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Abstract1

Full-scale complex dynamic models are not effective for parametric studies due to the inherent2

constraints on available computational power and storage resources. A persistent reduced order3

model (ROM) that is robust, stable, and provides high-fidelity simulations for a relatively wide4

range of parameters and operating conditions can provide a solution to this problem. The fidelity5

of a new framework for persistent model order reduction of large and complex dynamical systems6

is investigated. The framework is validated using several numerical examples including a large7

linear system and two complex nonlinear systems with material and geometrical nonlinearities.8

While the framework is used for identifying the robust subspaces obtained from both proper and9

smooth orthogonal decompositions (POD and SOD, respectively), the results show that SOD10

outperforms POD in terms of stability, accuracy, and robustness.11

Keywords: nonlinear model reduction, proper orthogonal decomposition, smooth orthogonal12

decomposition, complex dynamical system, subspace robustness.13

1 Introduction14

Considerable progress in computing technology in the past few decades did not alleviate difficulty15

inherent in simulating complex dynamical systems. Examples of such systems are large-scale finite16

difference/element, multi-body dynamics, or geometrically nonlinear models, and molecular dynam-17

ics simulations [1–6]. A reduced order model (ROM) for these systems can be used to significantly18

reduce redundant computations and data storage requirements [7]. In particular, persistent ROMs,19

which are robust to the changes in system parameters and loading conditions, can be used in para-20

metric studies that are prohibitive when using a full-scale model. While a variety of methods for21

model order reduction (MOR) have been developed, very few of them provide persistent ROMs.22

Often emphasis is only on the accuracy of the ROMs and their ability to capture the dynamics of23

the full-scale models for a fixed set of parameters, and operating and loading conditions. However,24

the importance of the robustness of a ROM to the changes in those parameters is often not accen-25

tuated. We consider a ROM to be persistent if it is robust to changes in a full-scale model’s energy,26
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forcing, and parameters. Data-based reduced order modeling with no persistency is of limited scope;27

ROMs built on the data generated from the simulations of a full-scale model can only be used for28

simulating the same exact configuration of the model. This ROM might still be of great utility if29

we can study the long-time dynamics of a system (e.g., protein folding), but cannot be utilized in30

parametric studies, wherein we repeatedly change the parameters, input values, and energy levels.31

In this paper, we present a new framework for obtaining persistent ROMs, which are valid within32

a defined range of the system’s energy, which is imposed by changing the input parameters. Our33

framework can be applied to all data-based MOR methods. We make use of data from simulations34

or experiments to develop the ROMs. Our goal is to ensure that the obtained persistent ROMs are35

robust and can be used for simulating the system with any chosen parameter from the defined range.36

37

1.1 Background and Prior Work38

Persistent MOR for linear systems has not attracted extensive research focus since the linear modal39

structure is not dependent on the energy of a system. As a result, if a ROM is properly developed40

for one energy level of a linear system, it should also be valid for the other energy levels. The41

methodologies for MOR for these systems are mostly projection based, where the linear subspaces42

used in the projection can be related to the modal space which is spanned by linear normal modes43

(LNMs). For example, the modes identified using proper orthogonal decomposition (POD) (also44

known as singular value decomposition, principal component analysis, or Karhunen-Loève expan-45

sion) [8–12] approximate the LNMs for systems with uniform mass distribution [13]. Other popular46

methodologies for the MOR of linear systems include the Galerkin reduction using linear normal47

modes (LNMs) [14, 15], Krylov subspace projections [16], Hankel norm approximations [17, 18], and48

truncated balance realizations [19, 20].49

Nonlinearity, the integral part of complex dynamical systems, makes the development of persis-50

tent ROMs a much harder problem. Many approaches for nonlinear MOR are based on extending51

the methodologies used for linear MOR. For example, linearization about an equilibrium point was52

used for the reduction of weakly nonlinear systems [21, 22]. Many other approaches are derived from53

POD [8, 9, 11, 23–25], and some from balanced truncation [26–28]. Some other approaches include54

neural networks [29], Voltera theory [30], and inertial manifold approximation [31]. More recently,55

a method called Proper Generalized Decomposition (PGD) has been developed as a generalization56

of POD in order to construct a priori ROM [32–35]. This method has a potential for solving multi-57

dimensional problems since it doesn’t require any knowledge of the solution [34, 36]. The interested58

reader can find a review on PGD-based MOR techniques in [37].59

In summary, a majority of the methodologies commonly used for MOR of nonlinear systems60

can be categorized into two groups. In the first group, nonlinear normal modes (NNMs) or their61

approximations [38–44] are used. In the second group, combined with the Galerkin projection,62

linear subspaces obtained from spatiotemporal decompositions such as POD and smooth orthogonal63

decomposition (SOD) are utilized [2, 9, 10, 25, 45, 46]. Linear subspaces are of considerable current64

interest because they are computationally tractable and do not neglect the nonlinearity of the original65

vector-field [8], while, in general, the calculation of NNMs is difficult [47–50]. Also, MOR based on66

