
University of Rhode Island
DigitalCommons@URI
Civil & Environmental Engineering Faculty
Publications Civil & Environmental Engineering

2013

Environmental Factors Influencing Epidemic
Cholera
Antarpreet Jutla

Elizabeth Whitcombe

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/cve_facpubs

Terms of Use
All rights reserved under copyright.

This Article is brought to you for free and open access by the Civil & Environmental Engineering at DigitalCommons@URI. It has been accepted for
inclusion in Civil & Environmental Engineering Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information,
please contact digitalcommons@etal.uri.edu.

Citation/Publisher Attribution
Jutla, A., Whitcombe, E., Hasan, N., Haley, B., Akanda, A., Huq, A.,...Colwell, R. (2013). Environmental Factors Influencing Epidemic
Cholera. The American Society of Tropical Medicine and Hygiene, 89(3), 597-607. doi: 10.4269/ajtmh.12-0721
Available at: https://doi.org/10.4269/ajtmh.12-0721

https://digitalcommons.uri.edu?utm_source=digitalcommons.uri.edu%2Fcve_facpubs%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/cve_facpubs?utm_source=digitalcommons.uri.edu%2Fcve_facpubs%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/cve_facpubs?utm_source=digitalcommons.uri.edu%2Fcve_facpubs%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/cve?utm_source=digitalcommons.uri.edu%2Fcve_facpubs%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/cve_facpubs?utm_source=digitalcommons.uri.edu%2Fcve_facpubs%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4269/ajtmh.12-0721
mailto:digitalcommons@etal.uri.edu


Authors
Antarpreet Jutla, Elizabeth Whitcombe, Nur Hasan, Bradd Haley, Ali S. Akanda, Anwar Hug, Munir Alam, R.
Bradley Sack, and Rita Colwell

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cve_facpubs/15

https://digitalcommons.uri.edu/cve_facpubs/15?utm_source=digitalcommons.uri.edu%2Fcve_facpubs%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages


Am. J. Trop. Med. Hyg., 89(3), 2013, pp. 597–607
doi:10.4269/ajtmh.12-0721
Copyright © 2013 by The American Society of Tropical Medicine and Hygiene

Environmental Factors Influencing Epidemic Cholera

Antarpreet Jutla,* Elizabeth Whitcombe, Nur Hasan, Bradd Haley, Ali Akanda, Anwar Huq,
Munir Alam, R. Bradley Sack, and Rita Colwell

Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia;
Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland; Center for Bioinformatics and Computational Biology,

University of Maryland, College Park, Maryland; Department of Civil and Environmental Engineering, University of Rhode Island,
Kingston, Rhode Island; International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh; Bloomberg School of Public Health,
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Abstract. Cholera outbreak following the earthquake of 2010 in Haiti has reaffirmed that the disease is a major
public health threat. Vibrio cholerae is autochthonous to aquatic environment, hence, it cannot be eradicated but
hydroclimatology-based prediction and prevention is an achievable goal. Using data from the 1800s, we describe
uniqueness in seasonality and mechanism of occurrence of cholera in the epidemic regions of Asia and Latin America.
Epidemic regions are located near regional rivers and are characterized by sporadic outbreaks, which are likely to be
initiated during episodes of prevailing warm air temperature with low river flows, creating favorable environmental
conditions for growth of cholera bacteria. Heavy rainfall, through inundation or breakdown of sanitary infrastructure,
accelerates interaction between contaminated water and human activities, resulting in an epidemic. This causal mecha-
nism is markedly different from endemic cholera where tidal intrusion of seawater carrying bacteria from estuary to
inland regions, results in outbreaks.

