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1Max Planck Institute for Marine Microbiology, Bremen, Germany
2Graduate School of Oceanography, University of Rhode Island, USA
3Center for Geomicrobiology, University of Aarhus, Denmark

Received: 3 March 2009 – Published in Biogeosciences Discuss.: 19 March 2009
Revised: 23 July 2009 – Accepted: 30 July 2009 – Published: 7 August 2009

Abstract. Sediment oxygen concentration profiles and ben-
thic microbial oxygen consumption rates were investigated
during an IODP site survey in the South Pacific Gyre. Pri-
mary production, particle fluxes and sedimentation rates are
extremely low in this ultra-oligotrophic oceanic region. We
derived O2 consumption rates from vertical oxygen pro-
files in sediments obtained on different spatial scales ex
situ (in piston cores and multi cores), and in situ (us-
ing a benthic lander equipped with a microelectrode pro-
filer). Along a transect in the area 24 to 46◦ S and 165 to
117◦ W, cores from 10 out of 11 sites were oxygenated over
their entire length (as much as 8 m below seafloor), with
deep O2 concentrations>150µmol L−1. This represents the
deepest oxygen penetration ever measured in marine sedi-
ments. High-resolution microprofiles from the surface sed-
iment layer revealed a diffusive oxygen uptake between 0.1
and 1.3 mmol m−2 d−1, equal to a carbon mineralization rate
of ∼0.4–4.5 gC m−2 yr−1. This is in the lower range of pre-
viously reported fluxes for oligotrophic sediments but cor-
responds well to the low surface water primary production.
Half of the pool of reactive organic matter was consumed
in the top 1.5–6 mm of the sediment. Because of the in-
ert nature of the deeper sediment, oxygen that is not con-
sumed within the top centimeters diffuses downward to much
greater depth. In deeper zones, a small O2 flux between 0.05
and 0.3µmol m−2 d−1 was still present. This flux was nearly
constant with depth, indicating extremely low O2 consump-
tion rates. Modeling of the oxygen profiles suggests that the
sediment is probably oxygenated down to the basalt, suggest-
ing an oxygen flux from the sediment into the basaltic base-
ment.

Correspondence to:J. P. Fischer
(jfischer@mpi-bremen.de)

1 Introduction

Interpretation of sediment oxygen profiles is a common way
to assess benthic carbon cycling since oxygen consump-
tion rates correlate well with remineralization rates in sed-
iments (Bender and Heggie, 1984; Thamdrup and Canfield,
2000). Oxygen concentration profiles thus contain informa-
tion about the magnitude and vertical organization of carbon
turnover. The depth of the oxic-anoxic interface is regulated
by the balance between oxygen consumption (aerobic respi-
ration and re-oxidation of the reduced products from anaer-
obic metabolism) and oxygen transport from the water col-
umn (diffusion, advection, bio-irrigation) (Glud, 2008). Due
to the low flux of particulate organic matter from the photic
zone to the seafloor in ocean gyres, only low rates of carbon
mineralization can be sustained, and therefore, deep oxygen
penetration can be expected. Wenzhöfer et al. (2001) found
an oxygen penetration depth of∼25 cm in the central South
Atlantic. Earlier studies in the central Pacific found oxygen
concentrations decreasing with depth only in the top layer
and showing very little change with depth below 20–40 cm
(Murray and Grundmanis, 1980).

The South Pacific gyre (SPG) is the largest oligotrophic
marine environment on earth (Claustre and Maritorena,
2003). It is farther away from continents than any other
oceanic region, and hence, it has very little aeolian and flu-
viatile input. The surface water of the SPG is characterized
by chlorophyll concentrations below 20µg m−3 (Ras et al.,
2008) and these waters are among the clearest on earth in
terms of UV absorption (Morel et al., 2007). The low sur-
face water productivity results in low sedimentation rates that
vary between 0.08 and 1.1 mm kyr−1 (D’Hondt et al. 2009).
In general, sediments of the SPG have received little sci-
entific interest since the 1901 expedition of the S. S. Brit-
tania described them as oceanic red-clays with manganese
nodules. The whole area is understudied compared to other
oceanic regions (Daneri and Quinones, 2001) and little is
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known about the carbon cycle in the seabed. Since the overall
area of oligotrophic subtropical gyres represents up to 60%
of the global oceans (Claustre et al., 2008), their importance
is evident. A recent study by D’Hondt et al. (2009) provides
evidence that SPG sediments harbor subseafloor communi-
ties where microbial cell abundances are orders of magni-
tude lower than in all previously described subseafloor en-
vironments at the respective subseafloor depths. D’Hondt
et al. (2009) used deep penetrating oxygen profiles cou-
pled with pore water distributions of electron acceptors and
metabolic products to demonstrate that extremely low aero-
bic metabolic activities occur throughout the SPG sediments.
In this study, we more carefully investigate those deep oxy-
gen profiles, combine them with microprofiles of the top sed-
iment layer and explore these data in terms of depth-resolved
oxygen consumption rates via mathematical modeling.