NNMs suffers from another major drawback related to changes in the NNMs with the variation67

in system’s level of energy [48, 51]. The dependence of the NNMs on the energy level causes an68

insufficient robustness of the corresponding NNM-based ROMs to the changes in the system’s energy69
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level. Thus, NNM-based ROMs cannot be considered truly persistent.70

1.2 Our Approach to Persistent Reduced Order Modeling71

Our approach is based on identifying robust subspaces which do not change drastically as the system72

changes its energy level. Note that linear subspaces used for MOR are to be identified in such a way73

that the active NNMs are embedded in them [13]. These subspaces may still change as the NNMs74

change with the system’s level of energy [51]. However, depending on the decomposition method,75

some particular subspaces may be robust to variations such as changes in initial conditions, external76

excitations, energy levels, or systems parameters. Our hypothesis is that while an individual NNM77

may change with energy, a linear subspace embedding this mode may not undergo any considerable78

change. Identifying such linear subspaces would enable us to obtain the persistent ROMs that are79

robust to a relatively wide range of system parameters and operating conditions.80

The new framework for persistent MOR of large, complex systems based on the concepts of81

subspace robustness and dynamical consistency is investigated. These concepts have been recently82

proposed and discussed in our conference presentations [2, 52, 53], where the MOR subspace ro-83

bustness for a small dynamical system was evaluated. Subspace robustness characterizes how a84

linear subspace changes under different conditions of the system, which can be used for complex85

systems to identify the subspace characteristics that lead to a persistent MOR. Dynamical consis-86

tency evaluates the deterministic properties of the full-scale system’s trajectory projection onto the87

corresponding linear subspace. It indicates the ability of the identified subspace to potentially—but88

not necessarily—result in a stable and accurate ROM.89

The utility of our framework will be initially evaluated by applying it to the POD subspaces since90

they are widely used for MOR. POD’s drawback for deterministic systems is that it only considers91

the statistical (i.e., spatial) characteristics of the data [54]. It only prioritizes the maximal variances92

in the multivariate data and may disregard important dynamical features that have small variances.93

Changing the energy level of a system may drastically alter dynamic features that previously had94

small variances, which will not be reflected in the identified POD modal structure. Therefore, POD,95

while providing an optimal reduction—in the least squares sense—for a system with fixed set of96

parameters and forcing, might not be a suitable choice for the persistent MOR of complex systems.97

The subspace obtained from SOD, which was first used in 2005 for vibration mode identification [54],98

will also be considered within our framework. SOD can be viewed as an extension of POD, which99

acquires the ability to separate multivariate data based on inherent characteristic frequencies. In100

other words, it not only considers the spatial statistics, but also looks at the temporal characteristics101

of data. Thus, SOD subspaces are likely to be less sensitive to the changes in the energy and102

properties of the system, and may provide for the persistent MOR.103

The focus of this study is on complex, nonlinear dynamical systems. However, a lightly damped104

linear system will be considered first. The rationale behind this consideration is twofold: (1) the105

assertion that POD recovers LNMs for systems with uniform mass distribution [13] has been only106

tested on fairly low-dimensional systems, with fairly long time series; and (2) while SOD does not107

require uniform mass distribution for convergence to the LNMs [54], it has not been tested on108

large scale systems. Since the LNM structure does not vary with the changes in energy or initial109

conditions—the corresponding subspaces are robust to these changes—we can use a large-scale linear110

model to test both the POD and SOD methods’ ability to identify LNMs with limited data in different111

loading scenarios. In addition, we can also evaluate the ability of these methods to provide robust112
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subspace identification for a system that actually possesses this robustness in all LNMs.113

Following the example of the linear systems, MOR of two large-scale, complex nonlinear systems114

will be studied as the main subject of this paper. POD and SOD will be used for multivariate115

analyses of the associated ill-conditioned data matrices from these systems. The POD- and SOD-116

spanned subspaces will be tested using the framework to identify the robust subspaces for persistent117

ROM development. The resultant ROMs subjected to different energy levels will be simulated using118

several numerical examples. The validity of the results will be investigated in terms of the stability119

and accuracy of the ROMs.120

The rest of this paper is organized as follows. In Section 2, the procedure for projection-based121

nonlinear model reduction using POD and SOD is reviewed. Section 3 describes the developed122

framework for the persistent MOR. In Section 4, the full-scale models of one linear and two nonlinear123

systems are described. Results of the ROM simulations are presented and discussed in Section 5,124

followed by concluding remarks in Section 6.125

2 Projection-Based Nonlinear Model Reduction126

We consider a full-scale model of a deterministic dynamical system that has the following form:127

