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Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island
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ABSTRACT

Observations of internal solitary-like waves (ISWs) on the Oregon Shelf suggest the presence of Kelvin–

Helmholtz billows in the pycnocline and larger-scale overturns at the back of the wave above the pycnocline.

Numerical simulations designed to explore the mechanisms responsible for these features in one particular

wave reveal that shear instabilities occur when (i) the minimum Richardson number Ri in the pycnocline is

less than about 0.1; (ii) Lx/l . 0.8, where Lx is the length of the unstable region with Ri , 0.25 and l is a half

wavelength of the wave; and (iii) a linear spatial stability analysis predicts that ln(af /ai) .’ 4, where ai and af

are the amplitudes of perturbations entering and leaving the unstable region. The maximum energy loss rate in

our simulations is 50 W m21, occurring at a frequency 8% below that with the maximum spatial growth rate.

The observations revealed the presence of anomalously light fluid in the center of the wave above the

pycnocline. Simulations of a wave encountering a patch of light surface water were used to model this effect.

In the presence of a background current with near-surface shear, the simulated ISW has a trapped surface

core. As this wave encounters a patch of lighter surface water, the light surface water at first passes beneath

the core. Convective instabilities set in and the light fluid is entrained into the core. This results in the for-

mation of overturning features, which exhibit some similarities with the observed overturns.

1. Introduction

In this paper, we describe numerical simulations un-

dertaken to explain observed instabilities in a large in-

ternal solitary-like wave (ISW) on the Oregon Shelf.

ISWs are commonly observed in coastal regions of the

world’s oceans. They are predominantly generated by the

nonlinear-dispersive evolution of internal tides generated

by tidal flow over the shelf break or across ridges (Farmer

et al. 2009), but other generation mechanisms include the

relaxation of controlled flow over a sill (Farmer and

Smith 1980), upstream influence of controlled flow over

topography (Cummins et al. 2003; Stastna and Peltier

2004), near-resonant flow over topography (Bogucki

et al. 1997), nonlinear interaction of an internal tidal

beam with near-surface stratification (Gerkema 2001),

adjustment of river plumes (Nash and Moum 2005),

and possibly Kelvin waves (Hosegood and van Haren

2004). ISWs are coherent, energetic events that can travel

hundreds of kilometers. Wave-induced currents can re-

suspend sediments (Bogucki et al. 1997; Carter et al. 2005)

and impact offshore engineering activities (Osborne and

Burch 1980). Packets of ISWs can significantly affect

acoustic transmission. They can also play an important

role in mixing because of the large energy transport

associated with their propagation.

There are at least four mechanisms through which

ISWs can result in mixing. These include instabilities in

the bottom boundary layer (Bogucki and Redekopp 1999;

Stastna and Lamb 2002; Bogucki et al. 2005; Diamessis

and Redekopp 2006; Stastna and Lamb 2008) or when

waves break as they shoal (Klymak and Moum 2003;

Vlasenko and Hutter 2002; Bourgault et al. 2007;

Bourgault and Galbraith 2008). Two other mechanisms,

the focus of this paper, include unstable wave cores

(Lamb 2002; Carter et al. 2005) and shear instabilities

in the fluid interior triggered by ISW-induced vertically

sheared currents (Bogucki and Garrett 1993; Jeans and

Sherwin 2001; Moum et al. 2003; Orr and Mignerey
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2003; Fructus et al. 2009; Barad and Fringer 2010).

Sandstrom and Elliott (1984) concluded that dissipa-

tion of ISWs constitutes the primary mixing mechanism

inshore of the Scotian Shelf break. Holloway (1991)

found that internal tides on the Australian North West

Shelf provided all the mixing required to explain the

temperature profile, and Jeans and Sherwin (2001) con-

cluded that ISWs on the Portuguese Shelf provide an

important energy source for mixing.

High-frequency acoustic images of ISWs in a variety

of environments, including fjords (Farmer and Smith

1980), the Oregon Shelf (Moum et al. 2003), and the

South China Sea (Orr and Mignerey 2003), show clear

evidence of ISWs with shear instabilities in the pycno-

cline (e.g., Moum et al. 2003, Fig. 14). In the images ac-

quired on the Oregon Shelf, such structures appeared

intermittently. Figure 1 is an acoustic image of a packet

of internal waves, the leading member of which is shown

in greater detail in Fig. 2. These images, acquired during

a collaborative study carried out from the R/V Wecoma,

reveal several interesting characteristics discussed in de-

tail below. The wave illustrated here, with 30-m ampli-

tude and 200-m half-width, travels at about 0.6 m s21

(based on GPS readings). The acoustic image also pro-

vides suggestive indications of instability and overturning

and for this reason is selected for detailed analysis and

simulation. The data presented here were acquired in the

same area and during the same period as the observations

discussed by Moum et al. (2003). Although no two images

of unstable internal waves are identical, this example

bears some similarity to others we have seen and thus

provides a useful sample for detailed analysis.

Shear instabilities in progressive internal waves have

been observed in the ocean (Woods 1968) and discussed

by Thorpe (1968), who used the criterion that the

Richardson number Ri must be less than 1/4 for shear

instabilities to occur. He recognized that the stability

of short waves depends on the ratio of the wave period

to the time scale associated with the growth of the in-

stabilities. This was made more concrete by Troy and

Koseff (2005), who analyzed laboratory experiments

of progressive, periodic internal waves in a stratification

consisting of a thin pycnocline separating two homoge-

neous layers of equal thickness. They used the Taylor–

Goldstein equation to predict temporal instability growth

rates, arguing that the flow could be treated as parallel,

provided that the wavelengths of the unstable modes were

short compared to the wavelength of the waves. They

found that waves were unstable, provided that siTw . 5,

where si is an average growth rate and Tw is the length of

time the instability remains in the patch of fluid with Ri ,

0.25. Barad and Fringer (2010) obtained similar results for

shear instabilities in numerical simulations of an ISW.

Troy and Koseff found that a minimum Ri of (0.07–0.08)

6 0.03 was required for overturning Kelvin–Helholtz

(KH) billows to form, whereas Barad and Fringer found

that instabilities occurred if Ri fell below 0.1.

In laboratory experiments using a three-layer continu-

ous stratification with two homogeneous layers separated

by a linearly stratified layer, Fructus et al. (2009) also found

a cutoff Ri of about 0.1, although they observed unstable

waves with Ri as high as 0.11 and stable waves with Ri as

low as 0.087. They found that smaxTw . 5.4 for their un-

stable waves, where smax is the maximum growth rate, and

proposed a third instability criterion: namely, Lx/l . 0.86,

where Lx is the length of the region with Ri , 0.25 and l is

the length of the region in which the vertical displacement

of the base of the stratified layer exceeded half its maximal

FIG. 1. Wave packet observed on Oregon Shelf. The wave is propagating from left to right. The sloping zigzag lines through the figure

show the path of a CTD as it was raised and lowered through the fluid, giving high-resolution temperature and salinity measurements. The

red colors indicate high levels of backscatter. Times are UTC.
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displacement. This criterion more cleanly separated their

unstable and stable waves. Barad and Fringer found that

Lx/l . 0.86 for all their unstable waves.