INTRODUCTION

Cholera remains a major public health threat in developing
countries where safe water and sanitation facilities are inade-
quately available. The World Health Organization (WHO)
estimates that annually, about 3 to 5 million people are affected
worldwide by cholera and over 100,000 cases result in death
(http://www.who.int/mediacentre/factsheets/fs107/en/index.html
accessed on 11/12/2012). Vibrio cholerae is a natural inhabi-
tant of the aquatic environment,1 which with evidence of new
biotypes emerging from its environmental reservoir,2,3 indi-
cates that cholera bacteria cannot be eradicated. Because
cholera outbreaks will continue to occur over time, the most
effective means of controlling or preventing the disease is to
minimize exposure to pathogenic strains and/or high concentra-
tions of cholera bacteria. Cholera is one of the most prevalent
water-related infections in many regions of the world, specif-
ically in South Asia, sub-Saharan Africa, and Latin America.
Observational records show that the vast majority of cholera
outbreaks originate in coastal regions, indicating a strong
association between environment and the disease.4–8 Despite
significant advances in our knowledge of the metabolism,
pathogenesis, and genomics of V. cholerae, we still cannot
predict precisely when the next cholera epidemic will occur
or the probability, timing, and/or location of an outbreak, all
of which is essential if an effective intervention strategy is to
be designed and implemented. The recent outbreak of chol-
era in Haiti has affected millions of people and is a classic
result of having a limited understanding of the dynamics of
disease and the relationship of V. cholerae, the causative
agent of cholera, with its environment.
Microbiological and environmental understanding of chol-

era epidemics is based on studies conducted over the past
20 years in the Bengal Delta, unfortunately referred to as the
native homeland of the disease, despite the ubiquity of chol-
era globally. The Bengal deltaic region has endemic cholera

(endemic being defined as a region where recurrence and
persistence of the disease has continued for at least 10 consec-
utive years in the WHO cholera database). The challenge is
translating knowledge of the ecology, microbiology, and
pathobiology of V. cholerae and the epidemiology of cholera
into a predictive model applicable to regions where cholera
outbreaks are sporadic but not endemic. With respect to med-
ical treatment, oral rehydration therapy, within just a few
decades, has reduced the mortality rate of cholera from over
30% to < 1% in endemic regions, notably Bangladesh and
several sub-Saharan countries, e.g., South Africa, Congo,
Mozambique, and Ghana. Examples of countries with non-
endemic (or epidemic thereafter) cholera, that is, experienc-
ing periodic and sudden outbreaks of cholera include Pakistan
(2008) and Congo (2008), and most recently Haiti (2010). A
significant difference between an endemic and epidemic
region is the mortality rate, i.e., 1% or lower in an endemic
region. In contrast, > 3% mortality has been recorded for
epidemic regions over the last 5 years, including Zimbabwe
(4.3% in 2008–09), Angola (4% in 2006–07), Nigeria (3.8% in
2010), and Sudan (3.3% in 2006–07).9 Unfortunately, rates of
cholera in epidemic regions can exceed 6% (6.4% for Haiti in
2010 and 6% for Madagascar in 2000).9 A sharp contrast in
mortality rates between epidemic and endemic regions exists,
not because knowledge of how to treat cholera patients in an
unprepared community is lacking, but instead understanding
those environmental factors that contribute to outbreaks and/
or major epidemics is needed. The objective of this study was
to seek an understanding of the relationship between hydro-
climatological processes and cholera in epidemic regions. The
approach taken includes current knowledge of cholera and
the effectiveness of interventions, employing surveillance data
from endemic regions. Also taken into consideration is that
V. cholerae is autochthonous to the aquatic environment glob-
ally. Finally, outbreaks of cholera in endemic regions show
strong hydroclimatological influence, which is encouraging
because those conditions can be monitored in epidemic
regions. Within this context, seasonality was quantified as
a mechanism of occurrence and from that set of data, a
hydroclimatological explanation of the disease was developed
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providing a testable framework linking large-scale etiology
of cholera in epidemic regions.