To investigate the oxygen flux in oligotrophic sediments,
in situ and ex situ measurements with microsensors were per-
formed using a free-falling benthic lander (Reimers et al.,
1986; Wenzḧofer and Glud, 2002) and a multi-coring de-
vice, respectively. The high-resolution O2 profiles obtained
from the uppermost active first centimeters were used to cal-
culate the diffusive oxygen uptake of the sediment. Addi-
tionally, a special set-up for onboard measurements of oxy-
gen concentrations in long piston and gravity cores was de-
veloped. Combining these methods enabled an integrated
picture of the respiration rates in the first decimeters of the
sediment down to several meters. Extrapolating the pro-
files down to the basalt and the application of a reaction-
diffusion model gave further insight into O2 consumption in
deeper layers. The rates of benthic carbon mineralization of
the ultra-oligotrophic sediments of the SPG are discussed in
comparison to other oligotrophic environments.

2 Material and methods

2.1 Study site

During the KNOX-02RR expedition (17 December 2006–
27 January 2007), we sampled sediment cores at 11 stations
within the region 24◦ S to 46◦ S and 165◦ W to 117◦ W
(Fig. 1). The cruise track can be divided into two transects.
A northern transect at a latitude of 24◦ S to 27◦ S, proceeds
from older crust (∼100 Ma) to younger (∼6 Ma) and at the
same time from the outer portion of the gyre to its center.
The southern transect at latitude of 38◦ S to 45◦ S leads out
of the gyre towards older crust (∼75 Ma) (Fig. 1). Bot-
tom water temperatures in this region are between 1.2 and
1.4◦C, the salinity is 34.7 and bottom water oxygen content
is ∼220µmol L−1 (derived from the database of the Interna-
tional Council for the Exploration of the Sea, ICES) which
corresponds to 63% saturation at the sea surface (Weiss,
1970). To gain a comprehensive picture of oxygen profiles
in low-activity sediments, different methods were used for

their investigation at different spatial scales. Oxygen profiles
in the top few centimeters of the sediments were measured
with microelectrodes profiling top down, both in situ with
a benthic lander and ex situ in recovered cores. To inves-
tigate deeper sediment layers, oxygen concentrations were
measured ex situ with needle-shaped optodes through drilled
holes in piston core liners.

2.2 In situ measurements

A free falling, programmable benthic lander was used to
measure oxygen profiles in the top centimeters in situ with
high resolution (Archer et al., 1989; Wenzhöfer and Glud,
2002). The lander was equipped with a microelectrode pro-
filer enabling profiling in 100µm steps down to 5 cm. On-
board sensor calibration prior to the deployment was per-
formed with air-saturated and anoxic seawater at in situ tem-
perature. The obtained profiles were used to calculate dif-
fusive fluxes into the sediment, using Fick’s first law of dif-
fusion (Berner, 1980). Since the diffusive boundary layer
(DBL) could not accurately be determined from the profiles,
the diffusive flux (DOU) was calculated from gradients just
below the sediment surface:

DOU = −φDs

∂C

∂z

∣∣∣∣
z=0

= −
D0

F

∂C

∂z

∣∣∣∣
z=0

(1)

where 8 represents the porosity andDs is the sedi-
ment diffusion coefficient (corrected for tortuosity). The
molecular diffusion coefficient of oxygen in free solution
D0=1.13e−9 m2 s−1 was taken from (Schulz and Zabel,
2000) and corrected for in situ salinity and temperature (Li
and Gregory, 1974). We did not determine the sediment
porosity directly. Instead, we measured the formation factor
F as the ratio of the electric resistivity of the bulk sediment to
the resistivity of the unrestricted porewater (Fig. 2). Conduc-
tivity was determined with a Brinkman/Metrohm Conduc-
tometer every 5 cm in the center of split piston cores. The
probe consisted of two 2 mm∅ platinum electrodes spaced
1 cm apart. All calculations were done using an average sed-
iment formation factorF of 1.69. In subsequent equations,
we expressD0/F as8Ds for consistency with the literature.
The lander was deployed at Stations 2, 5, 7 and 10. How-
ever, due to technical problems, in situ microprofiles could
be obtained only at Station 10.