Convective instabilities, for which the fluid velocity

exceeds the wave propagation speed, can also occur in

internal waves. In numerical simulations of progressive

internal waves, Fringer and Street (2003) found that

convective instabilities occurred when kd exceeded 0.56,

where k is the wavenumber and d a measure of the pyc-

nocline thickness. Lamb (2002, 2003) reported on simu-

lations of shoaling internal solitary waves of depression

that broke via a convective instability as they shoaled

provided the fluid was strongly stratified at the surface or

there was near-surface shear. Carr et al. (2008) reported

on mixed convective-shear instabilities in laboratory ex-

periments using a continuous stratification consisting of a

lower homogeneous layer and a linearly stratified upper

layer. They performed experiments with both a free sur-

face and with a fixed upper boundary and found that the

results were sensitive to the surface boundary condition.

The purpose of this paper is to describe two-dimensional

numerical simulations that seek to explain the unstable

structures observed in Fig. 2 and to identify some of the

conditions required for such instabilities to occur. Fringer

and Street (2003) carried out two- and three-dimensional

simulations of shear instabilities in progressive interfacial

waves and found that three-dimensional processes do

eventually become important and are crucial to simu-

lating mixing; however, the initial instability is two di-

mensional. Barad and Fringer (2010) reported on one

three-dimensional simulation of shear instabilities in

an ISW, concluding that the primary instability was two

dimensional, with three-dimensional instabilities occur-

ring near the back of the wave. These results justify the

use of two-dimensional simulations.

The paper is organized as follows: The observations

leading to Fig. 2 are discussed in section 2. In section 3,

the numerical model is described along with the back-

ground density and velocity fields used in the simulations.

In section 4, the method used to initialize the numerical

model with ISWs is described. We first consider ISW

solutions of the Dubreil–Jacotin–Long (DJL) equation

and explore the sensitivity of these waves to the near-

surface shear in the background velocity. A limitation

of this approach is that it does not yield unstable waves,

motivating the development of a new method for initial-

izing the model with unstable ISWs. Section 5 presents

simulations of KH billows for cases with no background

current. Comparisons are made with predictions of a

spatial stability analysis. The energetics of the unstable

waves is discussed in section 6. In section 7, we explore the

overturning process in the core of the wave by extending

our analysis to include the effects of spatial variability in

the near-surface stratification, which might be expected

offshore of the Columbia River estuary, where these

measurements were made. The simulations make it clear

that overturning in the core requires quite specific shear

or near-surface stratification conditions. An interpre-

tation of the observations in terms of the numerical

simulations is summarized in section 8.

2. Observations

The observations were acquired just southwest of the

Columbia River plume (46879150N, 1248169450W), ap-

proximately 30 km west of the Oregon coast. The water

depth shoals smoothly from the 100-m contour at the

observational area to the 50-m contour 16 km to the east.

In addition to microstructure profiling (Moum et al.

2003), the instrumentation suite included a 300-kHz

hull-mounted ADCP; a 120-kHz narrow-beam echo

sounder with a half beamwidth of 38; and a CTD, which

was profiled continuously. The ADCP was sampled using

2-m vertical bins and 5-s averages. The vertical resolution

was insufficient to measure the narrow wave-induced

shear layer across the pycnocline in the ISW, but it did

provide some information on the weak background cur-

rents at depths greater than 8 m, beyond the interference

due to reverberation from the hull. This range limitation

prevented us from resolving the near-surface shear, which

can result in the generation of trapped vortical cores.

Packets of ISWs were observed propagating inshore

on a semidiurnal basis. Figure 1 shows the packet from

which we selected the leading wave (Fig. 2). Detailed

measurements using the CTD were typically acquired

with the ship slowly advancing through the waves in the

opposite direction to their propagation, following which

the vessel ran ahead of the waves at 6–8 kt to sample

the waves successively as they advanced eastward. The

echo sounder acquired images of the acoustical target

strength of biota and microstructure. No attempt is made

here to separate these different contributions, but nu-

merous applications of this approach tend to support

the view that there is a tendency for the biological scatter

to become organized along density steps. Our simulta-

neous CTD and acoustical images are consistent with this

interpretation. The CTD was continuously profiling the

upper 45 m during passage of the wave and can be readily

identified in the acoustic image, providing a useful guide

for relating density profiles to the acoustic images. The

CTD is deployed just aft of the echo sounder and is

subject to a small but unmeasured wire angle due to the

forward motion of the vessel. Prior to arrival of the waves,

the stratification is concentrated in the upper 25 m, below

which the density profile has a nearly constant gradient of

0.0183 kg m24. The wave is traversed in approximately
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5 min, requiring rapid tow-yo profiles to sample the wave

structure. There were typically three downcast profiles

per wave.

Figure 2 (right) shows four s density profiles taken from

CTD downcasts (s 5 r 2 1000 kg m23, where r is the

density). Profiles (a) and (b) are taken well ahead and

near the leading edge of the wave. Profiles (c) and (d)

are in the central and rear portion of the wave. The

corresponding downcasts are labeled in the echo-sounder

image. Profiles (a) and (b) show that the broad 20-m-thick

pycnocline includes some important finescale features,

particularly two sharp pycnoclines at depths of about 9

and 15 m. These are the layers in which instabilities

occur in the numerical simulations. Moum et al. (2003)

observed increased scattering along density steps sim-

ilar to these and explained it in terms of enhanced acoustic

target strength due to shear instability and microstructure.

Periodic fluctuations in target strength along these two

density steps are almost certainly modulated by wave-

induced motion of the ship and do not represent in-

dividual overturning structures.

The density profiles also show unstable segments as-

sociated with the two sharp pycnoclines, especially in

profile (d). The upper portion of this profile is shown

with an expanded density scale in the left panel of Fig. 2.

This reveals some weakly unstable structures at depths of

4 and 12 m, a broader weak overturn between depths

of 15 and 20 m, and a much stronger overturn at a depth

of 22 m (the overturn strength Dr is the difference in the

maximum and minimum density values in the overturn).

Larger overturns can be seen at 29- and 35-m depths in

the right panel. Horizontal dashed lines are included to

aid in relating these features to the corresponding portion

of the image. Small discrepancies in the depths are to be

expected as the CTD is displaced from the sonar location.

