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ABSTRACT OF THE DISSERTATION 

THE USE OF ELEMENTAL DATABASES IN FORENSIC SCIENCE: STUDIES ON 

VEHICLE GLASS INTERPRETATION AND MILK POWDER PROVENANCING 

by 

Tricia Marie Hoffman 

Florida International University, 2018 

Miami, Florida 

Professor Jose Almirall, Major Professor 

 The first study focuses on the development of a laser based method for the 

elemental analysis of solid milk powder. Milk powder samples originating from five 

different countries were analyzed to determine any geographic differences. A LA-ICP-

MS method was developed and compared to k0-INAA for several milk samples as well as 

a reference sample. Precision of 10% RSD or better and a bias of 10% was achieved for 

both techniques for most elements with LA-ICP-MS producing lower limits of detection 

(~ 1 ppm) for strontium. The comparison of LA-ICP-MS to k0-INAA showed overlap of 

the 95% confidence intervals for all comparison samples. The data for 68 authentic milk 

powder samples representing five different countries (Argentina, Russia, Singapore, 

Slovenia, and the United States) were collected and used as a preliminary database. 

Principle component analysis (PCA) shows different groupings for the United States, 

Argentina, Singapore, and Slovenia. However the large number and geographic 

distribution of samples from Russia were not able to be distinguished from the samples 

from the United States and Slovenia. 
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 The second study focuses on the use of trace element databases for the objective 

interpretation of forensic glass evidence. Ten laboratories conducting analysis of glass 

participated in three inter-laboratory exercises. The aims of these exercises were to 

evaluate the use of a standard method for the analysis and comparison of glass evidence 

and to investigate different statistical approaches for interpreting results. Elemental 

analysis was performed on 420 vehicle windshield samples collected from 210 different 

vehicles representing manufacturing dates between 2004-2017 and 26 vehicle 

manufacturers. Using a variation of a previously reported comparison criterion for 

comparing samples to a database, the false exclusion rate and false inclusion rate for the 

new vehicle database were calculated to be 1.9% and 0.1 % respectively. This criterion 

was used to calculate the frequency of an elemental profile for the case scenarios 

distributed as part of the inter-laboratory exercises. Similarities were observed between 

labs that calibrated their data the same way, thus showing it is possible for labs to use a 

central database. 
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CHAPTER 1. Introduction to Milk Provenancing and Background on Milk 

Composition  

1.1 Research Motivation 

 Food fraud, according to the U. S. Pharmacopeia Convention, is “a collective term 

that encompasses the deliberate substitution, addition, tampering or misrepresentation of 

food, food ingredients or food packaging, or false or misleading statements made about a 

product for economic gain” [1]. Food fraud can cause health problems and also be an 

issue of National Security if imported materials are being falsely labeled as coming from 

another country. A recent edition (Aug. 25, 2014) of Chemical and Engineering News 

featured a cover story on food fraud. This article listed milk as one of the top five 

adulterated foods [2].  

 The adulteration of milk, in particular milk powder generated from bovine milk, 

has occurred in a variety of ways. One of the major instances that sparked the interest in 

detecting and preventing adulteration in milk occurred in China. In 2008, six infants were 

killed and 30,000 others sickened by drinking melamine-laced baby formula. Since the 

structure of melamine contains 6 nitrogens per molecule, it was added to the milk 

powders to make it appear to contain a higher protein content [2]. Infant milk was not the 

only contaminated product. It was revealed that virtually all Chinese-produced dairy 

products including ordinary milk, ice cream, and yogurt also contained melamine. 

Countries around the world announced bans on imports of products that contained 

Chinese milk, including bakery products and candies [3].  
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 The European Commission has now begun trials of mandating that milk and milk 

products be labeled with the country of origin [4]. Because of the potential of falsifying 

information, the focus of this research is detecting instances of adulteration where 

companies mislabel a product as being a more expensive imported one [5]. Adulteration 

of imports/exports is an issue of national security. The International Atomic Energy 

Agency (IAEA) has joined the efforts of 13 countries in an attempt to characterize the 

organic and inorganic properties of milk powder. This research will aide in the creation 

of a database, which will allow for 1) the elemental characterization of milk powder and 

begin to develop a method to determine the provenance of milk powder samples. 

1.2 Significance of Study 

 The present study focused on detecting fraudulently labeled milk. Given that milk 

is usually exported and imported as a powder, the development of laser-based methods 

for the analysis of solid milk powders was investigated. An LA-ICP-MS (laser ablation-

inductively coupled plasma-mass spectrometry) method was evaluated using the milk 

powder reference material IAEA-153 (Trace Elements in Milk Powder, International 

Atomic Energy Agency, Vienna, Austria). The results for 13 samples were compared 

with a k0-INAA method that was previously developed to further test the accuracy of the 

LA-ICP-MS method [6]. This research then looked at combining elemental data from 

other laboratories. In order to assess the performance of each laboratory’s methodology, 

each participant was asked to analyze IAEA-153. For this reference material, consistent 

results (within 95% confidence) were obtained. To test the performance of a combined 

dataset, laboratories from five countries (Argentina, Russia, Singapore, Slovenia, and the 
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United States) provided elemental data for authentic milk powder samples. Finally, using 

the data submitted from the participating laboratories, the discrimination capabilities of 

the LA-ICP-MS elemental menu was evaluated to determine if differences between 

countries could be detected. 

1.3 Composition of Milk 

 There are many farm animals today that produce milk that is used for human 

consumption: bovine, sheep, goats, buffalo, and camels. Though similarities exist 

between all of these types of milk, this section will focus particularly on the composition 

of bovine milk. The components of milk can be broken down into organic (fats, proteins, 

and sugars) and inorganic (minerals). The typical concentration of these components in 

milk can be seen in Table 1. Since different breeds of cow produce milk with various 

compositions, the % composition is given as a range [7].  

Table 1 - Composition of main constituents in milk 

 % Composition 

Water 85.5 – 89.5 

Total Solids 10.5 – 14.5 

Fat 2.5 – 6.0 

Proteins 2.9 – 5.0 

Lactose 3.6-5.5 

Minerals 0.6 – 0.9 
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Since this research focuses on the elemental analysis of milk, the organic composition 

will only be briefly described since metals are often found attached to the major organic 

components. More time will be spent looking at metals present in milk and how they 

change over time.  

Fat 

 Milk fat is mostly a combination of triglycerides. These compounds consist of 

three fatty acids attached to a glycerol backbone through ester bonds, Figure 1. The R 

group on the fatty acid can vary in length and structure. When the R group contains only 

single bonds, the fats are called saturated (saturated with hydrogen). On the contrary, 

when a double bond is present the fats are called unsaturated. There are a variety of fatty 

acids in milk, but the main four, which account for over 50% of the fatty acid content are 

myristic, palmitic, stearic, and oleic acids [8].  

 

Figure 1 - Chemical structure of glycerol, a fatty acid, and triglyceride 

 

 The fat component of milk is sometimes removed depending on the consumer’s 

taste. Whole milk contains about 3.25% fat, but there is nonfat (skim) milk that has had 

most of the fat content removed, lowfat milk with only 1% fat, and reduced fat milk that 

contains 2% fat.  
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Proteins 

Proteins are made up of amino acids, which are compounds that contain an amino 

group and a carboxylic acid. The amino group and the carboxylic acid are attached to the 

same carbon. Amino acids differ from each other in the structure of an R side chain. 

Eight of the amino acids cannot be manufactured by the human body and therefore must 

be supplied through diet. These are called essential amino acids. Milk contains all of the 

essential amino acids.  

 

Figure 2 - Chemical structure of an amino acid 

 

 There are hundreds are proteins in milk, but the two major ones are casein and 

milk serum proteins (whey). The properties of these proteins can be changed by altering 

heat and pH, which allows for the manufacture of other dairy products such as cheese and 

yogurt [8]. Casein is involved with the stability of milk during heating and storage and 

also heavily involved in the formation of cheese. Whey protein contains many of the 

essential amino acids, and thus is sometimes separated from milk and used as a protein 

supplement for athletes and body builders.  
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Carbohydrates 

 Carbohydrates are sugars. These compounds are the main source of energy. 

Carbohydrates can be classified as monosaccharaides (one sugar molecule), disaccharides 

(two sugar molecules), and polysaccharides (many sugars). The main carbohydrate in 

milk is lactose, which is a disaccharide made up of glucose and galactose, Figure 2. Like 

fat, lactose can also be removed from milk, and it is usually done so because some people 

cannot break down lactose.  

 

Figure 3 - Structure of lactose 

Minerals 

 Minerals are naturally occurring inorganic substances. Mineral elements occur in 

milk and dairy products as inorganic ions and salts, as well as parts of organic molecules. 

These elements are the main focus of this research. The concentrations of these elements 

have been found to vary depending on how and if the milk was processed, the 

environment, the lactation cycle of the cow, and/or the breed of the cow [9, 10]. Thus it 

may be possible to use the elemental composition of milk to determine if the country on a 

commercial product could be the origin of the product. 

 The major mineral elements present in milk are calcium (Ca), phosphorus (P), 

potassium (K), sodium (Na), magnesium (Mg) and chlorine (Cl). The concentrations of 
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some of these mineral elements are reported to change because of a variety of factors. 

Micinski et al. reported that the concentration of Ca, K, Na, Mg, and Zn in milk changes 

with the age of the cow and Ca Mg, and Zn change during the lactation cycle [11]. 

Tsioulpas et al. also confirmed that the concentration of Ca was highest in colostrum and 

in the days immediately after giving birth [12]. Cerbulis et al. reported that the amount of 

these mineral elements also depends on the breed of cow and found that milk from Jersey 

cows differed from milk produced by Holstein cows [13]. Dandare et al. and Hermansen 

et al. also reported significant differences in the mineral content between different breeds 

of cows [14, 15]. Other studies saw that these minerals can change with the health of the 

cow. For example Na and Cl were found to be more concentrated in milk from cows with 

udder infections. Table 2 shows some typical concentrations reported for elements of 

importance to this research in the various types of milk powders and pasteurized milk 

[16].  
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Table 2 - Concentrations (mg/100g) of some metals in different types of milk [7] 

 Ca Mg Na K Zn Fe 

Milk Powders       

Whole Milk 912 85 371 1330 3.34 0.470 

Skim Milk 1257 110 535 1468 3.96 0.433 

Liquid Milk       

Whole Pasteurized Milk 118 10.6 44.1 157 0.37 0.05 

Skim Milk 125 11 42 156 0.42 0.03 

1% Skim Milk 119 11 44 150 0.42 0.03 

Trace Elements 

 Of the 20 essential minerals present in milk, 14 are present as trace elements: iron 

(Fe), copper (Cu), zinc (Zn), manganese (Mn), selenium (Se), iodine (I), chromium (Cr), 

cobalt (Co), molybdenum (Mo), fluorine (F), arsenic (As), nickel (Ni), silicon (Si), and 

boron (B). Many other trace elements also occur in milk. However, they are not 

nutritionally important. These include elements such as lithium (Li), bromine (Br), 

aluminum (Al), strontium (Sr), silver (Ag), lead (Pb), tin (Sn), vanadium (V), mercury 

(Hg), cadmium (Cd), rubidium (Rb), and cesium (Cs).  

 Some metals are used by cells to perform functions necessary for survival. Other 

metals such as lead (Pb), and cadmium (Cd) can accumulate in the body and be very 

toxic to humans and other organisms. Multiple studies have shown that cows near 

industrial sites and other areas polluted by these contaminants produced milk that had a 

higher level of these metals than cows in unpolluted areas [17, 18]. Other elements have 

also shown to change depending on the environment of the cow. Hermansen et al. have 

reported differences in elements such as Mo, Mn, and Zn in organic farm systems (not 
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treated with antibiotics) vs. conventional farms. When it comes to different feeds, Coni et 

al. noticed significant differences in the element composition of raw milk from the winter 

and summer seasons. They hypothesized that these differences are caused by changes in 

the feeding systems [19]. The correlation between trace elements in milk and the 

elemental composition of feed were also reported in Herwig et al. [20] and Sola-

Larrañaga et al [21]. These differences in elemental profiles suggest that multi-elemental 

analysis of milk has the potential to be used to differentiate milk samples originating 

from farms with different feeding systems and environments and thus possibly by country 

if the within country variation is less than the between country variation. There have been 

recent studies that looked at using the elemental profile of milk for provenancing. 

Potocnik et al. [6] was able to classify milk samples based on geographic region within 

Slovenia. Sacco et al. [22] was able to classify milk as being from southern Italy or 

another area, foreign milk.  

1.4  Milk Production 

Collection and Storage 

 In the United States, the processing of milk is a very standardized process. After 

milking, the milk from a farm is stored in bulk cooling tanks. Each day a milk tanker will 

travel to farms, collect the milk, and transport it to a dairy facility. When it arrives at the 

dairy facility, the quality of the milk is checked. If no problems are found, it is stored in 

silos until it can be processed. Silos typically have a capacity of 100,000L to 500,000L 

[8]. 
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Standardization of Fat Content 

 The fat/cream is separated from the milk using centrifugation. Depending on the 

final product, the cream is added back to the milk in a set amount. Even in the process of 

creating whole milk, the cream is removed and added back to the milk to ensure the milk 

has a fat content of the desired standardized amount. 

Heat Treatment 

 Milk is heat treated to kill most of the microorganisms. However, heating milk to 

high temperatures also involves a risk of adverse effects on the appearance, taste and 

nutritional value of the milk. Today, most heat treatments on milk intended to remain a 

liquid consist of high temperatures for a short amount of time. This process involves 

heating milk to 72–75 °C and holding this temperature for 15–20 seconds before it is 

cooled. Temperatures around 70 °C are high enough to kill one of the toughest bacteria, 

Tubercle bacillus. The heat treatment described above is called HTST (high temperature 

short time) pasteurization [8]. However for milk that is designed for longer storage, such 

as powdered milk, higher temperatures are needed. These higher temperatures not only 

kill pathogens, but they also inactivate enzymes and cause oxidative resistance. For milk 

powder, heat treatment is commonly performed at 85–95°C for 15–30 seconds [23]. 