2.3 Ex situ measurements on multi-cores

To study the top sediment layer in more detail, sediment
was recovered using a Multiple Corer (Barnett et al., 1984).
These cores appeared undisturbed with intact microstructure
at the sediment surface. Immediately after recovery, the
sealed tubes were stored at 4◦C. Small rotating magnets en-
sured well-mixed overlying waters and prevented a too large
DBL to develop (Glud et al., 1994; Rasmussen, 1992). Due
to technical limitations, oxygen profiles were measured only
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Fig. 1. Sampling stations in the South Pacific (middle) and deep oxygen profiles at the respective positions. The shaded areas depict surface
chlorophyll concentrations below 0.1 (light blue) and 0.03 (dark blue) mg/m3, respectively. The chlorophyll concentration of the remaining
sampling area was between 0.1 and 0.25 mg/m3 (averaged SeaWiFS remote sensing data).

at 4 out of the 11 stations with Clark-Type microelectrodes
(Revsbech, 1989), a custom-made picoamperemeter, an A/D
converter (DAQPad-6020E, National Instruments) and a mo-
torized stage (VT-80, Micos GmbH, Germany). The calcu-
lation of DOUs was carried out as described in Sect. 2.2. It
is known that ex situ measurements of oxygen profiles are
biased by core recovery artifacts, tending to underestimate
the oxygen penetration depth and to overestimate the calcu-
lated benthic flux (Glud et al., 1994). Sediment decompres-
sion and warming as well as enhanced availability of labile
organic matter are possible explanations. These findings re-
sult from investigations in highly productive areas with high
gradients and low oxygen penetration depths. Since our mea-
surements were performed in low-productivity regions with
deep oxygen penetration and low microbial activities, only
little differences between in situ and ex situ results are to be
expected.

2.4 Ex situ measurements on piston cores

We compared measurements with clark-type microelectrodes
and needle optodes on both-, piston cores and trigger cores
(which operate like gravity cores) of Stations 1 and 2 and
found no significant difference in the oxygen profiles (data
not shown). However, the signals of the optodes were found
to be more stable and precise. Since optodes are also me-
chanically more robust, they were used for all subsequent
measurements. Oxygen concentrations in one piston core
were measured per station. The optode itself consisted of a
fiber optic cable (125µm ∅), glued into a stainless steel cap-
illary that was reinforced by another stainless steel tube into
which the capillary was fit (Klimant et al., 1995; Wenzhöfer
et al., 2001). The fiber tip was polished using lapping
film with decreasing grain size, down to 0.5µm (3M Inc.).
The sensing dye consisted of 2% platinum(II) mesotetra
(pentafluorophenyl) porphyrin (Frontier Scientific, Inc.) in

www.biogeosciences.net/6/1467/2009/ Biogeosciences, 6, 1467–1478, 2009
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Fig. 2. Sediment formation factors as calculated from conductivity
measurements on cores of all stations. The black line represents the
average value of 1.69.

a polystyrene matrix. To coat the fiber tip, the mixture was
dissolved in chloroform and applied under a microscope us-
ing a micromanipulator. Optode readout was done using a
MICROX TX3 (PreSens Precision Sensing GmbH) optode
meter. A two-point calibration was done using anoxic and
air-saturated seawater at room temperature about every 2 h.
Conversion of the measured fluorescence lifetime of the op-
tode to oxygen values was done internally by the instrument,
using a modified Stern-Vollmer equation.

After recovery, the piston cores were cut into sections of
150 cm and the ends were sealed with PVC caps and adhe-
sive tape. The cores were allowed to thermally equilibrate
for at least 24 h in the lab at 20◦C before the measurements
started. The raised temperature decreases the solubility of
oxygen within the porewater of the sediment. If supersatu-
ration was reached, a change in oxygen concentration would
have been the result. However, the oxygen solubility at 20◦C
and salinity of 35 is 231µmol L−1. This is below the bot-
tom water concentration at all sites. Therefore, oversatura-
tion could not occur. Since the volumetric O2 consumption
rates in the deeper layers were very low, we assume that small
variation in this rate due to warming will not affect our mea-
surements on the time scales involved. Immediately prior to
each measurement, two 6 mm∅ holes were drilled through
the core liner in close vicinity to each other using a spiral
drill with a stop unit to prevent drill penetration into the sedi-
ment. The self-made fiber sensor was inserted through one of
the holes into the center of the core and a temperature probe
for thermal compensation was inserted through the second
hole. Over the first 50 cm of the piston core, measurements
were done in 10 cm intervals, while the remaining core was
measured in 20–30 cm intervals. After insertion of the op-
tode into the center of the core, the sensor was allowed to

equilibrate for about 15 min, before the optode readout was
averaged over 5 min. A randomized order of measurements
along the core prevented measurement drift artifacts. To en-
sure that the center of the core was unaffected by ambient air
that diffused into the core after recovery, radial microsensor
profiles with a clark-type microsensor were done on a core
that was left in the lab for 32 h. In a distance of about 2 cm
from the core liner, the oxygen profile leveled-off, showing
that the center of the 10 cm∅ core was undisturbed (data not
shown).

