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The classic anthropological hypothesis known as the “obstetrical
dilemma” is a well-known explanation for human altriciality, a con-
dition that has significant implications for human social and behav-
ioral evolution. The hypothesis holds that antagonistic selection for
a large neonatal brain and a narrow, bipedal-adapted birth canal
poses a problem for childbirth; the hominin “solution” is to truncate
gestation, resulting in an altricial neonate. This explanation for
human altriciality based on pelvic constraints persists despite data
linking human life history to that of other species. Here, we present
evidence that challenges the importance of pelvic morphology and
mechanics in the evolution of human gestation and altriciality. In-
stead, our analyses suggest that limits to maternal metabolism are
the primary constraints on human gestation length and fetal
growth. Although pelvic remodeling and encephalization during
hominin evolution contributed to the present parturitional diffi-
culty, there is little evidence that pelvic constraints have altered
the timing of birth.

bipedalism | EGG hypothesis | energetics | metabolic crossover hypothesis |
pregnancy

Eutherian mammals vary widely in their degree of development
at birth. Altricial species (e.g., rodents and some carnivores) are

characterized by a large number of littermates and short gestation
lengths, resulting in relatively undeveloped brains, a lack of spe-
cialization in corporal development, and feebleness at birth. Altri-
cial neonates are usually hairless and dependent on external sources
for warmth, and their sensory organs are often closed. In contrast,
precocial species (e.g., bovids, equids, cetaceans) are born when
they are highly developed with fully open and operating sensory
organs. Immediately after birth, precocial neonates begin behaving
similarly to adults in movement, sensory perception, and commu-
nication. Neonate development is thought to reflect each species’
evolved maternal investment strategy, as well as environmental
pressures, such as resource availability and predation risk (1–3).
Humans differ from other primates in terms of neonatal de-

velopment. Our neonates are born with the least-developed
brains of any primate, with brains less than 30% of adult size (4).
As a result, although human newborns are precocial in other
respects, our neonates are neurologically and behaviorally altri-
cial. Portmann (5) coined the term “secondary altriciality” to
describe the distinct state of human neonates compared with the
kind of primary or primitive altriciality experienced by other
mammals and derived with respect to primate precociality. He
estimated that instead of 9 mo, a gestation period of 18–21 mo
would be required for humans to be born at neurological and
cognitive developmental stage equivalent to that achieved by
a chimpanzee neonate (see also ref. 6).
Human altriciality has long been seen as an important hominin

trait, not just because of its departure from the other primates
but because of the reproductive and social strategies that vul-
nerable human babies demand. With highly dependent babies
that mature slowly and cannot cling to their mothers, humans
care for offspring through pair-bonding, grand-parenting, and
alloparenting. Thus, hypotheses for the evolution of human be-
havior have often hinged on the evolution of human birth and
neonatal development (7–9).

Portmann (5) hypothesized that human altriciality was adap-
tive: that truncating gestation allowed for an “extrauterine spring”
during the first year after birth, when a human infant develops
cognitive and motorneuronal skills. However, it is more commonly
proposed that human gestation length and altriciality are a solution
to the uniquely human “obstetrical dilemma” (10–20), also called
the “obstetric dilemma” and, henceforth, referred to as OD. The
OD hypothesis proposes that Pleistocene hominins faced antago-
nistic selection pressures on locomotor requirements and enceph-
alization. These competing demands pushed fetal brain size to the
functional limits of homininmothers’ bipedal-adapted pelves. With
continued pressure for increased adult brain size, natural selection
favored mothers who birthed babies earlier in fetal development
while still small enough to escape the narrow birth canal. In other
words, in an evolutionary tradeoff, natural selection favored
a shorter gestation period and less developed neonates to accom-
modate both locomotion and encephalization.
As an explanation for altriciality, arguments for the OD often

focus on the dimensions of the human pelvis and the compli-
cated and difficult nature of childbirth. Where Cesarean sections
are not performed, human pelvic morphology determines the
maximum size of the neonate that can pass through the birth
canal safely, as in all mammals with bony birth canals. However,
in humans, the birth canal is smaller relative to neonatal size
than it is in most other primates (Fig. S1), which has been partly
attributed to adaptations for bipedal locomotion (13, 21–23). As
a result, many humans experience rotation during childbirth to
pass through the birth canal, which from inlet to outlet shifts
from being widest in the mediolateral plane to widest in the
anteroposterior plane. Because of the difficulties of childbirth,
nearly all women in nearly all cultures have assistance during
labor, and mothers sometimes die in the process (24).
The OD focus on pelvic constraint as the explanation for hu-

