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ABSTRACT  17 

The gaseous fraction of hydrophobic organic contaminants (HOCs) in ambient air 18 

appears to be responsible for a significant portion of aryl hydrocarbon receptor (AhR)-mediated 19 

activity, but the majority of compounds contributing to this activity remain unidentified. This 20 

study investigated the use of polyethylene passive samplers (PEs) to isolate gaseous HOCs from 21 

ambient air for use in in vitro bioassays and to improve our understanding of the toxicological 22 

relevance of the gaseous fraction of ambient air in urban and residential environments. 23 

Concentrations of polycyclic aromatic hydrocarbons (PAHs) and organic flame retardants 24 

(OFRs) were measured in PE extracts. Extracts were also analyzed using an in vitro bioassay to 25 

measure AhR-mediated activity. Bioassay-derived benzo[a]pyrene (BaP) equivalents (BaP-26 

Eqbio), a measure of potency of HOC mixtures, were greatest in the downtown Cleveland area 27 

and lowest at rural/residential sites further from the city center. BaP-Eqbio was weakly correlated 28 

with concentrations of 2-ring alkyl/substituted PAHs and one organophosphate flame retardant, 29 

ethylhexyl diphenyl phosphate (EHDPP). Potency predicted based on literature-derived 30 

induction equivalency factors (IEFs) explained only 2-23% of the AhR-mediated potency 31 

observed in bioassay experiments. This study suggests that health risks of gaseous ambient air 32 

pollution predicted using data from targeted chemical analysis may underestimate risks of 33 

exposure, most likely due to augmentation of potency by unmonitored chemicals in the mixture, 34 

and the lack of relevant IEFs for many targeted analytes.   35 

 36 

 37 

 38 
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INTRODUCTION  39 

Hydrophobic organic contaminants (HOCs) sorbed to particulate matter in ambient air 40 

pose a health risk to humans via several pathways, and activation of the aryl hydrocarbon 41 

receptor (AhR) by polycyclic aromatic hydrocarbons (PAHs) is strongly associated with the 42 

carcinogenicity of ambient atmospheric particulate matter (Matsumoto et al. 2007; Andrysík et 43 

al. 2011). However, health risks associated with HOCs in the gaseous phase remain poorly 44 

understood. Humans are exposed to gaseous air pollution directly via respiration and dermal 45 

uptake (Weschler and Nazaroff 2012). This is especially concerning in urban areas with heavier 46 

vehicular traffic and greater population density, as well as in indoor environments. Furthermore, 47 

gaseous HOCs are freely available to partition into other media, including plants (Kobayashi et 48 

al. 2007), and dietary uptake from crops has been identified as a route of human exposure 49 

(Kobayashi et al. 2008).   50 

The gaseous fraction of ambient air has a distinct composition compared to the particle-51 

bound fraction (Boström et al. 2002). The summed mass of PAHs in the gaseous phase is 52 

typically greater than in the particulate phase. However, gaseous PAHs are generally dominated 53 

by lower molecular weight 2-3-ring PAHs, while the particulate-bound fraction is dominated by 54 

more hydrophobic 4-5-ring PAHs (Boström et al. 2002; Klein et al. 2005; Ramírez et al. 2011; 55 

Barrado et al. 2013; Gungormus et al. 2014).  56 

In addition to PAHs, recent studies have demonstrated that many organic flame retardant 57 

compounds (OFRs) are also ubiquitous in ambient urban air, and that one particular class, the 58 

organophosphate esters (OPEs), are present at unexpectedly high levels in urban ambient air 59 

(Salamova et al. 2014; Shoeib et al. 2014). Furthermore, some currently-used chlorinated OPEs 60 
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are expected to be present predominantly in the gaseous phase (Brommer et al. 2014; Salamova 61 

et al. 2014; Peverly et al. 2015). O’Connell et al. used silicone wristbands as personal monitoring 62 

devices for exposure to gas-phase HOCs and frequently detected OPEs, along with several 2-3-63 

ring PAHs (O’Connell et al. 2014).   64 

Chronic exposure to gas-phase OPEs and other OFRs in ambient air is of concern 65 

because several studies have provided evidence that many OPEs, including tris(1,3-dichloro-2-66 

propyl) phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), triphenyl phosphate 67 

(TPHP), and tris(2-ethylhexyl) phosphate (TEHP), can disrupt normal development, metabolism, 68 

immune response, and hormone function (Farhat et al. 2013; Liu et al. 2013; Farhat et al. 2014; 69 

Porter et al. 2014). Studies have also indicated that TDCIPP is carcinogenic and/or mutagenic 70 

(Gold et al. 1978; Farhat et al. 2014), and, along with tris(2-chloroethyl) phosphate (TCEP), it 71 

has been designated a carcinogen under California Proposition 65 (California OEHHA, 2017). 72 

Some OFRs, including tris(methylphenyl) phosphate (meta; TmMPP) and TDCIPP, have also 73 

been associated with changes in expression of genes regulated by AhR in a few past studies, 74 

though evidence of this is sparse (Liu et al. 2013; Porter et al. 2014). Previous studies indicate 75 

that some polybrominated diphenyl ether (PBDE) congeners are also weak or moderate AhR 76 

agonists, and that binding affinity appears to depend on the degree and position of bromination 77 

(Chen and Bunce 2003; Gu et al. 2012). Recent work has also indicated that concentrations of 78 

PBDEs may be positively correlated with dioxin-like activity in dust samples, possibly due to the 79 

cooccurrence of polybrominated dioxins/furans (PBDD/Fs) (Wong et al. 2016).  80 

Activation of AhR is linked to induction and repression of a large number of genes, 81 

including modulation of cell growth and proliferation, tumor promotion, immunological effects, 82 

cardiotoxicity, and endocrine disruption, with the severity and type of response dependent upon 83 
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the specific ligand and its binding affinity (Denison et al. 2011). Previous studies on health risks 84 

of ambient air pollution have used induction equivalency factors (IEFs) to represent the AhR-85 

mediated potency of PAHs relative to benzo[a]pyrene (BaP) (Kennedy et al. 2010; Ramírez et al. 86 

