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On representing signals using only timing information

Ramdas Kumaresan® and Yadong Wang
Department of Electrical Engineering, Kelley Hall, 4 East Alumni Avenue, University of Rhode Island,
Kingston, Rhode Island 02881

(Received 7 December 1999; revised 20 July 2001; accepted 1 August 2001

It is well known that only a special class of bandpass signals, called realfz&jsignals can be
uniquely represente@p to a scale factgiby their zero crossings, i.e., the time instants at which the
signals change their sign. However, it is possible to invertibly map arbitrary bandpass signals into
RZ signals, thereby, implicitly represent the bandpass signal using the mapped RZ signal’s zero
crossings. This mapping is known as real-zero conver@iR#C). In this paper a class of novel
signal-adaptive RZC algorithms is proposed. Specifically, algorithms that are analogs of well-known
adaptive filtering methods to convert an arbitrary bandpass signal into other signals, whose zero
crossings contain sufficient information to represent the bandpass signal’s phase and envelope are
presented. Since the proposed zero crossingsarthose of the original signabut only indirectly

related to it, they are called hidden or covert zero crossif€@sZeC3. The CoZeCs-based
representations are developed first for analytic signals, and then extended to real-valued signals.
Finally, the proposed algorithms are used to represent synthetic signals and speech signals processed
through an analysis filter bank, and it is shown that they can be reconstructed given the CoZeCs.
This signal representation has potential in many speech application200® Acoustical Society of
America. [DOI: 10.1121/1.1405523

PACS numbers: 43.60.Lq, 43.72.Ar, 43.64[BCB|

I. INTRODUCTION nerve spikes are all essentially stereotyped waveforms, the
information about the acoustic signal is carried in the timing

A key issue in sampling theory Is the construction Of_ ain[ormation contained in these spike trains in the form of
sequence of samples that unambiguously represent a signa

. . spike rate or interspike intervals. See, for example, Refs.
s(t). There are two major approaches to constructing such . . T .
—8. This fact raises a fundamental question: can signals
sequence of samplés.

(1) The first is the familiar “Shannon sampling?i.e. (except for a scale factbbe represented by timing informa-

define sample&s, } as the values taken Is(t) on a given set tion alo_ne. O“f PUrpose in this paper is to affirmatively an
. . . — swer this question and in the process propose a phenomeno-
of sampling points{t,}, i.e.,s,=s(t,).

(2) The second approach is the less familiar notion Oijogical mod(_al for signal p_rocessing bY the cochllea. .A model
representing signals by certain time instants:..; , 7o, 71, of such a signal processing systgm is shown in Fig. 1. We
™ Specifically, for example, in certain cases the sero£mphasize that this model is not intended to be an accurate
crossings or level-crossing locations sft) can be used to physiological model of the inner ear but just a means to show
represens(t) to within a scale factor that signals can be represented almost entirely by timing in-

Reconstruction is the process of the pointwise recover);ormat'on' In this paper we are primarily concerned with the

of s(t) given the sampling sequence. In this paper we ar&€@l-zero conversiofRZC) box in Fig. 1.
primarily concerned with the second approach, i.e., reprea. Previous related research
senting bandpass signals by certain time instants. However,

in the proposed signal representation schemes, these timin Bandpass S|gnal_s whose zeros are d'.Stht and real are
instants are not the zero-crossing locationsstf) them- called real-zer¢R2) signals. They are described fulljup to

selves(as in, for example, Refs. 3)4but the zero-crossing a scale factgrby their zero crossings. For example, a sinu-

locations of certain functions that are related to the phase angP'd With frequencyfoHz is a RZ signal. It may be ex-
envelope of the signai(t). pressed in terms of its distinct zero crossirigeated along

A motivation for signal representation based on timingt"€ time axis at integer rr:ful/'cklpleg of 1f3) as sin 2rfot
instants comes from our desire to understand certain aspecteCt!—=<k<zkxo(1—2tfo/ k)?z °™. This is known as the Had-
of biological signal processing. The cochlea, or inner ear, ig@_\mard factorizatiohof a sinusoid. Exten_dlng_thls observa-
known to decompose an acoustic stimulus into frequencyion One step further, Voelcker and Reqw&‘hmlse(_j_the fol-
components along the length of the basilar membrane. Thi®Wing interesting question: what are the conditions under
phenomenon is calledtanotopicdecompositiorf.Further, it~ Which a bandpass signal(t), might be recovered from its

is also known that the nerve fibers emanating from the cotraditional zero crossings? Logahfollowing up on their
chlea convey information to the brain in the form of trains of Work, showed that a bandpass sigsgt)) can be represented

almost identically shaped nerve impulses or spikes. Since th@Y its traditional zero crossings in two special cases.

(1) If s(t) and its Hilbert transforn®(t), have no common
3Electronic mail: kumar@ele.uri.edu zeros other than distinct real zeros and that the band-
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two transformations to accomplish RZ conversidh) re-
I/V\/\/\/\I——RZC*MH_LLLL peated differentiation of the bandpass sig(#); and(2) the

I T I addition of a sine wave of known frequency equal to or
higher than the highest frequency present in the signal and of

W/W\/ —RzC- it sufficiently large amplitude, i.e., conversion sft) into a
T

full-carrier LSB signal. Zeevi and colleagues, in a series of

|

insightful publicationg*'® have extended the above ideas

/VWWWW —Rzck ittt and applied them to one- and two-dimensional signals.
=

Marvasti® and Hurf have summarized and reviewed these
ideas. Hurt has compiled an extensive list of references re-
FIG. 1. Tonotopic real zero-crossing convert®ZC): The input signal is  lated to zero crossings in one and two dimensions. Since the
decomposed into bandpass signals by a set of bandpass filters. The bandpBssurier transform of aime-limited signalis the dual of a

signals are then viewed through an observation window séconds. Using bandpass signal, many of the above results have counterparts
a signal-adaptive algorithm over this time—frequency window, the signal is. '

represented by a set of “covert zero crossing$See the text for details. in the frequency domain. ThIS dual'ty 1S eXplored in Ref' 15
This approach is motivated by the auditory periphery in which a compositSee also the references in Ref.)1The above-mentioned
signal is decomposed by a bank of frequency selective filters, and the infoRZC methods have practical drawbacdkghe repeated dif-
mation contained in the filtered signals is conveyed to the brain via timingferentiation method is not very useful. because. differentiat-
information carried by nerve impulses. . . S .

ing a function more than a few times requires the use of
extremely sharp filters to control the out-of-band noise. The
sine wave addition method may introduce too many zero

. . crossings than are needed to represent the bandpass signal.
following: If s(t) and3(t) have a common zero, then the g P P g

| itself i The distinct real In this paper we propose a novel signal-adaptive ap-
envelope [tSelt goes 1o zero. The diStinct real zero cony, 4.0 1o RZC. Specifically we propose algorithms that are
dition is required to ensure that the signal waveform ha%)1

o h f sianDoubl : nalogs of well-known adaptive filtering methods to convert
azero crossing.e., achange o S'gn ouble real zeros s(t) into other signals whose zero crossings contain suffi-
will not produce a sign change in the waveform. The

: . cient information to represent the phase and envelope of
octave bandwidth constraint comes from the fact that thes(t) Since the zero crossings we advocate rrethose of

wider the ban_dW|dth of a signal, the greater_ the nu_mbe'fhe original signal t), we call them hidden or covert zero
of zero crossings of the waveform are required to 'den'crossings(CoZeCS

tify the signal uniquely, which, in turn, implies thaft)
is a sufficiently high-frequency signaLogan provides a B. Organization of the paper and main results

rigorous justification. , , _ The basic idea of our work is to try to represent signals
(2) If s(t) is a full-carrier lower sideband SB) signal[i.e.,  p giscrete time instants over short time intervals and fre-
s(t) is a bandpass signal which has a large carrier at thg ency regions. The signals are confined to frequency re-
high-frequency band edgeNote that a full-carrier upper gions by using a traditional filter bank. At the output of each
sideband signal may not have sufficient number of zerQjyer gver a short duration, the envelope and phase of the
crossings to identify the signal uniquely. signal is modeled using rational models. This is achieved by
using an elegant signal adaptive algorithm called linear pre-

quwchal, in his lucid review paper, places Logans re- 0 spectral domaifLPSD)*® (Sec. I\). These rational
sults in the general context of the theory of zeros of entire )
functions. models are then represented by certain zero crosstoa-

Although Logan’s observations are interesting, there aré Cs, .Wh'Ch thgn_ |mpI|.C|tIy but essentially completely char-_
A . . ) . acterize the original signal. In effect, our results that exploit
two difficulties in using his results. First, they are existence_.