DATA

Surveillance data for cholera in epidemic regions were
obtained by collecting and processing historical climatological
data from annual reports of the Meteorological Reporter to
the Government of India, covering a time period of 1875 to
1900. In addition, cholera mortality observations were obtained
from statistical statements appended to the Annual Reports
of the Sanitary Commissioner to the Government of Punjab,
1875–1900. During the time period of our study, 1875–1900,
there were no known disease interventions or mitigation strat-
egies available against cholera for the general population.
Therefore, in all likelihood pattern and seasonality in the time
series are not affected by introduced controls. We focused on
nine inland areas located in the Indus River Basin of North-
ern India and Pakistan (Figure 1). The Centers for Disease
Control and Prevention (CDC) of the United States has
defined outbreak and epidemics as a sudden increase in the
number of cases of a disease above what is normally expected
in that population in that area.10 Within this context, we ana-
lyzed global cholera occurrence time series from theWHO and
determined that regions where the least continuous data are
available be termed as endemic regions. Hence, the Pakistan
region of Indus River Basin has been categorized as an epi-

demic region in this study. Details of methods and analysis
are provided below.

RESULTS

Cholera in the Indus River Basin. The Indus basin has a
dense network of rivers and tributaries. The nine locations
shown in Figure 1 were both major agricultural and industrial
hubs during British rule over the Indian subcontinent. This
geographical region typically receives heavy monsoonal rainfall
from June through September and endures hot (air tempera-
tures greater than 30°C) summer months. Out of 312 study-
months, Lahore city recorded the highest number of cholera
outbreaks followed by Rawalpindi and Peshawar (Figure 1:
inset). Dera Ismail Khan had the lowest number of cholera
outbreaks over a span of 26 years. Regionally, cholera out-
breaks were reported for about 20% of the month-time of
the study period. Furthermore, cholera in this region is pri-
marily epidemic in nature, i.e., there is no periodic inter-
annual reoccurrence of disease over time. Figure 2 shows
seasonality in the monthly cholera time series for the nine
locations. The disease outbreaks are generally reported over
a range of months, typically from April through October.
We hypothesize that, in epidemic cholera regions, elevated

air temperatures create environmental conditions favorable
for bacterial growth and, when followed by above normal rain-
fall in combination with appropriate transmission mechanisms

Figure 1. Location of areas in the Indus River Basin where cholera outbreaks were reported from 1875 to 1900.

Figure 2. Seasonal cholera for nine locations in the Indus River Basin. The data were normalized between 0 and 1 for the purpose of
comparison. The solid line represents the regional average of cholera.

598 JUTLA AND OTHERS



such as poor availability of safe water11 and destruction of
sanitation infrastructures aiding in mixing of overflowing
sewers with flood waters,12 result in an epidemic of cholera.
As a result of inherent structure (zeros in the time series) of
the cholera mortality time series of our study, correlation
between the air temperature and cholera mortality time series
is essentially non-existent. Hence, we calculated odds of
occurrence of cholera during above and below average air
temperatures, as well as corresponding odds ratios (ORs) with
appropriate confidence intervals (CIs). Figure 3 shows that
the odds of a cholera occurring were significantly higher when
the temperature was above climatological average over the
previous 2 months. Cholera in Lahore, one of the major pop-
ulation centers of its time, showed highest odds of cholera
incidence when the air temperature was elevated during the
preceding months. We then calculated the ORs for cholera
(Figure 3) and found that, on an average, across nine regions,
the chances of an epidemic increased 6-fold if the air tem-
perature was above climatological average during 2 months
preceding the disease outbreak. Thresholds for air tempera-
ture and likelihood of an outbreak of cholera were then
determined. Percentage of cholera outbreaks over a range of

observed air temperatures for all locations was calculated and
plotted against temperature. Figure 4 shows that about 50%
or more cholera outbreaks occurred when the air temperature
is > 31°C, approximately one standard deviation from average
air temperature over the previous 2 months (solid line). How-
ever, air temperature alone will not cause an epidemic, unless
accompanied by appropriate transmission mechanisms such
as poor water quality and lack of sanitation infrastructure, as
well as rainfall. Given the inadequate water and sanitation
infrastructures during the time period of our study data for
North India, rainfall provides the most appropriate mecha-
nism for spread of cholera through cross-contamination of
water, with the population having to rely on surface water for
daily usage. The effect of rainfall is shown in Figure 5, i.e., the
odds of occurrence of the disease during above and below
normal rainfall and following months of above average air
temperature at the nine locations. The odds for rainfall were
calculated after isolating the months with above average air
temperature, which accounted for 91% of the total data
cholera outbreaks data points. This is complementary evi-
dence that cholera outbreaks have a strong association with
warm air temperature. In fact, the odds of a cholera outbreak