2.5 Modeling

Our model analysis of the oxygen profile is based upon
steady-state mass balance of oxygen in the pore water. We
used different parameterizations of a 1-D reaction-diffusion
model to analyze different aspects of the data. Since biotur-
bation and sedimentation can be neglected in the SPG, the
1-D-model can be formulated as

φDs

∂2C

∂z2
− Rsurf − Rdeep= 0 (2)

where8 is the porosity,Ds the sediment diffusion coeffi-
cient (8Ds was measured asD0/F , s. Sect. 2.2),C the oxy-
gen concentration,z is the depth within the sediment and
Rsurf andRdeepare terms describing the O2 consumption rate
close to the sediment surface (labile organic carbon) and deep
within the sediment (refractory organic carbon). There was
no clear trend in the formation factor with depth and the scat-
ter in the measurements was relatively high (Fig. 2). There-
fore, we used an average (constant) formation factor of 1.69
for all calculations. Since it is likely that the first meter of
the piston cores was disturbed during coring (Buckley et al.,
1994; Skinner and Mccave, 2003), we excluded these data
points from our analysis of the deep oxygen profiles.

In order to obtain upper and lower bounds for rates deep
within the sediment at each site, we variedRdeepand the oxy-
gen fluxFd at the lower boundary of the domainzmax, which
was set to the depth of the deepest data point. The use of a
mean value of the topmost three data points forC0 was cho-
sen to account for scatter in the data. We assumed thatRdeep
remained constant with depth and since the surface sediment
layer was not included in this modeling step,Rsurf was set
to zero. We used the symbolic math software Maple (Maple-
soft, Inc.) to obtain an analytical solution for the oxygen con-
centrationC at depthz (in meters belowC0) with the given
boundary conditions:

C(z) =
1

2

Rdeep

φDs

z2
+

z

φDs

(
Fd − Rdeepzmax

)
+ C0 (3)

The goodness of fit was evaluated by calculating general-
ized R2 values for all tested combinations ofFd andRdeep
as the sum of squares of the distances of the data points
to the fitted model at the respective depths, normalized to
the squared distances of the points to the mean of all values
(R2=1-SSR/SST; Schabenberger and Pierce, 2001).
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To incorporate the high-resolution microprofiles in the
model (Eq. 2),Rdeep was set to constant values, found in
the model calibration for the deep sediment described above.
A depth-dependent O2 consumption rate was assumed to ac-
count for the much higher respiration in the top layer, de-
creasing exponentially with depth:

Rsurf(z) = Rmaxe
−αz (4)

The bottom water concentrationC0 was used as top bound-
ary condition whereas a fixed flux (Fd ) to the basalt was cho-
sen as bottom boundary condition. As analytical solution of
Eqs. (2) and (4) with these boundary conditions, we obtained:

C(z) =
1

φDs

(
Rmaxe

−αz

α2
+

Rdeepz
2

2
+

z

(
Rmaxe

−αzmax

α
−Rdeepzmax+Fd

)
−

Rmax

α2

)
+C0 (5)

A simultaneous variation ofRmax andα was performed to fit
the model to the complete dataset, including microsensor and
piston core measurements. The flux to the basalt was set to
zero for this study (Fd=0). For a more intuitive interpretation
of the fit parameterα, the depthzhalf at which the rate drops
to half the surface rateRmax can be calculated fromα as:

zhalf = −
ln(0.5)

α
(6)

Since the system is not electron-acceptor limited, this can
be regarded as the depth where half of the reactive organic
matter is used up.

To compare the integrated O2 consumption rates in the sur-
face with the integrated rates deeper in the sediments, the flux
to the surface layer was calculated as

Fsurf=

∞∫
z=0

Rsurf(z)dz with Eq. (4), this simplifies toFsurf=
Rmax

α
(7)

and the integrated deep uptake as

Fdeep= Rdeepzs (8)

with zs being the thickness of the sediment at the respective
station.

2.6 Calculation of carbon input

Several empirical models have been proposed for the cal-
culation of the carbon flux to oceanic sediments from pri-
mary production in surface waters (e.g. Berger et al., 1987;
Betzer et al., 1984; Pace et al., 1987; Suess, 1980). Spe-
cific models for oligotrophic regions, however, do not exist.
The model composed by Antia et al. (2001) was used in this
study (JPOC A=0.1PP1.77 z−0.68) since it represents an aver-
age of the cited models, where PP is the surface water pri-
mary production in gC m−2 yr−1 and z the water depth in

meters. Primary production values were estimated from Sea-
WiFs remote sensing data, converted into integrated annual
primary productivity by the IMCS Ocean Primary Produc-
tivity Team (Rutgers, State University of New Jersey) using
the algorithms from Behrenfeld and Falkowski (1997). To
convert the measured oxygen fluxes into fluxes of labile or-
ganic carbon (JPOC R) we used a respiratory quotient (O2:C)
of 1.3.

3 Results and discussion

Biogeochemical processes in sediments can be divided into
transport phenomena and reaction processes. In general,
important vertical transport processes in marine sediments
are bioturbation/bioirrigation, advection and molecular dif-
fusion (Berg et al., 2001). Since we found very few traces
of macrobenthos in the SPG, bioturbation and bioirrigation
are likely to be negligible for solute transport; the low per-
meability of clay sediments (Spinelli et al., 2004) found at
all stations also excludes any appreciable advection. There-
fore, molecular diffusion is the dominant transport process
in these oligotrophic sediments, and together with biogeo-
chemical reactions (e.g. respiration), controls the penetration
of oxygen into the sediment.