ẏ = f(y, t) , (1)

where y ∈ R2n is a dynamic state variable, f : R2n × R → R2n is some nonlinear flow, t is time,128

and n ∈ N is the number of the system’s degrees of freedom. The state variable trajectory data129

can be arranged in the matrix Y = [y1,y2, . . . ,y2n]. A basis for Y can be estimated using either130

the POD or SOD procedures outlined in Ref. [54]. The most dominant k-dimensional basis vectors131

are arranged in the matrix Pk = [e1, e2, . . . , ek]. The reduced state variable is obtained using a132

coordinate transformation of q = Pky, and the corresponding ROM is:133

q̇ = P†kf(Pkq, t) , (2)

where (.)
†

indicates the pseudoinverse of (.).134

2.1 Proper and Smooth Orthogonal Decomposition135

To build ROMs using the extracted modes from the multivariate analysis, the state variable mea-136

surements of the full-scale system are recorded to form position and velocity data matrices X ∈ Rr×n
137

and V ∈ Rr×n, respectively. X is composed of r snapshots of n position state variables. Similarly, V138

is composed of r snapshots of n velocity state variables. Thus, the data matrix Y, which we call as139

full data matrix throughout this paper, is formed by combining X and V together, i.e., Y = [X V].140

The time derivative of X is V. To obtain a time derivative of V, or an acceleration data matrix141

A, we can use a full model of our dynamical system, Eq. (1). Alternatively, it can be approximated142

by A ≈ DV, where D is the matrix form of some differential operator such as forward difference.143

Therefore, an ensemble of time derivative of Y will be Ẏ = [V A]. Provided that Y and Ẏ are zero144

mean, the corresponding auto-covariance matrices can be formed by145

Σyy =
1

r − 1
YTY , Σẏẏ =

1

r − 1
ẎTẎ . (3)

In POD, we are looking for a basis vector φ ∈ R2n such that a projection of the data matrix146

onto this vector has maximal variance. The solution to the POD problem is achieved by solving the147

eigenvalue problem of the auto-covariance matrix Σyy in Eq. (3):148
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Σyyφk = λkφk , (4)

where λk are proper orthogonal values (POVs), φk ∈ R2n are proper orthogonal modes (POMs), and149

proper orthogonal coordinates (POCs) are columns of Q = YΦ, in which Φ = [φ1, φ2, . . . , φ2n] ∈150

R2n×2n. POVs are ordered such that λ1 ≥ λ2 ≥ . . . ≥ λ2n, and reflect the variances in Y data along151

the corresponding POMs.152

In SOD, we are looking for a basis vector ψ ∈ R2n such that a projection of the data matrix onto153

this vector has both minimal roughness and maximal variance. The solution to the SOD problem,154

is achieved by solving a generalized eigenvalue problem of the matrix pair Σyy and Σẏẏ in Eq. (3):155

Σyyψk = λkΣẏẏψk , (5)

where λk are smooth orthogonal values (SOVs), ψk ∈ R2n are smooth projection modes (SPMs),156

smooth orthogonal modes (SOMs) are Ψ−T , and smooth orthogonal coordinates (SOCs) are given157

by Q = YΨ, where Ψ = [ψ1, ψ2, . . . , ψ2n] ∈ R2n×2n. The degree of smoothness of the coordinates158

is described by the magnitude of the corresponding SOV. Thus, the greater in magnitude the SOV,159

the smoother in time the corresponding coordinate. It should be noted that if we were to replace160

Σẏẏ with the identity matrix, the formulation would yield the proper orthogonal decomposition.161

3 Robust Subspace Selection for Persistent MOR162

The appropriate subspace for model reduction can be selected based on a newly developed crite-163

ria [53]. These criteria quantifies two concepts: dynamical consistency—which demonstrates how164

well the linear subspace embeds the nonlinear manifold, and subspace robustness—which explains165

the sensitivity of the subspace to changes in the system’s level of energy. Here, quantifications of166

these concepts are briefly restated. A more complete description can be found in Ref. [53].167

3.1 Dynamical Consistency168

The unfolding of an attractor used in delay coordinate embedding [55] is the underlying idea of169

dynamical consistency. It can be determined using the premise behind the method of false nearest170

neighbors [56]. A linear subspace used for reduced order modeling is said to be dynamically consistent171

if the resultant trajectories are deterministic and smooth. The metric for dynamical consistency is172

defined as a ratio of the number of false nearest neighbors (FNN) over the total number of nearest173

neighbor pairs in a particular k-dimensional subspace:174

ζk = 1− Nk
fnn

Nnn
, (6)

where Nk
fnn is the estimated number of FNNs in a k-dimensional subspace due to projection, and175

Nnn is the total number of nearest neighbor pairs used in the estimation. If ζk is close to unity, then176

that k-dimensional subspace is dynamically consistent.177

3.2 Subspace Robustness178

Unlike LNM subspaces that are unique and not sensitive to changes in energy level, the robustness179

of the subspaces obtained by multivariate data analysis methods is not guaranteed. In order to180
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Figure 1: Schematic of the linear system

quantify the subspace robustness, the basis vectors which span the k-dimensional subspace for s181

system realizations with different levels of energy are concatenated into a matrix S ∈ R2n×ks. Then,182

the corresponding subspace robustness γks is given by the following expression:183

