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ABSTRACT

False nearest neighbors (FNN) is one of the essential methods used in estimating the minimally sufficient em-

bedding dimension in delay-coordinate embedding of deterministic time series. Its use for stochastic and noisy

deterministic time series is problematic and erroneously indicates a finite embedding dimension. Various modifi-

cations to the original method have been proposed to mitigate this problem, but those are still not reliable for noisy

time series. Here, nearest-neighbor statistics are studied for uncorrelated random time series and contrasted with

the corresponding deterministic and stochastic statistics. New composite FNN metrics are constructed and their

performance is evaluated for deterministic, stochastic, and random time series. In addition, noise-contaminated

deterministic data analysis shows that these composite FNN metrics are robust to noise. All FNN results are

also contrasted with surrogate data analysis to show their robustness. The new metrics clearly identify random

time series as not having a finite embedding dimension and provide information about the deterministic part of

stochastic processes. These metrics can also be used to differentiate between chaotic and random time series.
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1 Delay-Coordinate Embedding

The embedding theorem [1] has paved the way to phase-space-based nonlinear time series analysis. It requires only

two parameters: the embedding dimension and the delay time [2]. Given a deterministic scalar time series {xi}N
i=1 ∈

R sampled uniformly with ts sampling time, reconstructed phase-space vectors, {xi}
N−(d−1)τ
i=1 ∈ Rd , are usually given

by xi = [xi,xi+τ, . . . ,xi+(d−1)τ]
T , where d is the embedding dimension, τts is the actual delay time, and τ is a positive

integer or digital delay time. For the appropriate choice of delay parameters (d and τ), the resulting reconstruction is

diffeomorphically equivalent to the original dynamical system’s phase space [2]. There are other generalizations to delay-

coordinate embedding with variable delays [3, 4], and they can yield lower-dimensional embeddings (e.g., in case of

quasiperiodic signal [4]). Here, we do not consider these generalizations and focus on obtaining optimal constant delay

embeddings.

The estimation of optimal delay time can be approached from a purely geometrical perspective [5] or by consider-

ing linear/nonlinear (auto)correlations in the time series [6, 7]. In some cases, selection of the optimal delay time and

embedding dimension cannot be decoupled (e.g., when mutual information changes with the embedding dimension [8]).

Some studies have advocated focusing on the so-called embedding window (τe = (d− 1)τ) that describes the total time

span covered by all coordinates in each reconstructed phase-space points [9–12]. Others use model-based parameter es-

timation [12–16] to estimate both optimal delay and embedding dimension simultaneously. More recently, the optimal

short-term prediction metric (based on artificial neural network model) was used for estimating both appropriate delays

and embedding dimension [17]. A similar idea, in conjunction with average mutual information for the delay estimation,

was used in estimating embedding dimension in Ref. [18]. Some of these methods are applicable in certain scenarios,

others have some deficiencies, as discussed in Refs. [8, 19, 20]. However, to focus on estimating minimum embedding

dimension, we either assume that the delay is determined a priori or chosen conservatively so that a spatial decorrelation

transform [21] can be used. This restriction allows for a compact comparison between different methodologies considered

in this paper.

Here we focus on one of the popular methods used for estimating the minimally sufficient embedding dimension

called false nearest neighbors (FNN) [22]. There are other methods that utilize convergence in the estimates of some

nonlinear measures or metrics [23] but they are either more complex or cumbersome in the applications. The idea behind

the FNN [22] method is based on the uniqueness property of a dynamical system’s phase-space trajectory. The nearest

neighbor (NN) of a point in a d-dimensional embedding is labeled false if the pair of points are close only due to the

projection from a higher-dimensional (e.g., (d + 1)-dimensional) phase space. Thus, the FNN will separate if the data is

David Chelidze, CND-16-1488, 2



embedded into a (d+1)-dimensional space, while the true NNs will remain close.If one is able to detect all the FNN, then

the minimally sufficient embedding dimension can be identified as the least dimension needed to achieve zero fraction of

the FNN.

There are three distinct variations of the FNN algorithm. We label them as: the original or Kennel [22], improved [24],

and reliable [21] algorithms. Variations of them are frequently used in very diverse fields such as stock market price

forecasting [25], astrophysics [26], engineering [27], and biology [28]. We will discuss each of the algorithms and their

properties with applications to deterministic, stochastic, and uncorrelated random time series. Particular attention will be

given to the observed deficiencies in each of the algorithms and the proposed solutions will be discussed and tested. The

effect of additive noise in deterministic time series on the performance of the algorithms will also be considered.

2 Data Sets Used in the Analysis

For the purely white random time series, we generate 6× 104 point samples of normally and uniformly distributed

random numbers. Both uncorrelated random data sets are normalized to have unit variance, and the arbitrarily chosen

τ = 5 (the choice is arbitrary since there are no nonzero autocorrelations in these time series for τ 6= 0) is used in delay-

coordinate embedding. In what follows, we will label these random data sets as Normal and Uniform, correspondingly.