2011). This IEF-based approach assumes an additive, rather than synergistic or antagonistic, 87 

relationship between multiple ligands. AhR is activated by binding with variable affinity to 88 

several PAHs, with 4-5-ring PAHs generally more potent than the 2-3-ring PAHs that dominate 89 

gas-phase air pollution (Boström et al. 2002). Highly potent PAHs such as (BaP) are typically 90 

present only at very low concentrations in the gas phase due to low volatility.  The lower 91 

molecular weight PAHs, especially phenanthrene, fluoranthene, and the methylated 92 

phenanthrenes/anthracenes, may contribute more significantly to the potency of the gaseous 93 

fraction due to their high gas-phase concentrations (Boström et al. 2002).   94 

Despite low concentrations of potent high molecular weight PAHs in the gaseous fraction 95 

of ambient air pollution, previous studies have shown that this fraction appears to be responsible 96 

for a significant portion of the AhR-mediated activity associated with ambient air. In studies of 97 

gas-phase air pollution, Ramirez et al. found that, while concentrations of PAHs known to be 98 

most potent with respect to cytochrome P450 1A1 (CYP1A1) induction were low in the gaseous 99 

fraction, this fraction was estimated to contribute 34-86% of total carcinogenicity associated with 100 

16 PAHs based on potency relative to BaP (Ramírez et al. 2011). Previous studies by Klein et al. 101 

and Novak et al. also observed significant AhR activation from the gaseous, as well as 102 

particulate, fraction of ambient air pollutants (Klein et al. 2005; Novák et al. 2009). Kennedy et 103 

al. found a statistically significant relationship between PAH concentrations and AhR activity in 104 

samples of gaseous and fine particulate contaminants, but determined that the specific PAHs 105 

targeted in the study accounted for less than 3% of the observed AhR activity (Kennedy et al. 106 
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2010).  Similarly, Érseková et al. found that quantified PAHs accounted for only 3-33% of 107 

measured AhR activity from ambient air samples (Érseková et al. 2014). While some of these 108 

studies considered contributions of compound groups besides PAHs, including polychlorinated 109 

biphenyls (PCBs) and organochlorine pesticides, none have investigated whether OFRs may 110 

explain some fraction of AhR activity.  111 

Previous studies have noted that gaseous HOCs should not be ignored in risk 112 

assessments, but all of this work was carried out using high-volume air samplers or passive 113 

polyurethane foam (PUF) samplers, which are less selective for gaseous HOCs than polyethylene 114 

passive samplers (PEs) (Melymuk et al. 2011). Studies using less selective sampling strategies 115 

could not fully rule out that some fraction of particulate-bound HOCs may have contributed to 116 

the measured AhR activity. PEs accumulate only gas-phase HOCs and have an affinity for HOCs 117 

that is similar to that of fatty tissue, so they have been used in many studies predicting the extent 118 

to which HOCs will bioaccumulate (Joyce et al. 2016). The present study is the first to our 119 

knowledge to investigate AhR activation caused by the freely gaseous fraction of HOCs taken up 120 

by a single-phase sampler (pre-cleaned polyethylene), and will help contribute to our 121 

understanding of the biological relevance of the truly gaseous fraction of ambient air in urban 122 

and residential environments. 123 

PEs were deployed throughout the Cleveland (OH) area on the southern shore of Lake 124 

Erie from June to September of 2013. Extracts from PEs were analyzed by gas chromatography 125 

coupled with mass spectrometry (GC/MS) for a suite of PAHs and OFRs and were also analyzed 126 

via an in vitro bioassay to measure AhR activation. The objectives of this study were to (i) 127 

investigate the use of PEs as a viable vehicle for isolating gaseous HOCs for use in in vitro 128 

bioassays, (ii) explore whether AhR-mediated activity of PE extracts correlated significantly 129 
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with any PAHs or OFRs measured in the extracts, and (iii) determine what portion of AhR-130 

mediated activity measured via in vitro bioassays could be predicted based on targeted chemical 131 

analysis of commonly monitored PAHs.   132 

We expected that AhR-mediated potency and gaseous concentrations of OFRs and PAHs 133 

in PE extracts would be greatest at densely populated urban sites located near the city center and 134 

that some correlation would be seen between gaseous PAH concentrations and potency. 135 

However, based on previous studies, we expected that BaP-equivalents calculated from targeted 136 

PAH chemical analysis (BaP-Eqchem) would likely underestimate the potency observed in 137 

bioassay experiments. We also expected that, unlike in particulate air samples, AhR-mediated 138 

potency of PE extracts would not correlate significantly with BaP concentrations, as BaP was not 139 

expected to be present at significant levels in the gaseous phase. Furthermore, we hypothesized 140 

that gas-phase OFRs may account for some fraction of AhR activity unexplained by commonly 141 

monitored PAHs, and that this would be indicated by significant correlation between OFR 142 

concentrations and AhR activity.  143 

 144 

MATERIALS AND METHODS 145 

Passive air sampler deployment   146 

800-μm-thick low-density polyethylene sheeting (United Plastics, Inc.) was cut into 147 

approximately 7.5 cm x 13 cm pieces and cleaned in solvent (DCM and hexane) to remove 148 

background contamination. At each of nine sampling sites throughout the Cleveland area, four 149 