man gestation timing and altriciality is intuitively appealing, but is
it correct? That is, given that all female mammal pelves are under
selection to accommodate neonates, are human pelves uniquely
limited and, thus, uniquely influencing life history? Using data
that were unavailable when the OD hypothesis was initially pro-
posed, here we reexamine gestational investment among humans
and other primates. We then test the primary prediction of the
OD hypothesis that increased pelvic breadth results in mechan-
ically and energetically compromised walking and running in
humans. As we demonstrate, current data strongly challenge
components of the OD. Instead of a pelvic constraint, we propose
a different explanation for the timing of human birth: human
gestation length, neonatal size, and altriciality are the con-
sequences of a constrained maternal metabolism.
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Human Gestation in a Comparative Context
Gestation Length. Gestation length among placental mammals is
related to body size, but gestation length in humans is shorter
than expected based on how much growth the neonatal brain
must achieve to reach adult size (25). However, using adult brain
size as an allometric scalar for gestation length (or any trait) will
lead to relatively low values for humans simply because of our high
degree of encephalization. Instead, we compared human gestation
length to that of other primates using maternal body size, a reli-
able proxy for maternal resources and metabolism (25, 26).
At 38–40 wk, on average, human gestation is absolutely longer

than that of Pan (32 wk) and Gorilla and Pongo (37–38 wk).
Controlling for the positive relationship between maternal body
mass and gestation length in primates (n = 21 species; r2 = 0.56;
Fig. 1 and Fig. S2), humans are second only to Pongo in their
gestation length. Human gestation length is 37 d longer than
expected for a primate of similar body mass, relatively longer
than either Gorilla or Pan. So not only is human gestation not
truncated, as comparisons controlling for adult brain size might
suggest, but the data indicate that gestation has increased in the
hominin lineage.

Maternal Investment. One possible interpretation of human altri-
ciality is that human mothers invest less in fetal brain and body
development than other primates, forgoing the last bit of ma-
ternal investment during gestation so neonates can negotiate the
uniquely constrained birth canal. However, human neonates are
large compared with other mammals (14, 27, 28), indicating that
they receive more, not less, maternal investment during gestation
than expected.
Compared with chimpanzees, humans have small brains at

birth relative to adult brain size; humans are born with brains less
than 30% their adult size, whereas chimpanzees are born with
brains ∼40% their adult size (4) (Fig. S3). However, as with
gestation length, the use of adult brain size as an allometric scalar
will always produce low values of human neonatal brain size.
Instead, we compared neonate body and brain size among

humans and other primates to maternal body size (29), which is
a proxy for the metabolic resources of the mother (Fig. 1). Hu-
man neonatal brains are larger than those of other apes both in
absolute measures and in relation to maternal body size. Human
neonates have brains 47% larger than gorillas and body masses
twice that of gorillas, the primate with the next largest values.
Controlling for the positive relationship between mothers’ body
mass and neonatal brain size among primates (n = 21 species;
r2 = 0.87) humans have neonatal brain sizes a full SD above that

expected from maternal body size (z score = 1.01), substantially
larger than the other apes. Human neonatal body size is also
larger than expected (z score = 1.29).
Together with the measurement of gestation cited above,

these results suggest that neonatal brain and body size have in-
creased in the hominin lineage and that human maternal in-
vestment is greater than expected for a primate of our body
mass. Increased gestation length and investment in humans point
to a divergent strategy for increased fetal growth relative to other
hominoids. However, given the helpless nature of human neo-
nates and the challenges of caring for them, the question
remains: what limits further fetal growth?

Testing the Obstetrical Dilemma Hypothesis
As outlined above, the traditional explanation for the apparent
constraint on increased fetal investment in humans is the OD
hypothesis, which suggests that broadening the female pelvis
beyond its current dimensions would significantly diminish lo-
comotor performance. The OD hypothesis suggests that the
sexual dimorphism evident in human pelves evolved because
childbirth in Pleistocene hominins was difficult and dangerous,
and selection favored a wider pelvis to lower the risks associated
with delivery by better accommodating an encephalized neonate.
Indeed, females are smaller-bodied than males but have abso-
lutely wider interacetabular breadths, and other dimensions of
the pelvis, than males (30). As a complex trait, pelvic morphol-
ogy experiences a variety of selection pressures in both males and
females. Women’s walking and running mechanics are similar to
those of men, and it is widely held that selection has favored
female pelvic morphology that is conducive to successful partu-
rition but compromises locomotor efficiency (21, 31, 32). The
OD hypothesis argues that further broadening of the female
pelvis is evolutionarily untenable, because the concomitant de-
crease in locomotor efficiency would reduce fitness.
The argument linking pelvic width and locomotor efficiency