Details on the five most significant overturns in profile

(d) are given in Table 1. Before analyzing the density

profile, it was smoothed by taking a weighted average of

five consecutive density values (weights 0.5 for the middle

value and 0.125 for the neighboring values). The over-

turning region is the smallest region such that all the fluid

above (below) is lighter (denser) than the fluid in the

overturn (Galbraith and Kelley 1996). The table includes

the range of depths spanned by the overturn, overturn

thickness, overturn strength, and the available potential

energy (APE). Values were interpolated onto a uni-

formly spaced grid using cubic splines before calculat-

ing the APE. The smoothing reduces the thickness of

the overturn, Dr, and the APE, so these values only pro-

vide a rough guide. Some small overturns that can be seen

in the density profile (e.g., that at a depth of 7.5 m in the

left panel of Fig. 2) fail the run length test of Galbraith and

Kelley (1996). Following Galbraith and Kelley (1996),

we also searched for loops in the temperature–salinity

(TS) diagram. The only one found was at a depth of 35–

36 m. Because this overturn is clearly visible in both the

temperature and salinity profiles, with a consistent struc-

ture in both form, thickness and depth, we consider

this to be a true overturn. The presence of the loop sug-

gests the values of Dr and APE may have large errors;

however, for our purposes, it is the presence and ap-

proximate thickness of this overturn which is of interest.

We have not computed Thorpe scales, because the CTD

is passing through the wave as it moves past the ship, so

we are looking at an x–z profile in a rapidly evolving

background flow. For this reason, we do not have a

statistically stationary signal, because different parts of

the heterogeneous macrostructure are sampled by the

CTD as it descends.

Density profiles (c) and (d) in Fig. 2 show the presence

of near-surface fluid, which is lighter (fresher and warmer)

than any detected upstream of the wave. This is more

clearly illustrated in Fig. 3, where the anomalously low

density values are shaded. This suggests that the wave

contains a core of light fluid, possibly because of the

presence of patches of light surface water associated with

the Columbia River plume. The lack of near-surface

current observations precludes a direct check that wave-

induced currents exceed the wave propagation speed;

however, the presence of lighter fluid is suggestive and

motivates exploration with numerical simulations, which

are discussed in section 7.

3. The numerical model

Simulations are carried out with a two-dimensional

nonhydrostatic model (Lamb 1994, 2007), which uses the

Boussinesq approximation and a rigid lid at the surface

z 5 0. Rotation is not included because of the small time

and length scales of interest. The model equations are

r
0

Du

Dt
5�$p� rgk 1 (0, F), (1)

TABLE 1. Values quantifying the strength of the largest five over-

turns (based on APE) in density profile (d) of Fig. 2. The first column

gives range of depths spanning the overturn, the second column is the

thickness of the overturning region, Dr is the difference between the

maximum and minimum density in the overturn, and APE is the APE

of the overturn.

Overturn range (m) Thickness (m) Dr (kg m23) APE (J m22)

(21.6, 27.8) 6.2 0.01 0.15

(28.3, 214.0) 5.6 0.01 0.02

(215.0, 228.1) 13.1 0.03 1.24

(228.6, 230.4) 1.8 0.05 0.08

(235.2, 236.3) 1.2 0.08 0.14
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Dr

Dt
5 0, and (2)

$ � u 5 0, (3)

where standard terminology has been used, with u 5 (u, w)

being the two-dimensional velocity field. The model is

initialized with an unstable ISW (section 4). The as-

sumption of a constant depth is consistent with the grad-

ual slope of the Oregon Shelf, allowing us to do the

computations in a reference frame moving with the ISW,

which propagates to the right through the fluid. In the

horizontal, 6000 grid points gave a horizontal resolution

of 0.167 m over a domain 1000 m long centered on the

wave. A stretched vertical grid, using 450 grid points,

provided a vertical resolution of 1.3 m in the lower 40 m

and 0.13 m in the upper 50 m, with a smooth transition

in between. Viscosity and diffusion are ignored because

of the high Reynolds number of the ISW under in-

vestigation [O(106) based on wave-induced current and

pycnocline thickness]. Hogg and Ivey (2003) found that,

for a Reynolds number of 100, two-dimensional shear

instabilities were very similar to inviscid instabilities.

Viscosity and diffusion would be required in three-

dimensional simulations of mixing.

Although the flow within the wave is hydrodynamically

unstable, growth of instabilities do not occur without

small perturbations, which will normally be present in

the active upper-ocean environment. We used a forcing

function F in the vertical momentum equation to gen-

erate predominately mode-one perturbations upstream

of the wave. This function,

F(x, z, t) 5 r
0
G(t)e�[(x�450)/10]2

fe�[(z19)/4]2

1 e�[(z115)/4]2

g,
(4)

is comprised of the sum of two terms, centered in each

sharp pycnocline upstream of the wave. The forcing

exceeds 10% of its maximum value between depths of

about 4 and 22 m. For most runs, the time dependence is

a single harmonic,

G(t) 5 a sin(v
f
t), (5)

allowing us to explore the frequency response of the sys-

tem. A few runs were carried out using a ‘‘random’’ forcing

consisting of the sum of 96 different harmonics with fre-

quencies ranging between 0.01 and 0.2 s21 of the form

G(t) 5 �
n595

n50
a

n
sin[(0.01 1 0.002n)t 1 f

n
], (6)

where the amplitudes an 2 (0, amax) and phases fn were

randomly generated. The random forcing function is

shown in Fig. 4 for amax 5 1025 m s22.

Because the forcing term is used in a reference frame

fixed with the wave, the frequency of the forcing in a

reference frame that moves with the fluid is Doppler

shifted. The horizontal wavenumbers k of the forced

small amplitude waves are given by

v
f
5 6V

n
(k)� ck, (7)

where c is the propagation speed of the ISW relative to

the fluid and Vn(k) . 0 is the frequency of a mode-n

wave in a reference frame fixed with the fluid ahead of the

wave. Choosing vf . 0, we have k , 0, because for the

supercritical propagation speeds of ISWs jVn(k)/kj , c.

There are two wavenumbers with k , 0 satisfying (7);

hence, the forcing generates two different linear waves

for each vertical mode. The shorter mode-one wave,

which propagates rightward relative to the fluid, dom-

inates the response.

Model stratification and background velocity

A few stratifications were used in the model simula-

tions. The base stratification,

s
1

5 25.2550� 0.290 tanh
z 1 9.0

d
1

� �

� 0.35 tanh
z 1 15.5

d
2

� �
� 0.375 tanh

z 1 30.0

9.0

� �

1 0.15 sech
z 1 24.0

3.0

� �
(8)

FIG. 3. Observed density field s 5 r 2 1000 kg m23 ahead of the

wave interpolated from CTD measurements obtained along the

zigzagged lines. The shaded region indicates fluid lighter than any

observed ahead of the wave. This is a contour plot of the raw,

sparse density data and hence many of the overturns are artifacts. It

is only shown to illustrate the patch of light fluid.
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with

(d
1
, d

2
) 5 (1.0, 1.5) m, (9)

is shown in Fig. 5, where it is compared with an observed

density profile upstream of the wave. The observed profile

shows the presence of small-scale overturns, for example at

depths of about 3 and 7 m, which appear to be real, having

signals in both the temperature and salinity data spanning

approximately 50 and 20 data points, respectively. These

particular features are not seen in adjacent density pro-

files, which have small overturns at other depths.