γks =

∣∣∣∣∣∣∣∣∣∣∣∣
1− 4

π
arctan

√√√√√√√√√√
2n∑

i=k+1

σ2
i

k∑
i=1

σ2
i

∣∣∣∣∣∣∣∣∣∣∣∣
, (7)

where σi’s are proper orthogonal values of the matrix S. If all the subspaces embedded in S are184

spanning the same subspace, then γ = 1.185

4 Full-scale Models186

Complexity in dynamical systems can arise for different reasons. In nonlinear dynamical systems,187

it can be related to the size, nonlinearity, or a week coupling between the DOFs resulting in simul-188

taneous presence of slow and fast dynamics. Here we study one large linear system as well as two189

nonlinear systems.190

The linear system under investigation is an n-degree-of-freedom mass-spring-damper system, as191

shown in Fig. 1, where n blocks of masses are connected in series to each other, as well as both192

sides of the support, by linear dampers and springs. The masses can vibrate in x-direction with no193

friction. The system is described by the following governing differential equations:194 

miẍi + (ci + ci+1)ẋi − ci+1ẋi+1+

(ki + ki+1)xi − ki+1xi+1 = fi(t) , for i = 1 ;

miẍi − ciẋi−1 + (ci + ci+1)ẋi − ci+1ẋi+1

−kixi−1 + (ki + ki+1)xi − ki+1xi+1 = fi(t) , for 2 ≤ i ≤ n− 1 ;

miẍi − ciẋi−1 + (ci + ci+1)ẋi − kixi−1+

(ki + ki+1)xi = fi(t) , for i = n ,

(8)

where n ∈ N is the number of the system’s degrees of freedom and fi(t) is the external forcing195

applied to the i-th mass. Defining z = [{xi}ni=1, {ẋi}ni=1]
T

as the vector of 2n state variables, the196

full state-space model of the system can be obtained as follows:197

ż =

[
0 I

−M−1K −M−1C

]
z + fe(t) , (9)

6



m1

k1

c1

x1

m2

k2

c2

x2

m3

k3

c3

x3

mn

kn

cn

xn

· · ·
· · ·

k(xn)

cn+1

Figure 2: Schematic of the system with nonlinear spring coupling

m1

k1

m2

k2

m3

k3

m4

k4

mn

kn
· · ·

kn+1

ay

x

Figure 3: Schematic the mass-spring-grid system with geometric nonlinearity

where fe(t) =
[
[0, . . . , 0]1×n , [1, . . . , 1]1×n

]T
; 0 ∈ Rn×n is a zero matrix; I ∈ Rn×n is an identity198

matrix; and M, K, and C are n× n mass, stiffness, and damping matrices, respectively.199

The first nonlinear system used here is obtained by adding a nonlinear spring to the linear200

system as shown in Fig. 2. In this case, the complexity is caused by the large size as well as the201

material nonlinearity. The system dynamics are described by the following full state-space equations202

of motion:203

ż =

[
0 I

−M−1K −M−1C

]
z + fe + fnonlinear(z) , (10)

where everything is the same as for the linear model except nonlinear term fnonlinear(z) ∈ R2n, which204

has only one nonzero element: [fnonlinear(z)]2n = −αz3n.205

The third system will be called the mass-spring-grid system throughout this paper. It has the206

same design and arrangement as the first system, but with a pretension in the springs. Each spring207

is assumed to have a corresponding damper acting in parallel. The system is allowed to vibrate in208

both x and y directions as a grid of equidistant masses, dampers, and springs shown in Fig. 3. In209

case the system is forced only in the x-direction, Eq. (8) is sufficient to describe it. However, any210

small deviation from x-directional oscillation will cause geometric nonlinearity in the motion. For211

the purpose of this paper, we only excite this system in the y-direction. The governing differential212

equations for each i-th mass are given in Appendix A.213

The state-space vector to model this system is a vector of 4n variables defined as z = [{yi}ni=1,214

{xi}ni=1, {ẏi}ni=1, {ẋi}ni=1]
T ∈ R4n. Thus, Eq. (15) and Eq. (18) from the appendix can be rewritten215

as follows:216

ż =


0 0 I 0

0 0 0 I

−M−1K 0 −M−1C 0

0 −M−1K 0 −M−1C

 z +


0n×1

0n×1

fn,y

fn,x

+ fe , (11)

217

where fn,y, fn,x, and fe are given in Appendix A; and 0, I, M, K, and C are n × n zero, identity,218

mass, stiffness, and damping matrices, respectively.219

5 Results and Discussion220

The MOR objective is to develop persistent ROMs for harmonically excited systems considered in221

this paper. These systems will be excited by a force with frequency close to the first natural frequency222
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of the corresponding linear(ized) system. Modal subspaces for model reduction can be obtained from223

different types of excitations, including both harmonic and random. With random forcing, we are224

more likely to explore nearly all the state-space of the system and excite all dominant frequencies.225