centers on the function of the hip abductors during walking and
running. The hip abductors (M. gluteus medius and minimus)
activate during single-leg-support phase during walking and
running to prevent the trunk from rotating (falling) away from
the stance leg. The traditional view of hip abductor mechanics
(the view integrated into the OD hypothesis) is that broader
pelves ought to increase the force required by the abductors,
thereby increasing their activity and metabolic demand. This
view is based on static mechanical models of the human pelvis
where biacetabular breadth is expected to define the external
moment arm, R, of the resolved ground reaction force gener-
ating torque about the hip (Fig. 2). Thus, the OD predicts that
female walking and running should be more costly than that of
males and that any additional evolutionary broadening of the
pelvis would further increase the force required by the abductors
and reduce walking and running economy.
We drew on recent work examining the mechanics and ener-

getics of walking and running in humans to test these pre-
dictions. Numerous studies over the past three decades have
measured the metabolic energy cost of walking and running in
men and women with varying results; the majority have found no
difference in cost, with some finding that females are more
economical (SI Text). The inconsistency of these results high-
lights the variability in locomotor cost among humans, as well as
methodological differences in calculating cost. However, taken
together, these studies strongly challenge the expectation of the
OD hypothesis, that wider female pelves negatively affect loco-
motor economy.
Recent work on the mechanics of hip abductor muscles moves

beyond the static models used by the OD hypothesis to more
explicitly and dynamically address the relationship between pelvic
shape and locomotor cost. A study of 15 men and women (SI
Text) by A.G.W. demonstrated that mediolateral ground force
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Fig. 1. Maternal investment in hominoids. Among the great apes, humans
have relatively long gestation lengths, large-brained infants, and large-
bodied infants. For further explanation, see Fig. S2.
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production and segmental accelerations of the foot and shank
alter hip abductor force production in ways that cannot be
predicted by pelvic width alone. Walking and running trials, in
conjunction with anatomical data taken from lower body MRIs,
showed that biacetabular width does not predict the length of
the external moment arm, R, about the hip in the coronal plane
(Fig. 2 and Fig. S4). These data indicate that skeletal dimen-
sions of the pelvis do not predict the magnitude of hip abductor
muscle force activation. Instead, subtle variation in walking and
running dynamics counteracts the potential cost of broader pelves.
Together with studies of locomotor cost outlined above, these
results indicate that broader pelves are not less efficient and that
women’s locomotor economy is not reduced by virtue of having
broader pelves.
Finally, it should be noted that broadening the human female

pelvis to birth a neonate with chimpanzee-like brain develop-
ment would not radically change human pelvic dimensions. To
birth a human baby at the same stage of brain development as a
chimpanzee neonate, at ∼40% its adult brain size (4), a human
mother’s pelvis would need to accommodate a fetal brain size of
640 cc. Considering the neonatal head as a sphere (33), and
accounting for the layers of meninges, bone, and skin, a neonatal
brain this large would have a diameter of ∼11–12 cm. This di-
ameter is less than 3 cm larger than that of the typical human
neonatal head, which has a brain size of 350–400 cc after 9 mo of
gestation (29), and a diameter of about 9 cm (33). This suggests
that birthing a neonate with a brain size 40% that of adults would
require a 3-cm increase, on average, in the mother’s pelvic inlet
to pass that larger fetus. A 3-cm increase is within the range of
pelvic dimensions seen in modern human females (30) and has
no measurable effect on hip abductor mechanical advantage
(Fig. 2) or, as discussed above, on locomotor cost. In other
words, the available evidence suggests that human females could
adapt to accommodate a 640 cc neonatal brain without any re-
duction in locomotor economy (contra ref. 6). [Other aspects of
neonate size morphology (e.g., shoulder breadth) can also con-
tribute to parturitional difficulty; we do not address these here.]

