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Abstract 24 

Forests make up a large portion of terrestrial plant biomass, and the long-lived woody 25 

plants that dominate them possess an array of traits that deter consumption by forest pests. 26 

Although often extremely effective against native consumers, invasive species that avoid or 27 

overcome these defenses can wreak havoc on trees and surrounding ecosystems. This is 28 

especially true when multiple invasive species co-occur, since interactions between invasive 29 

herbivores may yield non-additive effects on the host. While the threat posed by invasive forest 30 

pests is well known, long-term field experiments are necessary to explore these consumer-host 31 

interactions at appropriate spatial and temporal scales. Moreover, it is important to measure 32 

multiple variables to get a 'whole-plant' picture of their combined impact. We report the results 33 

of a four-year field experiment addressing the individual and combined impacts of two invasive 34 

herbivores, the hemlock woolly adelgid (Adelges tsugae) and elongate hemlock scale (Fiorinia 35 

externa), on native eastern hemlock (Tsuga canadensis) in southern New England. In 2011, we 36 

planted 200 hemlock saplings into a temperate forest understory and experimentally manipulated 37 

the presence/absence of both herbivore species; in 2015, we harvested the 88 remaining saplings 38 

and assessed plant physiology, growth, and resource allocation. Adelgids strongly affected 39 

hemlock growth: infested saplings had lower above/belowground biomass ratios, more needle 40 

loss, and produced fewer new needles than control saplings. Hemlock scale did not alter plant 41 

biomass allocation or growth, and its co-occurrence did not alter the impact of adelgid. While 42 

both adelgid and scale impacted the concentrations of primary metabolites, adelgid effects were 43 

more pronounced. Adelgid feeding simultaneously increased free amino acids local to feeding 44 

sites and a ~30% reduction in starch. The cumulative impact of adelgid-induced needle loss, 45 

manipulation of nitrogen pools, and the loss of stored resources likely accelerates host decline 46 
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through disruption of homeostatic source-sink dynamics occurring at the whole-plant level. Our 47 

research stresses the importance of considering long-term impacts to predict how plants will 48 

cope with contemporary pressures experienced in disturbed forests. 49 

 50 

Keywords: exotic species invasions, forest understory, herbivory, piercing-sucking 51 

insects, plant resource allocation, plant primary metabolism, Tsuga canadensis 52 

 53 

Introduction  54 

Forests make up a large fraction of terrestrial plant biomass and provide a wide variety of 55 

ecologically- and economically-important ecosystem functions. The long-lived woody plants that 56 

dominate these systems possess a formidable array of both constitutive and inducible defenses 57 

against exploitation (Coley et al. 1985). While plant-consumer coevolution selects for defenses 58 

effective against native exploiters, it may not protect against newly-arrived consumers with 59 

novel feeding modes or attack strategies. In such situations, the mismatch in generation time 60 

between long-lived woody plants and their consumers may prove catastrophic: invasive species 61 

have driven multiple tree species to functional extinction (Boyd et al. 2013).  62 

The threat posed by invasive species is particularly acute in temperate forests (Lovett et 63 

al. 2006, Gandhi and Herms 2010). These regions have relatively low family-level woody plant 64 

diversity and are dominated by a small number of tree species. In addition, global transportation 65 

networks linking formerly-disjunct temperate regions have sharply increased the potential for, 66 

and number of, species invasions (Lovett et al. 2006, Gandhi and Herms 2010). As a result, 67 

many temperate tree species are now forced to contend with multiple invasive species as well as 68 

their native consumers. The cumulative impact of multiple herbivores is rarely additive, with the 69 
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outcome often depending on the sequence of attack (Ali and Agrawal 2014) and the feeding 70 

guild of the insect (Zvereva et al. 2010). Such non-additive effects are particularly likely when 71 

early-arriving herbivores induce changes in the host plant (Fournier et al. 2006, Morris et al. 72 

2007, Pieterse and Dicke 2007, Stam et al. 2014) that alter the impact of later-arriving species 73 

(Wallin and Raffa 2001, Soler et al. 2012).  74 

There are two key mechanisms by which herbivores impact plants. They can alter 75 

performance traits (growth, reproduction and survival) of the host and/or they can induce local 76 

and systemic changes in plant chemistry. Both mechanisms may affect the susceptibility, 77 

resistance or tolerance of plants to subsequent attack and can mediate subsequent interactions 78 

among herbivores (Denno et al. 1995, van Zandt and Agrawal 2004, Viswanathan et al. 2005). 79 

For example, reductions in foliar nutrients or changes in defensive chemistry following damage 80 

are well known to affect the suitability of hosts for late-arriving herbivores, with consequences 81 

for growth and survival (McClure 1980, Inbar et al. 1999, Soler et al. 2007). These changes may 82 

magnify the impact of one or both herbivores, leading to invasional meltdown (Simberloff and 83 