theorems and do not provide a practical way to represen'?Elgnal—adaptlve methods are a significant extension of those

arbitrary bandpass signals by zero crossings or reconstrute to Logan and Voelcker. Adaptive processing algorithms

tion algorithms. Second, most practical signals of interest - < not known or not yet prevalent during Logan and \oel-

. ) . . . cker’s time(the 1960s and 1970sThe main results and the
like speech are time-varying signals, which need to be repl_ayout of the paper are as follows

resented over short durations and hence Logan’s theory (i) Modeling envelope and phase of bandpass sigials:

based on strictly bandlimited signals is of limited use. Lo- . ) .
Sé)eech literature, the spectral envelope of a speech signal is

gan's final assessment in. his Paper s glso pessimistic antraditionally modeled using all-pole or pole-zero modéls.
states that *recovering a signal from its sign changes appeats,is approach is motivated by the speech production model.

to be very difficult and impractical * o
. ) - In contrast, in this paper, we model the phase and envelope
In light of Logan’s pessimism, researchers have at- ' .
. . : : .of a bandpass filtered speech signal, ovér second dura-
tempted to find an invertible mapping that converts an arbi-; . : . : :
. . X i tion, directly in the time domain using poles and zeros. That
trary bandpass signal into a RZ signal; then one could use the™. .
: . o IS, in our case the poles and zeros are located in the complex-

zero crossings of the RZ signal to implicitly represent the

bandpass signal. This process was dubbed “real zero convetrlfne plane, called th¢ plane. If a complex signal has all the

sion” (RZC) by Requichd. This approach to the bandpass Zeros inside(out.si-de) the unit circle (?':1)."‘ the  plane,
signal representation was investigated by Voelcker and hiIt IS callgd a minimurm phase or M|nF|"naX|mum.phas<.a or
axP) signal. If the signal has poles and zeros in reciprocal

student, Haavik'! and Bar-David® Haavik®! presented . ; . )
complex conjugate pairs, then the signal is called an all-

width of s(t) does not exceed an octa@ne can get an
intuitive understanding of this condition based on the

2422 J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001 R. Kumaresan and Y. Wang: On representing signals



phase or AlIP signalsimilar to an all-pass filter These types Q P
of signal models are the duals of well-known filter types in H(z)=cll_[ (z—zk)/ H (Z—py),
the systems theory literature. The basic notation for these k=1 k=1

types of signal models is developed in Sec. II. . wherezis the corresponding complex-frequency variable. In
(if) Zero crossings associated with certain analytic Sig- s case the frequency response of the system is the function

nals: In Sec. Il we show that the re&br imaginary part of H(z) evaluated around the unit circleg]=12 The fre-

MinP or ngP or AllP signals'are RZ signals. That is, if the quency response of the discrete time systemsg@riodic.

zero crossings of these RZ signals are known, then the Cofp, the apove cases the frequency is regarded as a complex

responding MinP or MaxP or AllP signals can be recon-griaple. Analogously, we could also regaithe as a com-

structed from the zero-crossing locations, to within a scalep|ex variableand thereby define a complex-tinie plane
factor and a frequency translation. For a reader who is fam“\'/vhereréaﬂt. In the 7 plane, we may model a nonperiodic
iar with speech analysis literature, we point out that thes%omplex-valued signal as

zero crossings are the time-domain analogs of what is known
as sine spectral frequencigdSF) in linear prediction Hszl(r— z)
analysig?02! X(=Copp— =0 (1)
(iii) Decomposition of arbitrary analytic bandpass sig- k=t :
nals into component analytic signali Sec. IV we show given sufficient number of polgs, and zerog, .
that an arbitrary bandpass signal can be decomposed into Analogous to the frequency respordé¢j w), the signal
MinP/MaxP and AlIP signals by a model fitting method thatx(t) is obtained by evaluating(7) along thejt axis. Carry-
is analogous to the well-known all-pole or LPC method ining the above analogy further, the dual of a complex-
speech analysis. An important distinction is that in our casdrequencyz plane, is a complex-tim¢ plane, suitable for
the all-pole modeling is accomplished in tkiglane instead modeling complex-valued periodic signals. In this case the
of the traditional complexz plane. We call this approach signal function in terms of poles and zeros is
inverse signal analysi§.This result sets the stage for repre-
senting arbitrary bandpass signals by CoZeCs and hence ex- B M 1({~2)
tends Logan’s work. X(o—C?'HE:l(g— P
(iv) Zero-crossing representation algorithm for real-
valued bandpass signalsn Sec. V, we apply the results e obtain the periodic signalt) by evaluating«({) around
obtained in Secs. Il and IV to real-valued signals. The keythe unit circle|{|=1, i.e.,{=e71?, whereQ=2x/T is the
result in this section is that if a real-valued bandpass signdtindamental frequency anfiis the period. Hence, the unit
has negligible energy in the low-frequency region of thecircle in the{ plane corresponds to the time interval 0Tto
spectrum then the MinP and MaxP parts of the underlyinggeconds. Figure 2 shows typical pole/zero plots in the two
analytic signal can be represented by CoZeCs without actuicomplex-time planes. From the location of poles and zeros in
ally computing the corresponding analytic signal. A com-the { plane, we can generally infer where in tin@ to T
puter simulation of an algorithm that extracts these zerdecondsthe peaks and troughs in the envelopex(f) are
crossings, called the RZC algorithm, is given to illustrate thdocated. Voelckéf called this way of modeling signals as a
basic idea. “product representation of signals.” Also refer to recent
(v) Filter banks for speech signal representation:Sec. ~ Work by Poletti?® Picinbono?® and Kumaresalf.
VI we have applied the RZC algorithm to speech signals. It ~ Further, the concept of causality in the systems domain
is shown that the speech signal can be reconstructed givéhe., the impulse response of a causal system is zero for

the CoZeCs. Conclusions are presented in Sec. VII. negative timgis the dual of analyticity in the signal domain
[i.e., the spectrum of an analytic signdt) is zero for nega-

tive frequency. Also, the group delaythe negative of the
derivative of the phase response of a system with respect to
frequency is the dual of instantaneous frequen@k) (the

In this section we propose rational signal models to detime derivative of the phagef x(t). In the next section we
scribe the envelope and phase of an analytic sitfnial.tra-  shall consider periodic and analytic signal models that are
ditional engineering literature, linear time-invariant, analogs of finite impulse respond&IR) systems. Real-
continuous-time systems are described by a rational systeflued signals are dealt with in a later section.
function,

@

II. DUALITY BETWEEN SIGNALS AND SYSTEMS

0 b A. FIR-like signal models in the ¢ plane
H(s)=col] (S_Zk)/ IT (s=pw, Consider a periodic analytic signsl(t), with period T
k=1 k=1 seconds. Lef)=2=/T denote its fundamental angular fre-
wheres is the complex-frequency variable, definedsdss  quency. Ifsy(t) has a finite bandwidth, it may be described

+jo, j=V—1. px and z, are the poles and zeros of the by the following model for a sufficiently larg#, over an
system. From the pole/zero plot one could often get a sendgterval of T seconds:

of the frequency response of the systefi{jw), immedi- M
ately. Analogously, for discrete-time systems, a system func- s (t):ejw|t2 aLelkat 3)
tion H(z) is defined as a =

J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001 R. Kumaresan and Y. Wang: On representing signals 2423
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FIG. 2. Poles and zeros in complex-time planes: Fiptane is suitable for modeling nonperiodic signals and{tipdane for modeling periodic signals.

wherew,;=0, which represents a frequency translation, is thehe Hilbert transform ofx(t). See Ref. 18 for details. Simi-
low-frequency band edge, that we take to be an integer mularly, since a maximum phas&laxP) signal has zeros out-

tiple of (), say w;=K(). & are the complex amplitudes of sjde the unit circle, it may be expressededs) 14" where

i i S i kL. ; : : e _
the sinusoids”™"a,,ay #0. B_y analytE: cp}(rntmuaﬂonﬁzve B(t) is the Hilbert transform of3(t). Thus, the envelope or
may r_ezgardsa(t)_ SS the functions,(¢)=¢ (a0_+ a_lg phase alone is sufficient to essentially characterize a MinP or
tapl “+---ayl ") evaluated around the unit Circlé, 5 \ayp signal. Along the same lines, an all-ph&sépP)

— At i . X .

e . Inhsa(g) V‘:e use t_hhe nhegatlvg_ powelrs@fn ofrder 0 analytic signalthe analog of an all-pass filtlewould be of
maintain the analogy with the traditional use of negativey,q form el it Thus,s,(t) may be expressed as
powers ofz in the complex-frequency domain. We may fac-
tor this polynomial into itsM (=P + Q) factors and rewrite i
s,(t) as s, (1) =A e/t Q) pal)+jdln) (B —jB®), (5)

a ¢ e et e et
MinP MaxP

P Q0
sa()=ape ] (1=p; /)] (1—g,e; A.isayI12 ;(—q;). The formulas forx(t) and3(t) depend
- i , (4) on the particular values qf; andq;, respectively. See Ref.