PEs were fastened inside an inverted stainless steel bowl using zip-ties and the bowl was 150 

suspended so that the PEs were hanging at approximately 2 m height.   151 
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In order to calculate ambient air concentrations from concentrations measured in 152 

deployed PEs, performance reference compounds (PRCs) are often added to the PE for in situ 153 

calibration of sampling rates. However, PRCs could not be added to the PEs intended for 154 

bioassays because these compounds would interfere with bioassay response. Therefore, 50-μm-155 

thick PEs, preloaded with PRCs by incubation in an 80:20 methanol:water solution, were co-156 

deployed at each site, and sampling rates determined for these 50-μm PEs were used to interpret 157 

results from 800-μm PEs.   158 

A map of the study region is shown in the Supplementary Information (SI Figure S1) and 159 

characteristics of the deployment sites are summarized in Table 1. Deployments took place from 160 

June to September of 2013, with each set of PEs deployed for about 60 days. After deployment, 161 

PEs were removed from the protective bowl, wrapped in precombusted aluminum foil, and 162 

shipped on ice overnight to the University of Rhode Island Graduate School of Oceanography, 163 

where they were kept frozen until extraction.  164 

Sample preparation  165 

Each 800-μm PE was extracted twice in pentane, each time for 18-24 hours. 50-μm PEs 166 

were extracted once for 18-24 hours in pentane. Every batch of PEs was extracted along with a 167 

laboratory blank, which was a PE that had been cleaned alongside the field samples and then 168 

stored frozen in precombusted aluminum foil. All four 800-μm PEs deployed simultaneously at 169 

the same site were composited into one extract and concentrated to 1 mL in a warm water bath 170 

under a gentle stream of nitrogen. Extracts from 800-μm PEs appeared to contain a white 171 

precipitate, possibly from co-extracted polyethylene material. To remove the particulate, extracts 172 

were serially frozen, causing the precipitate to solidify at the bottom of the vial, and the 173 
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overlying liquid was removed via Pasteur pipet and reconstituted to 1 mL with pentane. Two 174 

aliquots were removed from the 1 mL solution: one for chemical analysis and the other for 175 

biological analysis.  A schematic summarizing sample preparation is shown in the 176 

Supplementary Material (Figure S2).   177 

Chemical analysis by GC/MS  178 

The fraction of PE extract intended for chemical analysis was spiked with internal 179 

standards acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12 and analyzed on an 180 

Agilent 6890 GC coupled to an Agilent 5973 MSD in electron impact (EI, 70 eV) mode for 22 181 

PAHs, 18 alkylated PAHs, and (in a separate GC/MS run) 12 organophosphate esters (OPEs) 182 

using an Agilent J&W DB-5 fused capillary column (30 m x 0.25 mm I.D.). PAHs were 183 

quantified using an 8-point calibration curve with linearity r2  > 0.990 for all compounds. OPEs 184 

were quantified using a 10-point calibration curve with linearity r2  > 0.997 for all compounds 185 

except TDBPP, which was not detected in samples and is omitted from discussion.   186 

Extracts were also spiked with non-native polybrominated diphenyl ethers (BDEs 35, 77, 187 

128, and 183) and analyzed on an Agilent 7890 GC coupled to an Agilent 5977 MSD in negative 188 

chemical ionization (NCI) mode with methane reagent gas for 12 polybrominated diphenyl 189 

ethers (BDEs) and 8 novel halogenated flame retardants (NHFRs), as well as 3 polybrominated 190 

biphenyls (PBBs), which were used as PRCs in sampling rate determination for co-deployed thin 191 

PEs. A complete list of target compounds and abbreviations is available in the Supplementary 192 

Material (Table S1). BDEs and NHFRs were quantified using an 8-point calibration curve with 193 

linearity r2 > 0.995.  194 
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To avoid interference with biological assays, samples were not spiked with internal 195 

standard prior to extraction and so were not corrected for internal standard recoveries. 196 

Concentrations presented for PE extracts were not blank-subtracted before use in data 197 

interpretation. This was considered appropriate as our primary interest was in determining the 198 

actual concentration present in the bioassay exposure solution.  199 

Calculation of ambient air concentrations  200 

The composition of HOCs accumulated in polyethylene differs from the ambient 201 

composition of gas-phase HOCs in air because the concentration in polyethylene is dependent 202 

not only on gas-phase concentrations, but also on the affinity of each compound for the PE 203 

matrix and the rate at which the compound is absorbed into the PE. To compare the composition 204 

of solutions used in bioassay experiments to the actual composition of gaseous HOCs expected 205 

in ambient air, gaseous HOC concentrations were calculated based on the results of chemical 206 

analysis of PE extracts and PE sampling rates determined from co-deployed PRC-loaded PEs. 207 

Concentrations were blank-subtracted using the co-extracted laboratory PE Blank.  After blank 208 

subtraction, concentrations below 25% of the PE Blank were considered <DL, and all <DL 209 

values were replaced with 0.   210 

To translate concentrations within the PE to concentrations in ambient air, the volume of 211 

air sampled by each PE during deployment was estimated using data on the percent loss of 212 

labeled PRCs from co-deployed 50-μm thick PEs. From the PRC loss data, the best-fit value for 213 

the thickness of the diffusive boundary layer (DBL) at the air-PE interface was determined. 214 

Because all PEs were deployed under the same conditions and the thickness of the PE sheet does 215 

not affect air-side resistance, the DBL thickness determined for thin sheets was then used in a 216 
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two-film model describing PE-side and air-side mass transfer rates to calculate the percent 217 

equilibration reached by each target compound in the 800 μm-thick PEs. This approach for 218 

estimation of percent equilibration from PRC loss data has been described in detail in previous 219 

work (McDonough et al. 2016). 220 

Biological analysis by reporter cell bioassay  221 

Aliquots for biological analysis were mixed with 200 μL of DMSO and blown down 222 

under a gentle stream of nitrogen to constant volume.  This stock solution was then used to create 223 

a 10-point dilution curve (0.01 g PE/mL – 120 g PE/mL) for each sample, including the PE blank 224 