However, the particular forcing function has to be carefully selected, especially for the systems that226

have combined slow and fast dynamics. This is to limit the contamination of the identified modes227

by forcing that can obscure the true modal structure of the system.228

For the first and the second system, white noise is used to excite the system because there are229

no relatively fast dynamics in the presence of slow dynamics. For the third system, we use colored230

white noise with the cut-off frequency of 6 Hz, which, for our numerical example, will be around the231

frequency of the linearized system’s ninth LNM. This allows the excitation of lower modal frequencies,232

while limiting contamination from high frequency modes that do not get excited in practice. Also,233

the external excitation containing a range of frequencies ensures that the geometrical nonlinearity234

caused by the x-direction oscillations is observable while these oscillations are not contaminated by235

noise.236

We did 12 independent simulations for each system subjected to external stochastic excitations.237

The obtained time series from each simulation had different levels of energy imposed by changing the238

amplitude of forcing. For fair comparison purposes, we need to be consistent with the selection of the239

total simulation time for each system. Thus, each simulation was done for a total time equal to 100240

cycles of a harmonic forcing, with the frequency equal to 110% of the first natural frequency of the241

corresponding linearized system. With the chosen parameters for the systems, the total simulation242

times were equal to 709.8 sec for the linear, 495.1 sec for the nonlinear spring, and 120.8 sec for the243

mass-spring-grid systems. We recorded 100 data samples in each cycle of applied external forcing.244

Therefore, a total of 10,000 data points were recorded from each simulation.245

In each case, POD and SOD were used to extract the modes out of each data set. The first k dom-246

inant modes identified from each simulation independently, spanning 12 k-dimensional subspaces,247

were concatenated into the matrix S as explained in Section 3.2. Singular value decomposition was248

applied to matrix S in order to extract the singular modes and the corresponding singular values.249

Using singular values and Eq. (7), the robustness of the k-dimensional subspaces were evaluated for250

each model and decomposition scheme.251

The corresponding singular modes were used to obtain projections of the full-scale models’ har-252

monically excited trajectories onto them. Using the procedure outlined in Section 3.1, the dynamical253

consistency of the resulting trajectories for all the k-dimensional subspaces in the full n-dimensional254

vector space were obtained. Please note that no matter how we obtain the subspace for model255

reduction, the calculation of the dynamical consistency is meaningful only for the deterministic256

trajectories. The dynamical consistencies were obtained for five deterministic trajectories, each cor-257

responding to different forcing amplitudes, and then averaged out. In case both subspace robustness258

and dynamical consistencies of the extracted modes were close to unity, we considered them as259

suitable for persistent MOR.260

The parameters of the linear system were fixed as follows:261

n = 100, m = 1 kg, k = 1000 N/M, c = 0.048 N ·M/s . (12)

The obtained POMs and SOMs for this system are used to get the subspace robustness and dynamical262

consistency of the ROM subspaces. For the randomly driven linear system, as depicted in Fig. 4,263

the SOD subspace robustness metric reaches and stays close to unity for k ≥ 3. POD subspace264

robustness is close to unity at k = 2 and k = 3. It drops at k = 4 and again reaches unity at k = 25265
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Figure 4: Subspace robustness (left) and dynamical consistency (right) for randomly driven linear system

in a non-monotonic manner.266

The POD subspace robustness does not behave monotonically and does not stay close to unity267

once it reaches it. Therefore, in the cases considered, POMs cannot approximate fixed LNMs in a268

robust manner, except maybe a few lower modes. This shows that POMs are not robust under the269

limited time-history constraints of high-dimensional data, which makes them unreliable for persistent270

MOR. In contrast, the SOD subspace robustness monotonically increases, reaches unity for a low271

dimension, and does not fluctuate thereafter.272

Figure 4 also shows the dynamical consistency of POD- and SOD-based subspaces for the ran-273

domly driven linear system. For both POD and SOD, the dynamical consistencies are similar274

reaching unity at k = 2 for SOD and k = 5 for POD. This means that the projection of the linear275

system’s deterministic trajectories onto the five-dimensional POD-based, or the two-dimensional276

SOD-based, dominant subspaces has no singular point or intersection with itself—or, they do not277

violate the uniqueness of the deterministic evolution.278

The linear system subjected to harmonic excitation was simulated using the POD- and SOD-279

based ROMs via Eq. (2). The phase portraits for the vibrations of the thirtieth mass are depicted280

in Fig. 5 and Fig. 6. The ROM simulations results show a very good visual correspondence to281

the full-scale system using both POD and SOD. Both methods are able to capture the dynamics282

in two- and three-dimensional ROMs and none of them outperformed the other irrespective of the283

robustness of the corresponding subspaces.284

A question arises as to why some relatively non-robust POD subspace-based ROMs, like the four-285

dimensional model, still correlate with the full-scale model. It should be noted that the subspace286

robustness metric is of more importance for lower dimensions, since they possess most of the energy287

of the system. The two- and three-dimensional POD subspaces for the linear system are robust288

and capture most of the system’s energy, thus providing for good ROMs of the system. Increasing289

the dimension of the ROM reduces the robustness of the associated POD subspace to 0.85 but it290

does not affect its accuracy or stability. This is mainly due to the fact that the fourth POM does291

not capture enough associated energy to have a sizable effect on the corresponding ROM. This also292

explains why the robustness of MOR based on POD has not been of much research concern for linear293

systems. As shown in Fig. 7, POD captures most of the energy in the very first few modes, which294

are robust to the changes in the energy of the system. Therefore, any suitably developed POD-based295
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ẋ
3
0