MinP MaxP 18 for details.
: Just as the MixP systentwith zeros inside and outside
wherep4,p,,...,Pp, andq;,ds,...,0o denote the polynomi- o e ) .
; P1 F.)Z _ p,P i q,l_qz, i¢qQ , oy . the unit circlg may be decomposed into all-pass and mini-
al's roots; p;=|p;|e'”, g=[q|e’¥ and [p;|<1 and|qj| .
mum phase systenisee Sec. 5.6 in Ref. 23s0 toos,(t)

>1. Thus,p;'s denote roots inside the unit circle in the com- be d di ianal h
plex plane, andy; are outside the unit circle. Currently we MY D€ decompose Into two component signals. Note that

assume that there are no roots on the unit circle. Each factd? I_Eq. (4) the Zerosg; andp; are assumed tp be outside and
of the form (1—p,e/®) in the above is called an “elemen- inside the unit circle, respectively. To obtain the AlIP factor,
|

inci ; *
tary signal.”? The p, andq; are referred to agnontrivial) we shall reflect the; to inside the circlgas 14;") and can-

zeros of the signas,(t). The above expressions, represent-cel them using poles. Then we may group all the zeros inside

ing a bandlimited periodic signal, are, of course, the countert€ unit circle to form a different MinP signal and the zeros

part of the frequency responses of the standard finite impuls%_mSide the_cir_cle and the poles that are their reflections in-

responséFIR) filters 7 side the unit circle to form the all-phase or AlIP part of the
The factors corresponding to the zeros inside the unipignal. Thatis,

circle, Hipzl(l—pieJm), constitute the minimum phase » 0

(MinP) signal. Similarly the factors corresponding to the ze- e i r

ros outside the circlee/'TI2 ,(1—q;e!™!), constitute the Salt)=aoe l,.l:[l (1=pie ),.:Hl l_q_.*e

I

(frequency translatgdnaximum phaséMaxP) signal. These .

are the direct counterparts of the frequency responses of the MinP

well-known minimum and maximum phase FIR filters in 02 (1—ge/?)

discrete-time systems thedryJust as in systems theofyee 1 . (6)
Sec. 10.3 in Ref. 23the phase of the MinP signal is the H,-Q1< 1— — e/

Hilbert transform of its log envelope. That is, the MinP sig- i i

nal may be expressed in the forfi® 14 wherea(t) is Allp

2424 J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001 R. Kumaresan and Y. Wang: On representing signals



Equivalently, multiplying and dividing Eq5) by ei28() and Rewriting Egs.(11) and(12) in a product form, we have
collecting terms, we get ) ) P(&)=¢PRH (D[ 1+G(0)], (13)
N=A el pad)+BH+lan+B1] Q0+ ¢ ~25(1)]
Salt)=A S e ¢ QO = PPH(D[1-G(D)], (14

whereinG(¢) is an all-pass or all-phase function,
7
" u o H(1IE)
This grouping of signals is, of course, analogous to the well-  G({)={ pH—(g)' (15
known decomposition of a linear discrete-time system into m
minimum phase and all-pass systefB@c. 5.6 in Ref. 28 G({) can be factored as

MinP AllP

Analogous to the fact that the group delay of the all-pass mopx g1
filters is always positivéSec. 5.5 in Ref. 283 the instanta- G(g):ejdlrwmw)((pfm)l'[ ! —, (16)
neous frequency(IF) of the AIIP part will always be i=11-4¢

positive'® (even ifw;, the lower band edge, is zérdHence  \ynere ¢'s are the roots oH(¢). &=rel®7, andr,<1.
we'® called the IF of the AllP part the positive instantaneous, . _ Ll(h*/h ). SinceG(?) S an aIIl-palss function. we can
frequency or PIF. Later in this paper we use the above moc{;wife 0T '

els to represent the envelopes and phases of successive over- _

lapping segments of a signal. A real bandpass sigtalis G({)|=e-ir=€0. 17
modeled as the real part 8f(t). For a slowly varying signal |t should be clear from Eqs13) and (14) that P(¢) and
one can imagine that thg andq; are slowly drifting param- () have roots at the locations whes&") equals—1 and
eters that characterize the signal’'s envelope and phase varif,- respectively.

tions. We wish to capture in certain zero-crossing locations  Tpe phase functionj(t) can further be expressed as

the behavior of the slowly varying parametgrsandg; . follows (similar to the phase of all-pass filters as in Sec. 5.5
in Ref. 23:
Ill. ZERO CROSSINGS THAT CHARACTERIZE P(t)=Q 7o+ ma+(p—m)Qt

ANALYTIC BANDPASS SIGNALS

m .
: : - [ risinfQ(t+7)]
In this section we show that the re@r imaginary part +E 2tan ! 1= Q0T
of analytic bandpass signa(se., the MinP, MaxP, and AllP =1 ricog (t+ )]
signal$ we introduced in the previous section are RZ sig-The instantaneous frequendyt), of G(e 1) is (1/2m)
nals, i.e., their zero crossings are sufficient to reconstruck|[d(t)/dt] and is given by

these signals.

. (18

m 2
® 1-r;
A. Zero crossings related to minimum  /maximum f(t)= Z((p—m)JrZ |1_r.ei[9<lt+fi>]|2)' (19
phase signals ! i
Consider a MinP signah,(t), defined as follows: If p=m, and since alf;<1, we conclude that(t)>0, i.e.,
‘ot 0t Ot f(t) is a PIF. Therefore)(t) is a monotonically increasing
hin(t) =hg+h €+ el =54+ hel ™, (8  function. Let¢, denote the phase @(e 1) att=0, i.e.,
An analytic continuation oh,(t) in the £ plane is denoted #(0)=do, and ¢(27/Q)=d¢o+2pm. Therefore, y(t)
by H(), crosses lines corresponding to each integer multiplerof
1 s m [odd and even multiples ofr for P({) and Q({), respec-
Hm({)=hothy& "+ hof %4yl 9 tively] exactly once, resulting in [2 crossing points for 0

Sincehy,(t) is MinP, the roots oH ,,({) lie strictly inside the ~ <Qt<27. Because the solution t8({)=0 or Q({)=0
unit circle. LetH}(1/£*) denote the reciprocal polynomial requires thaG(£)=*1, these points constitute the tg}aﬂ 2
(with roots in reciprocal conjugate locations, i.e., outside thg0ots of P({) andQ(¢) alternately on the unit circié:

unit circle): SinceH(¢) is MinP, t%e phase dfl,({) (when evalu-
ated around the unit circlg|=1) and its log envelope are
HR(Lg* ) 2hg +h 4 hS 24+ ™ (100 related by the Hilbert transfor#f:? That is,
We define two other polynomials usin and . i
HE(1U0): poly Hm(S) Hin(0)| =e-ior=e70 170, (20)
ol o2 where the phase functioj(t) is the Hilbert transform of the
P({) =" Hm({)+ ¢ PPHR(LIE™), (1D) log-magnitude function y(t). Similarly, evaluating
; .
Q(0)=CPH (O)— (ple*m(llg*)_ (12) H,(1/¢*) around the unit C|r(fle we have
Note that the coefficients oP(¢) and Q(¢) have HR(LI0*)] = e jn =70 7MY, (21)

conjugate-even and conjugate-odd symmetry, respectivelpmgging Eq(20), Eq.(21) and¢=e 1t in Eq.(11) and Eq.
We now show that ifp=m, all the roots ofP({) andQ(¢) (12), we have

are on the unit circle and interlaced with each other. This
result is a direct analog of results known in the speech lit- D/l Ot — 9a(t) | S )

erature as “line spectrum frequencie$*?! P()=P(e™) =2e7 coq 5 At=H1) |. (22)
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FIG. 3. Real-zerdRZ) signals related to MinP signals: Tip€t) andq(t)
calculated from a minimum phase sigrigl(t) are plotted in(a) and (b).
The roots/zeros of correspondii®({) and Q(¢) with p=8>m are dis-
played in(c) and(d).

Similarly,

a(t)=jQ (el =2V sin (23

;m—a(t)).

Sincee”™ has no real zero crossings, all real zero crossing
of p(t) andq(t) are due to the cosine and the sine term.
Given the zero-crossing locationts ,t,,...t, corre-
sponding to p(t), we can compute the roots
el el el Then the product of the factors (1
—elMiy~) i=1,2,...p gives P({) (up to a scale factor
Similarly, one obtain€(¢) from the zero crossings af(t).
Using P(¢) andQ(¢) [in Egs.(11) and(12)], we can deter-
mine H,,(¢) and henceh,(t). Thus, only zero-crossing in-
formation is sufficient to reconstruct signals that are the real
(or imaginary) part of frequency translated MinP signals. As

mentioned before, such signals are called real zero (RZ) sig-

nals If the givenh(t) is a MaxP signal, we can simply
interchange the roles dfl,,({) andH},(1/¢*) in the previ-
ous discussion, and all the above results are still valid.