(Figure S1).  225 

The AhR reporter cell line used was H1G1.1c3, a murine hepatoma cell line consisting of 226 

Hepa-1c1c7 cells stably transfected with AhR-responsive green fluorescent protein (GFP) 227 

reporter gene (Nagy et al. 2002). Cells were plated in 96-well plate (3x105 cells per well; Costar 228 

96-well black plate with a clear bottom) and allowed to attach overnight at 37°C in selective 229 

medium (Nagy et al. 2002). The medium was then changed to non-selective medium and the 230 

cells in 100 µL of medium were treated with 1 μL of each sample dilution for a final vehicle 231 

concentration of 1% DMSO. All wells were prepared in triplicate and incubated at 33°C. For 232 

each test extract, the cells in three wells were treated with 1 μL of DMSO as a negative control, 233 

and the cells in another set of three wells were left untreated to control for any natural cell 234 

fluorescence. On each plate, three wells were treated with BaP at a final well concentration of 235 

120 nM dissolved in DMSO as a positive control. On one plate, a 10-point dilution curve was 236 

also run for BaP (1.2x10-5 – 12000 nM), and results were normalized to the positive control 120 237 

nM BaP (Figure S3).   238 
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AhR-mediated activity was measured by reading the GFP fluorescence emitted by the 239 

cells at 515 nm using a Spectra Max M3 plate reader at 24 and 48 hours post dosing (hpd). The 240 

mean fluorescence value of the DMSO-treated negative control triplicate wells was subtracted 241 

from each sample’s fluorescence reading, and the response was expressed as a ratio over the 242 

mean fluorescence value for the triplicate 120 nM BaP positive controls run on the same plate to 243 

control for plate-to-plate differences in cell response.  244 

Calculation of extract potency  245 

Data from 48-hpd readings were fitted to a four-parameter log-logistic concentration-246 

response model with the lower bound set to 0 using R package drc (Ritz et al. 2015). The 247 

response f occurring as a result of concentration x is modeled as in Equation 1, where c is the 248 

lower bound value (set to 0), d is the upper bound value, b determines slope steepness, and e is 249 

the concentration achieving 50% of maximum efficacy (EC50). The upper bound was set to the 250 

maximum observed response in cases where response reached a plateau or decreased at highest 251 

dosages, but was not defined for the extract from site Cleveland Lakefront 1 because response 252 

continued increasing up to the maximum extract concentration. 253 

                                                         Eq 1 254 

In addition to the EC50, the ECBaP50 was calculated as an alternative measure of potency. 255 

The ECBaP50 is the concentration resulting in 50% of the effect observed for the plate-specific 256 

positive control (120 nM BaP).  The ECBaP50 was identified as a more useful metric than EC50 257 

because the extracts’ concentration-response curves were not parallel and maximum efficacy 258 

varied among curves.  259 
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 Dosing solutions were prepared so that each sample was representative of the same 260 

amount of extracted PE to facilitate comparison with the PE blank and control for any 261 

interference caused by background contamination in the PE matrix.  However, due to site-to-site 262 

variability in sampling rates, the volume of air represented by each sample differed among sites 263 

(Table 1). For this reason, after determination of ECBaP50 from the concentration-response curve 264 

fit, ECBaP50 values were normalized based on the volume of air sampled at each site. Aliquots of 265 

PE extracts used in dosing solutions were representative of 1900-3100 m3 of air, and were all 266 

normalized to 2000 m3.  267 

 To compare predicted AhR-mediated potency based on chemical composition to 268 

observed potency based on bioassay experiments, BaP equivalents were calculated for both sets 269 

of data. For concentrations measured via chemical analysis, BaP equivalents in each mixture 270 

(BaP-Eqchem) were determined as in Equation 2 by multiplying the concentration of each 271 

compound in the PE extract (Cn) by the compound’s potency relative to BaP (expressed as 272 

induction equivalency factor, IEFn) using values from Machala et al. (2001) and summing results 273 

for all compounds. Benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[j]fluoranthene could 274 

not be quantitated separately with confidence via the chromatographic method used, so the IEFs 275 

for these three compounds were averaged as an estimated of the IEF for 276 

benzo[b,j,k]fluoranthene. Concentrations in the PE extract were normalized based on volume of 277 

air sampled before BaP-Eqchem calculations were done.  278 

                           Eq 2 279 

 For the bioassay results, the BaP equivalent of each sample extract was expressed as the 280 

amount of BaP needed to achieve the same response as the extract. The bioassay-derived toxic 281 
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equivalency (BaP-Eqbio) was calculated as in Equation 3 as the ratio of the amount of BaP 282 

needed to achieve a response of 50% the maximum efficacy (EC50 for the BaP curve) over the 283 

volume of PE extract added to the well to achieve that same effect (the ECBaP50 of the extract).   284 

               Eq 3 285 

 The degree to which chemical analysis explained observed potency (%chem) was then 286 

expressed as in Equation 4.  287 

                  Eq 4 288 

  289 

RESULTS AND DISCUSSION 290 

Chemical composition of passive sampler extracts  291 

Concentrations of all compounds in PE extracts are presented in the Supplementary 292 

Material for PAHs (Table S2), OPEs (Table S3), and halogenated flame retardants (HFRs; Table 293 

S4). Concentrations of PAHs and OPEs in the PE extracts are displayed in Figure 1 (left side) 294 

along with estimated ambient air concentrations (right side). All concentrations for field samples 295 

were normalized to an air volume of 2000 m3 to facilitate comparison between sites. 296 

Total alkyl and parent PAHs (Σ40PAH) in PE extracts ranged from 3.6 ng/μL for the 297 

extract from Cuyahoga National Park to 34 ng/μL for a residential suburban area in University 298 