Powdered Milk 

 For powdered milks, the next steps involve evaporation of the water component, 

which accounts for over 80% of the milk. This process requires a lot of energy and thus is 

usually expensive. Care needs to be taken to not alter the proteins, particularly whey, 

which are sensitive to high temperatures. There are many evaporation techniques that 
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differ by equipment type and energy needed. Each evaporation unit must meet three 

industry requirements: high evaporation capacity, low energy consumption, and ability to 

maintain the quality of the milk powder [24]. 

 To reduce the energy needed, multiple single stage evaporation units can be used 

in a series, Figure 4. The evaporators are kept under a partial vacuum, which reduces the 

temperature needed. As milk at its boiling temperature enters the first evaporator, it 

makes contact with heated vapor that is about 5 °C hotter. This extra heat causes 

vaporization of some of the liquid. The slightly condensed milk and vapor are separated. 

The vapor is used to heat the milk as it travels through the next evaporation unit, which is 

at a lower pressure than the unit before it [24].  

 

Figure 4 - The multi-stage evaporation process used to concentrate milk  
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 After concentrating the milk solids, the milk is homogenized to prevent creaming 

and separation of the fat content in the concentrated milk. The homogenization process 

basically reduces the size of the fat globules [23]. In cases like skim milk, the 

homogenization step is skipped because of the low abundance of fat molecules. The 

process can end here if the desired product is milk concentrate.  

 The next step to create milk powder involves drying the milk concentrate into a 

powdered form, which is usually done today by spray drying. In spray drying the milk is 

atomized into a hot air stream of 180 °C. The milk powder is moved through this process 

quickly to prevent overheating [24]. 
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CHAPTER 2. Elemental Analysis of Milk 

 As previously discussed, past publications on the elemental analysis of bovine 

milk and milk powder have shown that the elemental concentrations in milk statistically 

differ by seasons, feed, and the location of the farm. Being able to determine if an 

imported milk has an elemental profile that is consistant with the country listed on the 

label is one step towards preventing milk adulteration.  

 The most commonly used techniques for the elemental analyses of milk (liquid) 

are inductively coupled plasma-optical emission spectroscopy (ICP-OES) [25, 26] and 

inductively coupled plasma-mass spectroscopy (ICP-MS) [20, 27]. However, for both of 

these methods, the sample usually must undergo an acid digestion procedure and dilution 

prior to analysis. Other researchers have reported the use of a specialized nebulizer and 

direct sampling of either a diluted milk sample or a milk sample treated with EDTA [26, 

28, 29].  

 An alternative to these liquid sample introduction approaches is laser ablation 

(LA). A laser is used to generate fine particles of a solid sample that can be further 

analyzed by elemental techniques, thus eliminating the need for strong acids and 

dilutions, and allows for a larger representative sample to be characterized. Methods for 

preparation of solid milk samples have been previously developed for both laser induced 

breakdown spectroscopy (LIBS) and LA-ICP-OES [30-33]. These sample preparation 

methods have either reported problems with matrix effects or were limited to only the 

major elements Na, Ca, Mg, and K.  
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2.1 Principles of Analytical Techniques 

 My research focused on the development of an LA-ICP-MS method for the 

analysis of powdered milks, which will be compared to k0-INAA. LA-ICP-MS is also 

used for the analysis of glass in the second part of this dissertation. The principles of 

lasers and ICP-MS can be found within the glass portion in section 6.6 . This section will 

focus solely on the principles of neutron activation analysis (NAA). 

k0-Instrumental Neutron Activation Analysis 

 Neutron Activation Analysis (NAA) is known as a primary method of 

measurement. Primary methods can be defined as “…a method having the highest 

metrological properties, whose operation can be completely described and understood, 

for which a complete uncertainty statement can be written down in terms of SI units 

[34].” By looking at this definition, it can be seen why scientists employ NAA for 

certification of references materials. The IAEA-153 milk standard, which is used 

throughout this study is not a certified reference material, but rather instead contains only 

recommended values. To better ensure the accuracy of the developed methods, NAA was 

used and the results were compared to those obtained by the LA-ICP-MS method, 

  In simplistic terms, neutron activation analysis is an elemental technique in 

which neutrons are used to irradiate a sample. The irradiation causes the formation of 

radioactive species, which will decay and emit excess energy in the form of gamma rays. 

Gamma rays have a discrete energy and are characteristic of an element, which in turn 

can be used to calculate the concentration of an element. Equation (1) is used here to 

describe the theory behind neutron activation analysis.  
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 𝑅 = 𝜓 𝜑 𝜎 𝑁 (1 − 𝑒−𝜆𝑡𝑖𝑟𝑟) 𝑒−𝜆𝑡𝑐𝑜𝑜𝑙  Equation (1) 

In this equation, 𝑅 is the amount of radioactive nuclide, 𝑁  is the number of target 

atoms/cm3 present in the sample, 𝜑 is the particle flux, 𝜓 is the efficiency of the detector, 

𝜎 is the reaction cross section, 𝑡𝑖𝑟𝑟 is the irradiation time, 𝑡𝑐𝑜𝑜𝑙 is the time from the end of 

bombardment to the start of measurement, and 𝜆 is the decay constant of the radionuclide 

[35]. Using the equation, the amount of radionuclide produced is directly related to 

irradiation time and particle flux from the neutron source. The analyst can control these. 

However, the decay constant of the radionuclide and the reaction cross-section cannot be 

controlled. The decay constant can limit the element menu. For example elements such as 

Si, Al, Fe, and Mg produce radionuclides that have very short half-lives (2.27 minutes, 

9.45 minutes, 2.58 hours, and 15 hours respectively) [36]. When a large element menu is 

examined, these elements could already be undetectable before the sample is even done 

being irradiated. Some elements have a very small cross section that reduces the 

probability a reaction with a neutron occurring. Therefore, these elements are not 

activated easily and require longer irradiation times and/or a larger neutron flux. The 

amount of time and neutron flux needed to activate these elements may not be 

economically feasible.  

 

2.1.1.1 Activation  

 Neutron activation analysis is based on the generation of a radioactive species, a 

form of the element of interest that is unstable and thus decays to a more stable form. In 

neutron activation, the generation of the radioactive species is usually done by a neutron 

capture reaction, which is shown below, Equation (2).  
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𝑁𝑎 + 𝑛 →0
1

11
23  𝑁𝑎 +  𝛾11

24  Equation (2) 

 

In neutron capture, a neutron ( 𝑛0
1 ) is added to the nucleus of the element, which forms a 

new isotope with the same atomic number and a mass number that has been increased by 

1. In this example, the binding of a neutron causes the new nucleus to have excess 

energy, which it releases in the form of a gamma (𝛾) ray. This immediate emission of a 

gamma ray is called prompt gamma ray emission and is not normally measured in NAA. 

Rather, the gamma rays that are emitted after the decay of a radionuclide, 𝑁𝑎11
24 , into an 

excited new species and its relaxation to a ground state are measured.  

 There are three sources of neutrons that can be employed in neutron activation 

analysis: reactors, radionuclides, and accelerators. These sources differ in their neutron 

flux and thus their detection limits. My research used a nuclear reactor to generate the 

neutrons, so that will be the main topic discussed. For information about radionuclides 

and accelerators, please refer to Skoog et al. [37]. The nuclear reactor used in this 

research was a TRIGA (Training, Research, Isotopes, General Atomic) Mark II reactor, 

which is used for research and not for energy production.  

 The principle component in any reactor is the core rods that contain the fuel, 

enriched UO2. The nuclear reactor creates neutrons through fission, a process in which a 

neutron collides with an isotope and causes the atom to split into two smaller nuclides 

and also produces neutrons. 235U is a species that will undergo fission, Equation (3) [35].  

 𝑈92
235 + 𝑛 → 𝐹𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 + ~2.5𝑛 Equation (3) 

 The energy that the neutrons have can be classified as fast, thermal, or epithermal, 

Figure 5. The neutrons that are released after fission are fast neutrons. These are usually 
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slowed by a moderating species, which allows them to be captured by more 235U and thus 

continue the creation of neutrons, or they are slowed and used to activate the sample.  

 

Figure 5 - Neutron energy and flux found in reactors [34]; thermal neutrons (10-1-10 eV) are used to 

induce fission and activate most elements 

 

2.1.1.2 Types of Decay 

 There are a variety of reactions that occur in NAA. The target element can 

become activated and decay into a new element. Two of the main decay methods are 

alpha and beta decay. Beta decay is the emission of positrons ( 𝛽+1
0 ), beta particle( 𝛽−1

0  ), 

or the capture of an electron ( 𝑒−1
0 −).  

 𝑋𝑍
𝐴 → 𝑋𝑍−1

𝐴 − + 𝛽+1
0 +  𝜈 →  𝑋𝑍−1

𝐴 + 𝑒−1
0 − + 𝛽+1

0 +  𝜈  Equation (4) 

 

 𝑋𝑍
𝐴 → 𝑋𝑍+1

𝐴 + 𝛽−1
0 + �̅� Equation (5) 
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𝑋𝑍
𝐴

𝐸𝐶
→ 𝑋𝑍−1

𝐴 +   𝜈  Equation (6) 

Equation (4), Equation (5), and Equation (6) show examples of these processes where X 

is an atom with A atomic number and Z mass number [35].  

 𝑋𝑍
𝐴 → 𝑋𝑍−2

𝐴−4 + 𝐻𝑒2
4  Equation (7) 

Alpha decay is the emission of a helium nucleus, Equation (7). Alpha and beta decay can 

leave the product’s nucleus in an excited state. The excess energy can either be emitted as 

a gamma ray or lost by a process called internal conversion. The gamma rays are of 

importance to NAA and thus will be discussed further.  

 Gamma rays are high-energy radiation that have been emitted from an excited 

nucleus. They have the same electromagnetic nature as X-rays and like X-rays produce 

line spectra in which identification of an element can be determined. In NAA, the gamma 

rays that are detected are usually from delayed gamma emissions, an emission that occurs 

after a radionuclide decayed. Since the gammas are released after a radionuclide decayed, 

the gamma ray being examined to determine the concentration of a target element can be 

a gamma ray emitted from the relaxation of a different element. This can become 

confusing and complicated, but fortunately computer software and literature sources exist 

that analyze decays schemes and calculate the probability of each event occurring. An 

example of a decay scheme for metastable 60Co can be seen in Figure 6. First the 

metastable species undergoes an isomeric transition (IT) to 60Co by emission of a gamma 

ray. Next the species undergoes beta decay by emission of a beta particle to an excited 

60Ni*. The nickel isotope will undergo emission of two more gamma rays till it is in a 

ground state [34].  
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Figure 6 - Decay scheme for 60mCo into 60Ni; during the decay two gamma rays are emitted with 

energy of 1173 keV and 1332 keV 

2.1.1.3 Detection 

 The interaction of gamma radiation with matter results in ionization and 

generation of a current that can be detected and recorded. Detectors used can be gas filled 

(Geiger tubes, proportional counters, and ionization chambers), scintillation counters, and 

semiconductors (Si(Li), Ge(Li), and HPGe). In NAA, semiconductors are most 

commonly used because of their high-energy resolution, thus these will be discussed in 

detail. For information about the other detectors see Skoog et al. or Cherry et al [37, 38]. 

 In semiconductor detectors, ionizing radiation interacts with solid matter (crystal) 

to produce electron hole pairs. The electrons have a negative charge and the holes carry a 

positive charge. By applying an external electric field, these charge carriers can be 

separated to create an electric field within the detector. This electric field creates a pulse 

that has a height equivalent to the energy of the radiation. 
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 As photons, gamma rays, enter into the detector three events can occur. The 

gamma ray can interact with an atom, lose all of its energy, and cause the ejection of an 

electron (photoelectric effect), which creates a hole in the atom’s electron shell. The atom 

then moves an electron from a higher energy shell down to fill the hole, which in turn 

emits an X-ray. The energy of the photoelectron and emitted x-ray is equal to the energy 

of the gamma ray. This interaction produces a full energy peak, a peak with energy equal 

to the gamma ray. Photoelectric effect is the best-case scenario. Another event that can 

occur is that the photon interacts with the outer shell electrons and only loses some of its 

energy (Compton scattering). The photon is scattered and the event can continue until the 

photon has lost all of its energy inside the detector. If this happens, a full energy peak is 

created. However, there is a possibility that the scattering will cause the photon to escape 

out of the detector, which results in less energy being detected. This event produces the 

Compton continuum of a gamma spectrum. The third interaction occurs with gamma rays 

that have energy equal to or greater than 1022keV. These high-energy gamma rays can 

interact with the electric field of a nucleus. This causes the conversion of a proton into an 

electron-positron pair (pair-production). The energy of the gamma ray in excess of 

1022keV is carried as kinetic energy by each particle. When the positron has lost all of its 

kinetic energy, it will meet an electron and produce two 511keV annihilation photons. 

These photons can deposit their energy in the absorber, or one or both can escape the 

detector. These phenomena result in the formation of a full energy peak, a peak equal to 

the full energy minus 511keV, or a full energy peak minus 1022keV, respectively [34].  
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2.1.1.4 Determining Concentration with the ko Method 

 The method described above using a semiconductor detector is often referred to as 

instrumental (INAA). INAA allows the simultaneous and quantitative analysis of 

multiple elements. The use of detector with less resolution can require some chemical 

purification to eliminate radionuclides that interfere with the signal from your target 

element. This is called radiochemical NAA (RNAA).  

 In INAA analysis, the concentration of an unknown sample can be accurately 

determined by irradiating and analyzing a matrix-matched reference standard with the 

unknown. The activity of the element in the unknown can be determined by comparing it 

to the activity of the element in the reference standard, Equation (8) [35] 

 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
=  
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 Equation (8) 

However, sometimes a matrix-matched standard is unavailable. This is where the k0 

approach comes in. It is possible to calculate the concentration of an element by using the 

cross section of that element, neutron flux, irradiation time, and half-life.  

 In k0INAA, a comparator is used instead of a matrix-matched standard. In this 

research the comparator was a gold alloy. The benefits of using gold are that it has only 

one stable isotope, the location of the gamma peak is in a well-calibrated area, and it has 

a short decay time. Using Equation (9), the k0 value for an analyte and comparator (Au) 

can be calculated.  