A simple example is shown in Fig. 3. We picked a MinP
signalh(t) with

Hm(£)=1.0+(0.6931j1.7079¢ 1+ (—1.2025
—j0.7020¢ %+ (—0.2317j0.4913¢ 3
+(0.1436+j0.0462 f*+(0.0002
—j0.0290¢ %+ (—0.0056-j0.0003 ¢ ©
+(0.0002+j0.0007¢ 7,

wherem=7. P({) andQ({) were calculated from Eq11)
and Eq.(12), wherep=28. Their corresponding RZ signals,
p(t) andq(t), are plotted in Figs. @) and 3b). The roots/
zeros of P(¢) and Q(¢) are shown in Figs. ) and 3d),
respectively. Note tha®(¢) andQ(¢) have all their zeros on
the unit circle and they are interlaced. Note also the relation
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ship between the roots &f({) andQ(¢) in the { plane with
the zero crossings gi(t) andq(t).

B. Zero crossings related to all-phase signals

All-phase (AlIP) signals are analytic signals that have
both poles and zeros. If the poles are inside the unit cjede
in E(e” 1) below], then the spectrum of the signal is con-
fined to the positive side of the frequency atamalogous to
causal IIR filters. If the poles are outside the unit cirdlas
in F(e™ 1Y) below], then the spectrum of the signal is con-
fined to the negative side of the frequency axis. Consider an
all-phase(AllP) signalE(e™ /') defined as follows:

1 M2, (1—qel
|HiQ=1(_Qi)| Q 1 )

E(e 1= (24)

jot
- ¢

(1 ai

As before, by analytic continuation we can wriig () as
follows:

=1

- B({)
—@lrpQ___27
E(é) e 1§ B*(llg*)l
WhereB(g)éHiQﬂ(l—qi’lg). One may verify Eq(24) by
substitutingZ =e 1" in Eq. (25). The roots ofB(¢) areq;,
i=1,2,..Q, with 1/g¥=r;e®7, andr;<1. Since all the
roots of B(¢) fall outside the unit circleB({) is a MaxP

(25

Signal and theB* (1/¢*) is a MinP signal. ClearlyE(?) is

already in the form ofG(¢) encountered in the previous
section. Hence, the instantaneous frequencg@ ') is
always positive and the phase function Bfe /) is a
monotonically increasing function. Therefore the zeros of 1
+E(¢) and 1-E({) have properties identical to those of
polynomialsP({) and Q(¢) discussed in the previous sec-
tion. That is, - E({) and 1- E({) each hav&) zeros on the
unit circle and they are interlaced. Further, using the notation
in Egs.(6) and(7) we can writeE(e ") as follows:

E(e 19t) = gilQ0t+ #1-25(0)], (26)

Thus the unit magnitude root locations oftE({) corre-
spond to zero crossings of the wavefornt dog QOt+ ¢,
—2p(t)] or the waveform sifQQt+ ¢, —2(t)]. We shall de-
fine the imaginary part oE(e ") ases(t):

e3(t)=sin QOt+ ¢;—2B(1)]. (27)
Given the zero-crossing locations,t,,...,t,o correspond-
ing to sifQOt+ ¢ —2B(t)] or 1+cogQOt+ ¢ —243(t)], we
can compute the roow?1,e/2 . el?%2q, Then we shall
definePg(¢) =1II;(1— etz 1), where the sefi} consists of
odd integers 1,3,5,..2—1. Similarly, we shall define
Qp()=1II;(1—eliz~1), where the sefi} consists of even
integers 2,4,6,...Q. Using Pg(¢) and Qg(¢) [similar to
Egs.(11) and(12)], we can determin&({) and henceE({)
to within a scale factorThus, the zero-crossing information
of e;(t) alone is sufficient to reconstruct the AlIP signal
E(e 1Y up to a complex scale factoHencee;(t) is a RZ
signal.

Similarly, we may consider
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P P jOt Real Part of s,(t) Pole/Zero plot in § plane
) Imi_ (1_ p.el ) a plotin g pl
Fle 1) =|[1 (=pi)|+—— (28)
=1 IT(1- el
i=1 pr
The zeros ofF (e /™) arep;, i=1,2,...P. p;j=g;e/*7, and ool -t
—iOt . . . -100 -50 ) 50 100 -2 -1 o 1 2 3
gi<l. The poles ofF(e™'**) are outside the unit circle. w @ )
ThusF (e ) has a spectrum confined to the negative sideg | o 0; Oo
of the frequency axis and its IF is always negatidF). As §2° g‘ ' §
before, 1+ F(e”1%") and 1-F(e”'*") each havé® zeroson £ 2
the unit circle that are interlaced. Again, if the zero crossings<™ *
ol—— ,
of e4(1), e e 1 5
e,(t)=sinN PQt+ ¢,—2a(t)], (29) _ g o G‘_o- AN
. g5 7 o s ' o
are known, then we can recoqstrdutsmg.;c)he same algo- LIV ,’/“\“wmﬁ % op o
rithm described abovehe AlIP signalF (e /") to within a =T NV gos o | &
scale factor. We will make use @;(t) and e,(t) in Sec. S o AL feof
V B. e o

II’! summary, ",1 this S?Ctlon W_e ha\_le Sh?""” that the Zer%IG. 4. Envelope of a MixP signal represented by zero crossings: A complex
crossings of certain special functions implicitly represent theignais,(t) is synthesized with six zerogour outside the unit circle and
underlying analytic signals. In other words, the real or imagi-two inside the unit circle The zeros o,(t) are plotted in(b). The real part
nary parts of the MinP, MaxP, and AllP signals, are RZ Sig-Of s4(t) is plotted in(a). The roots ofH({) calculated using the LPSD

nals. since they are essentially characterized by their re gorithm are shown irid). Note thatH,({) is MinP. The estimated enve-
! pe 1/h.,(t)| is shown(solid line) in (c); the true envelope is shown by a

zero crossings. In ger_]eral’ analyti? signgls are neither Min otted line. In(e), both RZ functionsp(t) andq(t) are plotted by a solid
MaxP nor AlIP, but mixed-phaséMixP) signals. Hence we Jine and a dashed line, respectively. Since they are describedtilithin
have to first decompose an arbitrary MixP signal into MinP/a scale factorby their zero crossings, we can represp(t) andq(t) by

MaxP and AllP signals as shown in Ec(ﬁ) and (7) An only marking their zero-crossing time locations. We show those locations by
) spikes along the time axis ii@). The roots ofP(¢{) andQ(¢), all on the unit

elegant algorithm for achlevmg. this decomposm_on IS Pré-gircie, are displayed irf). The roots ofP(¢) are denoted by a®” and
sented next. In Sec. V we consider real-valued signals.  those ofQ(¢) are denoted by a & .”

IV, SEPARATING THE MINP AND ALLP PARTS OF AN WhereQ2=2a/T. Note thathy,(t) is identical to that defined
ANALYTIC BANDPASS SIGNAL USING LPSD in Sec. Il A. The LPSD algorithm minimizes the energy in

the error signaé(t) [the integral in Eq(33) is replaced by a
In this section we present a simple algorithm called thediscrete approximatignby choosing the coefficients,,
linear prediction in the spectral domaihPSD).*® The de- whereh, is constrained to be 1. Thus, the above minimiza-
tails of the LPSD algorithm, which separates the MinP andion problem is the direct analog of the autocorrelation
AlIP components of a MixP signal, were presented in Refmethod of the linear prediction well-known in spectral/
18. Here we summarize these results for completeness. Cospeech analysi® as LPC or all-pole modeling or inverse

sider the MixP signal in Eq(3) or Eq. (4): filtering. h,(t) is the analog of the inverse filter used in LPC
M and hence is called the “inverse signafThe LPSD algo-

Sa(t):ejwltz a et (30) rithm finds an inverse signal,(t) such that the envelope of

k=0 the error signak(t) is flattened. This can be achieved if the

p 0 order m of h,,(t) is sufficiently high.m has to be large if
:aoejw|t1_[ (1—piejm)H (1—q;el®). (31) thgre.are Qeep nulls in th_e signal envelope. After the mini-
i=1 i=1 mization, since the error signa(t) has a constant envelope,

Using the notation in Sec. Il, we may expres$t) as hm(t)%e—[a(t)+,8(t)]e—j[&(t)+23(t)]_ (35)

Sa(t)=|A |eleWFAIgillo T QMtraU=A1F 4 (32)  Figure 4 gives an illustrative example. An analytic signal