For the stochastic data containing deterministic components, we use an autoregressive process of order two (a dis-

cretized noise-driven damped oscillator, just like in [24]):

xn+1 = (2−ω
2−ρ)xn +(ρ−1)xn−1 +ηn , (1)

where ηn is white noise, ω = 2π/20 is the frequency, and a total of four 6× 104-point time series are generated for

each value of ρ = [0.02,0.05,0.2,0.5]. The first two values of ρ represent the small amount of stochasticity in mainly

deterministic data, which can also be viewed as deterministic data contaminated by multiplicative noise. In contrast, the

latter two values of ρ reflect dominant randomness. In what follows, each of these time series will be labeled AR(0.02),

AR(0.05), AR(0.2), and AR(0.5), respectively. The delay τ = 5 is used for all four time series as dictated by the natural

frequency of the oscillator, autocorrelation, and the average mutual information (see Fig. 1).

In addition to the white random and correlated stochastic time series, we also include data for two chaotic time series.

The first is generated from the Lorenz equation [29]:

ẋ =−8
3

x+ yz , ẏ =−10(y− z) , & ż =−xy+28y− z . (2)
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Fig. 1. Linear and nonlinear correlations in chaotic and correlated stochastic time series
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Fig. 2. Reconstructed phase portraits for Lorenz (a), Duffing (b), AR(0.02) (c), AR(0.05) (d), AR(0.2) (e), and AR(0.5) (f)

The Lorenz time series is sampled with a ts = 0.02 time interval and a total of 6× 104 points are recorded starting from

the initial condition (x0,y0,z0) = (20,5,−5). In the following analysis, we only use the y coordinate, with τ = 8 delay as

indicated by the mutual information (Fig. 1), and label the corresponding results as Lorenz.

The second chaotic time series is generated using the double-well Duffing equation [30]:

ẍ+0.2 ẋ− x+ x3 = 0.33cos t . (3)

The total of 6×104 steady state response points are recorded using a ts = 0.1 sampling time interval. In the analysis, only

the x time series is used with τ = 14 delay, also indicated by the mutual information (Fig. 1), and the results are labeled as

Duffing. The reconstructed phase portraits of deterministic and correlated stochastic time series are shown in Fig. 2.

For the Lorentz and Duffing equations, using just scalar time series, one expects to need three- and four-dimensional

embeddings, respectively, to eliminate all the FNN [19, 20, 31]. Strictly speaking, the embedding theorem [2] guarantees

the embedding if the dimension is greater than twice the fractal dimension of an attractor (i.e., for d = 5 for both Lorenz

and Duffing). The white noise time series are theoretically infinite dimensional. However, for our finite time series, all the

false NNs will be eliminated if the embedding dimension is equal to the data size (i.e., we have only one embedded data

point). The same is also true for the correlated stochastic time series in a strict sense. However, these correlated random
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data all possess a deterministic damped oscillator backbone that is low-dimensional and is guaranteed to be embedded

in three dimensions, while just two-dimensional embedding should generically work, too. Thus, one would expect the

decrease in FNN due to the presence of a deterministic structure in the data, especially for large correlation times.

Additive noise effects are investigated by adding four different noise levels to the Lorenz and Duffing data. In par-

ticular, 5 %, 10 %, 20 % and 40 % noise (determined by the ratio of the standard deviation of noise σn over the standard

deviation of signal σx) are added to the time series and the results are labeled accordingly. By the conventional defini-

tion of signal to noise ratio (SNR) as 10log10 σ2
x/σ2

n, these correspond to 26.02 dB, 20 dB, 13.98 dB, and 7.96 dB SNR,

respectively.

All the data sets are successively embedded into d = 1, . . . ,20 dimensions. For each d-dimensional embedding we find

the NN distance for each point, as well as the distance between the (d + 1)-th components of the same pair of points. In

addition, results are contrasted with a surrogate time series analysis similar to the one used in [21]. Instead of going through

an exercise of frequency and time domain randomization and normalization procedures [32], they have used a much simpler

strategy. For each d-dimensional NN pair, the (d +1)-dimensional coordinate distance is estimated by randomly selecting

one of the coordinates from all the data. This is justifiable, if all the linear correlations are absent from the components of

the reconstructed phase space (the needed coordinate transformation is discussed in Section 3.3.1), where the noise would

appear to be effectively white. Other algorithmic details are described in the following sections.

3 Overview of False NN Algorithms

3.1 The Original Algorithms

The original FNN method was proposed by Kennel et al. in 1992 [22]. Working in each d-dimensional reconstructed

phase space, for each point xi its NN x j(i) is identified as false if:

∣∣xi+dτ− x j(i)+dτ

∣∣> r
∥∥xi−x j(i)

∥∥ , (4)

where r is an a priori fixed threshold value (typically chosen to be 10 in Ref. [22]).