In the absence of a background current, d2 , 0.5 m was

required for shear instabilities to be generated in the lower

sharp pycnocline. This produced a much sharper pycno-

cline than observed, suggesting that the presence of shear

instabilities on this pycnocline in the observations may be

associated with a background shear across it. Some simu-

lations were carried out in which the density was reduced

by 0.1 kg m23 in the upper 3 m, motivated by the observed

low density values in the center of the wave. This modifi-

cation did not significantly affect the results (not shown).

We extrapolated the current profile up to the surface

using four different profiles (Fig. 6), with the results being

not particularly sensitive to the velocity profile below 60-

m depth. Properties of large ISWs vary considerably as

the near-surface shear is changed (see below).

4. Model initialization

The numerical model was initialized with a single ISW

calculated by solving the DJL equation (Stastna and

Lamb 2002; Lamb 2003). For background currents U
3,4

,

large waves may have a core with closed streamlines.

For the current application, the cores do not contain

anomalously light fluid, because our density profiles

have a constant density in a surface mixed layer.

Figure 7 shows ISWs obtained by solving the DJL

equation for the four different background currents.

These waves have either an amplitude of 35 m (Figs. 7a,d)

FIG. 4. (a) Time series of the random forcing G(t) for amax 5 1025 m s22.

(b) The first 1000 s.

FIG. 5. Model stratification (dashed line) and an observed density

profile ahead of the wave (solid line).
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or are the largest waves that could be directly calculated

(Figs. 7b,c). The wave obtained using U(z) 5 U
4
(z) has

a core. The symbols indicate the estimated locations of

density values s 5 24.8 and 25.5 kg m23 (corresponding

to the bottom of the two sharp pycnoclines) taken from

the CTD downcasts with start times of 2025, 2027, and

2029 UTC (see Fig. 3). The relative horizontal location

of the observed values was estimated using the GPS-

based ship speed of 0.21 m s21 and the calculated wave

propagation speed of 0.63 m s21. The location of the

rightmost observation was chosen to give a reasonable fit

to the computed waves. This conversion is subject to un-

certainty but does facilitate comparisons between dif-

ferent waves and demonstrates similarity between the

simulations and density profile observations.

The amplitude and width of the observed wave is

captured reasonably well with a 35-m wave for any of the

background currents used. What differs is the flow in the

center of the wave above the pycnocline (e.g., the oc-

currence of a core) and the Richardson numbers in the

pycnoclines, which have a direct bearing on the occur-

rence of shear instability.

Profiles of horizontal velocity down the center of com-

puted waves with amplitude 30 m are shown in Fig. 8.

They are virtually identical in the lower 60 m but have

significant differences in the upper 30 m. In the upper

mixed layer, baroclinic vorticity generation is negligible

and hence vorticity is preserved as the fluid in this layer

FIG. 6. Model velocity profiles. Positive values are flow in the

direction of wave propagation.

FIG. 7. Density contours for waves of amplitude 35 m or waves of maximal amplitude for the

four background currents. Symbols indicate estimated locations of density values r 5 1024.8

and 1025.5 kg m23 as calculated from CTD downcasts. (a) U 5 U
1
: amplitude 35.1 m. (b)

U 5 U
2
(z): amplitude 31.8 m. (c) U 5 U

3
(z): amplitude 30.5 m. (d) U 5 U

4
(z): amplitude

34.9 m. The shaded region is the wave core.
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enters the wave and is stretched vertically from a thickness

of about 8 to 30 m. This results in the much greater surface

velocities for U 5 U3,4. For velocity U4, this results in

surface currents that exceed the wave propagation speed

as required for the formation of a wave core (Lamb 2003).

For the stratification and background currents of interest

here, the largest waves that can be computed directly

had Richardson numbers of about 0.12, and none of

them exhibited KH instabilities in time-dependent sim-

ulations. To obtain waves with a lower Ri, we first com-

puted a large wave with an alternative background

velocity profile Ualt and/or stratification ralt. Next, we

changed the horizontal velocity by subtracting Ualt and

adding the desired background flow. Using the time-

stepping model to allow this wave to adjust to the new

background fields yielded a steady ISW. During the

adjustment process, the density field can be modified by

changing the stratification at the inflow boundary. This

adjustment, during which there is little change in the

wave amplitude, took approximately one hour, which has

significant implications for the behavior and propagation

of waves in changing topography and stratification. The

wave propagation speed changed slightly.

Comparisons of the velocity down the center of an

adjusted wave using U 5 0 (wave 1 in Table 2) with

observations are presented in Fig. 9a. The observed

profile near the center of the wave at time 2028:25 UTC

(see Fig. 2) is shown along with the mean velocity be-

tween 2028:05 and 2028:45 UTC (average of nine profiles).

For comparison, the average of the observed velocities

ahead of the wave between 2020:05 and 2024:57 UTC (see

Fig. 6) is included. As expected, the simulated velocity

profile is vertically uniform above the pycnocline and

has strong shear layers across the two sharp pycnoclines

(vorticity maximum of 0.14 s21). In contrast, the ob-

served velocity profile is almost linear with a mean vor-

ticity of about 0.02 s21, and it lacks strong shear layers

across the pycnocline. The velocity change between

depths of 10 and 60 m is similar to that in the simulated

wave. The lack of a strong shear layer at the depth of

FIG. 8. Velocity profiles down the center of rightward-propagating ISWs of amplitude 30 m

using density profile 1: (a) U1(z), (b) U2(z), (c) U3(z), and (d) U4(z). The solid curve is the

background velocity profile, and the dashed curve is the profile in the wave. In (a),(b),

the velocity profile for a wave of amplitude 28 m computed with no background flow is shown

with dotted lines for comparison.
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the pycnocline indicates that the velocity observations

are not of sufficient quality to make predictions of the

potential for shear instabilities. In Fig. 9b, the simu-

lated velocity profile using background velocity U
4

is

compared with that in the wave using no background

velocity for the 36-m wave used below in our simulation

of a wave with a core encountering a surface pool of

light fluid. The shear above the pycnocline for this wave

is similar to the observed shear.

Figure 10 shows the Richardson number profile down

the center of the adjusted wave. The Richardson num-

ber now has a minimum value of 0.089 in the upper

pycnocline and 0.197 in the lower pycnocline. Figure 11

overlays Richardson number contours on the density

FIG. 9. Simulated and observed horizontal velocity and profiles. (a) The solid line is sim-

ulated horizontal velocity in the reference frame fixed with the fluid ahead of the wave for an

adjusted 34-m wave; the dotted line is the observed profile near the center of the wave (time

2028:25 UTC); the dashed line is observed velocities averaged between 2028:05 and 2028:45 UTC;

and the dashed–dotted line is observed velocity ahead of the wave, averaged from 2020:05 to

2024:57 UTC. (b) Dashed–dotted line is the simulated 36-m wave using U4(z) (the same wave as

in Fig. 21); the other curves are as in (a).