POD dimension=7

Figure 5: POD-based ROMs of the linear system for Ω = 5.52 Hz and q0 = 1

ROM could probably account for other similar conditions.296

ROMs for nonlinear systems are expected to be more sensitive to the robustness of the cor-297

responding MOR linear subspaces. Therefore, in case the low-dimensional subspaces have good298

robustness, the non-robust higher dimensional subspace may destabilize the numerical scheme for299

the model, or at least adversely affect its accuracy.300

For investigation of the system with nonlinear spring coupling, the number of DOFs was set to301

60 and the other parameters were fixed as follows:302

m = 1 kg, k = 3600 N/M, c = 720 N.M/s, α = 2 . (13)

This results in a rich dynamic response with two stable and one unstable static equilibrium points.303

Subjected to harmonic forcing with Ω = 9.97 Hz, and using the forcing amplitude as a bifurcation304

parameter, the corresponding bifurcation diagram is plotted using the full scale model of the system305

as shown in Fig. 8. Our particular aim for the persistent ROM is to reproduce these bifurcation306

results, which will demonstrate robustness of ROM over a range of forcing amplitudes or different307

input energy levels.308

The subspace robustness and dynamical consistency for this system are depicted in Fig. 9. The309

robustness for the SOD subspaces reaches unity at k = 4, while for POD it does not happen until310

the very end. POD subspace robustness is fluctuating and sometimes getting worse as the subspace311

dimension increases. These fluctuations are of greater importance for lower dimensional subspaces312

since most of the system’s response energy is captured in these subspaces. The dynamical consistency313

for both methods is similar and reaches unity at k = 2. At k = 5, however, the dynamical consistency314

of the SOD method slightly drops, which may affect the accuracy of the corresponding ROM.315

While two- and three-dimensional POD subspace robustness are relatively close to unity, they316

do not account for a significant portion of the system’s total energy to provide stable ROMs. The317

robustness of the four-dimensional POD subspace is low, which causes the diverging results of the318
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Figure 6: SOD-based ROMs of the linear system for Ω = 5.52 Hz and q0 = 1
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Figure 7: Captured energy vesus number of the modes for the linear system

corresponding ROM simulation. The five-dimensional POD subspace has better robustness, and the319

simulations showed that it provides stable ROM, yet is not robust enough to accurately reproduce320

the bifurcation diagram. Since the six-dimensional POD-based ROM has better robustness and321

captures more energy, it results in stable and accurate simulations.322

One- through three-dimensional SOD subspaces do not result in persistent ROMs because their323

subspace robustness is relatively low and also they do not capture enough energy of the system.324

Four- and higher-dimensional SOD subspaces are robust and provide persistent ROMs capable of325

reproducing the bifurcation diagram of the full-scale system.326

The lowest dimensional ROM which provides accurate and robust results is four-dimensional for327

SOD and six-dimensional for POD. The corresponding bifurcation diagrams are shown in Fig. 10.328

These ROMs are more than fifty times faster in simulation than the full scale model. Thus, we used329

a finer increment size for the forcing amplitude to provide more details in the bifurcation diagrams330

of the system. Comparing these diagrams with the reference diagram shown in Fig. 8, there is a331
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Figure 8: Bifurcation diagram for full scale nonlinear system for harmonic forcing with ω = 9.97 Hz
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Figure 9: Subspace robustness (left) and dynamical consistency (right) for randomly driven nonlinear system

close match between those of the six-dimensional POD and the full scale model. For the SOD,332

the bifurcation diagram is little shrunk around q0 = 0.33. While this bifurcation diagram is not333

strictly accurate, it still provides a faithful qualitative description the full-scale system’s dynamics.334

In addition, the results for the six-dimensional SOD are as good as the six-dimensional POD, while335

the test shows that the four-dimensional POD is not even stable, due to the significant drop of its336

subspace robustness at k = 4.337

In Fig. 11, six-dimensional POD and four-dimensional SOD ROMs are compared to the full-scale338

model driven by the harmonic forcing with Ω = 9.97 Hz and amplitudes of 0.05, 0.14, 0.28, and 0.35.339

The four-dimensional SOD model successfully competes with the six-dimensional POD model. For340

smaller amplitudes, four-dimensional SOD even outperforms the six-dimensional POD. In addition,341

Fig. 12 shows how the relative accuracy of the SOD-based ROMs drops for k = 5 as compared to342

k = 4 and 6. This can be explained by the drop in the dynamical consistency of SOD for k = 5,343

which was shown in Fig. 9.344

For the mass-spring-grid system consisting of twenty masses, specifying the following parameters345

will result in a rich dynamical behavior:346

n = 20, m = 1 kg, k = 1000 N/M, c = 4.23 N.M/s, a = 1.01 m, l = 1 m . (14)