To simplify notation and streamline discussion, we define the following variables:

δi ,
∣∣xi+dτ− x j(i)+dτ

∣∣ , and εi ,
∥∥xi−x j(i)

∥∥ . (5)

In what follows, we will also imply the functional dependence of index j on the index i (i.e., x j is always the NN to xi
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using the appropriate NN metric). Then, the probability that any point xi and its NN x j are FNN can be written as:

fnn(d;r), Prob{δi > r εi} , (6)

and we refer to it as original fraction. Then, the idea is that the smallest dimension d for which fnn(d;r) reaches zero

is the minimally sufficient embedding dimension. The original fraction provides misleading results for the white random

and correlated stochastic time series for which it erroneously shows low embedding dimensions and the surrogate analysis

does not provide the differentiation [21]. In fact, results for uncorrelated random time series and for large amplitude au-

toregresive processes are virtually identical and indicate the existence of a low-dimensional attractor. This is a problem for

noisy deterministic time series, since we cannot definitively attribute zero FNN to the actual existence of a low-dimensional

attractor.

Hegger and Kantz [24] were first to clearly identify the shortcomings of this definition when noisy deterministic

data were considered. For uniformly distributed white noise, the original fraction fnn(d;r) = 1−2〈εi〉 r+
〈
ε2

i
〉

r2, where

εi = εi(d) is the distance between the NNs in d dimensions. For uncorrelated noise time series of size N, 〈εi〉 ' N−1/d .

Therefore, this FNN fraction approaches zero when 〈εi〉 ' r−1 or when N ' rd . To always differentiate noise (which is

inherently infinite-dimensional) from deterministic data (finite-dimensional), one always needs N ≥ rd to get the nonzero

original fraction for uncorrelated noise time series. Unfortunately, this is not always feasible for experimental data.

To address this problem, in [22], the NNs were also counted as false if the distance in (d +1)-dimensions was greater

than the a times σx of the data (e.g., a = 2 in [22]). Thus, the FNN condition changed to:

f̂nn(d;r), Prob
{
(δi > r εi) ∨

(
δ

2
i + ε

2
i > a2

σ
2
x
)}

, (7)

which we call the Kennel fraction.

Figure 10 shows the results of this algorithm applied to our data sets. This solution seems to improve performance for

the white random time series by increasing the FNN fraction for higher embedding dimensions. However, it exhibits a dip in

the FNN fraction at lower dimensions (i.e., it underestimates the FNN fraction for large r and low d). This dip is also present

for the correlated stochastic time series especially for ones with the larger stochastic components. However, the surrogates

also show a similar dip and diverge from actual data after the minimum is reached. Even with this divergence the correlated

stochastic data is hard to interpret and this solution is inadequate [21]. This will also be problematic for noisy deterministic

time series, since this dip cannot be uniquely attributed to the existence of a low-dimensional attractor. In addition, [22]

points out that this solution may introduce false neighbors in large d for an insufficient amount of deterministic data.
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Fig. 3. Kennel fraction of FNN using Eq. (7) for Lorenz (a), Duffing (b), Normal (c), Uniform (d), AR(0.02) (e), AR(0.05) (f), AR(0.2) (g), and

AR(0.5) (h). The gradual decrease in the FNN fraction is precipitated by incrementing r from zero to 20 by two. Lines with circles reflect the

corresponding surrogate data results.

3.2 The Improved Algorithm

In [24], it is supposed that if the distance between the NNs is larger than σx, these points cannot be considered true

NNs and should be discarded in computation. In this approach, the NNs for which the d-dimensional distances are greater

or equal to 1/r times σx are disregarded and the original fraction is used for FNN. Unfortunately, for large values of d and

r, this causes the number of available points to decrease drastically to zero for both white random and correlated stochastic

data sets. The current algorithm for false NNs, as described in TISEAN package [19, 33] has the following form:

f̃nn(d;r),
∑

N−(d−1)τ
i=1 Θ(δi− rεi)Θ(σx− rεi)

∑
N−(d−1)τ
i=1 Θ(σx− rεi)

, (8)

where Θ is the Heavyside function and f̃nn is referred to as the TISEAN fraction. They claim that this solution for white

random data leads to 50–60 % FNN for large N, independent of choice of d and r. However, in our white random and

dominantly stochastic test cases, the number of points suitable for averaging drops to zero precipitously for large d values.

In addition, it indicates low-dimensional embedding for stochastic or random data and does not provide any differentiation
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with the surrogate analysis.

3.3 The Reliable Algorithm

In [21], some of the ideas in [24] were further expanded and a new FNN algorithm was proposed in conjunction with

new and interesting false nearest strands (FNS) idea. These new FNN and FNS methods were shown to be usable for

noisy or stochastic time series. In [21] several important improvements to the FNN algorithm were proposed: (1) only

NNs that are temporarily uncorrelated are considered to focus exclusively on spatial proximity; (2) instead of FNN, FNS

were advocated to make sure only true NNs were considered in the calculations even for noisy data; and (3) a spatial

decorrelation transform was introduced to deal with linear correlation bias due to small delays.

3.3.1 Spatial Decorrelation

The spatial decorrelation step is aimed at negating the effect of the too-small delay used in the reconstruction, which

makes the FNN fraction small irrespective of the actual dynamics. In addition, this step makes the method insensitive to

the appropriate choice of the time delay, unless it is chosen to be unreasonably large.