 
𝑘0,𝐴𝑢 (𝑎) =  

𝑀𝐴𝑢  ×  𝜃𝑎  ×  𝜎0,𝑎  ×  𝛾𝑎
𝑀𝑎  ×  𝜃𝐴𝑢  ×  𝜎0,𝐴𝑢  ×  𝛾𝐴𝑢

 Equation (9) 

𝑀 is the mass. 𝜃 is the isotopic abundance. 𝜎  is the cross section 
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The k0 for a comparator and analyte are independent of the neutron source and detector 

used and only require literature values. The calculated k0 value can then be used in 

Equation (10) to calculate the concentration of an analyte in the unknown sample.  

 

 

Equation (10) 

𝑄𝑎 is the concentration of the analyte. N is the net number of counts in the full energy 

peak. W is the weight. tm is the measuring time. SDC is based off of the half-life, 

irradiation time, and decay time. f is the measure of thermal to epithermal neutron flux. Q 

is the resonance integral to 2200m/s. α is a measure for the epithermal flux distribution. ε 

is a measure of the detector efficiency for the full energy peak [34].  

 As can be seen by Equation (10), INAA requires background information on the 

nuclear reactor and detector used. 

2.2 Materials and Methods for Analysis of Milk 

 Some of the data in this chapter has been published in T. Hoffman et al. 

Development of a Method for the Elemental Analysis of Milk Powders Using Laser 

Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and its 

Potential Use in Geographic Sourcing. Talanta 2018 [39]. 

Milk Powder Sample Set 

 Two reference standards and a casein powder were used for quality control and 

calibration. The sample set used for the present study consisted of commercial milk 

powders packaged and sold in grocery stores and two types of “authentic” milk powders. 

“Authentic” is defined here as a sample where the country of origin is known and is 
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documented. These are milk powders collected directly from a drying facility and milk 

that was collected directly from a specific farm and dried in a laboratory. The collection 

of physical milk powders was a difficult task because of a variety of reasons. First, within 

the USA milk powder adulteration is not discussed much. This could be because the 

public is not knowledgeable of it occurring or because it does not occur. Many of the 

dairy industries and dairy programs who were contacted were not eager to help supply 

samples. Second, obtaining samples from other countries was challenging because of 

exporting and importing laws. Some samples were stopped at the USA border and 

returned to the sender. Third, the size of the samples collected by other countries was not 

enough to share. For these reasons, the data from “authentic” samples and not physical 

samples were collected and evaluated.  

Reference Standards 

 The following reference materials were used: IAEA-153 (Trace Elements in Milk 

Powder) and IAEA-155 (Trace Elements in Whey Powder). These materials contained 

recommended and informational concentrations for the elements of interest.  

Casein 

 The IAEA sent out a casein sample to all participants. There are no reported 

elemental values for the sample. The values used in this study were obtained from 

another lab that digested the casein and analyzed it with ICP-MS. These values are 

presented in Table 3 and represent the means from three separate digests. 
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Table 3 - Concentration of elements of interest in casein determined by solution ICP-MS 

 

Commercial Milk Powder 

 Commercial is used to describe samples purchased from a store where the exact 

origin is unknown. Commercial milk powder samples were collected from local grocery 

stores. These samples included whole milk, nonfat, and nonfat instant milk powders.  

Authentic Milk 

 Authentic is used to describe a milk sample where the origin such as country, 

region, or farm of production is known and documented. Authentic United States milk 

powder samples were shipped directly from a milk shed drying facility in Tulare, 

California. Each sample contained approximately 500 g and was marked as either skim or 

nonfat dairy milk. Authentic milk samples from other countries were either collected 

from farms within that country by the participating laboratory and dried in the laboratory 

using various techniques or collected directly from a drying facility. The samples 

collected at the farm level were approximately 2 g each.  

Mean Standard Deviation

23Na 7.325 0.002
24Mg 61 3
43Ca 1150.5 219.6
44Ca 1211.3 228.5
66Zn 50.7 5.4
85Rb 0.020 0.001
88Sr 1.23 0.12

Element
ug / g dry weight
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Authentic Data 

 Each lab collected authentic milk samples, analyzed them using their own 

method, and submitted the data. Countries represented include: Argentina, Russia, 

Singapore, Slovenia, and the United States. For some countries, the data submitted 

represents a small area and not the entire country. For example, the United States data 

represents 3 samples from a milk shed. The Slovenia data represents 2 drying facilities, 2 

samples from each. The data from Singapore represents 2 farms, 5 samples from each. 

The data from Argentina are from 1-3 farms within each of 4 distinct regions. The data 

spread from Russia is for 41 samples collected from farms located throughout the 

southern half of the entire country (~ 9000 km).  

2.3 k0-INAA 

Preparation of Milk Samples for k0-INAA 

 For k0-INAA an aliquot (0.06 to 0.24 g) of milk powder sample was measured 

into a pure polyethylene ampoule (SPRONK system, Lexmond, Netherlands) so that the 

ampoule was full and sealed. For determination of intermediate and long-lived 

radionuclides, the milk powder and standard Al-0.1%Au (IRMM-530R) discs were 

stacked together and fixed in the polyethylene vial in sandwich form, Figure 7. Sandwich 

form makes it easier to account for variations caused differences between the distances of 

the Al-Au standards and milk samples from the neutron source. Using the sandwich form, 

both have the same x-distance so only variations in the y-distance need to be corrected. 

This is done by taking the average of the Al-Au standards located above and below each 

milk sample. 
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Figure 7 - Sample preparation for k0-INAA analysis 

k0-INAA Instrument Parameters 

 The samples and standards were irradiated for 12 ‒ 20 hours in the carousel 

facility of the TRIGA reactor with a thermal neutron flux of 1.1×1012 cm-2 s-1. After 

irradiation, the milk powder was measured after 4, 7 and 21 days cooling time on 

absolutely calibrated HPGe detectors with 40 and 45 % relative efficiency. The Al-Au 

discs were analyzed after 4 days for 240 live seconds. The milk powder was analyzed 

after 4 days for 3600 live seconds and again after 10 days for 60000 live seconds, and 

again after 21 days for 52900 live seconds. The measurement distance of the samples 

from the detectors was set to achieve a dead time of below 10%. Figure 8 and Figure 9 

show examples of the gamma spectra for the Au Comparator and the IAEA 153 standard. 
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Figure 8 - Gamma spectrum of the gold comparator: 240 live seconds 

 

 
Figure 9 - Gamma spectrum for IAEA-153: The first measurement is in red and was accumulated for 

3600 live seconds. The second measurement is shown in blue and was accumulated for 60000 live 

seconds. The third measurement is in green and was accumulated for 52900 live seconds. 

 



 28 

k0-INAA Data Analysis 

 For peak area evaluation, the HyperLab 2002 program (Hyperlabs Software, 

Budapest, Hungary) was used. This software fixes resolution, defines peaks to use, and 

defines the background. HyperLab was also used to determine f, which is the flux ratio of 

thermal to epithermal neutrons, and α, the deviation of the epithermal flux from the ideal 

distribution.  

k0-INAA Statistical Analysis 

 For elemental concentrations and effective solid angle calculations the software 

package Kayzero for Windows (DSM Research, Geleen, Netherlands) was applied. The 

software takes into account the sample mass and density, the distance the sample was 

from the detector, and the time of irradiation to calculate concentration. Since the 

samples were sandwiched between two Al-Au discs the average Fc (flux ratio for the 

comparator) value of the two discs was used. 

2.4 LA-ICP-MS Analysis 

Preparation of Milk Samples for LA-ICP-MS 

 Three different preparation methods were created that had reasonable %bias 

(<10%) and precision (<10%) for most evaluated elements. The first method will be 

referred to as pelleting method #1. This method involves the creation of a standard 

addition curve by the addition of solution spikes to a sample of milk powder followed by 

milling and pelleting the powder. The second method will be referred to as pelleting 

method #2. This method involves the creation of an external calibration curve by mixing 

various amounts of IAEA-155 and the casein powder followed by milling and pelleting. 
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The third method will be referred to as the dried spot method. This sample preparation 

was developed by Aramendia et al. and previously used by Nischkauer et al. for the 

analysis of phosphorus in milk powder [40, 41].  

2.4.1.1 Element Reagents 

 For the creation of calibration curves and addition of internal standards, single 

element ICP (CPI International, Santa Rosa, CA) and ICP-MS (Ricca Chemical 

Company, Pocomoke City, MD) standard solutions of Zn, Rb, Sr, Y, and In at 1000 

ug/mL and Na, Mg, Ca, Sc at 10,000 ug/mL were used.  

2.4.1.2 Sample Preparation for Pelleting Method #1  

 Four representative samples of approximately 0.5 g of milk powder were 

accurately weighed to a precision of 0.1 mg into 17x100 mm polypropylene tubes. When 

sample mass was scarce, only 0.15 g of powder was used. Scandium and indium single 

element ICP-MS standard solutions were added (“spiked”) as internal standards to each 

sample to a final concentration of 500 and 50 ppm, respectively.  

 Since the ICP element standards used are in nitric acid, partial digestion of the 

milk powders could occur. Calibration solutions were prepared that allowed the same 

amount of solution (160 μL for 0.5 g) to be added to each sample. Samples were mixed 

thoroughly with a vortex touch mixer (Fischer Scientific, Pittsburgh, PA) and dried in air 

at 80°C in a PTFE-coated graphite HotBlock (Environmental Express, Charleston, SC) 

for up to 12 hrs. 

 To prepare the pellets, the dried milk powder samples were homogenized and 

pulverized to a fine powder using a high speed ball mixer mill (Glenmills, Clifton, NJ, 
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USA) with a tungsten carbide ball and cups at 25 Hz for 15 min. For samples with a mass 

of 0.5 g, the samples were pressed into pellets of 13 mm in diameter in a 13 mm stainless 

steel die at 4 tons for 2 minutes (Carver Benchtop Pellet Press, IN, USA). For samples 

with a mass of 0.15 g, the samples were pressed into pellets of 6 mm in diameter in a 6 

mm stainless steel die at 2 tons for 2 min. 

2.4.1.3 Sample Preparation for Pelleting Method #2  

 An external calibration curve was created by mixing the IAEA-155 whey powder 

with the casein for a total mass of 0.5 g. The mixtures used were 10%, 25%, 50%, 75%, 

and 90% IAEA-155 whey powder. Yttrium single element ICP-MS standard solution was 

added (“spiked”) as an internal standard to each sample to a final concentration of 1000 

ppm. Samples were mixed thoroughly with a vortex touch mixer (Fischer Scientific, 

Pittsburgh, PA) and dried in air at 80°C in a PTFE-coated graphite HotBlock 

(Environmental Express, Charleston, SC) for up to 12 hrs. 

 To prepare the pellets, the samples were homogenized and pulverized to a fine 

powder using a high speed ball mixer mill (Glenmills, Clifton, NJ, USA) with a tungsten 

carbide ball and cups at 25 Hz for 10 minutes and pressed into pellets of 13 mm in 

diameter in a 13 mm stainless steel die at 4 tons for 2 minutes under vacuum (Carver 

Benchtop Pellet Press, IN, USA). 

2.4.1.4 Dried Spot Method 

 Circular discs of 6 mm were cut from Whatman 542 filter paper using a hole-

punch. These circular discs were attached to glass microscope cover slides using double 

sided tape. Samples of approximately 0.1 g of milk powder was weighed out and placed 
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in polypropylene test tubes with snap caps (Fischer Scientific, Pittsburgh PA), and 2 mL 

of high purity water (resistivity of 18.2 MΩ cm) was added to each sample. 

 An external calibration curve was created by adding ICP-MS element solutions 

for the elements of interest (Na, Mg, Ca, Zn, Rb, and Sr) to high purity water (resistivity 

of 18.2 MΩ cm). A micropipette was used to deposit 30 μL of each solution onto the 

center of a Whatman disc. The samples were left to air-dry overnight, Error! Reference 

source not found..  

 

Figure 10 - Dried spot method before and after sitting overnight 

LA-ICP-MS Instrumental Parameters 

 Elemental analysis by LA-ICP-MS was performed using a quadrupole ELAN 

DRC II 6100 (Perkin Elmer LAS, Shelton, CT). Argon at 16 L/minutes was used as the 

plasma gas with an argon auxiliary gas at 1 L/minutes and an RF power of 1500W. A 213 

nm laser ablation system (New Wave Research Inc., Fremont, CA) was connected to the 

ICP through Tygon tubing (approximately 1.4 m, Fisher Scientific, Pittsburg, PA, USA), 

to a “Y” connector to merge with the argon nebulizer gas flow of 0.9 L/min, and finally 

to the ICP torch. Helium at 0.9 L/minutes was used as the ablation and carrier gas. Daily 

performance of the laser and ICP was tested by analyzing 7 replicate measurements of 
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NIST SRM 612 (Trace Elements in Glass Matrix) (NIST, Gaithersburg, MD). The counts 

for a low, medium, and high molecular mass element were monitored to ensure that the 

instruments were consistent with normal operation. The percent of doubly charged ions 

and oxides were checked and had to be less than 3% before sample analysis could occur. 

 Isotopes that were mostly clear of interferences, easily measured, and performed 

well during method optimization were selected. The isotopes measured included 23Na, 

24Mg, 39K, 44Ca, 45Sc, 66Zn, 85Rb, 88Sr, and 115In. The acquisition parameters for the 

pellets were as follows: transient signal output with 20 s gas blank, 60 s laser ablation, 

and 35 s of post-ablation blank, peak-hopping mode with a 20 s dwell for each isotope in 

the element menu, and 5 replicates per pellet. Acquisition parameters for the dried spots 

were: one replicate measurement per dried spot, transient signal output with 20 s gas 

blank and 120 s laser ablation, followed by a 25 s post-ablation blank, peak-hopping 

mode with a 20 s dwell for each isotope in the element menu, and 3 sweeps per reading. 

Table 4 shows the optimized laser parameters for each method.  

 For the pellets, the laser parameters were optimized using the IAEA-153 pellet. 

The parameters that produced the best signal while being reproducible were chosen. The 

optimization experiments and results will be covered in the next chapter.  

 For dried spots, the laser parameters were optimized using the IAEA-153 dried 

spot. One of the aims during optimization was to minimize the contribution of the paper 

signal. The laser energy, frequency, and scan rate were all chosen based on which gave 

the highest reproducible signal for the milk powder while minimizing paper contribution. 