Note thatA.el*®"*A0] js the envelope 084(t). The LPSD s,(t) was synthesized from E@3) using seven Fourier co-

algorithm separates the MinP and AllP components of MixPefficients  M=6): a,=1, a;=—0.6024-3.2827, a,

signal. This decomposition is achieved by minimizing the= — 56441 1.5833, az=—0.1454+7.4390, a,=6.4822
energy in an error signak(t) that is defined ase(t) —1.18312, a5=—4.63_06—6.7383, 36:1-0737*2-7369;
=h,(1)s,(t). The energy ire(t) is defined as follows: T_he real part ofs,(t) is plotfced_ in Fig. 4a_). T_he analytic
. ; ggn«_’::jl Sa(t) hzs twq zgos&bi)nsﬁe th(;.; u;nt(c)wcle and f(;)ur
2 4 2 outside, as shown in Fig.(d). Note thath,(t) compute
fo [e(Hl*dt Jo [Sa(Dhm(DI" . 33 using the LPSD algorithm is always a MinP signal for any
orderm, i.e., all of its zeros are inside the unit circle. Figure
4(d) displays the roots of ,,(£). This result is well known
hm(t)=ho+h;e/ " +h,el 24 ..+ h @Mt (34)  in spectral analysis literatufé. The estimated envelope

h(t) is synthesized using the following formula:
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True and Estimated f(t) (PIF) True and Estimated w(t) )
30 .

3 St Q Z) Minimize . e(t) + l ZCD Spike Train

20 Energy of e(t) +@_’ (A—>11P)

+!
10 e(t)_ o 2CD Spike Train
ISG (AlIP)

R I— 0 §0 100 -100 -50 0 50 100 p@® 7CD Spike Train
(a (b) (MinP)

Real part of e(t) and spikes Imag part of e(t) and spikes B (t) Converter

)
1 . .
) Spike Train
ZCD
05 /\ / \ 05 (MinP)
IR L\ FIG. 6. Algorithm for representing an analytic signal by zero-crossings: The
[} 0

algorithm for representing an analytic signal by zero crossings of RZ signals

05 05 associated with the MinP/MaxP and AllIP parts. ISG stands for “inverse
signal generator,” ZCD stands for the “zero-crossing detector.” “Con-
» _ verter” block computep(t) andq(t) from h(t) using Eqs(11) and(12).
-100 -50 0 50 100 100 -50 0 50 100

(©) (d)
_ _ nate zero crossings $(Q0)t+ ¢1—2B(t)] occur at the loca-

FIG. 5. All-phase(AllP) signal represented by zero crossings: The(lfes, . ~

PIFs of e(t) [both true(solid line) and estimatefare shown in(a); the tions where cdgQQ)t+ ¢, —2p(t)] reaches 1 and-1. These

phase ofe(t), denoted byy(t), is plotted in(b); because the instantaneous locations are indicated by spikes in Figcband Fig. %d).

frequency ofe(t) is positive, the phaseé(t) (with w;=0) is a monotoni-  There is sufficient information to reconstrigtt) to within a

cally increasing function. The real part and imaginary pae(e] are shown  geale factor and a frequency translation. Figure 6 summarizes

in (c) and (d), respectively. The indicated spike locations are sufficient in- . . . . .

formation for reconstructing the AllP signal except for a scale factor and a:[he steps involved in representing a mixed-phastxP)

frequency translation. Note that (o) the spikes correspond to the locations analytic signal by zero crossings.

when the real part oé(t) equals*1. In summary, in this section we have shown that we can
use the LPSD algorithm to separate an analytic signal into

1/h,(t)| is shown(solid ling) in Fig. 4(c); the true envelope, MinP and AllP components, each of which can be repre-

|sa(t)], is also shown using a dotted line. In Fige# both sented by CoZeCs, as de;crlbed in Sec._ III._ However, the

RZ functionsp(t) andq(t) [computed using Eq$11), (12), a}bove results are only appllcablt_a to analyt.lc S|gn'als. In prac-

(22), and (23) with p=8>m] are plotted with a solid line tice, one observes real—valuepl S|gnal§. Is it possible to repre-

and a dashed line, respectively. Since they are described ful§ent real-valued bandpass signals directly by CoZeCs with-

(to within a scale factorby their zero crossings, we can OUt having to compute their analytic version by using a

represenp(t) andq(t) by only marking their zero-crossing Hllbert transfqrmer? The answer is yes and in the next sec-

time locations. We show these locations in Fige)dby a  Uon we describe the algorithm.

train of “spikes” along the time axis. Note that we can

uniquely reconstrudt,(t) from these spike locations. Com-

paring the envelope in Fig.(@ and the spike train in Fig. RlEGPNRAEL%ENTATION TO REAL-VALUED BANDPASS

4(e), note that when the envelope is large, the density o?

spikes[due to bothp(t) andq(t) togethet around that time In this section we assume that we are given a real-valued

location is higher. The zeros d¢#(¢{) (denoted by a ©") bandpass signal(t). Let s(t) be defined as the real part of

and Q({) (denoted by a ©”) are displayed in Fig. @).  s,(t) given in Eq.(3):

V. EXTENDING THE ZERO-CROSSING

From the above we conclude that the envelope part of the M
analytic signals,(t) has been successfully converted into s(t)=2 la,|cog (o, +kQ)t+6,]. (37)
two RZ signals or two spike trains. k=0

The error signak(t) =s,(t)hy(t) obtains the approxi- (Recall thatw,=KQ, is the lower band edgeOur main
mation to the AllP part in Eq(7), purpose in this section is to extend the results in Secs. Ill and
e(t)%ej[(a}|+QQ)t+¢l—25(t)]:ej 70} (36) \% (Whichiwere meant for analytic sigpam processin_g gnd

_ representing real-valued bandpass signals by modifying the
Note thate(t) is identical to the functiorE(e ™) in Sec. inverse signal approach slightly, taking into account the fact
Il B, except for the frequency translation tered”". e(t)  that real-valued signals have spectral components on both
(with @;=0) and its real and imaginary parts are shown insjdes of the frequency axis. In Sec. VA we show that the
Fig. 5. The PIF ofe(t) is shown in Fig. $3). The phase of | PSD algorithm can be directly applied $t) provided that
e(t), denoted byy(t), is plotted in Fig. %b). Because the IF  the low-frequency region of the spectrumsgt) has negli-
of e(t) is always positive, the phask(t) is a monotonically  gible energy. This sets the stage for Sec. Il B, which de-
increasing function. The real part @(t) (i.e., cof(Q)t  scribes the RZC algorithm. In Sec. VB we define two real-
+¢,—2B(t)]) and its imaginary part, sitQO)t+¢,—23(t)]  valued inverse signalg(t) and r(t), such that the error
are shown in Fig. &) and Fig. %d), respectively. As ex- signalse;(t)=s(t)q(t) ande,(t)=s(t)r(t) when low-pass
plained in Sec. Ill Blbetween Eqs(26) and (27)] the alter- filtered, result in RZ signal®e;(t) and e,(t). The zero-
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0 Since the Fourier coefficients_y,, to bx_, are all

5 40
R assumed to be zero, the expression for the error energy can
e e 2 be written as a sum of two terms, ifi<2K—1:
%:3 S Rt . ) e N
§2 ...... ........ ....... J |e(t)|2dt:T E |gn|2+T2 |gn|2 (42)
. 111 g : :. : —20 0 n=—N n=K
. 008 g ugs % e 0 50 100 T a 2
- -N.orrnalized Freque.ncy ’ = |[S(t) - JS(t)]hm(t)l dt
@ Rooté%} H m(g) 0
40 T
1 R T o
z% < 05 ° o +f0 [[s(t)+j8(t)Ihm(t)]? dt. (43)
S g oo o """""""" Since the analytic[s,(t)=s(t)+j5(t)] and antianalytic
% E ol o o ! [sh (t)=s(t)—j5(t)] signals are complex conjugates of each
O other, the two terms in the above expression are equal. Thus
e e the inverse signal obtained by minimizing any one of the
© e terms in the above expression is equal to lihét) obtained

by minimizing the error in Eq(40) [using the real-valued
FIG. 7. Inverse signal that represents the envelope of a real sighahows S(t)]. Note that the second integral in qu) is identical to

the magnitude spectrum of original real sigrsét) [the real part of the . .. - .
analytic signak,(t) used in Fig. 4; the time waveform of(t) is plotted in the one in Eq(33)' This is a crucial observation, because the

(b); (c) shows the estimated envelope together with the true envelopdim(t) Obtained by minimizing the error energy in E40) is
Isa(t)]. The roots ofH,,(£) are plotted in(d). m=7. not only a MinP signal, but further, [b,(t)| also gives the