The subspace robustness for POD-based MOR of this system is close to unity for k = 1, . . . , 4 and347
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Figure 10: Bifurcation diagram for ROMs of the nonlinear system for harmonic forcing with ω = 9.97 Hz : four-

dimensional SOD (left); six-dimensional POD (right)
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Figure 11: Phase portraits of the 30-th mass of the nonlinear system obtained from full scale (blue) and reduced order

models (red): four-dimensional POD-based ROMs (top); six-dimensional SOD-based ROMs (bottom)

drops to 0.6 at k = 5, as shown in Fig. 13. For SOD, subspace robustness starts at near 0.85 for348

k = 1, monotonically increases with the increase in the dimension, and saturates at 1 near k = 20.349

Also, three- and higher-dimensional POD-based ROMs are dynamically consistent, while for SOD,350

five- and higher-dimensional subspaces are dynamically consistent. The importance of subspace351

robustness and dynamical consistency metrics for identifying the optimal MOR subspace is reflected352

in Fig. 14, where POD-based ROMs lose their stability as subspace robustness drops for k = 5.353

While the five-dimensional ROM is still stable, for the k = 6, 7, or 8, it loses its stability. The354

importance of monotonically increasing subspace robustness for SOD-based ROMs is illustrated in355

Fig. 15. These ROMs become and remain stable as the robustness metric approaches unity and356

stays there.357

Therefore, for all the three types of systems under investigation, the subspace robustness and358

dynamical consistency of the ROMs were good indicators for the stability, accuracy, and reliability359

of the corresponding ROMs. Not only does any deviation of these metrics from unity reduce the360

accuracy, but it may also destabilize the corresponding ROMs. In particular, in contrast to POD,361

when SOD-based ROMs become stable, they stay stable for higher dimensional reductions. This362

is directly correlated with monotonic improvement in the SOD subspace robustness, which also363
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Figure 13: Subspace robustness (left) and averaged dynamical consistency (right) for randomly driven nonlinear

mass-grid system

correlates with the improved accuracy of the corresponding ROMs. For the POD subspaces, we do364

not observe this monotonic increase in the robustness, which may drop precipitously as the subspace365

dimension increases. This may cause the loss of stability in the corresponding ROM for the nonlinear366

dynamical system.367

The performance of the studied framework for identifying the optimal subspaces for persistent368

MOR was verified by reproducing full scale model simulations for a range of amplitudes and frequen-369

cies of external excitation, and initial conditions. For the second and the third system, where more370

complexities were introduced through material and geometrical nonlinearities, the SOD-based model371

outperformed the POD-based models by providing more consistent and persistent reductions. Also,372

we should emphasize that the obtained fast, stable, and robust-over-a-wide-energy-range ROMs373

enabled us to study these systems in more detail.374

6 Conclusions375

A persistent MOR for dynamical systems was investigated for one example of a large linear system376

and two examples of large and complex nonlinear systems. A framework based on subspace robust-377

ness and dynamical consistency was shown to be successful in identifying the robust subspaces for378

the development of persistent ROMs. To verify the performance of the framework, the simulation379

results of the full scale models were reproduced using the ROMs. In particular, SOD-based ROMs380
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Figure 14: Phase portraits of the 10-th mass of the nonlinear mass-grid system obtained from full scale model (blue)

for Ω = 28.2 Hz and q0 = 1 compared to 1- through 8-dimensional POD-based ROMs (red)
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Figure 15: Phase portraits of the 10-th mass of the nonlinear mass-grid system obtained from full scale model (blue)

for Ω = 28.2 Hz and q0 = 1 compared to 1- through 8-dimensional SOD-based ROMs (red)

outperformed the POD-based ones in terms of the stability and robustness of the model. Also,381

the obtained persistent ROMs could be successfully used to study the dynamics of computationally382

expensive complex models for a relatively wide range of parameters and conditions.383

The persistent MOR framework presented in this paper can be used for improving all the384

projection-based methods and has a good performance for parametric studies within their domain of385

interest. However, the parametric study is only limited to the defined range of parameters and the386

persistent model is expected to be valid only in this range. In our study, we focused on a relatively387

wide range of parameters where the complex systems exhibit interesting dynamics, which includes388

linearity, nonlinearity, periodicity, intermittence, and chaos. In future work, one needs to study the389

validity of persistent ROMs outside the domain of interest. Future efforts may focus on increasing390

the size of the domain for persistent MOR.391
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[43] Blanc, F., Touzé, C., Mercier, J.-F., Ege, K., and Ben-Dhia, A.-S. B., 2013. “On the numerical501

computation of nonlinear normal modes for reduced-order modelling of conservative vibratory502

systems”. Mechanical Systems and Signal Processing, 36 (2), pp. 520–539.503

[44] Wang, Y., Palacios, R., and Wynn, A., 2015. “A method for normal-mode-based model reduc-504

tion in nonlinear dynamics of slender structures”. Computers & Structures, 159, pp. 26–40.505