The optimization experiments and results will be covered in the next chapter.  
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Table 4 - Laser parameters for the pelleting and dried spot sample preparations 

Parameter Pelleting Method #1 Pelleting Method #2 Dried Spot 

Laser Nd:YAG 213 nm Nd:YAG 213 nm Nd:YAG 213 nm 

Mode Spot Spot 6 mm Radial Line 

Spot size 190 μm 190 μm 190 μm 

Frequency 10 Hz 10 Hz 10 Hz 

Scan rate - - 50 μm /s 

# shots 600 500 1200 

Energy 100% (~0.65 mJ) 100% (~0.65 mJ) 100% (~0.65 mJ) 

LA-ICP-MS Data Analysis 

 For standard addition curves and external calibration curves, data reduction and 

statistical analysis were performed using Excel 2011(v14.6.2, Microsoft Corp.) and Plot 

software (v.0.997). For single point calibration, GLITTER (v4.4 GEMOC, Macquarie 

University, Sydney Australia) was used.  

 Figure 11 and Figure 12 depict the LA-ICP-MS transient signals for pellets and 

dried spots, respectively. The transient signal is a graph of counts per second (CPS) vs. 

time. The signal can be broken up into three regions. The first region is the gas blank. 

The gas blank is the first ~20 s of analysis prior to the firing of the laser. The second 

region occurs when the laser is interacting with the sample. Once the laser starts firing, 

there is an increase in the counts. The length of time that the laser is interacting with the 

sample is determined by the sample type, pellet or dried spot. The third region occurs 

after the laser is done firing. During this time, the counts will drastically decrease. The 

third region is used to clean out the tubing and ablation chamber before the next replicate. 
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Figure 11 - The different regions of the transient signal (counts vs time) for spot analysis on pellets 

 

Figure 12 - The different regions for the transient signal (counts vs time) for radial line scan of the 

dried spots; the counts for the elements are not consistent over the entire spot. All elements of 

interest were found to be more concentrated on the edges of the dried spots. 

 

 A software program, Plot, was used to integrate the transient signal for standard 

addition curves and external calibration. For pellets, the area under the first 20 s of the 

gas blank signal was calculated. Next, ignoring the first 10 s of laser-sample interaction, 

50 s of the laser-sample signal was integrated. For dried spots, the area under the first 20 
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s of the gas blank signal was calculated. The entire laser-sample interaction, 35 s-140 s, 

was integrated. Using Excel, the areas for the gas blank and signal were converted to CPS 

by diving each area by time. The gas blank CPS were subtracted from the signal CPS for 

each isotope. This blank-subtracted signal was then normalized to an internal standard.  

 For single point calibration, GLITTER was used. The software integrated the 

sample signal, subtracted the gas blank signal, and normalized the data to an internal 

standard. The GLITTER software also corrected for instrumental drift and calculated the 

concentration of each isotope in each measurement using IAEA-153 as a calibrator. 

Minimum detection limits (MDL) for each element were calculated by GLITTER at the 

99 % confidence level for each replicate measurement. Excel was used to average the 

replicate measurements and calculate standard deviations.  

LA-ICP-MS Statistical Analysis 

 Two parameters that can be used to evaluate a method are accuracy (%bias) and 

precision (%Relative Standard Deviation (RSD)). The calculations for both are explained 

below. To test the accuracy and precision of each sample preparation method, IAEA-153 

was analyzed. The %bias was calculated for each element using: 

 %Bias=100% × 
Experimental Conc. (ppm)-Reported Conc.(ppm)

Reported Conc. (ppm)
 

Equation (11) 

For the milk analysis, a %bias less than or equal to 10% was the desired value. Another 

figure of merit used to evaluate the data was %RSD. The method precision was estimated 

as the uncertainty in the experimental concentration calculated from a standard addition 

curve, external calibration curve, or single point calibration.  
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 The uncertainty of the extrapolated concentration, SXE
, of a standard addition 

curve was calculated by using: 

 
SXE

=
Sy/x

b
√

1

n
+

y̅2

b2∑ (xi-x̅)2
i

 
Equation (12) 

Where b is the slope of the regression line, n is the number of points in the regression 

line. Sy/x estimates the random errors in the y-direction 
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i

n-2
 Equation (13) 

where ŷ are the fitted y-values corresponding to each x-value and calculated from the 

regression equation: y=bx +a.  

 For an external calibration curve, the uncertainty of the interpolated 

concentration, SX0
, was calculated using: 

 
SX0
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i

 Equation (14) 

Where m is the number of replicate measurements on each calibration standard, y
0
 is the 

experimental value from which the concentration of x0 is to be determined, and the other 

variables have the same definition as those in Equation (12). Using either Sy/x or SX0
 as 

the standard deviation, the %RSD can be calculated using Equation (15). Confidence 

limits were then calculated using Equation (16). 
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 %RSD= 100% 
Standard Deviation of Calculated Conc. (ppm)

 Mean of the Calculated Conc. (ppm)
 

Equation (15) 

 xE± t(n-2)SxE
 or x0± t(n-2)Sx0

 
Equation (16) 

In this equation, n is once again the number of calibration standards and t is the Student’s 

t-distribution. The limits of detection (LOD) for each element can be calculated using 

Equation (17). 

 LOD=
3 × Sy/x

b
 Equation (17) 

. 
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CHAPTER 3. Optimization of Sample Preparation for LA-ICP-MS 

 The section will cover the optimization and results of the different sample 

preparation methods and calibration strategies used for LA-ICP-MS analyses. The 

methods used for k0INAA was previously optimized and published [6] and will not be 

discussed. 

 An accurate quantitative method with minimum sample preparation steps was 

ideal. Different approaches to preparing the samples were evaluated. The %bias and 

%RSD for each method is summarized after each section where available.  

3.1 Tape Mounting 

Sample Preparation 

 The easiest sample preparation involved simply taking the milk powder and 

spreading it evenly over a piece of double sided tape attached to a glass microscope slide. 

This method proved troublesome when it came to quantitative analysis. The transient 

signals for this sample preparation were bumpy and inconsistent, however the use of an 

internal standard would account for differences in mass ablated. It was thought that an 

element that is of high concentration in milk, Ca or K, could be used as an internal 

standard. However, a review of the literature showed that the concentration of Ca and K 

in milk powder can change [9]. Spiking an internal standard also caused problems. If the 

volume of the internal standard was too small, it was difficult to homogenize the sample 

by just vortexing. Increasing the volume of the spike caused either the formation of a 

thick solution or small round balls. After drying, both would harden and had to be 

crushed to form a spreadable powder.  
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Results 

 However, using single point calibration with IAEA-155 as the calibrator had a 

very poor %bias for all elements, greater than 100%, data not shown. 85Rb and 88Sr had 

negative concentrations. The transient signals for these elements, 85Rb and 88Sr, looked to 

be below the LOD, Figure 13, which could account for why these elements gave a 

negative concentration. Even with the use of an internal standard, the %RSD for the tape 

mounting method ranged from 15-39%. 
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Figure 13 – Transient signal for the tape sample preparation 
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3.2 Dried Milk Discs  

Sample Preparation 

 The next sample preparation involved measuring the harden disc that formed 

during the tape sample prep analysis. To create this disc, 0.5 g of milk powder was 

weighed into the screw cap of a digestion vessel (Environmental Express, Charleston, 

South Carolina). An internal standard was spiked as well as 0.5 mL of high purity water. 

The container was attached to the lid and the mixture was vortexed upside down, which 

caused the formation of a thick milk solution. The solution was left to dry in an oven 

overnight, Figure 14. The ablation chamber of the laser was not large enough to fit the 

lid, so a large piece of the sample was removed and placed on double-sided tape. 

Focusing the laser was difficult because of the uneven surface.  

Results 

 Single point calibration with GLITTER with IAEA-155 as the calibrator was 

tested, Table 5. The %bias was less than 10% for most elements except Sr (30%), Zn 

(23%), and K (21%). The %RSD was less than 10% for all elements except Zn. Problems 

occurred, however, when trying to prepare other milk samples. Some samples formed a 

ball when 0.5 mL of water was added. More water was added until the sample formed a 

solution. However, when these samples were dried, the resulting disc was very thin or 

non-existent and difficult to remove from the lid, Figure 14.  

 

 



 42 

Table 5 – Results for IAEA-153 using the dried disc method with single point calibration 

Element 
Recommended Value IAEA-153 

(ppm, 95% Confidence Interval) 
% Bias %RSD 

Ca 12870 (12540-13170) 2.4 9.0 

Mg 1060 (1000-1150) 7.9 3.3 

K 17620 (16480-18760) 21.2 7.6 

Rb 14.03 (12.27-16.10) 8.5 8.8 

Na 4180 (3870-4440) 3.9 8.0 

Sr 4.09 (3.49-4.73) 32.2 7.2 

Zn 39.56 (37.66-41.23) 22.5 36.0 

 

 

Figure 14 - Dried discs samples for IAEA-153 and IAEA-155 after addition of internal standard and 

0.5mL of water and drying overnight 
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3.3 Dried Smears on Glass 

Sample Preparation 

 To help combat this problem, the next sample preparation involved creating a 

dried milk smear on a glass slide instead of a dried disc. A sample of 0.5 g of milk 

powder was weighed out. An internal standard and 1.0 mL of high purity water was 

added. The sample was vortexed. The solution was spread over a microscope slide using 

a cover slip. Care was taken to not spread the solution too thin. The microscope slides 

were sent to dry on a Hot Block overnight. 

 The laser parameters were similar to those used for by the Almirall research group 

for the analysis of paint and ink: 40% energy, 1 mm line, 25 μm /s, 10 Hz, 190 μm spot 

size. During ablation of the sample, the dried smear would flake off in large pieces, 

which left the laser firing directly onto the glass slide. These flakes would cause a large 

bump in the transient signal if the pieces were carried to the plasma. The laser energy and 

frequency were reduced and scan rate increased, but the problem was not solved. No 

quantitative analysis was done with the data.  

3.4 Dried Spots 

 For the dried spot sample preparation, instead of spreading the milk solution on 

glass, pre-cut Whatman filter paper and plastic were used. This is a sample preparation 

that was used for LA-ICP-MS analysis of broth samples [41].  

Selecting a Substrate and Volume Size 

 A sample of 0.1 g of milk powder was weighed out and placed in polypropylene 

test tubes with snap caps (Fischer Scientific, Pittsburgh PA) and 2.0 mL of high purity 
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water was added to allow the solution to be pipetted. The solutions were vortexed until all 

of the milk powder dissolved.  

 Circular discs of 16 mm and 6 mm were cut from Whatman 42 filter paper, 

Whatman 542 filter paper, and disposable polystyrene beakers using a hole-punch. These 

circular discs were attached to glass microscope cover slides using double sided tape. For 

the 13 mm discs, only one was attached to each slide. For the 6 mm discs, four discs per 

slide.  

 A micropipette was used to deposit 10 µL, 20 µL, 30 µL of the milk solution onto 

the center of each 6 mm disc and 100uL, 300 µL, and 500 µL on the 16 mm discs. Care 

was taken not to create air bubbles, but bubbles occurred especially with the higher 

volume spikes. The 30 µL spikes would sometimes overflow from the Whatman filters 

partially onto the double-sided tape. The same would happen with 500 µL spikes on the 

Whatman filters, Figure 15 C. The polystyrene was able to hold the larger volume spikes, 

Figure 16 C. The samples were left overnight to air dry. The dried spots on the 

polystyrene were more uniform in color than the dried spots on the Whatman filter 

papers, Figure 17. Discoloration could be seen on the filter papers in places where 

bubbles formed, usually the center.  
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Figure 15 – Different volume spikes on 16mm dried spots 

 

Figure 16 - Different volume spikes on 6mm dried spots 

 

Figure 17 - Comparison of dried spots on Whatman paper and polystyrene 
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 The laser parameters were optimized to limit the amount of substrate contribution. 

A 3D microscope was used to visualize cross sections of each ablation line. First the laser 

energy was optimized. The frequency was set at 10 Hz, scan rate at 100 μm/s, and spot to 

190 um. The laser energy started at 50% and was increased to 75% and 100%. None of 

the ablation lines penetrated through the Whatman 542 filter paper or polystyrene. 

However, for the samples deposited on polystyrene, flaking of the samples occurred 

during analysis like what was seen with the glass smears. The laser coupled nicely with 

the samples deposited on the Whatman paper, with the Whatman 542 being slightly 

thicker and able to withstand harsher parameters. The laser energy was set at 100% and 

the scan rate was decreased to 50 µm/s and 25 µm/s. At 25 µm/s the laser ablated through 

the filter paper is some areas. The %RSDs were evaluated for all tested combinations. 

The parameters that produced the lowest % RSDs were 100% energy, 6 mm or 16 mm 

line across the diameter of the Whatman 542 disc, 50 µm/s, 10 Hz, 190 µm spot size.  

 The analysis time for the 16 mm disc was over twice as long as the 6 mm. Though 

a larger volume could be pipetted, no other advantages were seen with using 16 mm over 

6 mm discs. The smaller volumes had a better %RSD than the larger ones. This could be 

caused by some of the volume spilling off of the discs. Quantitative analysis with 10 µL 

pipetted on 6 mm Whatman 542 discs was further evaluated.  

External Calibration Curve 

3.4.2.1 Sample Preparation 

 An external calibration curve was created using ICP-MS element standards to 

create calibration solutions in high purity water. For the samples, an aliquot of 0.1 g of 
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milk powder was weighed out. An internal standard and 2.0 mL of high purity water was 

added. Care was taken to reduce the amount of acid added to the milk powder samples to 

avoid precipitation of the proteins. An aliquot of 10 µL of the solution was pipetted on 

the 6 mm Whatman 542 discs. The sample was left overnight to air dry.  

3.4.2.2 Results 

 The calibration curves were very linear for all elements; R2 was greater than 0.99, 

Figure 18. However, the calculated concentrations for IAEA-153 had high bias, Table 6. 

The high bias was thought to be caused by differences in the laser sample/ standard 

interactions (matrix effects). To see if this bias could be improved, the standard addition 

method was tested. 
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Figure 18 - External calibration curves for Na, Mg, Ca, Rb, Sr, and Zn using ICP-MS standards and the dried spot sample preparation method; the 

y error bars represent ± 1 standard deviation. The red data points represent IAEA-153 and the measured counts per second. The x error bars on 

the red data points represent ± 1 SX0  
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Standard Addition 

 The problem with external calibration was thought to be caused by matrix effects 

between the milk powder samples and calibration standards. To determine if these matrix 

effects could be reduced or eliminated, a standard addition curve was created for each 

sample.  