TABLE 2. Initial waves for simulations of shear instabilities: no background current and (d1, d2) 5 (1.0, 1.5). Here, maxjhj is the wave

amplitude (maximum isopycnal displacement); c and dc are the background current at the surface outside the wave and the wave

propagation speed in the computational domain; Ri1 and Ri2 are the minimum Richardson numbers in the upper and lower sharp

pycnoclines, respectively; af /ai is the ratio of the final to initial amplitudes, predicted by linear stability theory, of a perturbation as it passes

through the region with Ri1 , 0.25; and Lx/l is the ratio of the length of the region with Ri , 0.25 (upper sharp pycnocline) to the half

wavelength l of the ISW (see text).

Wave maxjhj (m) c (m s21) dc (m s21) Ri1 Ri2 ln(af /ai) Lx/l Unstable

1 33.9 0.635 20.0003 0.089 0.197 7.0 1.07 Yes

2 32.2 0.631 20.0008 0.095 0.211 5.7 0.87 Yes

3 29.8 0.628 20.0005 0.110 0.236 3.8 0.80 Marginal

4 28.2 0.623 0 0.117 0.252 3.1 0.75 —
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field. There is a thin band, less than 2 m thick and about

80 m in length, in which Ri , 0.1.

5. Simulations of shear instabilities

For simplicity, we only discuss simulations without

a background current. Properties of four initial waves

are provided in Table 2. A large number of simulations

have been carried out using the three largest of these

waves (Table 3). For the most part, the sinusoidal forc-

ing function (5) was used, enabling us to explore the

frequency response of the system and to make com-

parisons with the predictions of linear stability theory. A

few simulations were done with the random forcing

function (6) using the largest wave only. Figure 12 shows

the minimum Richardson number in the upper sharp

pycnocline as a function of x for these waves. Although

the minimum Richardson number decreases slightly with

increasing wave amplitude, the length of the region with

near minimum Richardson numbers increases notably.

This length is very important, because any unstable per-

turbations need time to grow (Thorpe 1968; Troy and

Koseff 2005). Values of Lx/l for our waves were cal-

culated using an isopycnal at the base of the upper sharp

pycnocline to determine l.

Information on the individual simulations is given in

Table 3. Instabilities were easily generated in the two

largest waves, which have Lx/l 5 0.87 and 1.07. Figure 13

shows results for four forcing frequencies using the larg-

est wave. The perturbations cannot be detected until the

center of the wave, after which they grow rapidly in the

upper sharp pycnocline. KH billows are formed for

forcing frequencies between about 0.04 and 0.14 s21.

At vf 5 0.04 s21, the unstable waves did not turn over

until about x 5 200 m, at which point the billows were

spaced 100 m apart. At vf 5 0.03 s21, the perturbations

grew enough to be detected downstream of the wave

center but no rollups occurred. No growth of the per-

turbation could be detected for vf 5 0.16 s21 at the

scale of Fig. 13. The dependence of the instability on

the amplitude of the ISW is illustrated in Fig. 14. The

results for the two largest waves are similar, whereas for

the 29.8 m wave (Lx/l 5 0.80) perturbations are barely

detectible. Hence, no simulations were carried out with

the smallest wave. Based on these results, the critical

value of Lx/l separating stable from unstable waves is

about 0.8. This is 7% less than the value of 0.86 reported

by Fructus et al. (2009) for a different stratification.

To provide confidence in our simulations of small-

scale instabilities we also carried out a linear normal-

mode stability analysis by solving the Taylor–Goldstein

equation,

f0 1
N2k2

(kU � v)2
� U0(z)k

kU � v
� k2

" #
f 5 0, (10)

to obtain theoretical estimates of properties of unstable

perturbations. For a spatial instability, the situation here,

the frequency is real and given, whereas the wave-

number k is the complex valued eigenvalue. The Taylor–

Goldstein equation is solved subject to homogeneous

boundary conditions at z 5 2100, 0 m. We calculated

unstable eigenmodes using vertical profiles of the hori-

zontal velocity and density at various locations in the

ISWs. Results of the stability analysis, particularly for

eigenmodes having wavelengths comparable to the ISW

FIG. 10. Richardson number profile down the center of wave

across the pycnocline: no background current, (d1, d2) 5 (1.0, 1.5)

m. The solid line is an adjusted wave of amplitude 33.9 m obtained

by computing an initial wave of amplitude 35 m, subtracting the

background current and allowing the wave to adjust (case 1). The

dashed line is a wave of amplitude 28.2 m (case 4).

FIG. 11. Initial wave 1 (see Table 2). The color lines are density

contours, and the black lines are Richardson number contours

(Ri 5 0.25, 0.2, 0.15, 0.1). This is the same wave as in Fig. 10.
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horizontal length scale, must be used with caution, be-

cause flow in an internal solitary wave is not horizontal as

assumed in deriving the Taylor–Goldstein equation.

The results of this analysis are consistent with the

numerical simulations (Figs. 15, 16). For the largest wave,

the eigenvalue with the largest spatial growth rate at the

wave center (k 5 0.221 2 0.0436i m21) occurs for vf 5

0.092 s21. In contrast, a temporal stability analysis pre-

dicts a maximum growth rate when k 5 0.248 m21, for

which v 5 0.103 1 0.0178i s21. We compared the pre-

dictions of linear stability theory with the results of

the numerical simulations for case 1g by extracting an

isopycnal z 5 z(x, s, t) from the upper sharp pycnocline

(s 5 23.95 kg m23) and contrasting its displacement

with the linear prediction. The perturbation of the iso-

pycnal at t0 5 100 min was estimated by subtracting an

estimate z(x 2 dct0, s, 0) of its undisturbed height by

taking into account the slow drift of the ISW at speed dc

(Table 1). Although this compensates for the estimated

displacement of the wave by 1.8 m during the elapsed

time, it does not compensate for possible changes in

wave shape. Figure 17 compares the perturbation of the

isopycnal dz with the shape of the isopycnal

dz
th

(x) 5 b 1 q cos(k
r
x 1 a)ek

i
x (11)

predicted by the linear stability analysis, where kr and ki

are given by the stability analysis, using velocity and

density profiles at x 5 40 m, and b, q, and f are chosen to

match the isopycnal from the numerical simulation in

the neighborhood of x 5 40 m. The stability analysis is in

close agreement with both the wavelength and growth

rate of the instability over the first wavelength of the

perturbation. Thereafter, the wavelength and growth rate

of the simulated perturbations increase, consistent with

the stability analysis, which predicts smaller values of kr

and larger growth rates 2ki at the center of the wave.