The basic idea of the decorrelation is to counteract the bunching of all reconstructed points near a thin tube along

the hyperdiagonal of a phase space. Given the original (d + 1)-dimensional reconstructed phase-space trajectory Y ∈

R(d+1)×[N−τ(d+1)], where the i-th column is given by the i-th delay vector xi ∈ Rd+1, Y is first transformed into its proper

orthogonal space Ỹ using singular value decomposition [34]:

Y =UCV T , ⇒ Ỹ =UTY , (9)

Then Ỹ is rotated in the phase space so that the first d-coordinates are only a function of the first d coordinates of the original

phase space Y . To accomplish this we take the last column of Ỹ , u ∈ Rd+1, and then the needed orthogonal transformation

is given by the following Householder matrix [34]:

Q = H (u−|u|ed+1) , (10)

where ed+1 is the unit vector in the (d +1) direction. Then the decorrelated phase space is given by:

Ȳ = QỸ . (11)
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In our test samples, the choice of delay time is close to optimal and the use of decorrelation does not provide any

significant benefits, but in practice it can be a differentiating factor. Thus, we have included this step in the results presented

from now on.

3.3.2 Temporal Decorrelation

As opposed to the TISEAN fraction, Ref. [21] advocates to look at just the distance between the (d+1)-th coordinates

of the NNs. If we only consider the FNN- and not the FNS-based metric we will get:

f̄nn(d;s), Prob{δi > sσx} , (12)

where, to identify true NNs for each point xi, its NN x j is determined such that:

j = argmin
j

∥∥xi−x j
∥∥ , subject to |i− j|> w , (13)

where w is a Theiler window [35, 36] used to remove temporal correlations. We call the metric defined by Eq. (12) the

reliable fraction. Ref. [21] discusses the appropriate choice of the Theiler window and advocates to use two or three times

the first minimum of average mutual information as a good rule of thumb. Another alternative is to match the w time scale

to the point at which the average mutual information reaches its asymptotic zero value.

The results for Eqs. (12) and (13) using a Theiler window of four times the first minimum of the average mutual

information are shown in Fig. 4 (left plots). For the deterministic time series, we observe an initial underestimation of

the FNN fraction with the increase in s value. The fractions reach zero for an appropriate embedding dimension and then

show gradual increase for small s values with the increase in d values. This gradual increase is more pronounced for

the Duffing data and is absent for larger s values. For the white random data sets the FNN fraction behaves as expected,

showing linear decrease as s is increased, while remaining constant for all values of d. For the correlated stochastic data this

metric is more interesting and shows trends intermediate between the trends for the purely white random and deterministic

data. Specifically, it can clearly be used with large s values to differentiate small stochastic component from the larger

deterministic data—plots (e,f). The results for the surrogates are clearly separated from the actual data, especially for

larger s values, and remain constant for all d.
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3.3.3 False Nearest Strands

In the same paper [21], the shortcomings of the previous FNN methods for the deterministic data contaminated by

small random noise are also identified. In this case, the NNs identified through the analysis may be proximal not due to

the deterministic dynamics or the projections, but due to noise. If the proportion of the misidentified NNs is large, then the

algorithm will overestimate the corresponding FNN fraction. To identify only true (in terms of deterministic dynamics and

projection only) NNs, they propose to consider NN strands (NNS). The following procedure is used to identify NNS:

1. Identify NN x j(i) for each point xi given by Eq. (13).

2. If there is any pair of points (for a minimal k = k?) from a set of preceding NNs {xi−k,x j(i−k)}w
k=1 such that j(i) =

k?+ j(i− k?), then [xi,x j(i)] are assigned to the strand containing [xi−k? ,x j(i−k?)]. Otherwise, [xi,x j(i)] are assigned to

a new pair of NN strands.

3. After examining all the data, Ns number of NNS are obtained, each containing a set of NN points Sk (k = 1, . . . ,Ns).

Then the k-th strand is designated false if 〈δi〉k > sσx, where

〈δi〉k , 〈δi〉i∈Sk
=

1
‖Sk‖ ∑

i∈Sk

δi . (14)

Alternatively we can define Reliable FNS Fraction as:

f̄ns(d;s), Prob{〈δi〉k > sσx} . (15)

The results of the FNS calculations for our test time series are shown in Fig. 4 (right plots). The decrease in the

FNS fraction with the increase in s is still present as reliable FNN. For the deterministic data, some gradual increase in

this fraction with the increase in d for small values of s is also present. In addition, and in contrast with the reliable

FNN fraction, this metric does not converge to zero as fast and indicates larger minimal embedding dimension for the

deterministic data. The results for the white random data are still indistinguishable from the ones for the surrogate data.