Von Holle 1999); alternately, they can decrease the cumulative impact and generate invasional 84 

interference (Yang et al. 2011, Rauschert and Shea 2012). Understanding what factors determine 85 

the outcome of herbivore interactions on a shared host is especially important for sap-feeders, a 86 

group whose impact on plant fitness can equal or exceed that of defoliators (Zvereva et al. 2010). 87 

Given these plant-wide effects, a 'whole-plant' analysis of herbivore-induced changes is required.     88 

Work addressing forest pest invasions generally takes one of two approaches. Examining 89 

pests at the forest scale provides important data on long-term trends in plant health and pest 90 

densities, but the logistical constraints inherent in such large-scale and long-term research means 91 

that such work is rarely experimental (Preisser et al. 2008). This is important since studies 92 
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comparing naturally-infested and herbivore-free trees in order to assess herbivore impacts (e.g., 93 

Domec et al. 2013) conflate cause and effect and cannot be used to quantify non-additive effects 94 

(Nykänen and Koricheva 2004). Conversely, efforts addressing the impact of pests on plant 95 

physiology or chemistry are often short-term (i.e., <1 year in duration) and examine a subset of 96 

plant traits. The latter type of study are also often conducted in relatively controlled settings 97 

(e.g., greenhouses or plantations) whose abiotic conditions may differ markedly from natural 98 

systems (e.g., Miller-Pierce et al. 2010). While great strides have been made using both 99 

approaches, understanding some aspects of forest invasions may require in situ field experiments 100 

that are conducted at system-appropriate temporal/spatial scales and measure a wide array of 101 

plant traits in order to produce a 'whole-organism' picture.   102 

Regardless of approach, relatively little work on forest pests has addressed their impact 103 

on the ontogenetic stages necessary for stand regeneration and succession. Because seedlings and 104 

saplings can live for decades in the low-light forest understory, their responses to herbivory may 105 

not match those of mature trees (Boege and Marquis 2005, Barton and Koricheva 2010). For 106 

example, understory saplings that rely on early-spring carbon acquisition prior to canopy leaf-out 107 

(Hadley and Schedlbauer 2002, Polgar and Primack 2011) may be especially harmed by 108 

decreased photosynthesis following attack. Such impacts may influence resource allocation 109 

trade-offs and alter plant functional priorities concerning growth, resource acquisition and 110 

herbivore defense (Boege and Marquis 2005). 111 

We aim to examine the complex ways in which multiple herbivores impact the 112 

physiology and growth of a long lived woody plant. In order to address this, we utilize a large-113 

scale and long-term field experiment. This unique design examines the individual and combined 114 

impacts of two invasive herbivores, the hemlock woolly adelgid (Adelges tsugae) and elongate 115 
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hemlock scale (Fiorina externa), on the growth, physiology and chemistry of eastern hemlock 116 

(Tsuga canadensis, ‘hemlock’) understory saplings. The two pests co-occur in a portion of their 117 

ranges – especially in southern New England, New York, and Pennsylvania. This co-occurrence 118 

has become more pronounced over the past three decades as the ranges have shifted (see 119 

appendix S1, 'Natural History of the System', for additional details). In 2011, we planted several 120 

hundred hemlocks into a deciduous forest understory in southern New England (USA) and 121 

inoculated them individually, simultaneously, or sequentially with one, both, or neither herbivore 122 

over a four-year period. In 2015, we harvested the hemlocks and quantified multiple aspects of 123 

growth, metabolism, and resource allocation in both above- and below-ground tissue. Our 124 

'whole-tree' results reveal the disparate impact of these two herbivores and the complex ways in 125 

which herbivory alters woody plant growth and physiology.  126 

 127 

 128 

Materials and Methods 129 

In April 2011, 200 ~0.3 m tall hemlock saplings (Van Pines Nursery, West Olive, MI, 130 

USA) were planted into a hardwood (maple/oak dominated) forest at the Kingston Wildlife 131 

Research Station (Kingston, RI). The trees had not been treated with insecticide. Saplings were 132 

planted in a 10 x 20 grid ~1.25 m from each other; initial heights and basal diameters were 133 

recorded prior to planting. Each sapling was enclosed in a mesh-covered (Agribon-15, Johnny’s 134 

Selected Seeds, Waterville, ME, USA; 90% light) wire cage to exclude deer browsing and 135 

prevent cross-treatment contamination. The mesh bags were removed between December and 136 

March, while both insects are immobile, to prevent snow from collapsing the cages.  137 