3.1 Benthic carbon fluxes

Microsensor oxygen profiles of the uppermost sediment layer
were measured ex situ in recovered sediment cores at Sta-
tions 4–7 and in situ at Station 10 (Fig. 7, right panels). A
general trend of decreasing oxygen fluxes toward the cen-
ter of the gyre was observed (Table 1), varying between
0.12 mmol m2 d−1 (Station 6) and 1.32 mmol m2 d−1 (Sta-
tion 4). However, the value at Station 4 appears exceptionally
high, especially compared to Station 10. Here, farthest away
from the center of the gyre and with the highest surface pro-
ductivity, higher rates than closer to the center would have
been expected. It has to be noted, that Station 10 represents
the only in situ measurement and ex situ measurements tend
to overestimate DOU (e.g. Glud, 2008). However, locally
enhanced consumption rates can also not be excluded.

The measured oxygen fluxes are slightly lower compared
to previously reported fluxes from oligotrophic sediments
in the Atlantic (>0.3 mmol m2 d−1; Wenzḧofer and Glud,
2002; Wenzḧofer et al., 2001), however, an older study
by Smith (1978) reported oxygen fluxes in the NW At-
lantic as low as 0.02 mmol m2 d−1. The fluxes reported
here are higher than some fluxes measured in the central
equatorial Pacific (0.09–0.68 mmol m2 d−1; Hammond et al.,
1996, and 0.013–0.22 mmol m2 d−1; Murray and Grundma-
nis, 1980) even though there is a lower primary produc-
tion in the surface-water of the SPG. However, the coarse
sampling resolution of several centimeters by Murray and
Grundmanis (1980) and Hammond et al. (1996) very likely

www.biogeosciences.net/6/1467/2009/ Biogeosciences, 6, 1467–1478, 2009



1472 J. P. Fischer et al.: Deep oxygen penetration in South Pacific gyre sediments

Table 1. Sampling positions, waterdepth [m], sediment thickness [m], diffusive oxygen uptake (DOU) and fluxes of particulate organic
matter as calculated from primary production (JPOC A ) or using the oxygen fluxes (JPOC R). Units: DOU: mmol m−2 d−1 PP,JPOC A ,
JPOC R: gC m−2 yr−1. Sediment thicknesses after D’Hondt et al. (2009).

Stat. Lat. Lon. W. depth Sed. Thick. bottom W. O2 DOUJPOC R PP JPOC A

1 23◦51′ 165◦39′ 5697 71 203 – – 77 0.61
2 26◦03′ 156◦54′ 5127 17 228 – – 83 0.75
3 27◦57′ 148◦35′ 4852 5.5 218 – – 86 0.83
4 26◦29′ 137◦56′ 4285 9.4 217 1.32 4.46 72 0.66
5 28◦27′ 131◦23′ 4221 16.5 220 0.45 1.51 77 0.75
6 27◦55′ 123◦10′ 3738 15 221 0.12 0.40 70 0.69
7 27◦45′ 117◦37′ 3688 1.5 202 0.26 0.88 66 0.69
9 38◦04′ 133◦06′ 4925 19.8 205 – – 118 1.90
10 39◦19′ 139◦48′ 5283 21.4 227 0.23 0.79 113 1.60
11 41◦51′ 153◦06′ 5076 67 213 – – 130 1.90
12 45◦58′ 163◦11′ 5306 130 205 – – 157 2.49

underestimates the oxygen consumption at the sediment-
water interface. Reimers et al. (1984) report microelectrode
measurements in the central Pacific with values between 0.2
and 0.8 mmol m2 d−1, supporting this assumption.

Since the vast majority of organic matter that reaches the
seafloor is ultimately oxidized, oxygen fluxes can be used to
calculate organic carbon fluxes (Jahnke, 1996). Converting
our measured oxygen fluxes into carbon equivalents, assum-
ing a respiration coefficient of 1.3 resulted in carbon fluxes
(JPOC R) between 0.40 and 4.46 gC m−2 yr−1 with a mean
of 1.61 gC m−2 yr−1 (Table 1). These carbon fluxes are in
the same order of magnitude as fluxes reported for the deep
North Pacific (Murray and Kuivila, 1990). These carbon
fluxes (JPOC R) generally confirm the extrapolated estimates
of Jahnke (1996) for the SPG which were based on a rather
simple extrapolation procedure. The decrease of fluxes to-
wards the center of the gyre parallels a decrease in surface
water primary production, indicating that the benthic miner-
alization is primarily fueled by the export of organic matter
from surface waters.