Figure 3. Odds of cholera outbreaks during above average and below average temperature and corresponding odds ratio.

Figure 4. Relationship between cholera outbreaks and air temperature. Y axis refers to percentage of cholera outbreaks during observed air
temperatures. X axis refers to the mean air temperatures in °C.
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occurring is 1.5 times greater than for below average precipi-
tation (Figure 5).
Several studies have postulated and quantified the role of

coastal water in the epidemiology of cholera.1,5,13–15 How-
ever, there is limited understanding of environmental factors
responsible for emergence of cholera in noncoastal areas
with active riverine systems. Influence of large-scale hydro-
climatological processes on cholera prevalence have been
reported,11,16,17 indicating cholera outbreaks in the Bengal
Delta may be related to asymmetrical spatial and temporal
hydroclimatological response to droughts and floods, creat-
ing conditions favorable for growth of cholera bacteria.
Increased rainfall in the Bengal Delta may result in wide-
spread floods and cholera outbreaks.7,11 Recently, studies
have used V. cholerae isolated from patient stool samples to
show cholera outbreaks in New Delhi occur during the
months of May through September.18 An increase in cholera

outbreaks following heavy rainfall is observed in epidemic
regions of Africa.19 Similar observations have been reported
in Bangladesh,20–22 Haiti,9 and East Africa.23 The role of air
temperature has also been highlighted in several recent stud-
ies. Incidence of cholera peaked when the air temperature
reached 26°C.24 Isolation of cholera bacteria increased sig-
nificantly when the air temperature was above 25°C in the
flatlands of India.25 Analysis of several freshwater sites con-
cluded that an early summer season (April–June) with warm
air temperatures was conducive to proliferation V. cholerae
in the environment.25

Recent epidemiological observations point out that the
northern region of the Indian sub-continent, which has no
coastal connection, has endured several cholera epidemics26–29;
obviously, environmental reservoirs of cholera bacteria caus-
ing outbreaks and prevalent transmission mechanisms in the
region, can be concluded to be linked. In the Indus river basin,

Figure 5. Odds of cholera outbreaks during above average and below average rainfall and corresponding odds ratio.

Figure 6. Theoretical framework for predicting cholera outbreaks in epidemic regions.
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all locations of reported outbreaks have been within 25 miles
of the nearest river: Delhi (Yamuna river), Lahore and
Ludhiana (Sutlej river), Sialkot (Chenab river), Rawalpindi
and Multan (Jhelum river), Peshawar (Kabul river), Dera
Ismail Khan (Indus river), and Sirsa (Sirsa river). Rivers have
long been recognized as an ecological corridor and habitat of
cholera bacteria and its host, the copepod.1,7,22,30 Thus, warm
air temperature, increased evaporation and water tempera-
ture, and decreased water levels in rivers, the primary source
of water for household use in the region, are linked to cholera
outbreaks. When there is a decrease in water level, an increase
in salinity will occur.31 Increased salinity creates favorable
environmental conditions for growth of cholera bacteria13,32–34

and, together with increased rainfall and poor sanitation,
yields a higher likelihood of a cholera epidemic.
We present a theoretical pathway, shown in Figure 6,

connecting large-scale hydroclimatological processes with
cholera occurrence in epidemic regions. Two rectangles are
depicted, with the inner rectangle representing conditions
associated with cholera in an epidemic region. If air tempera-
ture is above the climatological average for 2 months, and is
followed by above climatological average rainfall, in combi-
nation with poor or damaged water and sanitation access, it is
probable that the region will experience a cholera epidemic.
On the other hand, the outer rectangle, shown in Figure 6,
encapsulates conditions under which cholera generally does