Following previous authors, we also estimated the

growth factor of a perturbation as it passes through the

whole of the unstable region. Although other authors

used a temporal stability analysis, our analysis is based

FIG. 12. Minimum Richardson number in the upper sharp pyc-

nocline as a function of x for initial waves 1–4 (see Table 2) with no

background current and stratification with (d1, d2) 5 (1.0, 1.5) m.

Richardson number decreases with wave amplitude. In each case,

the center of the wave has been shifted to x 5 0.

TABLE 3. Simulations using sinusoidal forcing. Case number refers to initial wave in Table 2. Here, a and vf are the amplitude and

frequency of the forcing, 2ki and kr are the spatial growth rate and wavelength predicted by the Taylor–Goldstein equation at the center of

the wave, and 2dE/dt is the rate energy is lost from the wave due to the energy flux associated with the billows.

Case a (m s22) vf (s21) 2ki (m21) kr (m21) 2p/kr (m) 2dE/dt (W m21)

1a 0.0001 0.03 0.0158 0.061 103.2 —

1b — 0.05 0.0333 0.110 57.1 15

1c — 0.06 0.0384 0.137 45.9 37

1d — 0.07 0.0414 0.164 38.3 48

1e — 0.08 0.0431 0.190 33.1 45

1f — 0.09 0.0436 0.216 29.1 40

1g — 0.10 0.0434 0.241 26.1 34

1h — 0.12 0.0409 0.290 21.7 23

1i — 0.14 0.0367 0.336 18.7 5

1j — 0.16 0.0312 0.381 16.5 —

1k 0.00005 0.10 0.0434 0.241 26.1 —

1l 0.0002 0.10 — — — 36

1m 0.001 0.10 — — — 43

2a 0.0001 0.05 0.0317 0.115 54.6

2b — 0.07 0.0394 0.169 37.2 —

2c — 0.08 0.0409 0.196 32.1 —

2d — 0.10 0.0411 0.248 25.3 —

2e — 0.12 0.0387 0.297 21.2 —

2f — 0.14 0.0346 0.345 18.2 —

2g — 0.16 0.0292 0.391 16.1 —

3a — 0.07 0.0347 0.177 35.5 —

3b — 0.08 0.0358 0.204 30.8 —

3c — 0.1 0.0353 0.257 24.4 —
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on a spatial stability analysis and we estimate the growth

rate by integrating

da

dx
5�k

i
(x)a. (12)

From this, we obtain the growth factor of the pertur-

bation af /ai 5 eF, where ai and af are the initial and final

amplitudes of a perturbation passing through the region

with Ri , 0.25. Values of F 5 ln(af /ai) are included in

Table 2. For the two strongly unstable waves, F 5 5.7

FIG. 13. Density contours 80 min after turning on the body forcing term. The initial wave is as in Fig. 10.

Forcing amplitudes a 5 0.0001 m s22. (a) Case 1b: forcing frequency vf 5 0.05 rad s21. (b) Case 1d: vf 5

0.07 rad s21. (c) Case 1g: vf 5 0.1 rad s21. (d) Case 1i: vf 5 0.14 rad s21.
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and 7.0, whereas for the marginally unstable wave F 5 3.8.

These values compare well with the findings of other

authors, who used a more approximate temporal stability

analysis: Troy and Koseff (2005) and Barad and Fringer

(2010) found that instabilities occurred when their cor-

responding value of F, based on an average temporal

growth rate, exceeded 5, whereas Fructus et al. (2009)

found instabilities occurred when their value of F, based

on maximum temporal growth rate, exceeded 5.4.

The top panel of Fig. 18 shows results for case 1m (vf 5

0.1 s21), which has a forcing amplitude 10 times larger than

that for case 1g (see Fig. 13). The bottom two panels show

results using the random forcing for amax 5 1026 and

1024 m s22. In both cases, irregularities in billows can be

seen. For the randomly forced cases, the wavelengths of the

perturbations in the center of the wave also vary with time.

For example, for the case using amax 5 1025 m s22 (not

shown), the wavelengths ranged between 20.2 and 29.2 m,

being generally at the longer end of this range. According

to linear stability theory, these wavelengths correspond to

forcing frequencies lying between 0.13 and 0.09 s21.

Moum et al. (2003) performed a temporal stability

analysis, using the Taylor–Goldstein equation, of a wave

observed on the Oregon Shelf. As in the present anal-

ysis, the resolution and accuracy of velocity measure-

ments within the range were severely limited and the

density structure was used to compute streamlines. The

horizontal velocity field at the center of the wave was

derived from the inferred strain field and the observed

velocity field ahead of the wave. Fructus et al. (2009)

found good agreement between the linear stability anal-

ysis and the characteristics of the observed instabilities,

FIG. 14. Density contours 80 min after turning on the body forcing term for three different initial waves

using a forcing frequency vf 5 0.08 rad s21 and forcing amplitude a 5 0.0001 m s22. Cases (a) 1e (initial

amplitude 33.9 m), (b) 2c (initial amplitude 32.2 m), and (c) 3b (initial amplitude 29.8 m).
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with the theoretical growth rates of waves that broke

being larger than those for waves that remained stable.

6. Energetics

As is fairly typical for a coastal wave, instabilities are

an important part of the dissipation mechanism and the

associated mixing plays a role in setting the stratification.

Although these two-dimensional simulations cannot be

used to address mixing, they can provide insight into the

rate at which energy is lost from the ISW, because shear

instabilities are initially two dimensional. As pointed out

above, instabilities need time to grow. They also need

time for three-dimensional effects to modify them and

hence to affect the rate at which energy is extracted from

the shear flow. To consider their role in extracting energy

from the ISW, we consider the evolution of kinetic and

available potential energies and compare them with some

observations to put our simulated values in context.

Neglecting viscous and diffusive effects, the pseu-

doenergy equation is

›

›t
(E

k
1 E

a
) 1 $ � [u(E

k
1 E

a
1 p

d
)] 5 0, (13)

where pd is the pressure perturbation,

E
k

5
r

0

2
(u2 1 w2) (14)

is the total kinetic energy density, and

E
a
(x, z, t) 5 g

ðz*(x,z,t)

z

[r(s)� r(x, z, t)] ds (15)

FIG. 15. Unstable eigenvalues as a function of the forcing frequency at center of the initial

waves: (a) kr and (b) spatial growth rate 2ki. The lines are for case 1, 33.9-m wave (solid); case

2, 32.2-m wave (dashed); and case 3, 29.8-m wave (dotted).

FIG. 16. Unstable eigenvalues as a function of x for the 33.9-m wave (case 1): (a) kr and

(b) spatial growth rate 2ki. The lines are vf 5 0.14 s21 (dashed), 0.1 s21 (solid), 0.07 s21

(dotted), and 0.05 s21 (dashed–dotted).
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is the available potential energy density. Here, r(z) is

the reference density and z*(x, z, t) is the height of the

fluid particle at (x, z, t) in the reference stratification

(Scotti et al. 2006; Lamb 2007, 2008; Lamb and Nguyen

2009). We use the background stratification as the ref-

erence density to calculate the APE in an infinitely long

domain (Lamb 2008). The calculation of Ek is done in

a reference frame fixed with the fluid ahead of the wave.