Using primary production estimates from ocean color data
(Behrenfeld and Falkowski, 1997) and an empirical model
for carbon export to deep waters (Antia et al., 2001) permits
an alternative estimation of the particulate organic carbon
(JPOC A) fluxes to the sediment. Given the high discrepan-
cies generally found between POC fluxes, calculated from
ocean color data and sediment trap measurements (Gehlen et
al., 2006), the fluxes from remote-sensing PP generally agree
with the fluxes derived from our oxygen profiles (JPOC R),
at Stations 4, 5 and 7,JPOC R exceedsJPOC A by 21–85%,
while at Stations 6 and 10,JPOC A is 74% and 103% larger,
respectively. Generally,JPOC A shows a lower variability
between the stations on the northern transect thanJPOC R.
Differences betweenJPOC R and JPOC A were not corre-
lated to surface chlorophyll concentrations or sedimentation
rates. One cause for the remaining differences may be the

assumption that the formation factor remains constant with
depth, and hence one ignores the porosity gradient in the
surface layer. Another, and maybe more likely, explana-
tion for the discrepancy may be that the empirical algorithms
used to correlate chlorophyll-α content with ocean color are
based mostly on data points in the Northern Hemisphere with
few points from oligotrophic gyres (Claustre and Maritorena,
2003). Although quantification of primary production by
remote sensing has improved, oligotrophic regions are still
poorly represented and empirical models for carbon export
fluxes are poorly constrained (e.g. Gehlen et al., 2006). The
presence of a very large pool of dissolved organic matter in
the SPG (Raimbault et al., 2008) can furthermore skew the
results and lead to overestimation of primary production esti-
mates derived from remote sensing (Claustre and Maritorena,
2003). Additionally, Dandonneau et al. (2003) argue, that
floating particles can cause significant artifacts in chlorophyll
sensing in oligotrophic waters. All these factors could lead
to increasing overestimations ofJPOC A towards the center
of the gyre. While the limited number of sampling stations
in our study and uncertainties about the porosity gradient in
the first millimeters of the sediment does not allow a final
conclusion about the magnitude of cross-gyre differences in
carbon mineralization, the overall average magnitude of car-
bon mineralization at the seafloor for this region has, for the
first time, been experimentally constrained.

3.2 Coupling surface and deep respiration

The low sedimentation rates in the SPG prevents labile or-
ganic carbon from reaching deeper sediment layers, and thus
respiratory activity strongly drops with depth, and the gradi-
ent in the oxygen concentration rapidly decreases as can be
seen from the microprofiles (Fig. 7, right panels). The mea-
sured O2 fluxes at the sediment-water interface are not ex-
ceptionally low compared to other oligotrophic open-ocean
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sites (Hammond et al., 1996; Murray and Grundmanis, 1980;
Suess, 1980; Wenzhöfer and Glud, 2002). Nevertheless, be-
cause of the inert nature of the deeper sediment, any oxy-
gen that escapes consumption in the surface layers is free
to diffuse downwards and oxygenate deep layers. All pis-
ton cores within the central gyre were oxygenated over their
entire length (up to 8 m, Fig. 1). The only station where oxy-
gen did not penetrate to the base of the core is Station 12,
farthest away from the center of the gyre, where oxygen pen-
etrated about 1 m into the sediment. Generally, the piston
cores showed a drop in oxygen concentration within the first
meter from bottom water concentration (220µmol L−1) to
170–180µmol L−1. However, in the microsensor profiles,
both-, ex situ and in situ, this same initial drop in concen-
tration was already observed within the first few centimeters.
The considerably greater interval over which this decrease
occurred in the piston cores (∼1 m) most likely resulted from
the coring process, mixing the top section of the cores (Buck-
ley et al., 1994; Skinner and McCave, 2003).

The downward oxygen flux within the deep piston cores
was constrained in two ways. First, we simply fitted a linear
trend to the oxygen profile below 1 mbsf to obtain an esti-
mate of the downward oxygen fluxFd (Rdeep=0). A decrease
of Fd towards the center of the gyre is suggested (Fig. 6),
yet it is statistically not significant. In a second step, we fit-
ted a 1-D diffusion-reaction model (Eq. 3) to the deep pro-
files below 1 mbsf (Fig. 3) while varying the respiration rate
(Rdeep) and the downward flux (Fd ) at the lower boundary
provides lower and upper constraints on the respiration rate.
Figure 4 shows combinations of the parameterRdeepandFd

that lead to the fits shown in Fig. 3. Reasonably good fits
could be obtained for O2 consumption rates between zero
and∼30µmol m−3 yr−1. Downward fluxes are likely to be
below 0.3µmol m−2 d−1 but above 0.05µmol m−2 d−1 ex-
cept for Stations 6 and 9, where lower fluxes appear to be
possible (Fig. 4). Note however that these fluxes and con-
sumption rates are very small and, as shown in Fig. 4, the
downward fluxFd correlates strongly with the oxygen con-
sumption rateRdeep, which makes that these two parameters
are not well constrained. Additionally, different scatter in the
data lead to values ofR2 of the best fitting model between
0.23 at Station 9 and 0.91 at Station 5.