not occur. If any of the conditions of the inner circle are not
met, the likelihood of cholera decreases. Two extreme case
studies are offered as validation of this hypothesis. The recent
outbreak of cholera in Haiti affected the entire population of
the country and it followed a massive earthquake that dam-
aged much of the region’s already severely limited water and
sanitation infrastructure. Following the earthquake, Haiti expe-
rienced above average warm air temperatures, in Figure 7A
(representing 50 years of average air temperatures over Haiti
taken from the National Oceanic and Atmospheric Adminis-
tration [NOAA] reanalysis data) showing that air tempera-
ture in the year 2010 was one standard deviation higher than
the long-term average. Similarly, as shown in Figure 7B Haiti
received anomalously high rainfall during the months of
September and October, 2010. The combination of these fac-
tors may be linked to the outbreak of cholera in Haiti during
October 2010 (additional detail is provided in the section
Cholera in Haiti).
Although the cholera outbreak in Haiti can be linked to

destruction of water and sanitation infrastructure after the
earthquake, and continued unhygienic living conditions in
refugee camps, a similar disaster in Pakistan in 2005 report-
edly did not lead to a massive cholera outbreak. In contrast,
following the flooding that occurred in Pakistan during 2010,
more than 600,000 people sought treatment of diarrheal dis-
ease. A key difference between the Pakistan 2005 and 2010

Figure 7. (A) Air temperature in Haiti in 2010 and average of air temperature data for last 50 years. (B) Monthly rainfall in Haiti in 2010
compared with historical rainfall data.
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disasters was that environmental conditions fostering bacterial
growth and proliferation in the latter instance were present,
i.e., during 2010. The 2005 Pakistan flooding occurred just
before winter in a mountainous region, with extremely cold
conditions, not conducive to growth and spread of V. cholerae.
Conversely, the August 2010 floods occurred in the flatlands
of Pakistan with conditions enhancing propagation of cholera
bacteria. A major cholera epidemic did not occur after the
severe hurricane that battered the Gulf Coast of the United
States in 2005 and this raises a question, namely that despite
Hurricane Katrina, a cholera epidemic did not occur in
Louisiana, a state severely impacted by the event. Over the
past 5 years, a total of 44 cases of cholera have been reported
in the United States, however none led to an outbreak and it
is concluded that this is because robust water and sanitation

infrastructure and effective prevention methods to halt the
spread of the disease exist in the United States.

CHOLERA IN HAITI

Cholera that broke out in Haiti following the massive earth-
quake of 2010 has been widely reported as potentially a
human-driven outbreak, where United Nations (UN) peace-
keepers from Nepal were assumed to be carriers of the
V. cholerae 01.35,36 However, the role of regional hydroclima-
tological processes in the Haitian outbreak has not been
addressed. The pathway presented in Figure 6 suggests
environmental conditions were near optimal for an outbreak
of cholera in Haiti. The air temperature analysis given in
Figure 7A, shows high air temperature preceding the cholera

Figure 8. Cholera cases in Mirebalais, seven communes (St-Marc, Dessalines, Desdunes, Grande Saline, Lestere, Petite-Rivière-de-
l’Artibonite, Verrettes) and other communes (in Nord and Sue-Est) of Haiti (data obtained from Piarroux and others37). Daily rainfall data were
obtained from the Tropical Rainfall Measuring Mission (TRMM) satellite (black).