Following planting, each tree was randomly assigned to an herbivore treatment (Table 1). 138 
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Inter-plant adelgid and scale dispersal is most likely to occur prior to spring leaf-out, when both 139 

sub-canopy wind velocities and crawler densities are high (McClure 1989). Each spring, we 140 

simulated yearly dispersal by inoculating each tree with foliage infested with the appropriate 141 

insect; herbivore-free trees were 'inoculated' with uninfested foliage. Herbivore-infested foliage 142 

was collected from singly-infested stands previously identified in surveys (Gómez et al. 2015). 143 

Inoculations were conducted using a standard protocol (Butin et al. 2007); because adelgid 144 

emerges earlier than EHS, inoculations were conducted in May and June, respectively.  145 

Starting in 2011, trees in three treatments were annually inoculated with adelgid ('HWA') 146 

only, scale ('EHS') only, both, or neither (=uninfested foliage) insects for four years (HWA-4, 147 

EHS-4, and Both-4, respectively). Starting in 2013, some adelgid-only and some scale-only trees 148 

were thereafter annually inoculated with both insects, creating two ‘priority effect’ treatments 149 

(HWA→Both, EHS→Both). In 2013, we also began annual inoculations of previously-150 

uninfested trees with adelgid-only, scale-only, or both insects for two years (HWA-2, EHS-2, 151 

Both-2). A subset of trees remained herbivore-free throughout (Control; Table 1).  152 

Insect densities were assessed twice yearly, in early spring and late fall, throughout the 153 

experiment. Details regarding insect densities from 2011-2014 are presented elsewhere 154 

(Schaeffer et al. 2017). Because our focus is on cumulative treatment impacts, we report 155 

November 2014 insect densities solely as an indicator of whole-tree infestation levels. In fall 156 

2014, insect densities on newly-produced foliage were similar for adelgid (2.01 + 0.18 [SE] 157 

insects cm-1) and scale (1.99 + 0.26 insects cm-1) (Table 1). These infestation levels fall within 158 

those observed in the field and in prior studies where hemlock trees were experimentally 159 

inoculated (Miller-Pierce et al. 2010, Soltis et al. 2015). As in prior work, the densities of both 160 

adelgid and scale were higher in single-species treatments than when they co-occurred (150% 161 
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higher for adelgid and 50% higher for scale), suggesting plant-mediated interference competition 162 

between these two herbivores (Preisser and Elkinton 2008).  163 

Between 2011-2015, we lost replicates to Hurricane Sandy, cross-treatment 164 

contamination, browsing by white-tailed deer (Odocoileus virginianus), and isolated outbreaks of 165 

secondary pests (e.g., Oligonychus ununguis mites and Nucalaspis sp. scales). There were 166 

several trees in the single-herbivore treatments (i.e., treatments EHS-2, EHS-4, HWA-2, and 167 

HWA-4) whose low insect densities (<0.5 insects/cm; the bottom 15% of fall 2014 densities) 168 

may have obscured the impact of insect damage; we excluded these trees from the harvest. The 169 

88 remaining trees were intensively monitored in early spring prior to the May 2015 harvest. 170 

Spring monitoring and harvest. In early April 2015, three branches per tree were selected 171 

and marked. Between 15-19 April (prior to bud break and crawler emergence), these branches 172 

were used to quantify herbivore abundance and photosynthetic rates. Because insects were 173 

located on older needles, we calculated insect densities per marked branch by dividing the 174 

number of insects by >1-year needle biomass (insects g-1 DW). We chose this metric because (1) 175 

adelgid settles at the needle base while scale settles on the needles; and (2) similarly-sized 176 

branches could vary in needle density (C. Wilson, personal observation). As a result, expressing 177 

density on a per-gram basis provided a more ecologically-relevant density metric in this case.  178 

Photosynthetic rates were measured between 0800 and 1200 using one-year-old (2014 179 

growth) foliage on the terminal end of each marked branch using a CIRAS-2 portable 180 

photosynthesis system (PP systems, Haverhill, MA, USA) with a 2.5 cm2 cuvette and a CIRAS-2 181 

LED light source of 1,500 μmol m-2 s-1, a CO2 concentration of 390 ppm, air flow rate at 350 cm3 182 

s-1, and leaf temperature of 25°C. After each measurement, the foliage was photographed and 183 

ImageJ 1.44 (Abramoff et al. 2004) used to quantify needle area.  184 
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The 88 experimental trees were harvested over a 14-day period in May 2015. The time 185 

and effort required for whole-tree excavation required us to split the trees into 22 four-tree 186 

harvest groups, with each treatment represented in at least every third group; 1-3 groups were 187 

harvested daily. Data on the timing of bud break is presented elsewhere, along with similar data 188 

from another multi-year experiment (Whitney et al in preparation); bud break data in this paper 189 

is used solely to calculate new flush production. 190 

Whole-plant biomass distribution. Immediately prior to harvesting each tree, we recorded 191 

its height and trunk diameter five cm above the root ball. Each marked branch was then clipped 192 

at the base and placed on ice in a plastic bag. To ensure that we obtained a sufficient amount of 193 

plant material for chemical analyses, we collected an additional randomly-selected branch from 194 

each tree; all four branches were immediately transported to the laboratory for processing 195 