3.4.3.1 Sample Preparation 

Elements of interest (Na, Mg, Ca, Zn, Rb, and Sr), an internal standard, and 2 mL 

of high purity water (resistivity of 18.2 MΩ cm) were added to each sample. Samples 

were mixed thoroughly with a vortex touch mixer (Fischer Scientific, Pittsburgh PA). A 

micropipette was used to deposit 10 µL of each solution onto the center of a Whatman 

disc. The samples were left to air-dry overnight. 

3.4.3.2 Results 

 The standard addition curves for IAEA-153, have a R2 greater than 0.99 for all 

elements, Figure 19. However, the calculated %bias was still higher than the desired 10% 

for most elements, Table 6. The high bias could be the result of the casein proteins 

precipitating out of solution with the addition of the element standards. Interestingly, the 

measurement standard deviations are present on all data points, but they are usually small 

and hardly visible above the point. On exception is Zn. Zinc has very large measurement 

standard deviations. An examination of the Zn transient signal did not reveal any 

information. No explanation can be given at the present time for why the Zn 

measurement standard deviations were high. 
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Figure 19 - Standard addition curves for Na, Mg, Ca, Rb, Sr, and Zn using IAEA-153 and the dried spot sample preparation; the y error bars 

represent ± 1 standard deviation. The x error bars are the x-intercept represent ± 1 SXE 
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External Calibration Curve using IAEA-153 

 The standard addition curve that was created using IAEA-153 was tested as an 

external calibration curve, Figure 20. However, when examining commercial milk 

powder samples, all had concentrations similar to that of IAEA-153. Some samples fell 

below the lowest calibration point. Since adding element spikes to milk powders had an 

adverse effect for some samples, the sample preparation was no longer studied.  

Conclusions 

 This section focused on three sample preparation methods: the tape method, dried 

disc method, and the dried spot method. Though these sample preparations were quick 

and easy, the results in terms of percent accuracy and precision did not meet the desired 

values. The dried spot method was one of the more accurate methods, however, the 

%bias was higher than the desired 10% for external calibration. Attempts to reduce the 

%bias such as creating standard addition curves were tested. The standard addition 

method performed well for the IAEA-153 standard with a %bias less than 23% for all 

elements except Zn. However, this method was unsuccessful for some samples. This is 

partially because the elemental solutions are in acid. When they were added to a milk 

solution, precipitation of what was assumed to be casein, resulted. Another shortcoming 

of the standard addition method was that the analysis of five standard addition standards 

was time consuming, 40 minutes for the complete analysis of one sample. 
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Figure 20 - External calibration curves for Na, Mg, Ca, Rb, Sr, and Zn created using IAEA-153 and the dried spot sample preparation; the green, 

purple, and orange data points represent three different milk powder samples. As can be seen these data points fall below or on the lower end of the 

calibration curve for most elements.
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Table 6 – Shown are the calculated concentration, uncertainty, and bias for IAEA-153 using the different calibration strategies and the dried spot 

sample preparation method 

  
External Calibration 

With Element Solutions 
Standard Addition 

Recommended Value IAEA-153 

(ppm, 95% Confidence Interval) 

Conc. 

(X0, ppm) 

Uncertainty 

(𝑆𝑋0 , ppm) 

Bias 

(%) 

Conc. 

(XE, ppm) 

Uncertainty 

(𝑆𝑋𝐸 , ppm) 

Bias 

(%) 

Ca 12870 (12540-13170) 8330 147 -35 12100 892 6 

Mg 1060 (1000-1150) 872 117 -18 858 857 19 

Rb 14.03 (12.27-16.10) 11.3 0.9 -19 17.3 0.8 23 

Na 4180 (3870-4440) 2770 128 -33 3630 182 13 

Sr 4.09 (3.49-4.73) 3.25 0.89 -20 4.64 0.70 13 

Zn 39.56 (37.66-41.23) 22.0 1.5 -44 88.7 21.9 124 
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3.5 Pelleting  

Spiking Samples 

 The sample preparation steps were optimized so that the internal standards and 

element spikes were homogenized in the milk. At first, the standard addition pellets were 

created so that the first pellet only contained the internal standard and the last pellet 

contained the highest concentration for each element. However, since the ICP-MS 

element solutions are in acid, this resulted in partial digestion of the highest calibration 

standard, which led to differences in how the laser coupled to the sample. In attempts to 

combat this, 0.8 M nitric acid was added to all calibration standards in amounts so that 

the total volume of solution added was equivalent to the volume added to the highest 

calibration standard. This caused burning and partial digestion for some milk powder 

samples.  

 The next attempt involved mixing the concentration of the elements so that one 

pellet contained the highest concentration of one element and the lowest of another. 

Combinations were chosen so that all standard addition pellets received the same amount 

of solution without the need of additional 0.8 M nitric acid. This solved the problem. 
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Table 7 - The concentration of each element added to the each of the calibration pellets; to prevent 

acid digestion of the milk powders, the element spikes were spread out so each standard received the 

same spike volume. The lowest calibration standard for one element might be the highest calibration 

standard for another. 

Element 

Calibration 

Standard 1 

(ppm) 

Calibration 

Standard 2 

(ppm) 

Calibration 

Standard 3 

(ppm) 

Calibration 

Standard 4 

(ppm) 

Na 500 1000 2000 0 

Mg 250 500 0 1000 

Ca 500 1000 0 2000 

Zn 60 30 10 0 

Rb 20 10 5 0 

Sr 10 5 2.5 0 

 

Selecting an Internal Standard 

  Figure 21 also shows the integration strategy for selecting the gas blank and 

signal ranges. The gas blank was subtracted from the signal. The blank-subtracted signal 

was normalized to the internal standards (K, Sc, and In). IAEA-153 was used to assess 

the performance of each internal standard. All three internal standards produced accurate 

concentrations for Zn, Rb, and Sr. However, K performed the best for Na, Mg, and Ca. K 

normalization also produced more linear calibration curves which resulted in smaller 

concentration uncertainties. In the end, all elements were normalized to K for this study.  
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Figure 21 - LA-ICP-MS signal for pellets 

Drying Samples 

 The next step in sample preparation was drying the spiked powders to remove the 

liquid added by the element solutions. To dry the samples, a Hot Block and oven were 

tested at temperatures ranging from 60-100° C and times ranging from 4- 24 hours.  

 The samples were placed in either the Hot Block or oven immediately after the 

addition of solution spikes. To optimize the temperature, the samples were heated for 4 

hours and visually analyzed. There was a slight darkening of the powders after heating 

but no other issues occurred. The samples were weighed after 4 hour intervals until two 

consecutive readings differed by no more than 0.005 mg. The optimized parameters of 

80°C for up to 12 hours were selected because this combination was able to completely 
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dry the sample without burning it. No differences where seen between drying the samples 

in the oven and Hot Block. However, the Hot Block was able to securely contain the 

sample vials without fear of accidentally knocking samples over.  

Milling Studies 

 The next step in sample preparation was milling. Two types of mill jars were 

tested, Teflon and tungsten, along with various milling times (2 minutes, 5 minutes, 10 

minutes, 15 minutes, 30 minutes) and frequencies (2 Hz, 5 Hz, 7.5 Hz, 10 Hz, 25 Hz, 30 

Hz) to determine the parameters needed to homogenize the element spikes. Differences 

were seen in milling milk samples of different densities and consistencies. Commercial 

nonfat and skim milk were able to tolerate longer mill times and higher frequencies. 

Commercial full cream samples as well as some of the samples dried in a laboratory 

would adhere to the sides of the mill jars at the higher mill times and frequencies, Figure 

22 A. However at lower mill times and frequencies, these samples were not homogenized 

and large clumps were visible, Figure 22 B. The use of Teflon milling jars was not able to 

prevent the samples from adhering to the sides of the jars, and samples that did not stick 

to the walls were not homogenized even at 30 Hz for 15 minutes.  
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Figure 22 – A. Sample adhering to mill jar because the frequency was too high and/or the length of 

milling was too long B. Clumps of milk powder that were not milled long enough at a high enough 

frequency 

 Tungsten milling jars were further tested to find parameters that worked for both 

types of samples. Both types of samples could be milled at 25 Hz for 5 minutes, but this 

was not long enough to homogenize the Sc and In internal standards in the commercial 

nonfat samples, Figure 23 B. The length of milling was increased until the internal 

standards were homogenized in both samples.  

 Figure 21 shows the transient signal for K, Na, Sc, and In after milling for 15 

minutes. K was not added to any of the samples so the signal shown represents the K 

content in the milk powder. Na is naturally present in milk powders and is also an 

element that was spiked in the samples. The signal depicted is a combination of the 

natural Na and a 1000 ppm spike. Sc and In are not normally present in milk or are 

present in a very small amount; these elements are spiked into the milk samples at 500 

ppm and 50 ppm respectively. The element transient signals all follow the same trend 

indicating that the element spikes are homogenized in the sample. 

 

A. B. 
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Figure 23 - A. is the transient signal for a commercial full cream milk powder sample with a 

homogenized internal standard B. is the transient signal for a commercial nonfat milk powder 

sample where the internal standard was not homogenized in the sample 

Quantitative Analysis of Pellets 

 A spot size of 190 μm was selected to help account for homogeneity issues. Laser 

energy and frequency were optimized to ensure that the pellet surface was efficiently 

ablated and that the pellet surface was not fractured which would lead to non-

B. 

A. 
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reproducible sampling. Different combinations were tested and the pellets were examined 

under a 3D microscope. The number of shots was changed with the frequency so that a 

sample signal of at least 60 s was produced in the transient signal. 

 The NW 213 nm laser coupled well with the milk powder samples. Figure 24 

shows the milk powder sample about analysis. No fracturing of the surface occurred with 

the maximum laser energy and frequency, 100% energy and 10 Hz. These parameters 

created a uniform crater that was 142.5 μm deep, Figure 24. At these parameters the 

transient signal remained relatively constant.  

 

Figure 24 - Craters created using the optimized laser parameters visualized using a Keyence 3D 

microscope 

3.5.5.1 Single Point Calibration 

For each sample, 0.5 grams were weighed out and spiked with 10000 ppm 

Scandium (Sc) single element ICP-MS standard to a final concentration of 500 ppm. The 

samples were dried overnight using the Hot Block. Once dried, the samples were 

homogenized using the tungsten high-speed ball mixer mill and pressed into 13 mm 

pellets. 
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The laser parameters were optimized as: 100% energy, 10 Hz, 190 um, and a 60 

second dwell time. Background subtraction, integration of the transient signal, and 

calibration to IAEA-155 was performed in GLITTER. 

The RSDs for this method ranged from 1-11%, which were close to the desired 

RSD of 10%. Zn was the element with the highest RSD. However, the %bias for IAEA-

153 using this method was higher than desired for Sr (25%) and Zn (23%). The use of 

other internal standards and alterations to the ICP parameters such as a longer dwell time 

did not improve the results. Therefore additional calibration techniques were tested. 

3.5.5.2 External Calibration 

 An external calibration curve was created by mixing the IAEA-155 whey powder 

with the casein for a total mass of 0.5 grams. The mixtures tested were 0%, 25%, 50%, 

75%, and 100% IAEA-155 whey powder. Yttrium (Y) single element ICP-MS standard 

solution was added (“spiked”) as an internal standard to each sample to a final 

concentration of 1000 ppm.  

 To prepare the pellets, the spiked IAEA-155/casein samples were homogenized 

and pulverized to a fine powder using a high speed ball mixer mill (Glenmills, Clifton, 

NJ, USA) with a tungsten carbide ball and cups at 25 Hz for 10 minutes and pressed into 

pellets of 13 mm in diameter in a 13 mm stainless steel die at 15000 psi for 2 minutes 

under vacuum (Carver Benchtop Pellet Press, IN, USA). 

 During analysis, it was noted that the 100% IAEA-155 and 100% casein samples 

did not ablate the same as the mixtures. The calibration curves also showed these points 
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falling off the trend line. For the next test, these samples were replaced with a 90% 

IAEA-155 and 10% IAEA-155. 

 The laser parameters were optimized as: 100% energy, 10 Hz, 190 um. The data 

were integrated with Plot and normalized to Y. Figure 25, shows the calibration curves. 

The red point represents the actual concentration of IAEA-153. For most elements, this 

point falls right on the calibration curve. For Rb and Sr, this point falls slightly to the left, 

which indicates that the calibration curve is overestimating the concentration. Figure 25 

shows the %bias and uncertainty for each element. This method performed very well. 

Most elements had a %bias and uncertainty less than 10%. However Sr, which has been a 

useful element in the geolocation of other foodstuffs had a %bias of 33%. Since the 

single point calibration and this external calibration curve rely on the use of whey protein 

(IAEA-155) to determine the concentration in a milk standard, it could be possible that 

both methods are suffering slightly from matrix effects caused by differences in the way 

the laser couples to each of these samples. Therefore, a standard addition curve was 

tested next to see if it could produce better results.  
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Figure 25 – External calibration curves for Na, Mg, Ca, K, Rb, and Sr generated by diluting IAEA-

155 with casein. The normalized, background subtracted CPS are plotted vs the concentration in the 

pellet. The y error bars represent ± 1 standard deviation. The red data points represent the reported 

concentration for IAEA-153 at the CPS determined after data analysis. he x error bars are the red 

data points represent ± 1 Sx0 
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3.5.5.3 Standard Addition 

 For the creation of the standard addition curves, single element ICP (CPI 

International, Santa Rosa, CA) and ICP-MS (Ricca Chemical Company, Pocomoke City, 

MD) standard solutions of Zn, Rb, Sr, and In at 1000 µg/mL and Na, Mg, Ca, Sc at 

10,000 µg/mL were used.  

 Four representative samples of approximately 0.5 g of milk powder were 

accurately weighed to a precision of 0.1 mg into 17x100 mm polypropylene tubes. When 

sample mass was scarce, only 0.15 g of powder was used. Scandium and indium single 

element ICP-MS standard solutions were added (“spiked”) as internal standards to each 

sample to a final concentration of 500 and 50 ppm, respectively.  