Heights. Concentrations of PAHs were dominated by phenanthrene (0.6-16.3 ng/μL; 10-57%), 299 

fluoranthene (0.1-6 ng/μL; 1-18%), 2-methylphenanthrene (0.1-1 ng/μL; 1-6%), and fluorene 300 

(0.3-1 ng/μL; 3-9%).  301 
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Concentrations of OPEs were much greater than those of halogenated organic flame 302 

retardants (HFRs). Total OPEs (Σ12OPE) ranged from 0.4 ng/μL for the extract from Cuyahoga 303 

National Park to 2.0 ng/μL for a residential area in Kent. Σ12OPE was dominated by TPHP at all 304 

downtown Cleveland sites (0.09-0.78 ng/μL; 28-69%), while Cuyahoga National Park and 305 

Fairport Harbor were dominated by TEHP (0.30 – 0.57 ng/μL; 68%), and University Heights and 306 

Kent were dominated by tri-n-butyl phosphate (TNBP;0.50 ng/μL; 59%) and TCIPP (1.60 307 

ng/μL; 78%), respectively. Concentrations of total BDEs (Σ12BDE) ranged from 10 pg/μL in 308 

Cuyahoga National Park to 46 pg/μL at Downtown Cleveland Site 2, and were dominated by 309 

BDE 47 and 154. Concentrations of total NHFRs (Σ18NHFRs) were greatest in the PE blank due 310 

to the presence of 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and Dechlorane Plus, which 311 

were not found in any of the field sample extracts. 312 

2-ring, 3-ring, and 4-ring PAHs, as well as their alkylated and substituted counterparts, 313 

were generally correlated in the different extracts (0.3 < r2 < 0.9), while 5-6-ring PAHs did not 314 

exhibit significant correlation among themselves or with any other group of PAHs (Table S5). 315 

Correlation among individual PAHs was expected, as they are typically emitted from the same 316 

sources. Correlation among PAHs was further confirmed by principal component analysis 317 

(PCA), which showed that 76% of variation in samples was explained by two principal 318 

components, the first with loadings primarily from 3-4-ring PAHs, and the second with loadings 319 

primarily from 2-ring and 4-5-ring PAHs (Figure S4). In contrast, individual OPEs were 320 

generally not significantly correlated, though some degree of correlation (r2 > 0.3) was observed 321 

between TDCIPP and TNBP (Table S6).  Additionally, TNBP, TDCIPP, and ethylhexyl diphenyl 322 

phosphate (EHDPP) exhibited some correlation with PAHs (Table S7).        323 

 324 
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Ambient air concentrations  325 

Ambient gaseous concentrations of Σ40PAH ranged from 7.1 ng/m3 in Cuyahoga National 326 

Park to 36.2 ng/m3 at urban site Cleveland Downtown 1 and were dominated by the 327 

methylnaphthalenes (1.7-8.8 ng/m3; 18-33%), phenanthrene (0.3-9.8 ng/m3; 2-33%), and 328 

fluorene (0.5-2.6 ng/m3; 5-14%). Concentrations were similar in range to those measured by 329 

Peverly et al. in Chicago using polyurethane foam passive samplers (PUFs) in 2012 - 2014 330 

(Σ16PAH = 9 - 52 ng/m3), and by Melymuk et al. in Toronto in 2007 - 2008 (Σ27PAH = 0.3 - 51 331 

ng/m3), also using PUFs (Melymuk et al. 2012; Peverly et al. 2015). Concentrations in this study 332 

were similar but lower than previous measurements of total gaseous PAHs using PEs in the 333 

downtown Cleveland area by McDonough et al. in 2012 (Σ15PAH = 23-80 ng/m3; McDonough et 334 

al. 2014). In larger-scale regional studies, atmospheric concentrations of PAHs have often been 335 

found to correlate with population density (Hafner et al. 2005; McDonough et al. 2014), but here 336 

no significant (p < 0.05) correlation between gaseous PAH concentrations and population density 337 

within 5-30 km was observed.   338 

Gaseous concentrations of Σ12OPE ranged from 0.01 ng/m3 in Cuyahoga National Park to 339 

1.1 ng/m3 in Kent. This was similar in range to measurements by Peverly et al. in Chicago using 340 

PUFs in 2012-2014 (Σ13OPE = 0.5 – 1.5 ng/m3), and slightly lower than measurements of 341 

particulate Σ12OPE in the Cleveland area by Salamova et al. in 2012 (mean Σ12OPE = 2.1±0.4 342 

ng/m3; Salamova et al. 2014; Peverly et al. 2015). TCIPP was the most abundant OPE at all sites 343 

(0.01-1.0 ng/m3; 9-98%) except University Heights, where TNBP dominated (0.6 ng/m3; 87%). 344 

TCIPP was also found to be most abundant in Cleveland particulate Σ12OPE in a previous study 345 

(0.85±0.3 ng/m3; Salamova et al. 2014) 346 
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Figure 1 compares the chemical composition of the PE extracts used in bioassay 347 

experiments and of ambient gaseous PAHs and OPEs. Extracts used in bioassays were enriched 348 

in moderately hydrophobic compounds, such as fluoranthene and TDCIPP, which make up a 349 

lower percentage of total HOCs in the gaseous fraction of ambient air but have a greater affinity 350 

for the PE matrix. The different HOC composition in the gas-phase and in the PE extract 351 

illustrates that it is not possible to estimate the total AhR-mediated potency of the mixture that is 352 

present in gas-phase air. However, AhR-mediated potency results based on the HOC mixture 353 

found in PE extracts is still an important step in understanding the biological relevancy of gas-354 

phase compounds. Furthermore, the composition in PE extracts is expected to be more similar to 355 

the composition of HOCs diffusing into plant material or skin from air, or accumulating in the 356 

body via other mechanisms.   357 

Concentration-response curves  358 

Extracts from all PEs, including the PE Blank, induced concentration-dependent 359 

activation of AhR-dependent GFP. All concentration-response data are displayed along with 360 

curve fits and 95% confidence intervals in Figure 2, with response represented as a ratio 361 

compared to response elicited by the plate-specific positive control. For all extracts, an initial 362 

increase in GFP induction was seen with increasing concentration. However, there was a 363 

precipitous decline in the fluorescence for all extracts (except Cleveland Lakefront 1) at the 364 

greatest concentrations, possibly due to cytotoxicity or inhibition of fluorescence response at 365 

high concentrations of PE extract. These points were omitted during concentration-response 366 

curve fitting, as we were interested in determining only the induction potencies of the extracts. 367 