(detailed below). The trunk of each tree was then clipped five cm above the root ball and the 196 

aboveground portion dried for 24 hrs at 60o C. We sorted dry material into three classes (new 197 

flush, > 1-yr needles, and wood). After the aboveground portion of each tree had been removed, 198 

its root ball was excavated, cleaned of all dirt and foreign objects, dried as above, and weighed. 199 

Belowground harvest and processing protocols are detailed elsewhere (Schaeffer et al. 2017).  200 

Chemical analyses. In the laboratory, all insects on marked branches were removed using 201 

a dissecting scope to avoid damaging any hemlock tissue. Each branch was separated into five 202 

tissue types (new flush, 1-yr old needles, >1-yr old needles, 1-yr old stems, and >1-yr old stems) 203 

and weighed; the fresh mass of each tissue was converted to dry mass using tissue-type-specific 204 

conversion factors generated in a pilot experiment (Appendix S2: Table S1). Each type was kept 205 

separate for each tree, stored at -20°C before being dried at -55°C for 72 hrs in a lyophilizer, then 206 

ground into powder using a KLECO ball mill (Garcia Machines, Visalia, CA, USA).  207 
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Carbon (C) and nitrogen (N) content were determined by dry-combusting 2–3 mg of 208 

finely-ground material with a CHNOS analyzer (vario Micro cube, Elementar Americas, Mt. 209 

Laurel, NJ, USA). Starch was quantified using an EnzyChromTM starch assay kit (BioAssay 210 

Systems, Hayward, CA, USA) as per manufacturer protocols. Briefly, 10 mg of root powder was 211 

boiled in one mL distilled water for five min, then centrifuged at 10,000 x g for two min; the 212 

supernatant containing soluble starch was set aside. The remaining pellet was reconstituted in 0.2 213 

mL dimethyl sulfoxide and boiled for five min to obtain recalcitrant starch. The supernatants 214 

were combined and tissue starch levels (mg g-1 DW) determined using the kit.  215 

We quantified free tissue amino acid levels and relative composition of individual amino 216 

acids following the protocol of Gomez et al. (2012). For each needle tissue type, 0.2 g of sample 217 

material was extracted in one mL 80% ethanol (v:v) at room temperature for 20 min. Samples 218 

were vortexed periodically and then centrifuged at 10,000 x g for ten min at room temperature. 219 

The supernatant was filtered through a 0.45 µm Acrodisk Syringe filter (Pall Gelman Laboratory, 220 

Ann Arbor, MI, USA), and the filtrate used for free amino acid determination using a 221 

commercial EZ: Faast™ kit (Phenomenex, Torrence, CA, USA) and GC-FID (Agilent 222 

Technologies, Waldbron, Germany) as per manufacturer protocols. Briefly, two µL of sample 223 

was injected (15:1 split) on a Zebron ZB-AAA column (0.25 mm x 10 m; Phenomenex) with the 224 

injector temperature set to 250°C. Helium was used as the carrier gas at a flow rate of 1.5 mL 225 

min-1. The initial oven temperature was set to 110°C, increased at a linear rate of 32° min-1 to 226 

320°C, and held at 320°C for three min. This kit identifies and quantifies 22 amino acids; 227 

individual amino acids were identified by comparing retention times to amino acid standard 228 

solutions (norvaline as internal standard) and quantified using ChemStation software (Rev. 229 

B.04.02; Agilent Technologies, Waldbron, Germany). 230 
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Statistical analyses. All analyses were performed using R v. 3.2.2 (RCoreTeam 2014). 231 

Welch’s t-tests were used to compare insect densities. We fit linear mixed-effects models and 232 

used a backward-model-selection approach to examine how the individual and interactive effects 233 

of adelgid and scale on hemlock. Adelgid and scale were treated as fixed factors, each with three 234 

levels corresponding to the length of infestation (0, 2, or 4 years) and an interactive term 235 

(HWA*EHS). Full and reduced models were ranked and compared based on Bayesian 236 

Information Criterion (BIC) values, a standard criterion for model selection. Details of each 237 

model, including the random effects used for each, are contained in Appendix S3. The lme4 238 

package was used to generate and compare models (Pinheiro et al. 2014). We used this approach 239 

to examine the individual and combined impact of adelgid and scale, as well as how herbivore-240 

specific priority effects, affected the following: final height, final basal diameter, total biomass, 241 

aboveground biomass, belowground biomass, above-/belowground biomass ratio, needle/woody 242 

biomass ratio, new flush production, and photosynthesis.  243 

Because tissue type and age can impact plant chemistry, we analyzed percent C, percent 244 