 Since the ICP element standards used are in nitric acid, partial digestion of the 

milk powders could occur. Calibration solutions were prepared that allowed the same 

amount of solution (160 μL for 0.5 g) to be added to each sample. Samples were mixed 

thoroughly with a vortex touch mixer (Fischer Scientific, Pittsburgh, PA) and dried in air 

at 80°C in a PTFE-coated graphite Hot Block (Environmental Express, Charleston, SC) 

for up to 12 hrs. 

 To prepare the pellets, the dried milk powder samples were homogenized and 

pulverized to a fine powder using a high speed ball mixer mill (Glenmills, Clifton, NJ, 

USA) with a tungsten carbide ball and cups at 25 Hz for 15 minutes. For samples with a 

mass of 0.5 g, the samples were pressed into pellets of 13 mm in diameter in a 13 mm 

stainless steel die at 4 tons for 2 minutes (Carver Benchtop Pellet Press, IN, USA). For 

samples with a mass of 0.15 g, the samples were pressed into pellets of 6 mm in diameter 

in a 6 mm stainless steel die at 2 tons for 2 minutes. 
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Figure 26 shows the standard addition curves and extrapolated concentration. All 

of the elements produced a curve with an R2 coefficient of 0.99. This method was also 

very accurate and precise with the uncertainty in the calculated concentration and the 

%bias less than 10% for all elements except Zn, which had a %bias of 21%. 

Conclusions 

Table 8 summarizes the results for the pelleting method with single point 

calibration, external calibration, and standard addition. The results for the pelleting 

methods were closer to the desired accuracy and precision values than the dried spot 

methods. Standard addition preformed the best in terms of accuracy with a %bias less 

than 10% for all elements except Zn. Matrix effects could have been an issue with the 

other calibration strategies since they relied on the use of a whey powder to determine the 

concentration in a milk sample. Based on the results, zinc was excluded from the element 

menu, because it repeatedly performed poorly. All methods were able to produce precise 

measurements. Since the standard addition method produced the most accurate results, 

this pelleting method was selected as the method to use for the rest of this study. 
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Figure 26 - Standard addition curves for Na, Mg, Ca, Sr, Rb, and Zn in IAEA-153 using the pelleting method. The y error bars represent ± 1 

standard deviation. The x error bars represent ± 1 SXE 
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Table 8 - Figures of merit for IAEA-153 using the two different pellet sample preparations and the different calibration strategies. The values in red 

are higher than the desired ± 10%. The uncertainty for the standard addition and external calibration methods in the table are given as either SXE 

(%RSD) or SX0 (%RSD) 

Method  Pelleting Method #1 Pelleting Method #2 

Calibration  Standard Addition 

Single Point Calibration 

(GLITTER Method) 

External Calibration 

 
Recommended Value IAEA-153 

(95% Confidence Interval) 

Conc. 

(XE, ppm) 

Uncertainty 

(𝑆𝑋𝐸, ppm) 

(%RSD) 

Bias 

(%) 

Conc. 

(ppm) 

Uncertainty 

(%RSD) 

Bias 

(%) 

Conc. 

(X0, ppm) 

Uncertainty 

(𝑆𝑋0, ppm) 

(%RSD) 

Bias 

(%) 

Ca 12870 (12540-13170) 12800 465 (3.6) -0.5 12000 10 -8.8 12900 401 (3.1) 0.2 

Mg 1060 (1000-1150) 1100 66 (6.0) 3.7 1080 7.9 1.8 1030 10 (0.1) -2.5 

K 17620 (16480-18760) - - - 14700 2.0 -16.8 15100 656 (1.0) -14.0 

Rb 14.03 (12.27-16.10) 15.4 0.2 (1.3) 9.8 14.3 0.7 1.8 15.4 0.4 (2.5) 5.8 

Na 4180 (3870-4440) 3870 206 (5.3) -7.4 4120 2.0 -1.4 4270 85 (2.0) 5.6 

Sr 4.09 (3.49-4.73) 4.18 0.28 (6.7) 2.2 5.10 1.0 25.7 5.51 0.07 (1.3) 33.8 

Zn 39.56 (37.66-41.23) 31.3 2.9 (9.3) 20.9 49 11.0 22.7 - - - 
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CHAPTER 4. Creation of a Database 

 The LA-ICP-MS standard addition method using the pelleting sample preparation 

produced accurate (<10% bias) and precise (<10% RSD) for the milk reference standard 

IAEA-153. However not all milk powder are the same consistency and texture. A 

primary reference method was used to evaluate the performance of the LA-ICP-MS 

method for a sample set of authentic and commercial milk powders. 

k0-INAA is a primary method for quantitative elemental analysis. It is often used 

to certify reference materials. It is used in this study to further assess the accuracy of the 

LA-ICP-MS method. Comparison of the LA-ICP-MS results for 13 powdered milk 

samples to k0-INAA was done by comparing 95% confidence intervals for each 

technique. The element menu was limited to Na, Ca, Rb, and Sr for the comparison. Zn 

was excluded because it fell outside the 95% confidence interval for IAEA-153 using the 

standard addition method. Mg was not measured by k0-INAA because it is a short-lived 

radionuclide. There were some samples that had a Sr concentration below the limit of 

detection for k0-INAA. These samples are marked with <LOD. A better LOD for Sr was 

achieved with LA-ICP-MS than k0-INAA (1 ppm vs. 5 ppm). 

For LA-ICP-MS measurements, confidence intervals were calculated using: 

𝑋𝐸  ± 𝑡(𝑛−2) 𝑆𝑋𝐸  

For this calculation, n is the number of calibration standards, 4, and t is the 

Student’s t-distribution. The 95% confidence interval for k0-INAA was calculated by 

multiplying the combined standard uncertainty by 2. All intervals for LA-ICP-MS 

overlapped with those for reported for k0-INAA. The intervals for Ca and Na are large for 

LA-ICP-MS because there were only 4 calibration standards used for the standard 
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addition. Increasing the number of standards, n, would decrease the 95% confidence 

interval.  

 The comparison of LA-ICP-MS to k0-INAA further showed that the developed 

LA-ICP-MS method is capable of producing results similar to a primary reference 

method for a variety of powdered milk samples. The LA-ICP-MS data for the authentic 

samples (USA, Argentina, Slovenia) analyzed in this comparison was used to start the 

creation of a milk database. 
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Table 9 - Comparison of the LA-ICP-MS method to k0-INAA. Reported are the 95% confidence 

intervals for both techniques 

Sample LA-ICP-MS k0-INAA 

Na Ca Rb Sr Na Ca Rb Sr 

USA 1 
3750 

± 694 

12800 

± 2030 

15.4 

± 1.3 

4.21 

± 1.39 

4310 

± 302 

12700 

± 904 

17.4 

± 1.2 
<LOD 

USA 2 
3960 

± 134 

11500 

± 1280 

16.7 

± 2.5 

7.59 

± 0.40 

4060 

± 284 

10900 

± 786 

17.0 

± 1.2 

8.62 

± 1.70 

USA 3 
4050 

± 137 

11800 

± 1420 

15.6 

± 0.4 

7.83 

± 0.89 

3970 

± 278 

11100 

± 800 

16.5 

± 1.2 

7.10 

± 1.38 

ARGENTINA 1 
4300 

± 1705 

11500 

± 5680 

17.5 

± 8.6 

6.87 

± 0.24 

4330 

± 304 

10900 

± 800 

17.3 

± 1.2 

7.11 

± 2.24 

ARGENTINA 2 
2650 

± 98 

7850 

± 1410 

4.78 

± 1.54 

16.9 

± 9.2 

2770 

± 196 

8890 

± 902 

5.00 

± 0.46 

17.4 

± 4.8 

SLOVENIA 1 
3480 

± 150 

7640 

± 427 

4.20 

± 1.30 

19.5 

± 3.5 

3700 

± 264 

9060 

± 974 

3.97 

± 0.40 

27.4 

± 5.6 

SLOVENIA 2 
3730 

± 300 

12800 

± 4810 

16.5 

± 1.7 

3.05 

± 0.93 

4110 

± 288 

11800 

± 884 

17.9 

± 1.2 
<LOD 

SLOVENIA 3 
4020 

± 624 

13500 

± 3080 

16.4 

± 1.0 

3.45 

± 1.81 

4150 

± 292 

12000 

± 914 

17.4 

± 1.2 
<LOD 

COMMERCIAL 1 
3870 

± 567 

13700 

± 7300 

13.4 

± 1.3 

2.35 

± 1.82 

4040 

± 292 

12900 

± 962 

14.7 

± 1.0 
<LOD 

COMMERCIAL 2 
3680 

± 122 

11100 

± 561 

11.1 

± 0.8 

5.10 

± 0.54 

3650 

± 256 

10800 

± 774 

11.3 

± 0.8 

5.37 

± 1.58 

COMMERCIAL 3 
3740 

± 179 

11000 

± 1020 

24.7 

± 1.7 

7.98 

± 1.06 

3960 

± 280 

11300 

± 862 

25.9 

± 1.8 

10.7 

± 2.4 

COMMERCIAL 4 
2870 

± 9 

8400 

± 1580 

9.40 

± 0.40 

3.60 

± 0.51 

2980 

± 208 

8500 

± 666 

9.71 

± 0.70 
<LOD 

COMMERCIAL 5 
2700 

± 140 

8630 

± 986 

26.5 

± 0.4 

3.99 

± 0.63 

2690 

± 188 

8050 

± 640 

28.5 

± 2.0 
<LOD 
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4.1 Collection of Data for Authentic Samples 

 Since the collection of authentic samples was a difficult task, the participants 

were asked if they would be willing to share their data for the creation of a database. 

Those that were willing to share elemental data were asked to submit their results for the 

IAEA-153 reference standard to ensure that the lab’s method is accurate and precise. 

Inter-Comparison 

 Research laboratories participating in the IAEA CRP were asked to analyze 

IAEA-153 for Na, Mg, Ca, Zn, Rb, and Sr using their own methods, in order to evaluate 

their performance. The techniques used included LA-ICP-MS, solution ICP-MS, and 

ICP-OES. Although there are some differences among labs, each lab used a standard 

operating procedure that has previously been optimized. 

 Figure 27 shows the data from five participating labs that provided accurate 

results for the elements of interest and how it compares to the reported value for IAEA-

153 and k0-INAA. The standard deviation lines were calculated from the IAEA-153 

reference sheet. For most labs, the concentration of the element fell within ±3 standard 

deviations. One element, Zn, fell outside ±3 standard deviations for labs A and B (not 

shown on Figure 27). For this reason, Zn was excluded from the element menu for 

discrimination. Also Labs A, B, and D produced inaccurate or had a high standard 

deviation for Ca. This element was also excluded from the element menu. Lab A used 

LA-ICP-MS. Labs B, D, E used solution ICP-MS. Lab C used ICP-OES for Na, Mg, Ca, 

Zn and ICP-MS for Rb and Sr. There were three other laboratories that submitted data, 
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however, their methods were not accurate for most of the elements of interest and are not 

shown here. 

 

Figure 27 - Inter-laboratory comparison of select elements in IAEA-153. Shown are the mean values 

determined by each lab for each element. Labs A and B produced results for Zn that fell outside ± 3 

standard deviations. Labs A, B, and D produced either inaccurate results or had high standard 

deviations for Ca. Both Zn and Ca were removed from the element menu. 

 Preliminary Provenancing Study 

Each lab shown in the inter-comparison studies collected authentic milk samples, 

analyzed them using their own method, and submitted the data. Countries represented 

include: Argentina, Russia, Singapore, Slovenia, and the United States. For some 

countries, the data submitted represents a small area and not the entire country. For 

example, the United States data represents three samples from a milk shed. The Slovenia 

data represents two drying facilities, two samples from each. The data from Singapore 

represents two farms, five samples from each. The data from Argentina are from one to 

	Target	Value 	 	 	2	Standard	Deviations 	 	 	3	Standard	Deviations	

11500	

12500	

13500	

14500	

K0-INAA	 Lab	A	 Lab	B	 Lab	C	 Lab	D	 Lab	E	

Ca	

2.5	

3.5	

4.5	

5.5	

6.5	

K0-INAA	 Lab	A	 Lab	B	 Lab	C	 Lab	D	 Lab	E	

Sr	

3500	

4000	

4500	

5000	

K0-INAA	 Lab	A	 Lab	B	 Lab	C	 Lab	D	 Lab	E	

Na	

900	

1000	

1100	

1200	

1300	

K0-INAA	 Lab	A	 Lab	B	 Lab	C	 Lab	D	 Lab	E	

Mg	

35	

40	

45	

K0-INAA	 Lab	A	 Lab	B	 Lab	C	 Lab	D	 Lab	E	

Zn	

10	

15	

20	

K0-INAA	 Lab	A	 Lab	B	 Lab	C	 Lab	D	 Lab	E	

Rb	
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three farms within each of four distinct regions. The data spread from Russia is for 41 

samples collected from farms located throughout the southern half of the entire country 

(~ 9000 km).  

 Principle component analysis (PCA) was used to evaluate the data from 

Argentina, Russia, Singapore, Slovenia, and the United States. To generate the PCA plots 

the following elements/ratios were used: Mg, Rb, Sr, Na/Sr, Mg/Sr. These were selected, 

on the basis of their discriminating capability, using stepwise linear discriminant analysis 

in JMP. 