The total energy in a region containing the solitary

wave is E 5 K 1 APE, where K and APE are the kinetic

and available potential energy densities integrated over

the region. Figure 19 shows the time evolution of the in-

tegrated energies, which include energy in both the ISW

and the growing perturbations. The left panel com-

pares K and APE, along with their average E/2, for case

1d (vf 5 0.07 s21). The kinetic energy is larger than the

available potential energy (Turkington et al. 1991;

Lamb and Nguyen 2009). As the small perturbations

introduced by the forcing pass through the wave, they

extract energy from the ISW and this energy is lost

from the domain when the perturbations are advected

out of it. When these enhanced perturbations start

exiting the domain (t ’ 1800 s), K and APE decay at

the same rate. Figure 19b compares the evolution of E

for three simulations (cases 1d, 1g, and 1i) using a single

forcing frequency (vf 5 0.07, 0.1, and 0.14 s21) and one

case with random forcing (amax 5 1024 m s22). The

energy initially decays slowly at 0.1 W m21, a conse-

quence of numerical dissipation, and then much more

rapidly after the instabilities start removing energy from

the domain. For the single frequency cases, the energy

decreases linearly, whereas for the randomly forced case

there is some variability about a mean linear decay rate.

Final decay rates for several cases are given in Table 3.

Interestingly, the largest decay rate (48 W m21) occurs

for a forcing frequency of 0.07 s21, not for the frequency

for which linear stability theory predicts the largest spa-

tial growth rate. This could be due to differences in

nonlinear growth rates of the KH billows and will be

the subject of future work.

The decay rate also depends on the amplitude of the

forcing function. For a forcing frequency of 0.1 s21,

increasing the amplitude of the forcing by a factor of 10

increases the decay rate by 26% from 34 to 43 W m21

(cases 1g and 1m), which is still smaller than the decay

rate for sf 5 0.07 m s21 using the smaller forcing

amplitude.

The initial wave energy is 4.24 MJ m21 (MJ per meter

crest length), which is typical for ISWs in shelf seas

(Holloway 1987; Sandstrom et al. 1989; Jeans and

Sherwin 2001). Moum et al. (2007) tracked a single ISW

of depression as it traveled into shallow water on the

Oregon Shelf in June 2000. Its energy decreased from 1 to

0.5 MJ m21 as the depth decreased from 170 to 70 m

over a distance of about 30 km. The rate at which energy

was lost was estimated to average about 10 W m21 dur-

ing this time.

For a decay rate of 50 W m21, it would take our large

wave 25 h, traveling a distance of 56 km at 0.64 m s21, to

lose all of its energy. The decay rate, however, will de-

crease with time as the wave diminishes in amplitude,

returning to small values when the wave restabilizes.

Taking a typical length scale of an ISW as L 5 600 m, a

decay rate of 50 W m21 corresponds to an average

depth-integrated decay rate of (dE/dt)/L 5 8 3 10�2

W m22. As a comparison, Sandstrom and Elliott

(1984) estimated a depth-integrated average decay

rate of 5 3 1022 W m22 for ISW packets on the Nova

Scotia shelf and Jeans and Sherwin 2001 estimate

values of 7.7 3 1022 decreasing to 2.1 3 1022 W m22

for an ISW packet moving onto the Portuguese Shelf.

Because these estimates are for wave packets, the

estimated values will be lower than for an individual

wave.

7. Encounter with a surface pool of light fluid

In the coastal environment, there can be considerable

spatial inhomogeneity in the upper 5 m associated with

freshwater runoff, in our case from the nearby Columbia

River plume. Profiles taken ahead of the wave showed

no sign of water with density less than 1024.25 kg m23;

however, it is clear from Fig. 2 that lower density water

(both fresher and warmer) was present to a depth of

almost 30 m in the center of the wave. Although the

CTD measurements do not rule out the existence of a

thin (,2 m) surface layer of lower density, there is the

possibility of spatial heterogeneity in near-surface den-

sity structure close to the river plume. Although this is in

no way surprising, the implications for the behavior of

the ISW turn out to be very sensitive to variability in the

FIG. 17. Comparison of simulated isopycnal displacement with

predictions of linear instability theory. Case 1g: the solid line is

perturbation of s 5 23.95 kg m23 isopycnal from displacement in

initial wave at t 5 100 m, and the dashed line is theoretical iso-

pycnal displacement using solution of TG equation at x 5 40 m.

See text for more details.
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near-surface water density if there is a background cur-

rent with near-surface shear.

An ISW encountering a pool of light surface water was

simulated for two shear profiles. The first was conducted

using the setup from the previous section, namely an ISW

of amplitude 34 m in the absence of a background cur-

rent, and the second was conducted with a wave of similar

amplitude (36 m) having a trapped core using back-

ground current U
4
.

For these simulations, the density at the inflow bound-

ary was set to

r(x
l
, z) 5 r(z)� F(t) 0.04 1 1 tanh

z 1 6

2

� ��

1 0.06 1 1 tanh
z

3

� ��
, (16)

where

F(t) 5
1

4
1 1 tanh

t � 200.0

100.0

� �
1� tanh

t � 3200

100

� �
.

(17)

Here, t is time from the end of the adjustment time of the

initial wave. Fluid flowing through the right boundary

then advects this light fluid into the wave. The surface

pool, with total length of about 1.7 km, lies above the

pycnocline in the upper 6 m of the water column. It has

a density of s 5 24.1 kg m23 at the surface compared

with 24.24 kg m23 for the initial density and the mini-

mum of 24.15 kg m23 observed in the wave.

The encounter of the wave without a trapped core

(no background current) with the light surface water is

FIG. 18. Density contours 30 min after turning on the body forcing term using wave 1. (a) Sinusoidal

forcing with vf 5 0.1 rad s21 and forcing amplitude a 5 0.001 m s22. (b) Random forcing function with

amax 5 1026 m s22. (c) Random forcing function with amax 5 1024 m s22.
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illustrated in Fig. 20. The front of the light pool pro-

duces a disturbance in the pycnocline, which propa-

gates ahead of the pool and becomes unstable in the

center of the wave. This generates the large disturbance

in the upper sharp pycnocline centered at about x 5

2350 m in Fig. 20a. Thereafter, no significant distur-

bance of the pycnocline occurs. The light surface pool

thickens as it enters the wave, extending to a depth of

over 30 m. When its trailing edge is eventually advected

out of the wave, shear instabilities form at its base (Fig.