N, C:N ratio, total amino acids, and total starch using a modified approach. For stem and needle 245 

tissue, tissue age (1-year or >1-year) was included in the models. Because we did not have 246 

enough 1-year tissue to conduct a full suite of chemical analyses on it, our analyses of 1-year 247 

tissue are limited to percent C, percent N, and C:N ratio. We ran linear mixed-effects models 248 

with row and harvest date as random effects.  249 

For amino acid analyses, 1-year and > 1-year needles were analyzed separately. To assess 250 

the effect of adelgid on amino acid levels, individual amino acids that were detected in <20% of 251 

all biological replicates and constituted <1% of the total amino acids (µg g-1 DW) were removed 252 

from the datasets in order to prevent their over-influence in the analysis of profiles. The detection 253 
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of these amino acids followed no pattern with regards to treatment effects (logistic regressions; P 254 

> 0.05). For 1-year needles, these were: alpha-aminobutyric acid (ABA; detected in 3%), beta-255 

aminoisobutyric acid (BAiB; detected in 19%), ornithine (ORN; detected in 13%), and sarcosine 256 

(SAR; detected in 2%), and for > 1-year needles, these amino acids were: alpha-aminobutyric 257 

acid (ABA; detected in 9%), ornithine (ORN; detected in 5%), and sarcosine (SAR; detected in 258 

10%). For the remaining amino acids, tissue levels (µg g-1 DW) were Hellinger-transformed to 259 

normalize data on a total µg amino acid basis; transformed values were used in profile analyses. 260 

 Treatment differences in amino acid profiles were visualized with NMDS using the 261 

‘Bray-Curtis’ dissimilarity index and the ‘vegan’ package (Oksanen et al. 2013) in R. This index 262 

was chosen because it consistently gave the highest rank-order similarity of all possible 263 

dissimilarity indices available in the ‘vegan’ package that account for amino acid abundance, and 264 

fitted the NMDS model with the lowest stress statistic (< 0.2 for all ordinations). The effect of 265 

adelgid, scale, and their interaction on needle amino acid profiles was assessed via 266 

PERMANOVA in the 'vegan' package with 10,000 permutations (Lieurance et al. 2015). 267 

The effect of adelgid and scale on total amino acids was assessed via ANOVA followed 268 

by a post-hoc Tukey test. The influence of adelgid and scale infestation on individual amino 269 

acids was evaluated by first normalizing µg amino acid per mg total amino acids per g dry tissue 270 

mass (µg mg-1 g-1 DW), and then fitting an ANOVA model with adelgid infestation as the 271 

predictor; scale and the HWA*EHS interaction were removed from all regressions because 272 

neither influenced amino acid levels. The Benjamini-Hochberg false discovery rate-controlling 273 

procedure (Benjamini and Hochberg 1995) was used to correct for multiple comparisons.  274 

Results 275 

Growth and biomass allocation. Adelgids altered hemlock growth (i.e., final 276 
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measurements with initial values, when significant, present as a covariate) and biomass 277 

allocation; scales did not. There were no significant priority effects (i.e., prior colonization by 278 

one species did not affect the impact of the later-arriving species), and the HWA*EHS 279 

interaction was never significant. Because of this, we report only the main insect effects in the 280 

text (see Appendix S3 for full model outputs). Although neither insect affected total, above-, or 281 

below-ground plant biomass, adelgid altered plant biomass allocation (Fig. 1; Appendix S3: 282 

Tables S1 and S2). The above-/below-ground biomass ratio of adelgid-infested trees was 17% 283 

lower than adelgid-free trees (F2,79=6.62, P=0.01; Fig. 1a) and the aboveground needle/woody 284 

biomass ratio was 16% lower in adelgid-infested trees (F2,78=4.53, P=0.01; Fig. 1c). Adelgid-285 

infested trees were also 7% shorter than adelgid-free trees (F2,78=3.67, P=0.03), but did not 286 

differ in final basal diameter (Appendix S3: Table S1).  287 

Early spring growth and photosynthesis. New flush production (grams/day) prior to 288 

harvest was ~30% lower for adelgid-infested versus adelgid-free trees (F2,77=36.54, P<0.001; 289 

Fig. 2a), but was not reduced by scale (F2,77=1.90, P=0.16; Fig. 2b). 290 

There were no significant treatment-level effects of adelgid or scale on photosynthetic 291 

rates of 1-year-old foliage (Fig. 3a; Appendix S3: Table S3). Although there was no relationship 292 

between adelgid density and photosynthetic rates (Appendix S3: Table S4), scale density was 293 

negatively correlated with photosynthetic rates in trees infested with scale for two and four years 294 

(Appendix S3: Table S5). 295 

Foliar chemistry. While adelgid substantially altered multiple aspects of foliar chemistry, 296 

scale had no significant impact. The N content of 1-year needles in adelgid-infested trees was 297 