Most extracts did not exhibit a clear plateau in response, making determination of maximum 368 

efficacy, as well as EC50, somewhat uncertain. Furthermore, maximum efficacy of the samples 369 



18 
 

varied from 94%-230% of positive control response (Table 2). For this reason, ECBaP50, 370 

measured relative to the plate-specific positive control, was used to compare the potencies of the 371 

samples. 372 

The ECBaP50 of each extract, normalized based on the volume of air sampled at each site, 373 

is displayed in Table 2 along with each extract’s maximum observed efficacy. Values of ECBaP50 374 

ranged from 0.5±0.1 g PE/mL at Downtown Cleveland 1 to 6.6±1.2 g PE/mL at Cuyahoga 375 

National Park.   376 

The three rural/residential sites had the lowest potency (greatest ECBaP50 values), ranging 377 

from 2.6 – 6.6 g PE/mL, followed by the two Cleveland Lakefront sites. The most potent extracts 378 

were from the three Cleveland Downtown sites and one semi-urban residential site (University 379 

Heights, a densely populated suburb). This contrasts with work by Klein et al., where no change 380 

in potency of gaseous extracts was observed between urban and rural samples with distinct 381 

chemical compositions, but is consistent with work by Ersekova et al, where extracts from 382 

impacted sites were found to be more potent in AhR bioassays than extracts from rural sites 383 

(Klein et al. 2005; Érseková et al. 2014). The potency of the PE Blank (ECBaP50 = 23±5 g 384 

PE/mL) was significantly lower than all field samples. Blank comparisons were done before 385 

normalizing for the volume of air sampled so that each sample would be representative of the 386 

same mass of extracted polyethylene.  387 

The potency and maximum efficacy of the extracts did not appear to be correlated. This is 388 

most likely due to a complex interplay between the unique composition of ligands in each 389 

sample, their affinity for the AhR, the resulting ligand-receptor complex’s ability to bind other 390 

necessary transcription factors, and cytotoxicity of specific components.  Response could also be 391 
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affected by ligands interacting with other pathways that could amplify or dampen AhR response. 392 

Klein et al. also observed a lack of correlation between potency of extracts and maximum 393 

efficacy with respect to AhR binding of gas-phase extracts from active air sampling (Klein et al. 394 

2005).   395 

Initial bioassay experiments demonstrated that the treated cells’ fluorescence responses 396 

increased over time from 16 to 48 hpd, so all responses reported here were measured at 48 hpd. 397 

This is in contrast to other studies of AhR activation for environmental samples, most of which 398 

have used a luciferase reporter rather than the GFP reporter used here. For example, Machala et 399 

al. measured greatest potency at 6 hpd, most likely due to PAH metabolism (Machala et al. 2001) 400 

and Kennedy et al. observed steadily decreasing potency in extracts from 24 to 72 hpd (Kennedy 401 

et al. 2010). This discrepancy is most likely due to differences in induction kinetics and 402 

increased stability of the GFP reporter compared to the luciferase reporter (Han et al. 2004). It is 403 

also possible that some of the response observed in this study was due to compounds that were 404 

less readily metabolized than PAHs and OPEs.  405 

Bioassay-derived BaP equivalents for PE extracts  406 

A map of results for BaP-Eqbio is displayed alongside maps of total concentrations of 407 

PAHs and OPEs in the PE extracts (Σ40PAH and Σ12OPE) in Figure 3. BaP-Eqbio values ranged 408 

from 21-283 ng/μL BaP equivalents and were generally greatest in the downtown Cleveland area 409 

and lowest at the rural/residential sites further from the city center.    410 

 BaP-Eqbio values were compared to concentrations of PAHs and organic flame retardants 411 

(OPEs, PBDEs, and NHFRs) in the PE extracts to determine whether there was any significant 412 

correlation between potency and chemical composition. Though some correlations were found, 413 
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few were likely to be driving potency. No correlations with PBDE and NHFR concentrations 414 

were observed. BaP-Eqbio weakly correlated only with 2-ring alkyl/substituted PAHs (r2 = 0.42; p 415 

< 0.1; SE = 64; N = 9) and also displayed some correlation with EHDPP (r2 = 0.66; p < 0.01; SE 416 

= 49; N = 9). Maximum efficacy of PE extracts showed some correlation with concentrations of 417 

3-ring (r2 = 0.61; p < 0.05; SE = 31; N = 9) and 4-ring (r2 = 0.48; p < 0.05; SE = 36; N = 9) 418 

parent PAHs. Correlations between BaP-Eqbio and alkyl/substituted PAHs were only investigated 419 

by grouping compounds (2-ring alkyl/substituted PAHs; 3-4-ring alkyl/substituted PAHs) 420 

because quantitative standards were not available for all alkylated PAHs. However, it is 421 

important to note that AhR-mediated potency differs greatly between PAH isomers. Because 422 

there is a high degree of correlation observed between different low molecular weight PAHs at 423 

different locations in this study (Table S5), it was expected that the composition of 424 

alkyl/substituted PAHs is most likely similar between sites, so correlations with BaP-Eqbio are 425 

likely driven by the same compounds at all sites. 426 

There is little information available regarding the biological effects of alkylated PAHs. 427 