20d), well above the pycnocline. These persist as the

light water in the wave shrinks in volume and is even-

tually flushed out of the wave. There is some similarity

with the observations (the high backscatter in the rear

of the wave above the pycnocline in Fig. 2); however, the

unstable region appears to be significantly smaller in the

simulations.

Figure 21 shows the interaction of a pool of light

surface water with an ISW with a core. At t 5 13 min

(Fig. 21a), the light surface water is beginning to enter

the wave. Because of the presence of the wave core the

surface fluid is prevented from sweeping across the top

of the wave (Fig. 21b). Instead it starts to pass beneath

the core, while pushing the core downstream (Fig.

21c). With light fluid beneath the denser fluid in the

core, convective instabilities form and water is en-

trained into the core. Finally, the fluid in the core is

replaced with somewhat lighter fluid (Fig. 21d). The

core is now very active and exhibits features somewhat

reminiscent of those seen in the field observations (Fig.

2); in particular, there is a large rollup near the back of

the wave.

8. Summary

Observations of large-amplitude ISWs sometimes show

striking overturning events. Here, we have selected a

specific example to study with the goal of carrying out

some numerical simulations to understand what can

lead to such intermittent events, which include small-

scale KH billows aligned with the pycnocline as well as

much larger-scale overturns at the back of the wave

above the pycnocline. The observations were acquired

on the Oregon Shelf using a rapidly profiled CTD,

a hull-mounted ADCP, and echo sounder imagery.

Using a nonhydrostatic two-dimensional numerical

model, we first test the conditions required for de-

velopment of shear flow instabilities in the sheared

pycnocline beneath the core. An ISW comparable to

the observed wave, in which shear instabilities could

be simulated, required a wave that was larger than any

that could be obtained as a direct solution of the DJL

equation. We obtained such waves by first calculating

a large-amplitude solution of the DJL equation for

a different background current, after which the back-

ground current was changed and the wave was allowed

to adjust to the new ambient conditions. Instabilities

were then triggered by continuously driving perturba-

tions in the pycnocline ahead of the wave, generally at a

prescribed frequency. As the wave amplitude increases,

the minimum Ri decreases and the length of the unstable

patch increases. Both of these factors contribute to shear

instability, and we found that instabilities occurred when

Lx/l . 0.8, in good agreement with the experimental

findings of Fructus et al. (2009), who found a critical value

FIG. 19. Evolution of wave energy in computational domain (x between 6500 m). (a) Case

1d: Total kinetic energy (wave plus perturbation in reference frame fixed with fluid ahead of the

wave; dashed curve), APE (dotted curve), and half the total energy (solid curve). (b) Total

energy for cases 1d, 1g, and 1i [vf 5 0.07 (solid curve), 0.1 (dotted curve), and 0.14 s21 (dashed

curve) for forcing amplitude a 5 1024 m s22] and for the randomly forced case with amax 5

1024 m s22 (dashed–dotted curve).
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of 0.86 for a continuous three-layer stratification. The

minimum Richardson number required for instabilities

(Ri , 0.11) is consistent with the findings of other authors

(Troy and Koseff 2005; Fructus et al. 2009; Barad and

Fringer 2010), as is the growth factor of the instabilities

(about e5.7 and e7.0 for the largest two waves), based on

a linear spatial instability analysis, as they pass through

the low Richardson number region. The observations (see

Fig. 2) suggest the presence of shear instabilities in both of

the observed sharp pycnoclines. Simulation of shear in-

stabilities in the lower sharp pycnocline could only be

achieved by making the pycnocline much thinner than

FIG. 20. Density contours showing the interaction of an ISW with a pool of light surface

water. Initial wave with amplitude 34 m and no background current: (a) t 5 30 min, (b) t 5

50 min, (c) t 5 70 min, and (d) t 5 97 min.

FIG. 21. Density contours showing the interaction of an ISW with a core with a pool of light

surface water. Initial wave with amplitude 36 m and background velocity U4 (z): (a) t 5 13 min,

(b) t 5 20 min, (c) t 5 27 min, and (d) t 5 67 min.
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observed or by adding strong background shear across it

(results not discussed). Our simulated billows were up to

O(10) m thick, much larger than the observed overturns.

These differences suggest that a finescale, unresolved

structure in the background fields can have significant

repercussions. The energy in the computed waves and the

rate at which energy is drained from the wave by the shear

instabilities are of the same order of magnitude as those

inferred from observations in other coastal regions.

Because the observations detected the presence of

light fluid in the upper 30 m of the wave, we investigated

the interaction of an ISW with a localized pool of light

surface water, which could be a natural consequence of

the Columbia River plume. Two simulations of this type

were done: one with and one without a trapped core. The

presence of a trapped core required the use of a back-

ground current with near-surface shear having vorticity of

the same sign as the wave-induced vorticity. Measure-

ments from the ADCP begin at a depth of 8 m, so we are

unable to confirm the presence of such a background

current. The wave with a trapped core encountering light

surface fluid shows features similar to those in the trailing

portion of the observed wave (Fig. 2). In contrast, our

simulation of a wave encountering a pool of lower density

surface water without a trapped core does not resemble

the observations. The development of these features thus

appears to require the presence of a trapped core in the

ISW and a thin, localized surface layer of light fluid. Such

patches are not unexpected in coastal environments with

freshwater runoff and are consistent with observations

ahead of and within the observed ISW. The combination

of an active core and incorporation of a low-density sur-

face layer results in complex patterns of convective in-

stability, which appear consistent with our observations.

The mechanism we propose for the unstable flow at the

back of the wave (Fig. 2) differs from that hypothesized in

Moum et al. (2003) to explain a different observation

(their Fig. 14).

The numerical simulations also indicate a time scale

for wave adjustment and entrainment of light fluid of

about one hour, which is sufficiently long that waves on

the Oregon Shelf never have time to fully adjust to their

changing environment, a consequence of variable strati-

fication and depth changes. We carried out a number of

simulations of shoaling ISWs. The observed bottom slope

is about 1:320. Simulations starting in depths of 140 m

using bottom slopes as large as 1:80 were performed, and

the waves were far from breaking at a depth of 100 m,

consistent with the observations. Shear instabilities

appeared when the waves reached depths of about 65 m,

at which point the waves were highly asymmetric. We

conclude that the observed overturning features are un-

likely to be related to shoaling.

Care must be taken in interpreting our results because

they are based on two-dimensional simulations. It is well

known, however, that in parallel shear flows two-

dimensional perturbations have the largest growth rates

and that as a consequence shear instabilities are initially

two-dimensional but ultimately become three-dimensional

(Barad and Fringer 2010). If the perturbations do not

three-dimensionalize until after they leave the unstable

patch where Ri , 0.25, their efficiency at extracting en-

ergy from the flow may be greatly diminished, in which

case two-dimensional simulations may accurately predict

both the occurrence of an instability as well as their form

and the rate at which they extract energy from the ISW.

Three-dimensional simulations are required before de-

finitive conclusions can be made.
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