  

Figure 28 – The loading plots used for the PCAs 

 

-1

-0.5

0

0.5

1

C
o

m
p

o
n
e
n

t 
2
  

(2
5

.6
 %

)

Mg/Sr

Na/Sr

Rb

Mg

Sr

-1.0

-0.5

0.0

0.5

1.0

C
o

m
p

o
n

e
n
t 

3
  
(9

.4
7

 %
)

Mg/Sr

Na/Sr

RbMg

Sr

Mg

Mg/Sr

Sr

Na/Sr

Rb

-1.0 -0.5 0.0 0.5 1.0

Component 1  (60.7 %)

-1 -0.5 0 0.5 1

Component 2 (25.6%)



 74 

Figure 28, depicts the loading plots for the principle component. Component 1 accounts 

for 60.7% of the variation and is most influenced by Sr, Mg/Sr, and Na/Sr. Component 2 

accounts for 25.6% and is most influenced by Mg and Rb. Component 3 accounts for 

9.47% of the variation and is most influenced by Rb, Mg, Sr, Na/Sr, and Mg/Sr. Figure 

29 shows the scatterplots generated using the principle components. The black Xs in the 

plot represent the data for IAEA-153 submitted by each country. The IAEA-153 samples 

are grouped together further showing that each country was able to detect similar 

concentrations using their methods. The samples from Russia were not distinguished 

from those from Argentina, the United States, and Slovenia, Figure 29. This inability to 

distinguish the samples is mostly a result of the expected large elemental variation 

observed within the many Russian samples due to the different geological sources, in 

comparison to the limited samples (and geographic representation) from Argentina, the 

United States, and Slovenia. Because the high variation in the Russian samples, the PCA 

was redone excluding Russia to better evaluate the grouping between the remaining 

countries, Figure 30. IAEA-153 was included in the PCA plots to further show that the 

IAEA-153 data clusters together even though it was analyzed by different methods in 

different labs.  
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Figure 29 - A PCA plot depicting the authentic samples from each country. The pink stars represent 

the data from Argentina. The red circles represent the data from Russia. The green triangles 

represent the data from Singapore. The blue diamonds represent the data from Slovenia. The orange 

squares represent the data from the USA. The black Xs represent the data submitted from each lab 

for IAEA-153 
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Figure 30 - A PCA plot without Russia. The pink stars represent the data from Argentina. The green 

triangles represent the data from Singapore. The blue diamonds represent the data from Slovenia. 

The orange squares represent the data from the USA. The black Xs represent the data submitted 

from each lab for IAEA-153 

Looking at principle component 1 in Figure 30, it can be discovered that the USA and 

part of the Singapore samples have a positive value while the other countries, Slovenia 

and Argentina, have a negative value. Interestingly the data from the two farms from 

Singapore clusters into two separate groups with each group representing a single farm. 

One of the farms has a negative value for principle component 1 while the other is 

positive. The combination of variables responsible for the separation using principle 

component 1 are Sr, Mg/Sr and Na/Sr. Using principle component 1, the samples from 
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Argentina are separated from the other countries. The two farms from Singapore are 

separated from the other countries by principle component 2 in which they have a 

negative value of around -2 and the other countries have a positive value or a value close 

to -1. The combination of variables responsible for the separation using principle 

component 2 are Mg and Rb. The two Singapore farms are also separated from each other 

using principle component 3. The separation using principle component 3 is most 

influenced by Mg, Rb, Mg/Sr, and Na/Sr. 
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CHAPTER 5. Analysis of Milk Powder Conclusion 

 Since milk is commonly imported and exported as a powder, the main focus of 

this study was the development of a solid sampling method for the elemental analysis of 

powdered milk. This study tested a variety of sample preparations such as tape mounting, 

dried discs, dried spots, and pellets. This study also tested single point calibration, 

external calibration curves, and standard addition curves. Each sample preparation and 

calibration combination was analyzed using LA-ICP-MS. The accuracy and precision of 

each sample preparation method and calibration strategy was evaluated using IAEA-153. 

Though the tape mounting, dried discs, and dried spot sample preparations were quick 

and easy, the results in terms of percent accuracy and precision did not meet the desired 

values. The dried spot method was one of the more accurate methods, however, the 

%bias was higher than the desired 10% for both external calibration curves and standard 

addition curves. The addition of ICP-MS element standards to milk powder also proved 

challenging. Since the ICP-MS standards are usually in 2-3% nitric acid, addition of too 

large a spike would cause precipitation of the milk proteins and partially digestion of the 

sample. For the creation of the standard addition curves using the pelleting sample 

preparation, care was taken to avoid large volumes of element standards being added to a 

single calibration pellet. The calibration pellets were setup so each one received ~175 uL 

of the ICP-MS element standards. This standard addition pelleting method proved to be 

the most accurate (<10% bias) and precise (<10% RSD).  

 Since milk powder can come in various consistencies, the results for 13 milk 

powder samples from both authentic and commercial sources analyzed by the developed 

LA-ICP-MS method were compared to a primary method, k0-INAA. The 95% confidence 
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intervals for the LA-ICP-MS results overlapped with the 95% confidence intervals of the 

primary method further showing that the developed LA-ICP-MS method can be used to 

analyze a variety of milk powder samples.  

 The LA-ICP-MS standard addition method yields accurate elemental 

concentrations for Na, Mg, Ca, Rb, and Sr without the need for acid digestion. Though 

LA-ICP-MS is an expensive technique, the analytical approach developed in this study 

may also be used for other laser-based methods such as LIBS, which would be a more 

convenient, faster, and economical tool than LA-ICP-MS that would especially be useful 

for developing countries.  

 To test the discriminating potential of this method, data from authentic milk 

powder samples from five countries were collected and evaluated. The data submitted 

were limited to the following elements: Na, Mg, Rb, and Sr. The limited element menu 

was able to differentiate the samples from Singapore, Argentina, the United States, and 

Slovenia, from each other. However, the collected data represented a few localized areas 

and does not account for the total variation within every country. Samples collected from 

a large geographic area within Russia produces an expected large variation in the 

elemental profiles and therefore the limited element menu was not able to distinguish the 

Russian milk samples from those for Argentina, the United States, and Slovenia. The goal 

of being able to determine if a commercial milk originated from the country on the label 

has not been met. However, the few samples from Singapore appear to be very different 

from the samples from the drying facilities in the United States and Slovenia, and from 

the samples from Russia. If milk produced in Singapore was labeled as being made in the 

Russia, the elemental profile of that milk would not line up with that the current profile 
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found in southern Russia. The data from the participating laboratories suggest that 

database creation is a viable option and the addition of authentic samples from interested 

countries and geographic areas may provide a tool to detect fraudulently labeled 

commercial milk. 

 My recommendations for future studies are the collection of additional samples 

that would need be analyzed for each county to better account for the within country 

variation. The dried spot method with the ICP-MS solution external calibration does 

show some promise as a quick sample preparation method. However, it appears to be 

suffering from a systematic bias. More research should be done to determine what is 

causing the high bias and if this is a viable option. Also, the addition of isotope ratios, 

additional trace elements, or another discriminating factor may help in further 

distinguishing one country from another thus making it easier to determine if an unknown 

milk could have originated from a specific country.  
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CHAPTER 6. Introduction to Forensic Analysis of Glass  

6.1 Research Motivation 

 Glass fragments are encountered as forensic evidence from broken windows in 

burglaries, from automobile hit-and-run accidents, and from other crimes. Forensic glass 

examiners are asked to analyze and compare the physicochemical properties of glass 

collected from a known source (Ks) to fragments that have been recovered from an 

unknown or questioned source (Qs). In most forensic labs today, the glass Ks and Qs are 

compared using refractive index measurements and trace elemental concentrations in 

order to determine whether the Q glass samples could have originated from the same K 

source of broken glass. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry 

(LA-ICP-MS) has been referred to as the “gold standard” for the elemental analysis of 

glass and many researchers have reported excellent analytical figures of merit for the 

measurement as well as a fit-for-purpose utility for the forensic comparison [42-47]. 

However, when it comes to reporting the results of the casework, the strength of the 

evidence is usually not conveyed.  

 While the forensic community has reached consensus on the analytical protocol 

for the use of LA-ICP-MS and recommended a comparison criterion with known error 

rates for a limited number of scenarios, it has not yet reached consensus on how to 

interpret the weight of a glass comparison for reporting to the court in verbal terms. Some 

analysts simply state that the K and Q could have originated from the same broken glass 

pane or another source produced with the same physical and chemical characteristics. 

Others provide more details and state the discrimination limitations of LA-ICP-MS: the K 
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and Q could have originated from the same broken glass pane or another source 

produced at the same manufacturing plant around the same time. One approach that is 

gaining support is the use of a verbal scale that is divided by the presence or absence of 

individual or class characteristics as well as the discrimination potential of the techniques 

used [48]. This approach may be considered as subjective since it relies on the analyst’s 

personal experience and assessment of the glass evidence. More objective methods 

include the application of statistical tools to calculate the random match probability that 

glass samples from different sources are found to share the same trace elemental profile 

(reported to be ~ 0.1%) [45, 46] or a frequency of a specific elemental profile. In order to 

calculate these, however, a suitable database of trace elemental data from glass samples is 

required.  

6.2 Significance of Study 

 The main significance of this study is the creation of a new database for the 

evaluation of different statistical approaches to aid in the interpretation of glass evidence. 

This research is broken down into four main parts: the collection of existing elemental 

glass databases and the creation of a new vehicle database, the evaluation of current 

ASTM guidelines for the analysis and comparison of glass evidence, and the assessment 

of different statistical models for the objective and quantitative interpretation of glass 

evidence using a large user community of glass examiners named the Glass Interpretation 

Working Group (GIWG).  

 First, forensic glass examiners were surveyed to determine if they had an 

elemental glass database and if it is currently being used to aid in the interpretation of 
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glass evidence. Specifics such as number of samples, type of glass, years represented, 

element menu etc. were collected for each database. In addition to the collection of 

existing databases, a new vehicle glass database was also created from the LA-ICP-MS 

analysis of 420 glass samples from 210 different vehicles representing 26 different 

vehicle manufacturers and manufacturing dates ranging from 2004 to 2017. Each glass 

database is a snapshot of a specific time and location. Therefore the interpretation of 

glass evidence may change depending on what database was used. This possibility was 

investigated in this research. It may also be possible to combine the existing databases 

even though instrumentation differs between labs. This possibility was evaluated through 

the use of inter-laboratory studies. By comparing each lab’s elemental data for specific 

glass samples and a control glass, similarities and differences could be detected for each 

element and used to determine if databases from the labs could be combined.  

 For the inter-laboratory studies, samples from the new vehicle database were sent 

to LA-ICP-MS users in the form of a mock case. Participants were asked to analyze the 

glass samples, compare the Ks and Qs, and report their findings. The data they submitted 

was used to evaluate the ASTM E2927match criterion and also used to assess different 

statistical approaches to interpretation.  

 This research provided forensic experts with a new look at evidence 

interpretation. Though no consensus was reached, the participants realized the need for a 

better way to interpret glass evidence and are willing to consider alternative approaches. 

Additionally, this research brought together glass databases that can be studied further to 

obtain a better grasp on the elemental profile of glass and how it differs throughout time 

and location, and can also be subjected to other statistical tests. 
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6.3 Composition of Glass 

Glass is located all around us and is available in an assortment of shapes and 

compositions. The raw materials and the production process create variations between 

glass batches between manufacturers and even within the same manufacturer that can be 

detected in glass when sensitive elemental techniques such as ICP-MS are used. 

Glass is defined as “ an inorganic production of fusion that has been cooled to a 

rigid condition without crystallization” [49]. Like the definition suggests, glass is made 

by melting inorganic materials, usually oxide minerals together, but the chemicals added 

and how the glass is formed depends on the intended end use. This section will explain 

some of the main components of glass and then describe the types of glass most 

encountered in casework.  

 The components of glass are classified according to their function: formers, 

fluxes, modifiers, stabilizers etc. The formers generally sculpt the framework of the glass 

structure. These are compounds such as silica (SiO2) sand. Silica requires high 

temperatures to undergo fusion, but chemicals such as sodium carbonate (Na2CO3) and 

potassium oxide (K2O) can be added to reduce the temperature needed. These chemicals 

are called fluxing agents. To increase the durability of the glass limestone (CaO) and/or 

alumina (Al2O3) are added, stabilizers. Other additives give glass specific properties such 

as color (Table 10), heat resistance, or the ability to absorb radiation [49].  

 For some products, manufacturers want the end results to be clear and colorless. 

However, one of the main ingredients, sand, often contains trace amounts of iron that 

cause a green color. To offset the green color and create an end product that appears 

colorless, manufacturers will often add other colorants such as selenium and cobalt. Table 
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10 shows a list of colorants that can be added to glass to either add color or offset a color 

caused by contaminants [49]. 

Table 10 - Displayed are common coloring elements and the color each produces [49] 

Colorant Color 

Iron Green, brown, clue 

Manganese Purple 

Chromium Green, yellow, pink 

Vanadium Green, blue, grey 

Copper Blue, green, red 

Cobalt Blue, green, pink 

Nickel Yellow, purple 

Uranium Yellow, brown, green 

Titanium Purple, brown 

Neodymium Purple 

Praseodymium Green 

Cerium Yellow 

Carbon and sulphur Amber, brown 

Cadmium sulphide Yellow 

Antimony sulphide Red 

Selenium Pink, red 

Gold Red 

 Glass is often categorized by its major ingredients. For example, one type of glass 

that will be referred to heavily throughout this research is soda-lime glass. The main 

additives of this glass are sodium carbonate (Na2CO3) and limestone (CaO). This type of 

glass is used in bottles, architectural windows, and vehicle windows. Two other types of 

glass worth mentioning are lead glass and borosilicate glass. Leaded glasses are created 
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by the addition of lead oxide (PbO). These glasses are used for stemware, electrical 

connections, and eyeglasses. Borosilicate glasses are created by the addition of boric 

oxide (B2O3). These glasses are temperature and thermal shock resistant and used as 

cookware and automobile headlamps [49]. The range of composition varies between and 

within each glass types, but Table 11 lists some typical compositions. The inorganic 

elements in the final composition of the glass are present at different concentrations 

ranging from percent levels to low ppm levels. 

Table 11 - Glass compositions with values expressed as weight percent [49] 

Glass Type SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 PbO B2O3 

Container: Flint 72.6 1.6 0.05 11.0 0.1 13.7 0.5 - - - 

Container: Amber 72.7 1.9 0.22 10.0 - 13.8 1.0 - - - 

Container: Green 72.0 1.1 0.1 8.2 2.1 15.1 1.0 0.19 - - 

Float: (Soda-lime) 72.8 1.4 0.1 8.2 3.8 12.8 0.8 - - - 

Borosilicate 80.2 2.6 0.07 0.1 - 4.5 0.3 - - 12.3 

Lead Crystal 54.9 0.1 0.02 - - 0.2 12.3 - 31.9 0.5 

Optical Glass 48.0 0.2 - 0.3 - 5.2 1.2 - 45.1 - 

 The use of recycled glass or cullet is commonly employed in the manufacture of 

glass to reduce the cost of the manufacturing process. Factory created waste is recycled to 

the furnace and added to the new batch of glass, which typically adds more variability 

and heterogeneity between batches of glass originating from the same plant.  

