore food resources

Fjords may also offer food resources not available
to krill remaining further out on the shelf in winter.
Algal prey, traditionally considered the most impor-
tant food item for E. superba, are at very low levels in
winter throughout the WAP region, due to very low
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light levels with both short day lengths (approxi-
mately 4 h d−1), and low sun angle. The very low
abundance of water column algae can be seen in the
very low chlorophyll values observed. Similarly, no
ice algae were observed at the time of sampling as
sea ice was just forming. However, it is clear from the
fecal pellets observed within fjords that krill were
feeding at least to some degree in these regions in
winter. The importance of winter feeding may also
vary as krill mature. E. superba accumulates storage
lipids in summer and depletes these reserves in win-
ter (Hagen et al. 2001). If larger age 2+ and older krill
are able to accumulate more lipids, relative to their
metabolic needs, than smaller krill, they may be less
reliant on winter near-shore feeding and may choose
to remain outside of our sampling region. Such larger
krill have often been observed over the shelf region
and more off-shore areas not sampled in our cruise,
although it is again possible that variations in year-
class success are partially responsible for the
observed patterns (Siegel 1987, Lascara et al. 1999).

Krill may rely on alternative, non-phytoplankton
food sources, such as sediments and associated
 phytodetritus (Schmidt et al. 2011) or mesozoo -
plankton (Nordhausen et al. 1992, Huntley et al.
1994, Atkinson & Snÿder 1997) in the winter period of
scarce phytoplankton. Cross-shelf advective flows,
described earlier, may bring mesozooplankton into
the fjords, enhancing opportunities for carnivorous
feeding by krill. Within fjords, mesozooplankton
abundances were roughly an order of magnitude
lower than further out on the shelf, suggesting poten-
tial top-down effects of krill predation on mesozoo-
plankton within the fjords. However, at the low
abundances of mesozooplankton observed, it does
not seem likely that this was the main food source
sustaining the large krill population and leading to
the observed fecal pellets. Similarly, YOY krill were
at much lower abundances within fjords than they
were off-shore, which may potentially reflect canni-
balistic feeding by the larger age 1+ krill which dom-
inated the fjords. Cannibalism was observed in our
onboard krill incubations (A. C. Cleary unpubl. data),
and has been previously documented for E. superba
(Ligowski 2000).

The most likely food resource for krill within the
fjords is sediments and associated detritus. Krill have
been suggested to feed on epibenthic diatoms in
some regions (Ligowski 2000), or detritus settling out
from the water column and preserved by the cold
bottom waters as a kind of ‘food bank’ (Smith et al.
2006, Schmidt et al. 2011). Krill were observed to
spend daylight hours in dense aggregations, with

the deepest individuals right on the sediment inter-
face. These observations were consistent between
acoustics, underwater videography (NBP1304 cruise
report), and near-bottom Niskin sampling of krill (E.
G. Durbin unpubl. data). There is growing evidence
of the importance of epibenthic habitat for E.
superba. Dense near-bottom aggregations have been
observed with ROVs near the shelf break in the Wed-
dell Sea (Gutt & Siegel 1994), and in the deep waters
beyond the shelf break in the WAP region (Clarke &
Tyler 2008, Brierley 2008). In total over 14 studies
have observed epibenthic E. superba, with observa-
tions covering much of their distributional range
(Schmidt et al. 2011). Sediment food resources have
been recognized as potentially seasonally important
for E. superba in the WAP and other relatively shal-
low coastal regions (Schmidt et al. 2011).

Krill in our study formed dense aggregations near
the seafloor during daylight hours, provided the
seafloor was shallower than 300 m. At the bottom of
these aggregations krill were within a few meters of
the seafloor, and were interacting with the sediment
(camera observations; E. G. Durbin et al. unpubl.
data). A large number of krill (~160) were collected
from one of these observed dense aggregations in
Andvord Bay simply by closing a 12 l Niskin bottle
near the seafloor while within the aggregation. The
guts of these near bottom krill were full of dark mate-
rial, demonstrating that these krill were actively
ingesting sediment. When starved krill individuals
were placed in incubations with undisturbed sedi-
ment and overlaying waters they immediately swam
to the sediment and began stirring up particles and
actively filtering the stirred up particles with their
thoracic limbs (M. Orchard pers. comm.), again sug-
gesting sediments are a common and potentially
important food resource for krill in this region in
 winter.

The relatively shallow depths of the sampled fjords
may explain the value of sediment food resources.
The availability of such sediment food resources has
also been suggested to explain the more rapid matu-
ration of krill in the WAP, as compared to other
regions, such as the Lazarev Sea, where sediment
food resources are less available to krill (Schmidt et
al. 2014). Krill overwintering strategies are known to
vary across their geographic range (Schmidt et al.
2014); for E. superba i

n the central WAP region at least, it appears that
near-shore benthic feeding may be an important
component of the overwintering strategy, and may
serve as one of the drivers of seasonal in-shore
migration by krill in this region.
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CONCLUSIONS

E. superba, particularly age 1+ individuals, were
observed in very high densities within 3 coastal
fjords along the WAP in winter. These aggre -
gations, in combination with previously reported
summer distributions, suggest an active, seasonal
on-shore migration. Active migration of krill into
fjords in winter may help reduce advective losses
from the WAP region, or conserve energy spent
maintaining position within the advective shelf
region. Fjords may also offer important food res -
ources to krill during this period of very low
phytoplankton, particularly in the sediments. High-
density krill aggregations at the sediment interface
suggest epibenthic feeding may be important for
E. superba in this region in winter, and potentially
one of the drivers of onshore migrations. Improved
understanding of the role of fjords and epibenthic
areas as habitat for krill helps to refine our under-
standing of the complex ecology of this keystone
species. The role of these previously often under-
recognized krill habitats may be important to con-
sider in spatial planning and managing the grow-
ing fishery for this species to protect geographically
limited but potentially ecologically important krill
winter habitat.
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