Hilbert envelope of the analytic signal(t), although it is
computed directly from the real-values{t). However, for
the latter to be trues(t) must have sufficient number of
zero-valued Fourier coefficients in the low-frequency region,

crossing locations o&;(t) ande,(t) are sufficient to recon-
struct the MinP and MaxP parts sf(t) and hence charac-

terize s(t). ‘
i.e., mmust be less than or equal t&K2 1.
Some simulation results are provided in Fig. 7. A real
A. Computing the inverse signal  h,,(t) from a real signals(t) [the real part of the analytic signaj(t) used in
bandpass signal s(t) Fig. 4] is plotted in Fig. Th). It was synthesized using seven

Fourier coefficients, whose magnitudes are showfajnin
this simulation, we leK =15 to ensure that there are suffi-
cient number of zero-valued Fourier coefficients in the low-
N _ frequency region. The envelope of the signal was estimated
s(t)= D) byelt, (38  using the above algorithm fan=7<2K—1. The resulting
k=N h,(t) is MinP, so all the roots are inside the unit circle, as
Since s(t) is real-valued,b_,=by . Comparing Eqs(37)  shown in Fig. 7d). Figure 7c) displays the envelope esti-
and (38), we note thatbx ;=4a;, for i=0,1,..M. N=K mate against the true envelope obtained from the analytic
+M. w,=NQ is the higher band edge. Ls{t), be such signal. The higher the value afi (as long asn=2K —1) the
that the Fourier coefficients_y . 1,...,bg,...,bxk_1 are equal better is the approximation. The above method tends to
to zero for someK<N. An example of the spectrum is match the peaks of the envelope much more precisely than
shown in Fig. T7a). Following the development in Sec. IV, let the valleys. This behavior is well known in traditional LP
us define an error signa(t) over 0 toT seconds as follows: analysis'®

e(t)=s(t)hp(t), (39

wherehy,(t)=1+= hjel' ", As before, our goal is to find B computation of CoZeCs that represent the
an inverse signalh,(t) (i.e., choose the coefficients), bandpass signal  s(t)

such that the energy in the error sigreft) is minimized.
Plugging in the expression fa(t) from Eq. (38) into the
error-energy expression, we get

Considers(t) over an interval of 0 tol seconds. We
shall rewrites(t) for convenience as follows:

In this section we show that if we choose two real-
valued inverse signalg(t) andr(t) (defined below appro-
priately, then we can obtain two RZ signals whose zero

T 2 i i
2 qi_ 2 crossings in effect represesft) up to a scale factor and a
fo le(t)|*dt JO [s(Dh(t)|dt (40 frequency translation. Again, considgft) over an interval
N of 0 to T seconds. Now let us defirggt) andr(t),
=13 o’ 4D a)=[ehy(t) —eluathi (2], (44

—Tlalort _ ajortp* ;
where g,=b,*h,, (* denotes linear convolution and h, rt)=[e* hn(t)—e hin(0)1/2]. (45)
=1. The inverse signal coefficients,, can be determined o, andw, are specified later, but they are integer multiples
by solving linear equations using the LPSD algorithm. of Q. Further, let us define two error signads(t) ande,(t):
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e (t)=s(t)q(t), (46)

e,(t)=s(t)r(t). (47)
Our goal is to computg(t) andr(t) such that the energy in
the error signalse;(t) and e,(t) is minimized. In other
words, we shall minimize [J|e,(t)|?dt [and/or
folex(t)|?dt] by choosing the coefficient$y, . Since these
two error energies are almost the same, here wedgke as
an example. The error-energy expressiondg(t) is
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T T
f |e1<t)|2dt=f s(t)q(t)|dt. (48)
0 0

The inverse signal coefficient$y,, can be determined by
solving linear equations similar to those in LPSD. Refer to
the example in Fig. 8. Let us rewrig€t) andq(t) in terms

of their analytic and antianalytic parts a$t) =1/ s(t)
+i8(M) +s(t)—js()]  and  q(t)=(1/2){a(t)+ja(t)
—[a(t)—jq(t)]}. Then the error can be expressed as the
sum of four terms as follows, provided the Fourier coeffi-
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cients corresponding to each of the four kernels do not overlap:

T 1 T ] ,
jo |el(l)|2dl:%f0 |(S(f)_jf(f))(t?(t)+jq(t))|2dt+ﬁf0 |(S(t)_jf(t))(t?(t)_jq(t)ﬂzdt
1 (7T 1 (7
+Ef0 |(S(t)+j§(t))(¢?(t)+jq(l))|2dt+ﬁf0 |(s(D)+j8())(G(1)— jq(t)|2d 49

_y i§ Jod W ¥ (1))|%d LI i§ “Jogtp 2d
_RJOKS(I)_jS(I))(e dh¥(1))] I+Ej0|(s(t)—]s(t))(g ¢ m(,)?| ¢

el €12
1 (T . 1 (T .
+Ef |(S(t)+jf(t))(e"‘"f’hi‘,(t))Izdt+gf |(s(£)+j8(£)) (e 79" h,, ()] d1. (50)
0 0
€13 €4
|
The spectrum associated with each of the keregls €55, = — e LeO+BOI G NOt— &(t)— B(D)] (55)

e,3, ande;, is clearly marked in Fig. §Here we have used

the same real signalt) shown in Fig. 7] If this nonoverlap ~Where we chos@,=K{ andw,=N{Q. Then the two error
condition is met, then, as in the previous section all the fousignals are

terms in 'Fhe above expre;sion will_bg gqual. In that case the ¢, (t)= —|A |siN (2KQ + QQ)t+ 2&(t) + ¢4 ]

inverse signalh(t), obtained by minimizing any one of the

terms in the above expression is equal to dte) obtained + |AC|sir{QQt—2[3(t)+ b1], (56)
by minimizing the error in Eq(48) [using the real-valued _ .

s(t) and q(t)]. This guarantees a MinR.,(t) and hence (1) = —|Ac[sinf[(K+N)Q +QQJt+2(t) + ¢4}
1/§(t)+jq(t)| gives an estimate of the Hilbert envelope of +]ASIN P(Qt—2&(t) + b,]. (57)

the analytic (and the antianalyticsignal. An example is

given in Fig. 8. The spectrum aft) andq(t) are shown in Low pass filtering thee;(t) ande,(t) with the cut-off fre-
Figs. a) and (b), respectively. The spectrum sft)q(t) is ~ quencyK(} [refer to Fig. &) and Fig. 9c)], we have
given in Fig. &c). _ . -

The nonoverlap condition requires thgt) must have a e3(t) =[A s QO —=25(1)+ 411, (58)
suitable carrier frequency,. There are two possible over- e4(t)=|AcSiNPOQt—2&(t) + ¢5]. (59
laps in the spectrum dd(t)q(t), i.e., betweere;; andeq,,
and betweere,, ande;,. To avoid overlap betweeey,; and
€14, wq Should be such thaty;<w, . In order to be able to
determineq(t) uniquely from the coefficientd, and vice
versa[see Eq(44)], vy should be greater tham(+ 1){). To
avoid overlap betweee,, ande;, (or e;; ande;3) we should
choosem, the order ofq(t), such thatmQ)<wq—1/2(wy
— o). In summary, we should choosen¢-1)Q)<w<w,
and mQ <wqy—1/2(wp— ;). Similar comments also apply
tor(t), which is a real-valued signal on the higher-frequency .
side ofs(t). (See Fig. 9. In this casew,=wy, to avoid the C- Summary of RZC algorithm

These two signals are the same as in &3) and Eq.(29),

but for a scale factor. From the discussions in Sec. Il B, we
know that bothes(t) and e,(t) are RZ signals and they
determine the corresponding AlIP factors. Using these, we
can reconstruct the corresponding analytic signals up to a
complex scale factor and a frequency translation. The filtered
error signalse;(t) ande,(t) together with their “true” val-

ues are displayed in Figs. @) and (b).

overlap betweere,; and e,4; and m{)<2w, to avoid the The steps involved in the RZC algorithm are listed be-
overlap betweem,, ande,,. low and shown in Fig. 11.
The real signals(t) could also be written in terms of
envelope and phase as follojsee Eq(32)]: Real Zero Conversion (RZC) Algorithm
B [0+ A1 . R (Analysis)
s(t)=|Adle COi(KQJFQQ)Ha(t)_ﬂ(tH(ﬁ%’D Given: Real-valued bandpass signal s(t).

. 1. Calculate h{t) (i.e. the coefficients
The real signalsq(t) and r(t) calculated by the above- ot p (t)) by applying LPSD algorithm to
mentioned process are real signal s(t)

_ " n 2. Compute q(t) and r(t) from hy{t) using
q(t):—imag{e*[MU*B(U]e*I[wqt*CV(U*,B('[)]} (52 Egs. 44 and 45.