Extrapolation of 10 exemplary profiles obtained from the
range of well fitting parameters down to the basalt for each
site, suggests the presence of oxygen within the entire sed-
iment column (Fig. 5). Exceptions are Stations 1 and 11,
where oxygen might have reached zero within the sediment.
The complete oxygenation of the sediment column excludes
all other electron acceptors from use and the low overall
respiration rates deep in the sediment effectively stretch the
zone over which the aerobic degradation of organic matter
occurs to several meters.

The whole oxygen profile, including surface and deeper
layers was modeled for all stations, where surface microsen-
sor profiles were available (Stations 4–7 and 10), assuming

Fig. 3. Best fitting model runs for 9 different stations (black lines)
as a result of a variation of the constant respiration rateRdeepand
the flux at the lower boundaryFd . Please note the different scales
on the depth axis.

Fig. 4. Parameter combinations for the best fitting profiles of Figs. 3
and 5.
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Fig. 5. Extrapolated profiles of oxygen concentration of 9 different
stations down to the basalt (grey bar). Circles indicate measured
oxygen concentrations; solid lines depict the extrapolations for dif-
ferent parameter constellations for the deep respiration rate and the
flux (for further information see text).

exponentially decreasing rates in the top centimeters plus
a constant term accounting for the deep aerobic respiration
(Fig. 7). A similar approach to model sediment O2 profiles
was taken by Hammond et al. (1996) for central Pacific sed-
iments. However, they assumed a sum of two exponentially
decreasing respiration terms and applied the model to coarse
resolution porewater measurements of the top centimeters
only.

We found the model to be in excellent accord with the data
(R2>0.94) for all 5 stations. The exponential term can be ex-
plained by a pool of reactive organic matter which is being
exploited by the microbial community, following first order
reaction kinetics. Half of the reactive organic matter was
consumed in depths (zhalf), varying between 1.3 mm (Sta-
tion 4) and 6 mm (Station 10) (Fig. 7). Given that the sedi-
mentation rate is in the order of 0.1 to 1 mm kyr−1 (D’Hondt
et al., 2009), a low rate constant for organic carbon oxidation
can be expected and intraanual variations in sediment oxygen
uptake are unlikely (Sayles et al., 1994).

Fig. 6. Deep fluxes calculated from linear fits of the measured oxy-
gen profiles on piston cores. Error bars represent 90% confidence
intervals. Station 6 was omitted due to the low number of data
points below 1 m.

By integrating the exponentially decreasing respiration
rateRsurf(z) over the whole sediment thickness using the best
fitting parameter combinations, the integrated O2 consump-
tion in the upper sediment layer is calculated (Fsurf, Eq. 7). It
is 3–4 orders of magnitude higher compared the deeper sedi-
ment as calculated by the integrated rateRdeep(Fdeep, Eq. 8)
(Table 2). Given the small values ofzhalf (Table 2), more than
99.9% of the total oxygen that enters the sediment is con-
sumed in the top few centimeters of the sediment and only a
very small proportion is taken up by the deep subsurface or
enters the basaltic basement. Since the DOU values (Table 1)
were obtained by linear interpolation of the oxygen profiles
within the top millimeter below seafloor, small differences to
the summarized surface- and deep fluxes as obtained by the
model were found.

The deep O2 consumption can be fueled by slow degra-
dation of highly refractory organic matter, up to millions
of years old. The small decline of total organic carbon
with depth in the deeper layers as reported by D’Hondt et
al. (2009) would agree well with this. In this case, the low
respiration term would not be constant but declining with
such a low decrease with depth that it is not significantly
different from a constant term. Another explanation for the
relatively constant deep respiration would be the radiolysis
of water due to radioactive decays in sediment grains (Blair
et al., 2007; D’Hondt et al., 2009; Jørgensen and D’Hondt,
2006). This process, reported for continental rock by Lin et
al. (2005), would split water in hydrogen and hydroxyl rad-
icals. The hydrogen could act as electron donor while the
hydroxyl radicals could further react to molecular oxygen.
If this reaction is stoichiometric, the whole process is com-
pletely cryptic and is not reflected in the oxygen profiles at
all, since the produced hydrogen and oxygen could be recom-
bined microbially to water. If the hydroxyl radical, however,
does not completely form molecular oxygen but further re-
acts with organic material or mineral surfaces, the addition-
ally stimulated respiration could account for the constant res-
piration rate over depth that we observed. The bioavailability
of refractory organic matter can be enhanced by reaction
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Fig. 7. Composed profiles of Stations 4–7 and 10, using data from piston core measurements and microprofiler (red symbols) and fitted model
with exponentially decreasing respiration rates with depths for the upper sediment layer plus constant offset, accounting for deep respiration
(solid line). The left panels show the composed profiles, whereas the right panels represent a magnification of the top 5 cm, showing
microsensor data and model result only. For Station 7, no deep measurements (below 1 m) were available. Units:Rmax [nmol cm−3 s−1];
zhalf [mm].