However, the white random data trends show a gradual increase in the FNS fraction not observed reliable FNN. For the

correlated stochastic data sets, FNS trends are clearly delineated from the surrogates for the low level of stochasticity, and

show results similar to the white random data for the larger stochastic components. To accurately estimate embedding

dimension in deterministic cases, one needs to set some threshold value for the FNS fraction since it does not reach zero

as fast as in the reliable FNN fraction. This task is made easier by the clear separation from the surrogates FNS fraction,

which stays relatively level with the increase in d. For the larger s values, the Duffing FNS fraction also indicates lower
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Fig. 4. Reliable FNN (left plots) and reliable FNS (right plots) fraction of Eq. (12) applied to Lorenz (a), Duffing (b), Normal (c), Uniform

(d), AR(0.02) (e), AR(0.05) (f), AR(0.2) (g), and AR(0.5) (h). The gradual decrease in the FNN fraction is precipitated by incrementing s

from zero to two by 0.1. Lines with circles reflect the corresponding surrogate data results.

than expected embedding dimension.

To see the advantage of these new metrics when dealing with noisy data, we apply them to Duffing data with additive

Gaussian noise as shown in Fig. 5. For the reliable FNN algorithm, the new fraction floor rises with the noise level, but

it is still usable for small values of s and low 5 % noise level Fig. 5(a). At the same time, the surrogate’s FNN fraction

stays constant with respect to d and asymptotes down with the increase in s to approximately 50 % fraction. The FNS

data looks better for the low noise levels Fig. 5(b,d) and exhibits similar surrogate behavior. Therefore, it provides better

separation between the surrogate and actual data FNS fractions compared to the FNN fractions. One might be able to

estimate embedding dimension for the low noise levels in Fig. 5 if an appropriate threshold value is set. However, both

reliable fractions cannot identify the embedding dimension for the larger noise levels.

In what follows, we want to further expand on some ideas in [21] and propose an FNN algorithm that is usable for

noisy or stochastic time series with deterministic components. We begin with exploring the nearest-neighbor statistics for

deterministic, white random, and correlated stochastic time series.
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Fig. 5. Reliable FNN (first column: a,c,e,g) and FNS (second column: b,d,f,h) algorithm applied to Duffing data with 5 % (a,b), 10 % (c,d),

20 % (e,f), and 40 % (g,h) noise. The gradual decrease in the fractions is precipitated by incrementing s from zero to two by 0.1. Lines with

circles reflect the corresponding surrogate data results.

4 Nearest-Neighbor Statistics

We hypothesize that the problem with the classical FNN lies with the definition of the fraction of FNN. To investigate

this question, let us investigate NN statistics for our test time series. First, consider the expected average nearest-neighbor

distance 〈εi(d)〉 for white random time series. Given a d-dimensional reconstruction of normally distributed random time

series, the distance between any two points will be distributed according to a χd (d-dimensional chi distribution [37]). We

also proposition that the expected value of the distance between the NN points will be proportional to the mean of the

corresponding χd distribution and to the average density of points in d dimensions (
√

d/N)1/d . This will result in the

following approximation:

〈εi(d)〉 '
√

2
Γ((d +1)/2)

Γ(d/2)

(√
d

N

)1/d

, (16)

where Γ is the gamma function. Figure 6(a) shows the expected values of nearest-neighbor distances versus the embedding

dimension for all eight test time series, without accounting for temporarily correlated NNs. The increase between the mean
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Fig. 6. Expected value of nearest-neighbor distances in d dimensions without (a) and with (b) temporarily decorrelated NNs

nearest-neighbor distance is more drastic for the white random data than the deterministic time series, and Eq. (16) follows

this increase for the white random time series very closely.

The deterministic time series show more power-law type increase after the needed embedding dimension is reached

(d ∼ 3–4, in both case), and it has a considerably lower rate than for the random data. The nearest-neighbor distance

for deterministic data is expected to grow according to local divergence rate eλmaxdτts , where λmax is maximal Lyapunov

exponent, after the minimum embedding dimension is reached. This can be expressed as:

〈εi〉 ≈ ε

(
eλmaxdτts −1

)
, ∀d ≥ m , (17)

where ε is a constant reflecting the point density in the phase space. The parameters that follow the observed curves closely

are: ε = 0.0404± 0.0008 and λmaxτts = 0.0689± 0.0008 for the Lorenz data, and ε = 0.5110± 0.0742 and λmaxτts =

0.0167±0.0020 for the Duffing data. The exponential growth in Eq. (17) is only expected until it reaches the attractor size

at which point it will saturate. Even if it is allowed to grow unimpeded it will only cross Eq. (16) somewhere d ∼ 60. Thus,

when dealing with low-dimensional deterministic systems (e.g., d < 40) their expected nearest-neighbor distance will stay

well below the distance expected for the white random data in the same dimension.

The correlated stochastic time series show behavior somewhere in the middle of the white random and deterministic

nearest-neighbor distance trends. They start close to the white random at low dimensions and then diverge to smaller

distances for the larger embedding dimensions.