3. Compute e;(t)=s(t)q(t), and e,(t)

=—e lOHAIsIKOt+a(t) +B(H)], B3 =s(t)r(t).
_ . 4. Low-pass filter e.(t) and e,(t) to pro-
r(t)=—imag{e [¢W+AU]gileot=a®=AMON (54) duce ez(t) and e,(t). Determine the zero-
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Spectrum of s(t)
T
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Spectrum of r(t)
T

0.15 0.2

—-0.15 ~ -

FIG. 9. The spectrum associated wigh(t): (a) the
magnitude spectrum of real sigre(t); (b) the magni-
tude spectrum of real signalt); (c) the magnitude
spectrum of error signad,(t) =s(t)r(t).

L i L
-0.05 L) 0.05 0.1
Normalized Frequency

(b)

Spectrum of a(tr(t
T

H
0.15 0.2

i i i i
—0.1 -0.05 ) 0.05 0.1
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(c)

crossings (CoZeCs) of esz(t) and ey (t).

5. Compute the MinP part (e /a0y and
MaxP part ( ef(t)=7A(1)) ysing the CoZeCs
(see Section IlI).

6. Estimate o, |A:] and ¢; by means of
standard least squares using Egs. 61-63.
Output: Two sets of CozZeCs, w;, |A;] and
é1-
Real Zero Conversion (RZC) Algorithm
(Synthesis)
Given: Two sets of CoZeCs, w;, |A.] and ¢;.

1. Compute the MinP part ( et */a(1)y and

2432 J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001

MaxP part ( ef(!) /A1)y ysing the CoZeCs
(see Section lll). (Same as step 5 in the

RZC analysis algorithm).

2. Use the MinP and MaxP parts in conjunc-

tion with the estimates of o, |A] and ¢,,
to reconstruct s(t) using Eqg. 60.
Output:  Estimate of the signal s(t).

Note that the final outcome of the above algorithm is
that the 2P plus 2Q zero-crossing locations corresponding to
the filtered error signale;(t) ande,(t) determine the poly-
nomial s,(t), whose order i+ Q. Note that the polyno-
mial s,(t) is a complex polynomial and hence there afe 2
+2Q real numbers that determine the polynoniighoring

R. Kumaresan and Y. Wang: On representing signals



Estimated and True ea(t)
x(m) y(n)
o — : ! ! ! Ho() g Go(@)
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= : o : :
. S . o . .
L g0 ° |
H M- l(z) S """ 1 G M- l(z)
Analysis Bank Synthesis Bank

FIG. 12. Analysis—synthesis filter bank: In Sec. VI A the analysis filters are
FIR and have the same bandwidth, while in Sec. VI B gamma-tone filters are
employed that have different bandwidths.

ditions may impact the accuracy with which the sigs@) is

. ; reconstructed from the CoZeCs. However, by choosing the
; i filter bank appropriately the situation can be mitigated. It is
interesting to note that im is chosen large, ignoring the
above overlap conditions, then|d(t)+jq(t)|, instead of
FIG. 10. CoZeCs(a) Estimated(solid line) and true(dotted ling e5(t) are  approximating the Hilbert envelopés,(t)|] just approxi-

plotted. (b) Estimated(solid line) and true(dotted ling e,(t) are plotted. mates the full-wave rectified signal enveloﬂm(,t)|.
Note that the number of zero crossingsegft) is 2Q and those 0B,(t) is
2P.

(b)

VI. APPLICATION TO SPEECH ANALYSIS
the first coefficient g that is absorbed in the scale factor
A.). Hence the RZC algorithm is a way of transforming the
P+Q complex Fourier coefficients corresponding to the
trigonometric polynomial that represents(ty into 2(P

In order to analyze speech using the RZC algorithm, we
first bandpass filter the signal using a filter bank. We split the
input speech signal int¥ uniformly or nonuniformly dis-
+Q) zero-crossing locations that implicitly determine the tri_buted frequency bands. We use two diﬁerent_filter_ banks in

this section: a linear-phase perfect reconstruction filter bank,

underlying analytic signal gt). : o
? . . and a gamma-tone filter bank that supposedly mimics the
We wish to make clear the conditions under which thecochlear filtering.

above transformation can be achieved. Recall that the key
idea in Sec. IV is to flatten the signal envelope by using theA
all-pole model(LPSD algorithm thereby turning the error
signale(t) into an AlIP signal. The desirable properties as-  In this section we use a linear phase perfect reconstruc-
sociated with the zero crossings ensue from this AlIP signaltion filter bank followed by the RZC algorithm to process a
There are two situations under which it may not be possiblépeech signal obtained from the ISOLET databewép:/

to completely flatten the envelope of a bandpass signal. Firsgslu.cse.ogi.edu/corpora/isoleibolet/isoletl/mjcl/mjcl-P2-

if s(t) is such that its envelope dips to zero for sonfjee.,  t.-adc The speech signal corresponds to the spoken utterance
s,(t) has one or more zeros on the unit cifclhen, clearly /p/ by a male speaker. The signal wavefdfig. 15a)] is

the LPSD algorithm would require an extremely lamgeo  sampled at 16 kHz and is 7392 samples long. The signal is
fit an all-pole model to the signal envelope and hence théirst preemphasized using a filter with a transfer function 1
nonoverlap conditions mentioned above may not be met-0.9& *. Our general speech analysis and synthesis model
Second, ifs(t) is such that the Fourier coefficients in the is shown in Fig. 12. We filter the speech signal usiMg
low-frequency region are not sufficiently small, then again=32 uniformly distributed linear-phase FIR filters. The fil-

the above nonoverlap conditions are not met. These two coriers were designed using a Matlab program provided by the
Multirate Signal Processing Group at the University of

Sy : Wisconsin—Madison (http://saigon.ece.wisc.edu/waveweb/
' i QMF.html). The filtersG,(z) all have unity transfer function

_q“l andH,(z) are chosen such thag! ;H,(z)=1. The order of
s(t); LPSD o the filter is 192. The 3-dB bandwidth of each bandpass filter

e ike Traini _ _ _
B ——'('1 H,(z) is approximately 250 Hz. The filters closest to(dst

, channel and the Nyquist frequenc{26th to 32nd are ig-
Real-Zero Conversion (RZC) nored since there is little energy in those regions.

. Perfect reconstruction filter bank

FIG. 11. RZC algorithm for real bandpass signals: The signélsandr (t)
are obtained by minimizing the energy éq(t) ande,(t), respectively. In
fa}ct, one has to determintg,(t) and_ then formq(t') andr(t). The error The output of each bandpass filter is viewed through
signalse,(t) ande,(t) are low-pass filtered to obta@(t) andey(t), which  gji4ing (Hamming windows shown in Fig. 13. The windows
fully represent the original real sign@lip to a scale factor and a carrier o .
frequency translation This block is called the real-zero convert&zC) in  Overlap each other by 50 _/0- We S?t the Iengt.h of the windows
Fig. 1. to roughly that of a pitch period. In this exampléd,

1. Speech analysis
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FIG. 13. One segment of filtered speech with overlapped sliding windowsFIG. 14. Reconstruction of an impulse with and without RZC using the

We used a Hamming windo6.9 ms duratiopn Each window overlaps the
previous one by 50%.

=6.9ms, except in the lower-frequency chanrielsannel 6
and lowej, whereT=13.8 ms(~ twice the pitch periog

linear phase perfect reconstruction filter bank: We compare the reconstructed
impulse with and without RZC, where the reconstruction without RZC is
plotted in the middle panel and the reconstruction with RZC is displayed in
the bottom panel. They are closely matched to each other. The top panel
shows the input impulse location. Since the filter bank is a perfect recon-
struction variety, we know that if the input is an impulse the output must be
an impulse with a delay. The delay is equal to the group delay of the filter

Note that the spectrum of the windowed signal is thegs samples However, the output is not exactly an impulse because we
convolution of the spectrum of the speech signal and themit the filters 1 and 26 to 32 from our filter bank.
spectrum of the window function. Hence, using the Ham-

ming window tends to reduce the magnitude of the Fourier
coefficients in the low-frequency region as required for the 4, =—

RZC algorithm(see Sec. VR

We estimate the lower band edgeand the higher band
edgewy, of s(t) from the cut-off frequencies of each band-
pass filter. Then we seby=w,— 00 and w,= wp+ 6L,
where §=0. § is a “guard” band and in this simulatio®
=1. The ordem of h,(t) is chosen to be 7 in channels 2 to

6 and 9 in channels 7 to 25. To each block of the windowed

2 (T2
f s(t)e e+ AUl cod —[ ot + QO t+ &(t)
—-T/2

- B, (62
a2=$ f_T/TZ/ZS(t)e‘[“(”*ﬁ“)] sin{ —[ & t+ QQt+ &(t)

- B(H]}dt. (63)

signal in each channel, we apply the RZC algorithm. For

each block we obtaies(t) ande,(t) as in Eq.(27) and Eq.
(29) and determine their zero crossingSoZeCsg. Using
these zero crossings we estimate the MieP{*1(") and

Thus, each channel outputs the zero-crossing locations of
e3(t) ande,(t) and estimates oA\, w;, and¢;.