Table 2. Best fitting parameters of the combined surface and deep oxygen uptake model (Fig. 7, Eq. 5). The values forFsurf represent the
total flux of oxygen due to the exponential (surface) term whileFdeepare the respective fluxes due to the constant (deep) term (s. text for
details).

Stat. Rdeep Rmax zhalf Fsurf Fdeep
[µmol m−3 yr−1] [µmol m−3 s−1] [mm] [mmol m−2 d−1] [µmol m−2 d−1]

4 7.88 7.59 1.3 1.26 0.20
5 6.31 1.06 3.4 0.45 0.29
6 7.88 0.59 3.1 0.23 0.32
7 7.88 0.88 3.6 0.39 0.03
10 3.15 0.32 5.9 0.25 0.18

with the highly reactive hydroxyl radicals formed by radiol-
ysis, stimulating deep respiration. A similar process is well
known for the degradation of organic matter with ultraviolet
light (Benner and Biddanda, 1998; Moran and Zepp, 1997;
Zafiriou, 2002).

3.3 Basement fluxes

Previous studies have shown the possibility of seawater flow-
ing through cracks and voids of the basalt that underlies
marine sediments, and thus act as a source or sink of dis-
solved substances (D’Hondt et al., 2004). Extrapolations of
our oxygen profiles show the possibility of fluxes across the
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sediment/basalt interface (Fig. 5). In a scenario with higher
respiration rates, which still provides acceptable fits of the
data (Figs. 3 and 4), this could lead to fluxes from the basalt
to the sediment. However, for Stations 3 and 4, where the
piston core measurements reached close to the basalt, and
hence the extrapolation procedure is the most reliable, such
an efflux seems to be unlikely. The sediments from Sta-
tions 1–11 are geochemically similar and microbial cell num-
bers are comparable for these sites. Furthermore, high vol-
umetric respiration rates are not supported by nitrate and al-
kalinity data (D’Hondt et al., 2009). Thus, a net flux of oxy-
gen through the sediment into the basement at each site con-
stitutes the most likely scenario, and leads to the question
of possible sinks within the basalt. Oxygen could either be
transported away by fluid flow within cracks and voids in the
basalt (Fisher, 1998) or it could be reduced. One possibil-
ity would be the existence of a chemolitotrophic community
within the basalt (Edwards et al., 2005; Stevens, 1997). Such
communities were previously described for the flanks of the
mid-ocean ridges (Ehrhardt et al., 2007; Huber et al., 2006)
but their existence under the ocean basins remains controver-
sial (Cowen et al., 2003). Drilling into the basalt under the
SPG is necessary to further address this issue.

3.4 Regional and global relevance

Our sample sites cover a large part of the SPG. Therefore, we
calculate that the total area of completely oxygenated sedi-
ments in this region is at least 10–15 million km2, thus ac-
counting for 3–4% of the global marine sediments. Murray
and Grundmanis (1980) also found oxygen below 50 cm in
equatorial Pacific sediments (hence outside of the SPG). Like
the profiles obtained here, their oxygen profiles did not reach
zero values but showed rather constant concentrations below
an initial drop in the first several centimeters. Taking these
findings into account, the fully oxygenated area is likely to
be much larger, when including the deeply oxygenated sed-
iment further north. Since the vast majority of all oxygen
profiling measurements so far has been done in highly pro-
ductive coastal areas or at mid-ocean ridges (Seiter et al.,
2005; Wenzḧofer and Glud, 2002), it is likely that deep oxy-
gen penetration also occurs in other low-productivity regions
on earth, e.g. the North Pacific. Wenzhöfer et al. (2001) mea-
sured an in situ oxygen penetration depth of∼25 cm in the
Atlantic; comparable ex situ oxygen penetration depths were
measured by Loeff et al. (1990). Estimated carbon mineral-
ization rates from the subtropical Atlantic gyre are in the or-
der of 1.5–2 gC m−2 yr−1 (Wenzḧofer and Glud, 2002) and
compare well with rates from our sites (Table 1). However,
they are based only on few in situ measurements. Consider-
ing only the central sites (Stations 6 and 7) rates differ by a
factor 2, highlighting the extreme setting of the central SPG
as an ultimate oceanic desert.

4 Conclusions

The aim of this work was to measure and analyze oxygen
fluxes and consumption rates in sediments of the South Pa-
cific Gyre, the most oligotrophic oceanic region on earth, and
to obtain information about the magnitude and spatial orga-
nization of carbon turnover. While the oxygen flux to the
sediment is not extraordinary low compared to other olig-
otrophic sites, we found strong indications for oxygen pene-
trating down to the basalt in nearly the whole region. Oxy-
gen consumption rates decrease strongly within the first few
centimeters of the sediment and oxygen that is not reduced
within this upper sediment horizon is free to diffuse further
downwards. Even in the deeper layers, there is still a small
and constant flux of oxygen.
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