Recent studies using a yeast reporter assay system and a H4IIE-luc reporter-gene assay suggest 428 

that methyl- and dimethyl-substituted phenanthrenes are in some cases more potent with respect 429 

to AhR activation than their unsubstituted counterparts (Sun et al. 2014; Lam et al. 2018). The 430 

statistically significant correlation between BaP-Eqbio and EHDPP suggests that this compound, 431 

or unmonitored compounds with which it covaries spatially, could be contributing to AhR 432 

activity. As no compelling evidence is available for EHDPP as an AhR activator, the presence of 433 

other AhR activators that covary with EHDPP is somewhat more likely. Previous studies have 434 

shown that levels of OPEs and other OFRs can correlate in air due to their historical use in the 435 

same formulations (Salamova et al. 2014). Additionally, some OPEs that were not targeted in 436 
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this study, including mono-substituted isopropyl triaryl phosphate (mITP), have been shown to 437 

have relatively strong AhR activity (Gerlach et al. 2014; Haggard et al. 2017). 438 

Predicted BaP equivalents from chemical analysis  439 

The BaP-Eqchem of each PE extract was calculated based on concentrations of targeted 440 

PAHs from GC/MS analysis. No dataset for the specific cell line used here was available, so 441 

IEFs were taken from Machala et al. (2001), who measured PAH-induced AhR-mediated 442 

response in a rat hepatoma H4IIE cell line stably transfected with luciferase reporter gene. IEFs 443 

were not available for all PAHs, so calculated BaP-Eqchem values are representative of only 14 444 

compounds (Table S8). While the dataset from Machala et al. is the most applicable that could be 445 

found, these IEFs come from a cell line with a completely different time-dependent expression 446 

profile and are not directly applicable to the cell line used here. This contributes greatly to the 447 

uncertainty in the derived BaP-Eqchem values, and highlights the need for more studies providing 448 

cell line-specific IEFs for a wide range of ubiquitous environmental contaminants.   449 

BaP-Eqchem values calculated using potencies from Machala et al. ranged from 1.6 to 7.9 450 

ng/μL BaP, as shown in Table 3. The percent of BaP-Eqbio accounted for by this BaP-Eqchem is 451 

also displayed. The percent contributions of individual PAHs to the total predicted BaP-Eqchem 452 

are displayed in Figure 4. Among the targeted PAHs, contributions to BaP-Eqchem were 453 

dominated by high molecular weight PAHs that were present at low concentrations in the PE 454 

extracts, including dibenz(a,h)anthracene (DBA), indeno(1,2,3-c,d)pyrene (IND), 455 

benzo(b/k)fluoranthene (BBKFLRA), and chrysene (CHRY).   456 

Potencies calculated from known chemical composition using IEFs explained only 2-23% 457 

of the AhR-mediated potency observed in bioassay experiments (Table 3), and BaP-Eqchem and 458 
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BaP-Eqbio were not significantly correlated. This suggests that other compound groups present in 459 

the gaseous fraction of ambient air may also be contributing to BaP-Eqbio of the extracts. These 460 

may include additional parent PAHs and alkyl-PAHs not measured in this study, as well as 461 

oxygenated PAHs and N- and S-heterocyclic PAHs (Larsson et al. 2014; Sun et al. 2014; Lam et 462 

al. 2018). Compounds other than PAHs may also be responsible for some of the observed AhR-463 

mediated potency.   The use of BaP-Eqchem values derived from a different bioassay may also 464 

contribute to this discrepancy. 465 

The correlation observed between concentrations of EHDPP and AhR activity suggests 466 

that this compound, or other OFRs with similar source, may be contributing to BaP-Eqbio as well, 467 

though further research is needed to understand the AhR-mediated potency of OFRs. 468 

Furthermore, a major weakness of predicting potency based on compound IEFs is that it 469 

considers only additive interactions, without taking into account synergistic and antagonistic 470 

effects, which are highly probable in complex environmental mixtures. This, along with the 471 

scarcity of IEF values for the targeted compounds, most likely contributed to the discrepancy 472 

between observed and predicted AhR-mediated potency.    473 

 474 

CONCLUSIONS 475 

This study demonstrated the use of PEs coupled with in vitro bioassays as an approach to 476 

measure cumulative biological effects of ambient gaseous air pollution. While some AhR-477 

mediated activity was seen in the PE blank, the activity of field samples was found to be 478 

significantly elevated above blank levels, suggesting that interference from the PE matrix or 479 

typical laboratory contamination did not prohibit the use of PE extracts in bioassays for AhR 480 
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activation. In future studies using this approach, a thinner PE sheet (~ 50 µm) may be preferable 481 

to avoid extra cleanup steps caused by PE precipitate in the final extract, as thinner PEs contain 482 

less PE mass and require less time for extraction. In addition, future work employing effect-483 

directed analysis, as has been used in passive sampling studies of wastewater (Sonavane et al. 484 

2018), could aid in identifying contaminants driving observed biological effects. 485 

AhR-mediated potency varied significantly between different sites and was greatest in 486 

downtown Cleveland. Potency of the extracts displayed some correlation with PAHs common in 487 

the gaseous phase, as well as EHDPP, though causative links were difficult to establish. This 488 

work highlights the importance of learning more about the AhR-mediated potency of emerging 489 

contaminants that are present at elevated concentrations in urban ambient air, including OPEs 490 

and other OFRs. This study further supports previous studies suggesting that the BaP-Eqchem 491 

approach underestimates risks of exposure to environmentally-relevant chemical mixtures, as 492 