In sum, biomechanical evidence fails to support the predictions
of the OD hypothesis regarding locomotor cost. There is no evi-
dence that female pelvic morphology affects locomotor cost, or
that further neonatal brain expansion is evolutionarily con-
strained by pelvic mechanics. Instead, and as in other mammals,
human pelvic dimensions have been selected to accommodate
neonate dimensions, which, we suggest, are, in turn, constrained
by some other aspect of maternal or fetal physiology. We propose
that the primary constraint on human neonatal brain and body
size is maternal metabolic throughput, as it is across mammals.

Metabolic Hypothesis for Gestation Length and Fetal
Growth
Gestation places a heavy metabolic burden (measured in calories
consumed) on the mother (34). During gestation, mothers must
support the metabolic cost of tissue growth (both of the fetus and
the mother), as well as the ever-increasing metabolic rate of the
growing fetus. Comparative data from across mammals and
primates suggest that there is a metabolic constraint on how
large and energetically expensive a fetus can grow before it must
leave the mother’s body (29, 35–38). We propose that energetic
constraints of both mother and fetus are the primary determi-
nants of gestation length and fetal growth in humans and across
mammals and, for ease of communication, we have named this
the “EGG hypothesis” (energetics of gestation and growth).
Under this hypothesis, the timing of human birth is a direct
consequence of maternal metabolic constraints.
The EGG hypothesis is essentially an extension of Ellison’s

(39) “metabolic crossover hypothesis” for gestation length and
timing of parturition in humans. According to current under-
standing, the normal onset of parturition in humans is governed
by the balance between maternal and fetal metabolism and not
by uterine or pelvic constraints. Labor begins when fetal energy
demands surpass, or “crossover,” the mother’s ability to meet
those demands. The timing of parturition is determined by met-
abolic stress via hormonal signaling (SI Text).
The biochemical processes governing the timing of birth are

different for different species, but the EGG hypothesis is consistent
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with physiological evidence for metabolic constraints on repro-
duction across mammals. Laboratory studies of mammals con-
sistently show that sustained (i.e., over multiple days) metabolic
rate is constrained and that energy costs during pregnancy and
lactation approach the metabolic ceiling for many species (40).
In humans, maximum sustained metabolic rate is thought to be
2.0–2.5× basal metabolic rate (BMR) (40, 41). [Tour de France
cyclists can approach 4–5× BMR, but this is not typical for humans,
which generally do not exhibit sustained energy expenditures in
excess of 2.5× BMR (40).] During pregnancy, metabolic rates in
human mothers quickly approach this limit, with daily energy
expenditures two times greater than prepregnancy BMR by the
sixth month (42, 43). Throughout the rest of pregnancy and through
the first months of nursing, maternal metabolic rates stay at 2.0×
BMR but never climb higher, even in populations where stren-
uous manual labor is common among pregnant women and new
mothers (40, 42, 43). Instead, among both affluent and energy-
stressed populations, women commonly use a range of behav-
ioral and physiological strategies to reduce daily energy needs
during pregnancy and lactation (44). Together, these studies
suggest that across human populations mothers approach a meta-
bolic ceiling during pregnancy that constrains further energy
throughput.
The length of human gestation and the timing of parturition

appear to follow directly from this constraint on sustained ma-
ternal metabolic rate. As a fetus grows exponentially throughout
gestation, so do the metabolic requirements for tissue growth
and maintenance (Fig. 3). By 9 mo, metabolic demands of the
fetus threaten to push maternal energy requirements beyond
2.1× BMR. Extending gestation by even one month would likely
require metabolic investment beyond the mother’s capacity. In-
stead, the mother delivers and the neonate’s growth rate slows
relative to its fetal growth rate, keeping both the offspring’s and
the mother’s energy requirements in check.

Discussion
The combined circumstantial evidence of unique locomotion, high
adult encephalization, atypical neonatal altriciality, and difficult

childbirth has long been used to support the hypothesis that
human gestation and fetal growth are constrained by the passage
of neonates through the mechanically constrained hominin pelvis
(OD). However, the available data on maternal energy use and
neonatal energy demand indicate that metabolic constraints de-
termine the timing of parturition and degree of fetal investment
for human mothers (EGG). Furthermore, the EGG hypothesis
suggests that increased maternal metabolism, not increased pel-
vic dimensions, may be the primary target of selection for in-
creasing fetal investment in humans. This view is consistent with
recent work showing daily energy expenditures in humans are
greater than those of orangutans (45), but more data on ape energy
expenditure are needed to test this prediction of the EGG
hypothesis.
The EGG hypothesis provides a different perspective on the