The same plot was regenerated for the distance between temporarily decorrelated NNs as shown in Fig. 6(b). The

main observed differences are that the large stochastic component data now closely follows the white random distances,

while the small stochastic component data shows the intermediate behavior. In addition, the deterministic data have more

pronounced trends clearly showing differences in the divergence rates. Fitting the Eq. (17) to these curves gives the

following parameters: ε = 0.0333±0.0007 and λmaxτts = 0.0790±0.0008 for the Lorenz data, and ε = 0.0425±0.0020

and λmaxτts = 0.1212± 0.0021 for the Duffing data. Thus, we observe: (1) temporal correlations considerably stint the
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divergence rates, especially for the Duffing data; and (2) divergence exponents after removing temporal correlations for

Lorenz (λmax ≈ 0.5) and Duffing (λmax ≈ 0.1), while not being suitable for estimating maximal Lyapunov exponents, are

close to their expected values [31] (experimentally estimated largest Lyapunov exponents from data are λ1 ≈ 0.825 for

Lorenz and λ1 ≈ 0.134 for Duffing).

Now, let us consider the (d + 1)-th coordinates of the NNs in d dimensions, which are still uncorrelated random

numbers for the white random time series. Thus, the distance between these (d+1)-th coordinates for normally distributed

variables (xi ∼N [0,σx]) follows a chi distribution [37]1, and the corresponding expected value can be expressed as:

〈δi〉= E[δi] =
2Γ(1)
Γ(1/2)

σx ≈ 1.1284σx . (18)

Now, it is easy to show that for the uniformly distributed variables (i.e., xi ∼U[−a,b]), this expected value becomes:

〈δi〉=
2√
3

σx ≈ 1.1547σx . (19)

We conclude that for some general uncorrelated random time series the average distance between the (d+1)-th coordinates

is expected to be slightly greater than the corresponding σx (∼ 1.12–1.16 σx).

A similar relationship is expected for the colored-noise time series if the delay used in the reconstruction is greater

than the correlation time. However, for a deterministic time series we expect this (d+1) component’s distance to be small

for true NNs. The estimation results using our synthetic time series without removing temporal correlations are shown

in Fig. 7(a), where we plot the mean value of this distance at each embedding dimension. As we can see, the analytical

estimates are very close to the numerical results for the white random data sets, which are clearly larger than the ones for

the deterministic time series.

For the correlated stochastic data we have an initial rapid drop in the mean (d +1) components’ distance followed by

a slower gradual decrease. The initial drop is due to the deterministic correlations in the data caused by small delay and is

more pronounced for weakly stochastic sets. The consequent slow decrease is due to the longer temporal correlations in

the data, and it is more drastic for the strongly stochastic sets. All the correlated stochastic trends seem to level our at about

30 % of σx. The (d +1)-th distances for the deterministic data start near 0.5∼ 0.6 FNN fraction and drop down rapidly to

near zero at the true minimal embedding dimension and then have slow gradual increase Fig. 7(a). This gradual increase

is caused by the maximal local divergence rate of the nearby trajectories, and is expected to follow eλmaxdτts similar to Eq.

(17).

1If xi ∼N [0,σx], then xi− x j ∼N [0,2σx], and |xi−x j|
2σx

∼ χ1.
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Fig. 8. Expected NN distance 〈δi〉 versus the embedding dimension d for noisy Lorenz (a) and Duffing (b) time-series

The same plots were regenerated for the temporarily decorrelated nearest-neighbor statistics as shown in Fig. 7(b).

The decorrelation had big effect on the correlated stochastic data: they were pushed up to the white random trends for the

correlated data with larger stochastic components. In contrast, the AR(0.02) and AR(0.05) cases show trends more similar

to the deterministic data, by exhibiting initial drops followed by the very slow increase. All the stochastic data stays above

0.45σx level and can be clearly differentiated from the deterministic data. The deterministic trends did not change during

the initial drop to zero. However, the following gradual increase has a more pronounced character, especially for the Duffing

data. This increase is more in line of expected exponential divergence caused by the maximal Lyapunov exponent, and was

not as pronounced before due to temporarily correlated components staying close irrespective of embedding dimension.

The statistical analysis described in this section can be summarized as:

1. Temporal correlations significantly alter the observed results and need to be accounted for in accurate FNN analy-

sis (removal of temporarily correlated points from the FNN analysis increases the differentiating power of the NN

statistics).

2. Of the considered temporarily decorrelated metrics, (d+1)-th coordinate distance (δi)—as shown in shown in Fig. 7(b)—

provides the best indication of the minimal embedding dimension and superior separation between the deterministic

and random/stochastic trends, which remain constant with the increase in d. Thus, this metric can be used directly for

estimating the embedding dimension for the noise free deterministic data. However, for noise contaminated determin-

istic data, it loses its ability to clearly identify the minimal embedding dimension as shown in Fig. 8.
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Fig. 9. Expected value of the Kennel ratio in d dimensions without (a) and with (b) temporarily decorrelated NNs

3. Both 〈εi〉 and 〈δi〉 for deterministic data show exponential growth after minimal embedding dimension is reached.

Thus, the original FNN fraction shown in Fig. 9 for both without (a) and with (b) temporarily decorrelated NNs is a

good differentiator of deterministic data for low embedding dimensions. Setting a threshold value near 5 ∼ 10, this

ratio with temporal decorrelation provides accurate estimates of FNN for d < 10, and clear separation of deterministic

trends.