10% higher than in adelgid-free trees (F2,166 = 10.80, P < 0.001; Fig. 3b; Appendix S3: Table 298 

S7). Among trees infested with adelgid for two years, adelgid density was correlated with 299 
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percent N; this was not, however, the case among trees infested for four years with adelgid 300 

(Appendix S3: Table S4). New-flush needles on adelgid -infested trees also had higher N levels 301 

(F2,69 = 4.22, P = 0.02; Fig. 3b). Although starch concentration in 1-year needles was similar in 302 

adelgid-free trees and trees infested with adelgid for two years, the starch content of trees 303 

infested with adelgid for four was ~30% less than that of the other treatments (Fig. 3c). Scale 304 

feeding increased starch in 1-year needles (F2,155 = 3.95, P = 0.02; Appendix S3: Table S8), 305 

although total starch concentration was correlated with neither adelgid nor scale density 306 

(Appendix S3: Tables S4 and S5). 307 

Adelgid infestation altered the amino acid profiles (PERMANOVA; P < 0.0001) of both 308 

1- and >1-year needles (Fig. 4a, 1-year needles; Fig. 4b, >1-year needles), while scale did not 309 

(PERMANOVA; P > 0.80 for both). Valine, proline, isoleucine, and tryptophan were the major 310 

drivers for both tissue types (Table 2a and 2b). Total free amino acid levels were greater in 311 

adelgid-infested foliage for both 1-year (ANOVA; F2,83 = 7.87, P < 0.001; Table 2a) and >1-year 312 

needles (ANOVA; F2,83 = 11.90, P < 0.001; Table 2b) vs. non-infested trees, a difference driven 313 

primarily by proline. Two- and four-year infested foliage were not, however, significantly 314 

different (post-hoc Tukey HSD). 315 

Discussion  316 

Exotic insects are an imposing force on native trees and their associated communities 317 

(Lovett et al. 2006). Despite this, and the fact that native hosts often face attack by multiple 318 

exotic herbivores (Gandhi and Herms 2010), in situ experimental evidence of the overall 319 

consequences of attack for susceptible native species remains rare (Preisser et al. 2008). Our 320 

multi-year manipulative study on woody plants growing in a natural setting provides a 'whole-321 

plant' perspective on how multiple invasive herbivores affect the growth and chemistry of a 322 
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naïve native tree. We found that chronic herbivory by two invasive piercing-sucking herbivores 323 

had divergent impacts on the growth and chemistry of their shared host, a foundational tree 324 

species in the temperate forests of the eastern United States (Ellison et al. 2005).  325 

While multiple years of adelgid herbivory altered patterns of biomass allocation and 326 

primary metabolism in understory hemlock saplings, scale had minimal impacts. Although 327 

adelgid densities were lower when they co-occurred with scale (t= 46.93, P < 0.01; Table 1), 328 

neither prior nor simultaneous inoculation of hemlock saplings with scale altered the impact of 329 

adelgid on these understory plants. In general, dually-infested trees showed changes in allocation 330 

and metabolites typical of adelgid-only treatments. One possible explanation for the subdued 331 

effect of the scale is the presence of native armored scale (Abgrallaspis ithacae) on eastern 332 

hemlock. No native adelgid species attacks eastern hemlock. Since the introduction of the 333 

elongate hemlock scale did not present an entirely novel challenge to the host, the host may 334 

already have some existing defenses. 335 

Plant growth and biomass distribution. Several years of adelgid infestation on hemlock 336 

saplings lowered above-/belowground and needle/woody tissue ratios. This is consistent with 337 

previous work (Soltis et al. 2014, Soltis et al. 2015), and was likely driven by a combination of 338 

reduced new foliar growth and premature needle desiccation/ loss. Our findings contrast with 339 

research on other plant species that respond to aboveground herbivory by shifting resources 340 

away from herbivore feeding sites and into stem and root storage sites (Babst et al. 2005, Babst 341 

et al. 2008). Despite adelgid-infested and adelgid-free trees having similar per-needle 342 

photosynthetic rates, the reduced production of new foliage, likely in combination with the loss 343 

of old needles, clearly hampers resource uptake in a light-limited environment. In turn, this 344 

restriction affected the production and allocation of primary metabolites in stems and needles. 345 
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Primary metabolites. Adelgid impacts on hemlock health were further reflected through 346 

changes in primary metabolites. Herbivore-attacked plants often protect themselves via induced 347 

changes in primary and secondary metabolism (Stam et al. 2014, Zhou et al. 2015), although 348 

research to date has primarily addressed impacts of herbivory on secondary rather than primary 349 

metabolism (Zhou et al. 2015). Our results also confirm previous work (Gómez et al. 2012) 350 

showing that adelgids cause localized increases of N and the amino acid proline at their feeding 351 

sites. Proline accumulation is a common plant response to drought stress (Delauney and Verma 352 