MaxP (£ ~1A) components. Note that the model of the Synthesis

real signal is

s(t)=|A|el*V*FV] cog (w+ QQ)t+ &(t) — B(t) + ¢4].
(60)

Using the two sets of zero crossings, we reconstayct
B, a, B and the corresponding MinP and MaxP compo-
nents.(See the details in Sec. llIBThese are then com-
bined with the estimates, , |A.|, and¢;, to reconstruct the
windowed signal as in Eq60). Because each window over-

After we have the estimates of MinP and MaxP componentsaps the other by 50%, adding the reconstructed blocks to-

the estimates of,, |A.|, and ¢, are obtained by standard
least squaretsee, for example, pp. 261-269 in Ref)Zbhe
least squares estimate @f is obtained by finding the maxi-
mum of the function

4l (T2 _ . 2
— f s(t)e*[a(l)+ﬂ(t)]e*j[w|t+QQt+ ORYCINT
T|J -T2

(61)

Magnitude|A.|, and the phase, can be shown to be ap-
proximatelyA.= \/&21+ &22 and ¢, =arctan(-a,/ay), where

2434 J. Acoust. Soc. Am., Vol. 110, No. 5, Pt. 1, Nov. 2001

gether gives the reconstructed signal for each channel.

The first example simply uses an impulse input to dem-
onstrate the analysis/synthesis idea. Figure 14 shows the out-
puts of the filter bank when an impulse is input. In the top
panel we just plot the input impulse that is applied at the 81st
sample. The output of the filter bank without any RZC pro-
cessing is shown in the middle panel. Although the filter
bank has perfect reconstruction property, the output is not an
impulse (but clos¢ because we have included in the filter-
bank only filters numbered 2 to 25 as mentioned before. The
group delay of the filtergthe cascade dfl,(z) andG,(z)] is
96 samples. The reconstruction of the impulse when the RZC

R. Kumaresan and Y. Wang: On representing signals
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FIG. 15. Reconstruction of the speech signal with and without RZC using a linear phase perfect reconstruction filter bank: We compare the deconstructe
speech signal with RZ@b) and without RZC(a). They are closely matched to each other. The difference between these two signals, i.e., the error signal is
displayed in(c). The error contribution is larger at lower frequencies.

algorithm is used to represent the filter outputs using CoZeCthrough a physiologically motivated auditory filter bank. The

is displayed in the bottom panel. It closely matches the onepeech signal corresponds to the spoken utterance “She had

in the middle panel. your dark suit in greasy wash water all year” by a female
We have also compared the reconstructed speech signgheaker (timit/train/drl/fcjfO/sal.way. The original wave-

with and without RZC in Fig. 15, where the reconstructionform is sampled at 16 kHz. We consider only samples with

without RZC (just add the output from channel 2 to 25 to- indices 2000 to 9150, which corresponds to the utterance

gether with a suitable delays plotted in the left panel and “She had.” The signal is preemphasized using a filter with a

the reconstruction with the RZC algorithm is displayed in thetransfer function +0.98& !. Our analysis and synthesis

right panel. They are closely matched to each other. Theystem is the same as in Fig. 12, but with different analysis

difference signal obtained by subtracting the reconstructednd synthesis filters. The analysis filter bank is similar to

signal with CoZeC3Fig. 15a)] from the reconstructed sig- those used in many other physiologically motivated auditory

nal without using CoZeC$Fig. 15b)] is plotted in Fig. models®°~33which simulates the motion of the basilar mem-

15(c). The spectrograms associated with each signal are aldwane. We use the well-known gamma-tone filter b¥rfior

displayed in Fig. 16, wher@) is reconstructed without RZC, this purpose. The magnitude responses of 23-channel filters

(b) is reconstructed with RZC an@) is the spectrogram of used in this filter bank are shown in Fig.(&Y. It is designed

the difference signal. by using an auditory toolbox provided by Malcolm Slarigy.

As in the previous section the output of each gamma-tone

filter is viewed through sliding observation windows. We
In this section we apply the RZC algorithm to a segmenichoose a longer windowT(=27.5ms) in the low-frequency

of speech(obtained from the TIMIT databaseprocessed band(channels 13—20and a shorter windowT=13.8 ms,

B. Fixed gamma-tone filter bank
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approximately two times the pitch peripdn the high-  plotted in the top panel and the reconstruction with the RZC

frequency bandchannels 4 to 12 The rest of the processing algorithm is displayed in the bottom panel. Clearly, the Co-

is identical to that described in the previous section. ZeCs represent the speech signal reasonably accurately.
Given the analysis filtersl (z), k=0,...M —1, the syn-

thesis filters are chosen &(z)=H;} (2), i.e., the synthesis

filter bank is just the analysis filter bank with time-reversed

impulse res_ponse. This leads to gc(bu_t r_10t perfec)tsignal VIl. CONCLUSIONS

reconstruction. If necessary, an equalizing filter bank can be

used to compensate for any imperfections in the reconstruc-  From Logan's work! it is clear that traditional zero

tion. Without this equalization we found that the magnitudecrossings of a real-valued bandpass signal cannot uniquely

fluctuations are less than 2 dBhown in Fig. 1b)]. represent it, except in some special cases mentioned in the
We compared the reconstructed signal with and withoutntroduction. Hence, in this paper, we have sought and found

RZC in Fig. 18, where the reconstruction without RZC is alternate signal-adaptive methods that can be used to re-

The Specgram Of The Signal Reconstucted without RZC

Amplitude

Frequncy(Hz) Time(sec)
FIG. 16. Spectrograms of the reconstructed speech sig-
(a) nal with and without RZC: The figures show the spec-
trograms of the reconstructed speech signal with and
ThaiSagcgram; Of The Signal Reconstucted with RZC without RZC and the difference signal. Again, note that

the error contribution at lower frequencies is larger.

Amplitude

Frequncy(Hz)

Time(sec)
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The Specgram Of The Error Signal

10\‘.__“__.».

Amplitude

FIG. 16.(Continued.

Frequncy(Hz) Time(sec)

(9

present arbitrary bandpass signals by timing informatiorytic signal s,(t) [s(t) is the real part of,(t)]. A, and w.
(CozZeCs. A key first step is to localize the signal in fre- are constants over a block dfseconds and are expected to
guency(by filtering) and in time(by using aT second win-  vary only slowly from block to block. They constitute the
dow) and then compute its representation. The informatiorfplace” information in the parlance of cochlear signal
that needs to be extracted from such a time—frequency locaknalysis> Typically, A, and w. are the obviously visible in-
ized signals(t), consists oA, the overall amplitude of the formation in a spectrogram of the signal. The information
signal, o, the nominal carrier frequency of the signal, and ghout the modulations®® 14V and eA®~iBO (which are

the details of the modulatione®®*i®® and ef0-iAB  not obvious from a spectrograrare in the zero crossings of
Clearly this information is contained in tHeé+Q complex ez(t) and e,(t) and they constitute the so-called “rate”
Fourier coefficients corresponding to the trigonometric poly-information® In this paper we have used only a fixed filter
nomial that modelss(t) over the time intervall seconds. bank to analyze and represent the signal. Eventually the fil-
The proposed RZC algorithm is a way of transforming thesders may be made signal adaptive, thereby cutting down the
P+ Q Fourier coefficients into ¢+ Q) zero-crossing loca- number of filters needed. As mentioned in Sec. lll, the line
tions (CoZeCs that implicitly determine the underlying ana- spectrum frequencied.SF9 used in speech processing to

Reconstruction without RZC

The i of 23 of g tone filters
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FIG. 18. Reconstruction with and without RZC using the gamma-tone filter
FIG. 17. Magnitude response of the gamma-tone filter bank: Magnitudéank: Gamma-tone filter bank is used to analyze and synthesize one segment
responses of 23 channels of the gamma-tone filters are shdw).iThe of speech. We compare the reconstructed speech signal without and with
overall response of the analysis and synthesis filter bank is shoghih ifihe RZC, where the reconstruction without RZC is plotted in the top panel and
combined analysis—synthesis filter bank exhibits less than 2 dB ripple.  the reconstruction with the RZC is displayed in the bottom panel.
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represent the spectral envelope of a signal are the duals ofzero-crossing analysis for multi-channel signal processing,” J. Acoust.
the CoZeCs that represent the signal envelope and phase. JBoc. Am.100 2576(1996. _ _
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