evolution of hominin brain size, gestation, and pelvic anatomy.
Both the OD and EGG hypotheses envision brain expansion in
Plio-Pleistocene hominins leading to a tight coupling of neonatal
brain and maternal pelvis dimensions (Fig. 4). The OD hy-
pothesis proposes that further fetal brain expansion is con-
strained by locomotor demands on the pelvis, whereas the EGG
hypothesis proposes that further fetal brain expansion is con-
strained by the limits of maternal metabolism (Fig. 4). In the
EGG scenario, the female pelvis has adapted to the size of the
fetal brain, not the other way around. This view is supported by
the metabolic comparisons presented here and by the well-
documented pelvic dimorphism evident in humans.
However, if the human female pelvis is adapted to the size of the

neonatal head, then why is there such a tight and often problematic
fit? One possibility is that female body size is under strong sta-
bilizing selection, such that a greatly expanded pelvis, and the
larger body sizes it would entail, is selected against. This scenario
is consistent with the view that female body size is constrained by
ecological factors (46). A second possibility is that expanding the
pelvis beyond its current dimensions would diminish some unex-
amined, nonenergetic aspect of locomotor performance, such as
speed or stability. Wider pelves may also increase the risk of in-
jury, either through increasing the likelihood of pelvic prolapse
(47) or by increasing mediolateral stresses on the knees and ankles
(48). These scenarios would suggest an OD-like mechanism acting
on pelvic morphology secondarily to the metabolic limits on neo-
natal body and brain size. A third possibility is that the present level

Fig. 3. Metabolic constraint on gestation length and fetal size. Fetal energy
demands (black circles, kcal/d) increase exponentially during gestation.
Maternal energy expenditure (gray squares) rises during the first two tri-
mesters but reaches a metabolic ceiling in the third, as total energy require-
ments approach 2.0× BMR. Projected fetal energy requirements for growth
beyond 9 mo (dashed line) quickly exceed the maximum sustainable meta-
bolic rates for human mothers. After parturition (arrow), infant energy
demands (black circles) increase more slowly, and maternal energy require-
ments do not exceed 2.1× BMR. Required maternal energy expenditure for
a fetus developmentally similar to a chimpanzee newborn (7-mo-old infant;
symbol with asterisk) would entail maternal energy requirements greater
than 2.1x BMR. Data are from refs. 40–42 (Table S2).

A Early Hominin Condition B  Hominin Brain Expansion

C
Obstetrical Dilemma

D
EGG Hypothesis

brain

PELVIS

Fig. 4. Schematic of OD and EGG hypotheses. (A) Early hominins, like living
apes, have little difficulty in parturition; the neonatal brain is small relative
to the pelvic outlet. (B) As hominin brain size expands, neonatal brain and
pelvis size become tightly coupled. (C) The OD hypothesis proposes that
further neonatal brain expansion is constrained by selection acting on pelvic
width: the female pelvis cannot expand further because of selection on lo-
comotor economy. (D) The EGG hypothesis proposes that further neonatal
brain expansion is constrained by the limits of maternal energy supply:
larger neonatal brain and body sizes would exceed the mother’s capacity to
provide energy to the fetus (Fig. 3).
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of difficulty and danger in childbirth is a relatively recent phenom-
enon brought on by an increase in maternal energy consumption
(49). In this scenario, recent changes in the diet have increased
energy availability during gestation, leading to larger neonates, but
selection has not had sufficient time or reason to accommodate the
female pelvis to this recent dietary change. Finally, a fourth pos-
sibility, originally proposed by Portmann (5), is that the timing of
human birth and degree of neonatal brain development optimizes
cognitive and motor neuronal development (50). Additional work
is needed to determine whether these factors, or others, might help
to explain the difficulty of birth in modern human populations.
Although the development of neural circuitry, pelvic size, fetal

growth rates, and other factors may be involved in the evolution
of gestation length, the evidence we present here supports an
energetic explanation, based on mammalian physiological con-
straints, for the timing of human birth. Under the EGG hy-
pothesis, if the human reproductive system poses a dilemma
between competing needs, then fetal energy needs and maternal

energy supply are the competitors, rather than encephalization
and bipedalism. Thus, human neonatal altriciality is better de-
scribed as prolongation of fetal brain maturation and growth
irrespective of parturition (5). With a better understanding of the
energetic constraints on gestation and fetal growth and a stron-
ger grasp of all of the factors that determine human birth timing,
there is greater potential to explain the evolution of the extended
human childhood and to understand its biological, behavioral,
and cultural consequences.
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