Figure 9. Location of health centers reporting cholera cases in communes along the Artibonite River on October 20, 2010, Haiti.
MINUSTAH, United Nations Stabilization Mission in Haiti (extracted from Piarroux and others37).
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outbreak in Haiti. In fact, the 2010 air temperature during the
months preceding the cholera outbreak in Haiti was above
the long-term climatological average by one standard devia-
tion. The combination of a lack of safe water and sanitation
system, elevated air temperatures, and above average rainfall
(Figure 7B), produced conditions optimal for cholera by
October 2010. For Haiti, we used daily cholera case data
reported by Piarroux37 that comprises three time series: chol-
era cases in Mirebalais, total cases reported from seven com-
munes (St-Marc, Dessalines, Desdunes, Grande Saline, Lestere,
Petite-Rivière-de-l’Artibonite, Verrettes), and from other
communes (Nord and Sue-Est) of Haiti (Figure 8). The first
cholera case was reported on October 13, 2010 in theMirebalais
region (Meille) located near Artibonite River (Sack D, per-
sonal communication). On October 20, 2010, ~1000 cases of
cholera were recorded in seven communes downstream of the
Artibonite River (Figure 9).
Daily precipitation data were obtained from Tropical Rain-

fall Measuring Mission (TRMM) satellite sensors over the
Haiti region. A 6-day lagged Spearman rank correlation
(Figure 10) between rainfall and cholera cases in Mirebalais
and seven communes were 0.53 (P < 0.001) and 0.44 (P <
0.001), respectively, the highest statistically significant corre-

lation over the course of 30 days. Given the fact that air
temperatures were significantly high in 2010, the strong cor-
relation between rainfall and cholera cases indicates rainfall is
an important contributing factor in producing environmental
conditions optimal for proliferation of V. cholerae in commu-
nities where water and sanitation infrastructure had been
destroyed or were non-existent. In fact, Haiti received a total
of 209 mm rainfall, with 26 rain days out of the 30 preceding
the first reported cholera case (Figure 8). For the other com-
munes, located far from the Artibonite River, correlation was
not statistically significant and was expected to be weaker
than the Mirebalais and seven downstream communes. Other
communes are located on the northern and southern coasts of
Haiti—which are farther from the Artibonite River. Hurricane
Thomas lashed the region with heavy rainfall along the coast
of Haiti on November 5–6, 2010, as shown in Figure 8. The
surge in cholera cases in the other communes can be related
to widespread inundation caused by the hurricane rainfall in
combination with movement of the population over this time
period to other regions. In fact, after the hurricane, a spike in
cholera cases was observed in the other communes, whereas
Mirebalais and the seven communes showed a relatively stable
number of cholera cases.

Figure 10. Thirty-day lagged correlation between daily precipitation and Mirebalais and seven Communes (data from October 16 to
November 30, 2010).

Figure 11. Lagged Spearman correlation between Mirebalais and seven communes.
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The data presented in Pairroux and others (2011) reported
a strong correlation between cholera cases in Mirebalais and
seven communes (Table 2 in Reference 37). They noted that
cholera was reported in seven communes 5 days after the
first cholera case was reported in Mirebalais (Figure 2 in
Reference 37). However, counteracting statistical evidence is
presented here to show that it is equally uncertain that spread
of cholera occurred from Mirebalais to seven communes.
Simultaneous Spearman rank correlation between the two
time series, obtaining statistically significant values were cal-
culated.37 However, when correlation is computed between
Day 1 cholera case in Mirebalais with Day 6 cholera case in
the seven communes, Day 1 Spearman correlation, indeed, is
very high (0.65, P < 0.01; Figure 11). However, correlation
decreases as lag increases, almost statistically insignificant at
a lag of 5 days (0.40; P < 0.11). Simultaneous occurrence using
time series of cholera cases in the Mirebalais and other com-
munes is assumed to occur by the Artibonite River with the
reasonable assumption that the Artibonite River is heavily
contaminated with domestic waste, including human patho-
gens, e.g., V. cholerae 01. This assumption does not take into
account the spatial spread of the disease, which is the second-
ary transmission mechanism.
Complementary evidence, however, highlights the role of