AhR activation caused by organic contaminants in a mixture may be augmented by other 493 

unmonitored chemicals in the mixture and their unforeseen interactions.   494 

Supplemental Data: The Supplemental Data, including a map of study locations, list of all 495 

target analytes, summary of concentrations in dosing solutions for all analytes, positive control 496 

dose-response curve, and correlation analyses between compounds, are available on the Wiley 497 

Online Library at DOI: 10.1002/etc.xxxx. 498 
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TABLES AND FIGURES 684 

 685 

TABLE 1. Sampling Site Characteristics 686 

Location 

Name 
Latitude Longitude 

Deployment 

Date Range 

Volume Air 

Sampled (m3)a Site Class 

Nearby 

Population 

Densityb 

Cleveland 

Lakefront 1 
41.507 -81.703 6/30/13-9/7/13 7466 Urban 359397 

Cleveland 

Lakefront 2 
41.492 -81.733 7/11/13-9/11/13 6588 Urban 342363 

Cleveland 

Downtown 1 
41.492 -81.679 7/1/13-9/5/13 7013 Urban 453257 

Cleveland 

Downtown 2 
41.477 -81.682 7/1/13-9/5/13 5994 Semi-Urban 481527 

Cleveland 

Downtown 3 
41.447 -81.660 7/1/13-9/5/13 7023 Semi-Urban 497567 

University 

Heights 
41.488 -81.549 7/2/13-9/8/13 4938 Semi-Urban 510538 

Fairport 

Harbor 

Lakefront 

41.758 -81.277 7/3/13-8/29/13 4562 Residential 68591 

Kent 41.164 -81.361 7/2/13-9/10/13 4934 Residential 118272 

Cuyahoga 

National 

Park 

41.162 -81.543 7/2/13-9/7/13 7026 Rural/Park 168225 

 687 

a Volume of air sampled calculated using the sampling rate for phenanthrene, which was 688 
estimated based on PRC loss data from co-deployed thin PEs multiplied by the deployment 689 

length.  690 

b Population density determined by calculating the total number of people within a 10 km radius 691 

using the GRUMPv1 database from Columbia University CIESIN (Center for International Earth 692 
Science Information Network (CIEISIN), 2011).  693 

 694 
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TABLE 2. Potency and Maximum Efficacy of PE Extracts 701 

Sample 
ECBaP50±STDEV 

(g PE/mL) 

Maximum 

Efficacy±STDEV 

(% of pos. control) 

Cleveland Lakefront 1 2.2±1.2 188±39 

Cleveland Lakefront 2 1.9±0.2 109±4 

Cleveland Downtown 1 0.5±0.1 138±39 

Cleveland Downtown 2 1.6±0.2 94±13 

Cleveland Downtown 3 1.1±0.3 179±55 

University Heights 1.6±0.3 230±18 

Fairport Harbor Lakefront  4.1±0.9 178±22 

Kent 2.6±0.4 188±18 

Cuyahoga National Park 6.6±1.2 110±15 

 702 

ECBaP50 = Concentration of the sample resulting in 50% of the effect observed for the plate-703 

specific positive control (120 nM BaP) 704 
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TABLE 3. BaP Equivalency of PE Extracts based on Bioassay and Chemical Analysis 720 

Sample BaP-Eqbio BaP-Eqchem 
%BaP-Eqchem                  

    BaP-Eqbio 

Cleveland Lakefront 1 64 2.9 4% 

Cleveland Lakefront 2 75 3.0 6% 

Cleveland Downtown 1 283 6.0 2% 

Cleveland Downtown 2 89 6.1 7% 

Cleveland Downtown 3 129 5.8 2% 

University Heights 89 4.7 3% 

Fairport Harbor 

Lakefront  
35 2.5 23% 

Kent 54 7.9 11% 

Cuyahoga National 

Park 
21 1.6 7% 

 721 

BaP-Eqbio = Benzo[a]pyrene equivalents (ng/uL) based on bioassay dose-response curve 722 

BaP-Eqchem = Benzo[a]pyrene equivalents (ng/uL) estimated based on chemical analysis 723 

 724 
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FIGURE LEGENDS 735 

FIGURE 1. Concentration and composition of PAHs and OPEs in PE extracts (A and B; ng/μL) 736 

and ambient air (C and D; ng/m3). Site name abbreviations are BLK: PE Blank; CUY: Cuyahoga 737 

National Park; KENT: Kent; FHL: Fairport Harbor Lakefront; UH: University Heights; CLH: 738 

Cleveland Downtown 3; CLT: Cleveland Downtown 2; CLF: Cleveland Lakefront 1; CLE: 739 

Cleveland Lakefront 2; CLD: Cleveland Downtown 1  740 

FIGURE 2.  Concentration-response curves for triplicate cell exposures to PE extract dilution 741 

curves, including the PE Blank. Concentrations are expressed as the mass of PE extracted per 742 

mL DMSO in each dosing solution. Activity is expressed as the ratio of the response to the PE 743 

extract as compared to the response of the positive control (120 nM BaP). 744 

FIGURE 3. Map of BaP-Eqbio, total PAH concentrations (Σ40PAH), and total OPE 745 

concentrations (Σ12OPE) in PE extracts from each site. The size of each circle represents the 746 

value at each site, with the smallest and largest circles representing the minimum and maximum, 747 

of the range of values. 748 

FIGURE 4. Relative contribution of PAHs to BaP-EQchem, based on IEFs from Machala et al. 749 

(2001). Compound abbreviations are FLRA: fluoranthene; PYR: pyrene; BAA: 750 

benzo[a]anthracene; CHRY: chrysene; DIMEBAA: 7,12-dimethylbenz[a]anthracene; 751 

BBJKFLRA: benzo[b,j,k]fluoranthene; BAP: benzo[a]pyrene; IND: indeno[1,2,3-c,d]pyrene; 752 

DIBA: dibenz[a,h]anthracene. Place name acronyms are defined in the caption for Figure 1.  753 

 754 
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