5 New Composite-Fraction-Based Metrics

Using the results of the statistical analysis described in the previous section, and combining them with the original

definition of FNN, the following FNN composite fraction can be advocated:

Rnn(d;r,s), Prob{(δi > r εi) ∨ (δi > sσx)} . (20)

This new ratio has two parameters: r is the same as for the original fraction, while s is the same as for the reliable fraction.

The first part is expected to serve as good indication of FNN for low d, while the second provides good indication of

minimal embedding dimension and best separation of deterministic data from random/stochastic for larger d.

This composite metric still does not address the problem of NNs being close to each other due to the presence of

noise instead of either dynamics or projection. Therefore, we propose a procedure similar to the FNS, where instead of

looking up just one NN (NN) for each point xi, we look up k NNs. Then, the true, temporarily uncorrelated NN (i.e. the

one close only due to dynamics or projection) is identified by evaluating the preceding and future l states of all k NNs. In

particular, we evaluate the average distances between the base strand and all k NN strands of length 2l+1. The strand with

the smallest average distance from the base strand will contain the needed true NN.

5.1 New Composite-Fraction-FNN Algorithm

The composite FNN procedure can be summarized as follows:
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1. For each point xi, identify its temporarily uncorrelated k NNs {x j(m)}k
m=1 =

{
x j(m) : |i− j(m)|> w, m = 1, . . . ,k

}
just

like in Eq. (13) to eliminate temporarily correlated NNs.

2. Then the true NN x j is identified as:

j(m) = argmin
m

∑
l
q=−l

∥∥x j(m)+q−xi+q
∥∥

(2l +1)
∥∥x j(m)−xi

∥∥ , (21)

and used in Eq. (20) to determine FNN fraction.

Equation (21) indicates that the composite fraction will also be a function of l and k parameters:

Rnn = Rnn(d;r,s, l,k) . (22)

It is reasonable to set the value of l ≤ w/2 in Eq. (21) since we are focusing on temporal correlations. The choice of k can

be influenced by many factors, such as noise level, density of points in the embedding, and sampling time. Here we only

present results obtained with just one NN point (k = 1 and l = 0) for noise free data. In addition, we use k = 10 and l = τ

for data with additive noise. However, we explicitly set these values in what follows and do not study their influence on

the quality of the results, which is left for future work. Therefore, Rnn = Rnn(d;r,s,τ,k), Rnn(d;r,s) in what follows.

The results using Eq. (20) are shown in Fig. 10 for fixed s = 0.5 (left plots) and for fixed r = 4 (right plots) for all

the test data. For the deterministic data, the algorithm works well for r ≥ 4 and for all s > 0.2 values, while for the

same r values it provides correct indication of high-dimensional data for the white and correlated stochastic time series.

In particular, the actual results are indistinguishable from the surrogate analysis for the random data and the composite

fraction never drops below 50 %. For correlated stochastic data with a smaller stochastic component, we can clearly see

that there is some deterministic component to the data, while for a large stochastic component, the results are very similar

to the ones for the white noise. However, there still is the small but clearly identifiable separation between the surrogate

and correlated stochastic data. This is especially evident for s = 0.5 plits, where for larger values of d there is a clear

convergence in the FNN composite fraction to the same constant value for the surrogates, and to different values for all the

correlated stochastic data sets. The separation of this surrogate FNN fraction from the actual FNN fraction seems to scale

with d and the relative magnitude of the deterministic component. Therefore, we can use this separation between the actual

and surrogate data composite fractions as an indication of some deterministic trends in the stochastic data. However, this

needs further investigation for practical applicability in the analysis, with the purpose of relating the observed differences

with the surrogates to the relative strength of the deterministic components.
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Fig. 10. Eq. (20) based composite fraction FNN algorithm with s = 0.5 (left plots) and with r = 4 (right plots) for Lorenz (a), Duffing (b),

Normal (c), Uniform (d), AR(0.02) (e), AR(0.05) (f), AR(0.2) (g), and AR(0.5) (h). The gradual decrease in the fractions is precipitated by

incrementing r from zero to 20 by two and s from zero to two by 0.1. Lines with circles reflect the corresponding surrogate data results.

One may expect the removal of temporal correlations and the new definition of NN points to positively alter the

Kennel fraction results. However, the observed improvements were marginal: (1) marginally better indication of minimal

embedding dimension for the deterministic data; (2) removal of artificial separation between the surrogates and actual data

for the stochastic time series; and (3) accentuation exponential divergence for the deterministic data for larger embedding

dimensions. Thus, the main deficiencies that were identified previously still remain.