1993); this and other adelgid-induced changes in hemlock physiology (Radville et al. 2011, 353 

Domec et al. 2013) suggest that adelgid likely induces drought-like stress in its native host plant 354 

(Gómez et al. 2012). For instance, paralleling increases in proline, adelgid-infested tissues had 355 

lower levels of the amino acids isoleucine and tryptophan. A similar pattern has been observed in 356 

Arabidopsis following aphid feeding. In Arabidopsis this pattern is associated with aphid-357 

induced increases in the hormone abscisic acid (ABA; Hillwig et al. 2016): adelgid also induces 358 

ABA production following attack (Schaeffer et al. 2017). Although ABA induction is often 359 

associated with water stress (Lee and Luan 2012), its induction may benefit piercing-sucking 360 

insects via its antagonistic interactions with jasmonic acid (JA) signaling (Erb et al. 2009, Vos et 361 

al. 2013), a key pathway for anti-herbivore defense. We hypothesize that ABA induction 362 

following adelgid feeding aids its success through prevention of effective JA pathway signaling, 363 

which is known to deter HWA crawlers (Schaeffer et al. 2017) 364 

Starch is another key primary metabolite which plays an essential role in plant tolerance 365 

to damage. Following herbivory, stored carbohydrates are frequently broken down and 366 

remobilized to compensate for tissue loss (Appel et al. 2014). The post-attack mobilization of 367 

these resources can benefit the host by fueling repair and regrowth (Trumble et al. 1993). Some 368 
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herbivores, particularly piercing-sucking insects, exploit hosts and stored resources via extra-oral 369 

digestion of stored carbohydrates like starch. This extra-oral digestion is achieved via 370 

deployment of salivary enzymes like -amylase to local feeding sites. Adelgid, a piercing-371 

sucking herbivore, has been hypothesized to use a similar feeding strategy (Oten et al. 2014). 372 

Our findings support this hypothesis: adelgid feeding for four years led to a ~30% reduction in 373 

starch levels in 1-year needles (Fig. 3c). The loss of stored resources through feeding, combined 374 

with loss of source tissues, likely accelerates host decline through disruption of homeostatic 375 

source-sink dynamics occurring at the whole-plant level.   376 

Perspective on the impacts of multiple invasive herbivores across space and time. Plant 377 

stresses, especially when experienced during early ontogenetic stages, strongly affect resource 378 

allocation trade-offs concerning growth, resistance, storage, and reproduction (Boege and 379 

Marquis 2005). Understanding such trade-offs requires studies conducted at the appropriate 380 

temporal and spatial scales. Despite the lack of interference between adelgid and scale on any 381 

metric of hemlock health in this experiment, our observation of suppressed adelgid densities 382 

when co-occurring with scale (Table 1; also see Schaeffer et al. 2017), combined with multiple 383 

years of landscape-level observations (Gómez et al. 2015), suggests that the impact of scale on 384 

adelgid may be density-dependent and will likely become more pronounced on the landscape 385 

over time. Prior work in this system has found that higher densities of scale can significantly 386 

reduce adelgid densities and benefit the native host (Preisser and Elkinton 2008). Moreover, 387 

while adelgid densities have generally declined in our region of study over time, scale densities 388 

have steadily increased, effectively making scale the most abundant hemlock herbivore 389 

throughout much of New England (Gomez et al. 2015, Schliep et al. 2018). As scale abundance 390 

continues to increase, we predict that interference competition between these two herbivores 391 



18 

 

 

could buffer future declines of this foundational forest species in southern New England – where 392 

the ranges of the two pests overlap most prominently. While this may facilitate hemlock 393 

recovery in the northern portion of the invaded range, the impact on hemlock decline in the mid-394 

Atlantic portion of the United States requires further study. Less certain, however, is how the two 395 

pests will interact with the shifting range of their host (McAvoy et al. 2017, Rogers et al. 2017).   396 

In conclusion, we found that two invasive herbivores from the same feeding guild have 397 

disparate effects on biomass allocation, growth, and primary metabolism of an early ontogenetic 398 

stage of a foundational forest species. Our research stresses the importance of considering long-399 

term impacts for predicting woody plant responses to contemporary pressures experienced in 400 

disturbed forests, especially in the case of life-stages that will dictate their future prosperity. 401 
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Table 1: Treatments are arranged in a 3 x 3 full-factorial design, with years of infestation 571 

by both hemlock woolly adelgid (HWA) and elongate hemlock scale (EHS) indicated. Numbers 572 

in parentheses indicate the number of replicates for each treatment. Insect densities (mean + 1 SE 573 

insects/cm branch) were measured in November 2014. 574 

 575 

    HWA presence 

 