environmental processes related to cholera in Haiti. Over-
whelming evidence in the literature shows that V. cholerae is
autochthonous to the aquatic environment in both freshwater
and estuarine systems25,38–41; previous studies have shown
that the pH value of ~8.013,42 and warm water temperatures
between 19 and 28°C33,43 are related to an increased concen-
tration of cholera bacteria. Hence, it is equally plausible that
V. cholerae was already present in the aquatic environment of
Haiti and that autochthonous V. cholerae played a role in the
epidemic.3 The triggering point of the epidemic may well have
been the convergence of optimal environmental conditions
of warm temperatures, heavy rainfall followed by flooding
(as evidenced from time series analysis of historical cholera
in North India), and destruction of an already inadequate
water and sanitation infrastructure. If true, we should then
observe optimal pH and water temperatures in the Artibonite
River during the month of October. In a field survey along
the Artibonite River, October 11–28, 2011, the average pH

and water temperature were 8.1 and 28.50°C, respectively
(Figure 12), values within the optimal range for selective
growth of V. cholerae. Previous research in Kolkata and
Dhaka have shown that precipitation is associated with an
increase in cholera cases most likely caused by the feeding of
nutrient-rich runoff into water bodies and flooding of the
water supply intended for human consumption with river
water harboring V. cholerae.14,21

DISCUSSION AND SUMMARY

Cholera occurrence is characteristically different in epi-
demic and endemic regions. Epidemic cholera regions are
located away from but within 25 miles of a major river system.
The proposed hypotheses for cholera in epidemic regions are
likely to be initiated during episodes of prevailing warm air
temperature with low river flows, creating favorable environ-
mental conditions for growth of cholera bacteria. Heavy rain-
fall, followed by inundation and destruction of sanitation
infrastructure, accelerates interaction between contaminated
water and human activities, resulting in an epidemic. Analysis
of large-scale hydroclimatological factors related to outbreaks
of cholera in epidemic regions globally was accomplished
using 26 years of historical data for North India, enabling
demonstration that a combination of warm air temperature,
followed by heavy rainfall, and appropriate transmission
mechanisms, are linked to, and very likely a trigger for chol-
era epidemics. The question remains, however, can epidemics
of cholera in Haiti or other epidemic regions be predicted?
Our theoretical framework (Figure 6) and analysis of histori-
cal cholera from the Indus Basin as well as Haiti and also
inherent autochthonous nature of the cholera bacteria to
aquatic environment, suggests that the cholera outbreak in
Haiti bore strong environmental signatures. Because cholera
has not been officially reported in that country for the past
50 years, an indigenous hypothesis is not out of the question
because acute diarrheal patients in Haiti had not been tested
for V. cholerae. Because individuals from other countries trav-
eled to Haiti to provide aid and serve on relief missions at the
time of earthquake, imported initiation was concluded.35

Analysis of strains from the recent Haiti outbreak showed
similarity to strains from South Asia,35 but more recent strain