[45] Amabili, M., Sarkar, A., and Paıdoussis, M., 2003. “Reduced-order models for nonlinear vibra-506

tions of cylindrical shells via the proper orthogonal decomposition method”. Journal of Fluids507

and Structures, 18 (2), pp. 227–250.508

[46] Kerschen, G., Feeny, B., and Golinval, J.-C., 2003. “On the exploitation of chaos to build509

reduced-order models”. Computer Methods in Applied Mechanics and Engineering, 192 (13) ,510

pp. 1785–1795.511

[47] Vakakis, A. F., Gendelman, O. V., Bergman, L. A., McFarland, D. M., Kerschen, G., and Lee,512

Y. S., 2008. Nonlinear targeted energy transfer in mechanical and structural systems, vol. 156.513

Springer Science & Business Media.514

[48] Kuether, R. J., Deaner, B. J., Hollkamp, J. J., and Allen, M. S., 2015. “Evaluation of ge-515

ometrically nonlinear reduced-order models with nonlinear normal modes”. AIAA Journal ,516

pp. 1–13.517

[49] Wang, X., 2010. “Construction of frequency-energy plots for nonlinear dynamical systems from518

time-series data”.519

[50] Peter, S., Grundler, A., Reuss, P., Gaul, L., and Leine, R. I., 2016. “Towards finite ele-520

ment model updating based on nonlinear normal modes”. In Nonlinear Dynamics, Volume 1.521

Springer, pp. 209–217.522

[51] Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. V., Pilipchuk, V. N., and Zevin, A. A., 1996.523

Normal modes and localization in nonlinear systems. Springer.524

[52] Ilbeigi, S., and Chelidze, D., 2016. “Reduced order models for systems with disparate spatial525

and temporal scales”. In Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser526

Vibrometry, Volume 8. Springer, pp. 447–455.527

[53] Chelidze, D., 2014. “Identifying robust subspaces for dynamically consistent reduced-order528

models”. In Nonlinear Dynamics, Volume 2. Springer, pp. 123–130.529

[54] Chelidze, D., and Zhou, W., 2006. “Smooth orthogonal decomposition-based vibration mode530

identification”. Journal of Sound and Vibration, 292 (3), pp. 461–473.531

[55] Sauer, T., Yorke, J. A., and Casdagli, M., 1991. “Embedology”. Journal of statistical Physics,532

65 (3-4), pp. 579–616.533

[56] Kennel, M. B., Brown, R., and Abarbanel, H. D., 1992. “Determining embedding dimension534

for phase-space reconstruction using a geometrical construction”. Physical review A, 45 (6),535

p. 3403.536

19



Appendix A: Governing equation of mass-spring-grid system537 

miẍi + (ci + ci+1)ẋi − ci+1ẋi+1 + (ki + ki+1)xi−

ki+1xi+1 + (ki − ki+1)a− ki l
li (a+ ∆xi)+ for i = 1

ki+1
l

li+1
(a+ ∆xi+1) = 0

miẍi − ciẋi−1 + (ci + ci+1)ẋi − ci+1ẋi+1 − kixi−1+

(ki + ki+1)xi − ki+1xi+1 + (ki − ki+1)a− for 2 ≤ i ≤ n− 1

ki
l
li (a+ ∆xi) + ki+1

l
li+1

(a+ ∆xi+1) = 0

miẍi − ciẋi−1 + (ci + ci+1)ẋi − kixi−1+

(ki + ki+1)xi + (ki − ki+1)a− ki l
li (a+ ∆xi)+ for i = n

ki+1
l

li+1
(a+ ∆xi+1) = 0

(15)



miÿi + (ci + ci+1)ẏi − ci+1ẏi+1 + (ki + ki+1)yi−

ki+1yi+1 − ki l
li∆yi + ki+1

l
li+1

∆yi+1 = Fy,i(t) for i = 1

miÿi − ciẏi−1 + (ci + ci+1)ẏi − ci+1ẏi+1 − kiyi−1+

(ki + ki+1)yi − ki+1yi+1 − ki l
li∆yi+ for 2 ≤ i ≤ n− 1

ki+1
l

li+1
∆yi+1 = Fy,i(t)

miÿi − ciẏi−1 + (ci + ci+1)ẏi − kiyi−1+

(ki + ki+1)yi − ki l
li∆yi + ki+1

l
li+1

∆yi+1 = Fy,i(t) for i = n

(16)

where a is the initial distance between the masses, l is the free length of the springs, li =
√

(a+ ∆xi)2 + (∆yi)2,538

and ∆xi and ∆yi and are given as follows:539

∆xi =


xi for i = 1

xi − xi−1 for 2 ≤ i ≤ n

−xi−1 for i = n+ 1

(17)

540

∆yi =


yi for i = 1

yi − yi−1 for 2 ≤ i ≤ n

−yi−1 for i = n+ 1

(18)

We should note that here only linear damping is considered for the system.541
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