 0 years of HWA 2 years of HWA 4 years of HWA 

EHS 
presence 

0 years of 
EHS 

(12) Control 
EHS = 0 
HWA = 0 

(10) HWA-2 
EHS = 0 

HWA = 2.36 + 
0.31 

(13) HWA-4 
EHS = 0 

HWA = 1.74 + 
0.20 

2 years of 
EHS 

(9) EHS-2 
EHS = 1.79 + 

0.37 
HWA = 0 

(7) Both-2 
EHS = 1.64 + 

0.42 
HWA = 1.11 + 

0.22 

(9) HWA → Both 
EHS = 0.83 + 

0.26 
HWA = 1.29 + 

0.27 

4 years of 
EHS 

(9) EHS-4 
EHS = 2.19 + 

0.37 
HWA = 0 

(12) EHS → 
Both 

EHS = 2.10 + 
0.72 

HWA = 1.37 + 
0.33 

(6) Both-4 
EHS = 1.11 + 

0.18 
HWA = 1.21 + 

0.24 

  576 
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Table 2: A) Mean amino acids (g/g dry tissue) from A) one-year needles and B) >1- year 577 

needles, by treatment and ranked in order of significance. 578 

 A. 579 

 580 

B.  581 

    Amino acid concentrations (g g-1 DM + SE) 

Amino Acid F-value Rank B-H P-value 0 years HWA 2 years HWA 4 years HWA 

PRO 21.27 1 0.007 199.4 (18.8) 417.5 (33.7) 370.1 (32.6) 

VAL 14.02 2 0.014 18.5 (1.8) 13.1 (1.7) 9.3 (1.0) 

TRP 13.15 3 0.021 18.3 (0.9) 16.1 (0.4) 14.5 (0.8) 

ILE 11.28 4 0.029 13.5 (3.3) 7.3 (0.9) 4.7 (0.6) 

THR 11.11 5 0.036 10.8 (0.8) 10.3 (1.2) 7.3 (0.8) 

SER 5.65 6 0.043 140.8 (14.8) 152.2 (17.1) 120.6 (12.6) 

LEU 4.56 7 0.050 3.4 (0.6) 2.6 (0.5) 2.0 (0.3) 

 582 

  583 

  584 

    Amino acid concentrations (g g-1 DM + SE) 

Amino Acid F-value Rank B-H P-value 0 years HWA 2 years HWA 4 years HWA 

VAL 34.45 1 0.007 23.8 (1.3) 15.7 (1.7) 10.4 (1.1) 

PRO 32.59 2 0.014 234.6 (22.3) 663.1 (71.1) 574.5 (48.5) 

ILE 26.46 3 0.020 12.8 (0.8) 9.7 (2.2) 5.2 (0.7) 

TRP 19.17 4 0.027 29.1 (1.7) 23.1 (1.5) 19.1 (1.3) 

LYS 15.22 5 0.034 0.11 (0.011) 0.08(0.010) 0.05 (0.010) 

THR 15.12 6 0.041 15.1 (1.0) 13.9 (0.8) 10.8 (1.0) 

SER 13.48 7 0.048 202.1 (20.6) 207.9 (19.6) 143.4 (10.9) 
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Figure Legends 585 

Figure 1. Ratio of (A, B) above- to below-ground biomass and (C, D) needle to wood 586 

biomass in response to attack by hemlock woolly adelgid (HWA) (A, C) and elongate hemlock 587 

scale (EHS) (B, D) following zero, two, or four years of infestation. Bars represent means ± 1 588 

SE. Letters indicate a significant difference among groups based on a post-hoc Tukey HSD test.   589 

Figure 2. Mean + 1 SE rate of new foliage production (grams/day) in early spring 590 

following zero, two, and four years of infestation by (A) hemlock woolly adelgid (HWA) and (B) 591 

elongate hemlock scale (EHS). Letters indicate a significant difference among groups based on a 592 

post-hoc Tukey test.   593 

Figure 3. Mean + 1 SE of (A) photosynthetic rate, (B) percent nitrogen, (C) total starch 594 

concentration, and (D) total amino acids across different tissue types (new flush, 1-yr needles, 595 

>1-yr needles). Length of hemlock woolly adelgid (HWA) infestation spans zero years (light 596 

orange), two years (medium orange), and four years (red). Letters indicate a significant 597 

difference among groups based on post-hoc Tukey tests, while n.d. indicates a lack of data for 598 

that tissue class and/or trait measurement.   599 

Figure 4. Non-metric multidimensional scaling (NMDS) plots of amino acid profiles for 600 

A) 1-year and B) >1-year needles following zero (yellow), two (orange), and four (red) years of 601 

hemlock woolly adelgid (HWA) infestation. Symbols denote mean values; lines through symbols 602 

denote standard errors. 603 

 604 
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