Figure 12. In situ pH (ranges between 7 to 9) and water temperature (ranges between 23 to 33) observations collected between October 11
and 28, 2011.
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data analysis indicates greater complexity in defining a
definitive origin of the strain.3 Using a highly sensitive and
discriminating microbiological approach, high prevalence of
V. cholerae non-O1/O139 that may have contributed to the
reported cholera cases in the first 3 weeks of the Haitian
cholera epidemic were isolated from clinical cases of cholera.
Using whole genome sequencing and subsequent genomic
analysis, two distinct Vibrio populations, V. cholerae O1 and
V. cholerae non-O1/O139, were identified and concluded to
have contributed to the cholera epidemic in Haiti. Results of
comprehensive genomic analysis and high resolution phyloge-
netic analysis showed that V. cholerae O1 populations were
clonal, resembling epidemic isolates from South Asia and
Africa, an observation in agreement with a possible single
source of the V. cholerae 01. Vibrio cholerae non-O1/O139
populations, on the other hand, were not clonal, but resembled
toxigenic V. cholerae O1 circulating in the Western hemi-
sphere, indicating indigenous origin. Moreover, all of the clin-
ical non-O1/O139 strains were phylogenetically placed into
two closely related clusters within a monophyletic clade,
data consistent with an “epidemic genotype” and indicating a
role for the indigenous V. cholerae non-O1/O139 population,
either alone or in concert with V. cholerae O1 in this epi-
demic. A similar role for V. cholerae non-O1/non-O139 strains
was identified in a large-scale molecular analysis of strains
isolated during a cholera outbreak in Kolkata, India.44 Inter-
estingly, before the Haiti outbreak of cholera, the public
health risk of human pathogens in surface waters of Haiti
had not been evaluated and no reportable waterborne
diseases were listed.45 Our recent collaboration with the
United States CDC reported V. cholerae non-O1/O139,
Vibrio parahaemolyticus, human pathogenic viruses, and
Cryptosporidium spp. in samples collected from a river, canal,
lake, and marine water in Haiti.46 Within this context, a single
introduction of V. cholerae O1 may not explain the epidemic
of cholera in Haiti in its entirety, because environmental con-
ditions conducive to rapid growth and transmission of cholera
bacteria, and the presence of an indigenous population of
V. cholerae, may have played a role in the cholera epidemic
in Haiti. Introduction alone cannot proceed to epidemic
proportions without supporting conditions and transmission
pathways. Ambient environmental conditions in the fall
(September–October–November) season of 2010 and lack of
sufficient safe water and sanitation infrastructure in Haiti after
the earthquake provided a convergence in October, 2010,
enabling the outbreak of cholera to become a lethal epidemic.
There is increasing evidence that proven cholera interven-

tion strategies would greatly benefit from a predictive surveil-
lance capability that would be able to identify vulnerable
population groups at risk of imminent cholera outbreaks at
regional scales.47–50 For example, if the strong likelihood of a
new cholera epidemic in Port-Au-Prince is known two months
in advance, such a warning will enable health authorities in
Haiti to prepare for and minimize the impact of the elevated
incidence of cholera in potentially vulnerable localities by
implementing carefully planned prevention approaches. A reli-
able and robust cholera prediction model coupled with a
spatio-temporal population vulnerability or risk map of poten-
tial cholera outbreaks will allow: Vaccination of vulnerable
demographic groups (children and elders) in advance, mobili-
zation of expert resources (physicians, nurses, and public health
workers), allocation of material (water purification equipment

and oral hydration therapy, implementation of water, sanita-
tion, and hygiene (WASH) regulations and practices in regions
at risk of outbreaks, and education and awareness campaigns
for epidemic warnings and WASH compliance.23,30,47,49,51

The disease burden can be significantly reduced if the pre-
vious established prevention measures are implemented,
proactively, ahead of impending outbreaks.30 Water purifica-
tion improved sanitation,52 and filtration techniques53 have
shown promise in reducing cholera infection at the point-of-
use level, but scaling up such programs to national levels is
not possible without sufficient lead time. Recent evidence
indeed suggests that a planned implementation of WASH
infrastructures in vulnerable localities can significantly reduce
cholera prevalence; it has been effective in Haiti recently in
bringing the overall case-fatality ratio down to < 2% from as
high as 12% seen during the initial weeks.54 A tropical epidemic
region, like Haiti, suffering a disaster devastating an already
overburdened water and sanitation infrastructure at a time
of the year when both climate and environmental conditions
favor proliferation of V. cholerae, will be prone to an epidemic
of disease. The challenge that remains is to develop a cholera
prediction model for epidemic regions, identifying optimizing
environmental conditions and incorporating enabling transmis-
sion mechanisms. When either a major natural disaster strikes
a coastal town or significant civil disorder seriously damages
living conditions of a population center in the tropical belt, a
cholera tracking mechanism should be operational that moni-
tors the climate and environment surrounding the vulnerable
population by satellite remote sensing.1 With the knowledge
of monitoring water and sanitation infrastructure, displaced
populations and their convergence with environmental con-
ditions and transmission pathways, a prediction capability of
high probability can provide warning of potential cholera
epidemics and allow mobilization of public health measures.
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