5.2 New-Composite-Fraction FNS Algorithm

We have also modified the FNS algorithm to use a new metric specified by Eq. (20). We use exactly the same procedure

as before, except instead of Eq. (15) we use:

Rns(d;r,s), Prob{ 〈δi〉k > r 〈εi〉k ∨ 〈δi〉k > sσx } , (23)
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where

〈εi〉k , 〈εi〉i∈Sk
=

1
‖Sk‖ ∑

i∈Sk

εi . (24)

The results of calculation using Eq. (23) are shown in Fig. 11 for fixed s = 0.5 (left plots) and for fixed r = 10 (right

plots) for all the test data. For all the simulations we have used w = τ. The differences with the new FNN are similar to

what was observed previously in the reliable algorithm. The decrease of the FNS composite fraction to zero is slower and

more gradual than for the FNN composite fraction for the deterministic data. However, the FNS composite fraction shows

a much clearer indication for d = 3 for the Lorenz and d = 4 for the Duffing data as opposed to FNN, where we have to

plot data on a log scale to clearly see the minima at the same values. This algorithm can be clearly used to differentiate the

deterministic versus stochastic or random data using surrogate analysis. In addition, for the smaller stochastic component

data, the surrogate analysis also provides the needed indication of the deterministic component. However, this indication

is absent for the larger stochastic components for which they are indistinguishable from the random data sets.

6 Noise Robustness of Composite Fraction Algorithms

To test the applicability of these new algorithms for the noisy deterministic time series we have tested them on both

Lorenz and Duffing data contaminated by additive noise as described before. The composite FNN fraction results for noisy

Lorenz and Duffing are shown in Fig. 12 for k = 1 NN (left plots) and for k = 10 NNs (right plots), respectively. For both

cases, we set r = 10 and s = 1. Plots demonstrate that using ten NNs in the algorithm considerably improves on results

using just one NN. Composite FNN fractions with ten NNs have a clear inflection point, or elbow, in their trends at the

appropriate minimal embedding dimension for low noise levels. Even for high noise levels the estimates for Duffing are

good and for Lorenz only overestimate the embedding dimension by one.

New composite FNS plots for noisy Lorenz and Duffing data are shown in Fig. 13 left and right plots, respectively.

Compared to the composite FNN fraction plots, these do not show as clear of an indication when the FNS composite

fraction levels out or has a clear inflection point at the appropriate minimal embedding dimensions. Instead, it has a

more gradual transition requiring some careful thresholding to identify the appropriate minimal embedding dimensions.

It should be noted that these results are similar to the ones obtained for the stochastic time series with small stochastic

components. Therefore, we have to be careful when making any judgments about the nature of additive noise versus

systematic stochasticity. However, we can still clearly use these new methods in both cases to identify the deterministic

components in the data and their dimensionality.
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Fig. 11. Eq. (23) based composite fraction FNS algorithm with s = 0.5 (left plots) and with r = 10 (right plots) applied to Lorenz (a),

Duffing (b), Normal (c), Uniform (d), AR(0.02) (e), AR(0.05) (f), AR(0.2) (g), and AR(0.5) (h). The gradual decrease in the fractions is

precipitated by incrementing s from zero to two by 0.1 and r from zero to 20 by two. Lines with circles reflect the corresponding surrogate

data results.

7 Summary and Conclusions

We have described currently used false nearest neighbors (FNN) algorithms, and have showed their shortcomings

using synthetic deterministic, white random, and correlated stochastic time series. The effect of additive noise on the

performance of the algorithms for the deterministic data was also identified and discussed. To understand the reasons

behind the observed deficiencies, we have studied the statistical properties of the nearest-neighbor metrics used in the

algorithms for all data types. It was observed that the expected (d + 1)-dimensional distance between the d-dimensional

nearest neighbors was a good indicator of minimal embedding dimension for the clean deterministic time series, but it lost

its differentiation when even small additive noise was introduced into the deterministic data.

The results of the nearest neighbor analysis were used to derive new algorithms based on the composite fraction that

overcome the deficiencies of the earlier methods, and are applicable even for noisy deterministic data. The concepts of FNN

and false nearest strands (FNS) were also contrasted in this new composite framework. In addition, the FNN framework
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Fig. 12. Eq. (22) based FNN algorithms with k = 1 (left plots) and k = 10 (right plots) for Lorenz (first and third columns) and Duffing

(second and fourth columns) and the surrogate data with 5 % (a,b), 10 % (c,d), 20 % (e,f), 40 % (g,h) additive noise levels. Lines with circles

reflect the corresponding surrogate data results.

was enhanced by the ability to identify points that are nearest neighbors only due to dynamics or projections by estimating

the minimal distance to the several nearest strands in d-dimensions, which considerably improved the results for the noisy

data. While both concepts provide results that can be used for estimating the minimal embedding dimension even in a noisy

data set, the composite FNS algorithm provides a clearer indication of the minimal embedding dimension for the noise free

data compared to the composite FNN. However, the FNN algorithm has a more differentiating power and provides less

ambiguous results for the deterministic data contaminated with additive noise. These FNN/FNS composite fractions are

also suitable in evaluating the presence and relative magnitude of a deterministic component in a stochastic or noisy data

set.
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