 Just as there are many different glass compositions, there is also an assortment of 

ways to manufacture glass depending on the product end use. The following sections 

describe the main manufacturing processes of glass typically encountered in forensic 

examinations, containers and flat glass.  
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6.4 Manufacturing of Containers and Flat Glass 

 As previously stated, glass is composed of several inorganic compounds which 

are added based on the desired properties of the end product. Container glass and float 

glass are both examples of soda-lime glass. Once the raw materials are mixed, the 

components are melted together in a furnace. The molten glass is refined and 

homogenized by a combination of thermal and mechanical stirring. During the next stage 

the glass is formed into containers or a flat sheet.  

Container Glass 

  Containers are made from globs of molten glass. For glass bottles, a hollow iron 

pipe is inserted into the glob and air is used to blow the glass. While still hot, the glass is 

inserted into a mold and the blowing process repeats. The molds are then passed through 

kilns, which allow the glass to slowly cool.  

Flat Glass 

 Flat glass is made by one of two processes, either the float glass process or 

rolling. The float glass process is used for the manufacture of architectural and vehicle 

glass and will be the main focus of this section. The rolling process is used for wired and 

patterned glass.  

 Molten glass flows into the float chamber containing molten tin. As the molten 

glass floats on the tin, it forms a ribbon that is drawn along the tin bath to the desired 

thickness. As the glass flows, the ribbon is cooled until it can be safely rolled to the 

annealing kiln without marking the surfaces. Once annealed, the glass is cut into the 

desired dimensions.  
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Finishing Touches on Glass 

 After the containers and/or flat sheets have been manufactured, additional steps 

can be taken to alter the properties and form the final product. Tempering of the glass is a 

step involved in the manufacture of side and rear vehicle windows. This process 

strengthens the glass and also causes the glass to shatter into small pieces after a 

collision. Tempering is accomplished by first heating the glass up and then rapidly 

cooling it. The surface of the glass will cool faster than the center. As the center cools, it 

contracts pulling and thus compressing the rigid surfaces. As the outer surfaces compress, 

tension buildups in the center.  

 Laminating the glass is another technique used for vehicle glass. During this 

process, two or panes of float glass are bonded together by a thin plastic film. In the 

United States, all front windshields must be laminated glass. 

 When it comes to container glass, coatings are often added for decoration or to 

strengthen and protect the glass. There are two processes used to add coatings, hot end 

coating and cold end coating. Hot end coatings are added after the glass leaves the 

forming tank and before it is annealed. These coatings are sprayed onto the molten glass 

and are usually either compounds containing tin or titanium. Cold end coatings are added 

while the glass is being annealed. These coating are also sprayed, but are commonly 

organic compounds such as organic waxes and polyethylene glycols. 

6.5 Thickness and Refractive Index 

 Forensic glass examiners are asked to analyze and compare the physicochemical 

properties of glass collected from a known source (Ks) to fragments that may have been 
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recovered from an unknown or questioned source (Qs). The glass Ks and Qs are 

compared using physical characteristics such as color and thickness, refractive index 

measurements, and/or trace elemental concentrations in order to determine whether the Q 

glass samples could have originated from the same K source of broken glass. 

 The simplest techniques include measuring the thickness of glass samples and 

looking at the color. This is only applicable in cases where both the K and Q are full 

thickness fragments. Various studies have shown that the thickness of float glass does not 

differ much within a float ribbon. The variation was found to be around 0.15mm [50, 51]. 

For this reason, when forensic glass examiners compare thickness measurements for a K 

and Q, most create a comparison interval using the mean of the K ± 0.15mm and compare 

the thickness of the Q fragment. If the Q thickness falls within the comparison interval, 

the samples are indistinguishable.  

 The next technique that has been shown to add some discrimination is refractive 

index (RI). Refractive index is measure of how much lights bend after entering a 

medium. It is also defined as the ratio of the velocity of light in a vacuum to its velocity 

in a specified medium. Refractive index became useful tool for forensic scientists. The 

method used mostly today to measure the RI of glass is the oil immersion method with a 

phase contrast microscope. The method works on the principle that the refractive index of 

a liquid will change as the liquid is heated. The refractive index of glass is determined by 

placing the glass fragment in silicone oil and heating/cooling the oil until the glass 

fragment appears invisible. At this point, the oil and glass will have the same refractive 

index. A calibration curve is created with glasses of known RI plotted vs. the temperature 

of the oil at which point each glass disappeared. The RI of an unknown glass sample is 
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then determined using RI= a + bT where a is intercept at 0 °C, b is the slope of the 

calibration curve, and T is the temperature of the oil at which point the unknown glass 

disappeared. A GRIM II, glass refractive index measurement, is employed for these 

measurements. The GRIM II is equipped with a phase contrast microscope with a fixed 

illumination wavelength that is also equipped with a video camera, a hot stage, and 

electronic temperature controller [52]. Refractive index has shown to decrease in 

discrimination potential with the technological advances and standardizations in glass 

manufacturing; however, it is still used by some forensic laboratories and can provide 

some additional information about a K and Q sample.  

 The refractive index throughout a glass source has variation and the degree of this 

variation depends on the type of glass. For float glass, some studies have determined this 

variation to be 0.000033 [51]. Therefore when comparing a K and Q, a minimum SD 

value of 0.000033 will be used. A Q glass chip will be considered indistinguishable in 

refractive index if it has a mean refractive index falling within ± 3 SD of the mean of the 

refractive index of the K sample. 

6.6  Elemental Analysis 

 As mentioned before, the main ingredient of glass is sand. Though there are many 

sand deposits around the world, only a small set is actually pure enough to be used in the 

formation of glass. Since the movement of sand from one area to another can be very 

costly, most glass manufacturers are located near a deposit of usable sand. This causes 

the composition of glass to vary by country/manufacturer. As shown in Table 12, the 
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composition of the main components of float soda-lime glass varies by country especially 

in the concentrations of potassium, aluminum, iron, and barium.  

 Sensitive elemental techniques can be used to detect small variations in the 

chemical formulation between glasses that have been manufactured in different 

manufacturing plants or even at the same manufacturing plant at different time intervals. 

Elemental analysis of glass has been studied using SEM-EDS, uXRF, ICP-OES, ICP-MS, 

and LIBS. This research is focused on the analysis using LA-ICP-MS, so this technique 

will be described in detail in the following section.  

Table 12 - Average values for the composition of float glass (% element by weight) 

Country Si Na Ca Mg K Al Fe Ba 

UK 34.08 9.50 5.86 2.29 0.66 0.74 0.07  

US 33.90 10.24 6.41 2.29 0.11 0.18 0.12 0.01 

Germany 33.58 10.14 6.60 2.40 0.13 0.28 0.16 0.12 

Spain 33.46 10.24 6.62 2.37 0.21 0.37 0.07  

Japan 33.54 9.66 5.80 2.36 0.83 0.90 0.14  

 LA-ICP-MS is a sensitive, micro-destructive elemental technique that requires 

little to no sample preparation, thus making it a very powerful tool for forensic scientists. 

The basics of LA-ICP MS are the focusing of a laser on the surface of the sample, using a 

CCD camera. Under optimized parameters, the laser is fired at the sample located within 

an ablation cell. The laser ablates the sample producing small particles. A carrier gas, 

usually helium, transports the particles from the ablation cell to the ICP ionization source. 

In the following sections, the principles of lasers and ICP-MS instruments will be 

discussed as well as what is currently in use by forensic labs.  
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Principles of Lasers 

 The term laser is actually an acronym that stands for light amplification by 

stimulated emission of radiation. Unlike most other light sources, laser beams are 

monochromatic (one wavelength) and coherent (waves are in phase with one another).  

 The typical components of a laser are an active medium, excitation mechanism, 

and optical resonator. The laser undergoes four processes: pumping, spontaneous 

emission, stimulated emission, and absorption. During the pumping process, the 

excitation source such as radiation from an external source, an electrical current, or 

discharge is used to excite the species in the active medium. The excited species may 

undergo spontaneous emission (fluorescence), which produces incoherent photons, which 

travel out of the material. The excited species will also undergo stimulated emission, 

which is caused when a photon interacts with an excited particle and causes the relaxation 

of the species through the emission of a photon that is the same energy and in phase with 

the photon that caused it to be emitted, coherent. As these photons pass through the active 

medium, which is encased in the optical resonator that causes the photons to move back 

and forth, they continue to interact with particles and can cause stimulated emission if the 

particle was in an excited state or are absorbed by a ground state particle. In order to have 

an amplification of light, the number of photons emitted must be greater than the number 

absorbed. This can only occur if more particles are in the excited states than in the ground 

state, population inversion. This can be achieved through pumping [37].  
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Principles of ICP-MS 

 Though a variety of ICP-MS manufacturers exist, they all generally operate the 

same way. A plasma is created when argon flowing through a quartz tube is ionized by 

colliding with highly energetic free electrons, which are initially generated by a spark 

from a Tesla coil. Once initiated, the plasma is stabilized by a magnetic field that is 

generated by applying an RF current to a copper coil that is located below the mouth of 

the quartz tube. The particles are carried through the center of the plasma where they are 

vaporized, atomized, excited, and ionized by a variety of mechanisms, usually by 

colliding with ionized and excited argon species [53]. Only the ionic species are used for 

analysis. These are extracted into the vacuum-regulated mass spectrometer by passing 

through sampling and skimmer cones. The ions then travel through a series of lens, which 

help to separate out neutral atoms and photons as well as focus the ions into a beam. 

Next, the ions are separated by their mass to charge ratio by traveling through a mass 

analyzer. There are a variety of mass analyzers available that differ by resolution, the 

ability to separate different ions with similar mass to charge ratios, and the principles 

used to separate ions. The quadrupole is one of the simplest and cheapest mass analyzers 

and is the main mass analyzer used in this research. The quadrupole is made up of four 

parallel rods with oscillating electric fields. The quadrupole, however, is only able to 

separate ions one mass unit apart. This causes the element menu to be further restricted to 

only the isotopes that are free from isobaric and polyatomic interferences. For example: 

the 40Ca isotope should not be used because of large 40Ar interferences. 56Fe should not 

be used because of polyatomic interferences caused by 40Ar16O. The sorted ions then 

travel to an electron multiplier detector where an electrical current is generated and 
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amplified. Because ICP-MS only detects ions, the possible elemental menu is limited to 

only those elements that have a first ionization potential less than that of argon [54]. 

 There are a variety of lasers and ICP-MS instruments available on the market. 

One major distinction between different types of lasers is the active medium, the material 

used to create the monochromatic radiation. The active medium can be a crystal, 

semiconductor, organic dye, or a gas. A brief survey sent to some forensic LA-ICP-MS 

laboratories revealed that these labs use either a crystal or gas as an active medium, Table 

13. When it comes to crystals, all forensic labs surveyed use a Neodymium Yttrium 

Aluminum Garnet (Nd:YAG) laser that can be altered to create a variety of wavelengths 

(1064nm, 532nm, 355nm, 266nm, 213nm). The wavelengths in the UV range are used for 

glass analysis because these have been shown to couple nicely to the glass matrix. The 

other forensic labs surveyed used lasers with gas active mediums, specifically excimer 

lasers that used a mixture of argon and fluorine gas. These lasers operate at a wavelength 

of 193nm.  

 Other properties of lasers that are optimized for the forensic analysis of glass are 

the laser energy, frequency, and spot size. The frequency is defined as the number of 

shots per second. The maximum frequency differs by laser manufactures, but most 

forensic labs use a frequency of 10Hz. All labs surveyed used a spot size less than 

100um. This is because glass is very homogenous so a large spot size is not needed and 

because Q glass fragments are very small in size. A smaller spot size allows for more 

replicate measurements to be performed.  

 The evaluation of the analytical performance of different combinations of laser 

ablation systems with different ICP-MS instrument was one of the Natural Isotopes and 
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Trace Elements in Criminalistics and Environmental Forensics (NITECRIME) European 

Network main objectives. This group identified optimal laser ablation and ICP-MS 

acquisition parameters for glass analysis. Even though the instrumentation differed, they 

determined that when using matrix matched glass standards LA-ICP-MS can deliver 

quantitative measurements on major, minor and trace elements in float glass samples for 

forensic and other purposes [42].  
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Table 13 - LA-ICP-MS instrumentation used by laboratories located around the world 

Laser        

Make New Wave New Wave 
Applied Spectra 

J200 Tandem 
New Wave New Wave New Wave 

Applied Spectra 

J200 Tandem 

Wavelength (nm) 213 213 266 193 193 213 226 

Frequency (Hz) 10 10 10 10  10 10 

Spot Size (µm) 55 90 50 80 40 65 30 

ICP-MS        

Make 
Thermo 

X Series II 

Perkin Elmer 

ELAN DRC 

Perkin Elmer 

Nexion 

Agilient 

7700x 

Thermo 

IcapQ 

Agilent 

7500 cx 

Analytik Jena 

PlasmaQuant MS Elite 
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6.7  Comparison Criteria for LA-ICP-MS measurements 

 There have been many studies focused on testing different match criteria to see 

which one is most appropriate for forensic glass comparisons using (LA) ICP-MS [43-46, 

55-59]. The match criteria that have been heavily explored include the T-test with an α of 

0.05, 0.01, and Bonferroni correction, match intervals created with ± 2, 3, 4, 5, and 6 

standard deviations of the known sample, match intervals created with ± 2, 3, 4, 5, and 6 

standard deviations but setting a minimum standard deviation equal to 3% of the mean, 

Hotelling’s T2, and range overlaps. When evaluating the performance of a statistical test 

for forensic comparisons, there are two factors that are used, false exclusion and false 

inclusion error rates. A false exclusion usually refers to failing to associate samples with 

common origin; whereas a false inclusion is failing to discriminate samples that 

originated from different sources.  

 The Elemental Analysis Working Group (EAWG) made up of forensic glass 

examiners and research scientists was formed to develop robust analytical protocols and 

to assess the accuracy of various statistical tests used for source comparison. The group 

went through four inter-laboratory tests that measured the error rates of selected match 

criteria on glasses having very similar elemental compositions. For each match criteria, 

the false exclusion and false inclusion error rates were calculated and used to evaluate the 

performance of the statistical test. The EAWG’s inter-laboratory tests are explained in 

more detail in 7.8  

 For LA-ICP-MS and ICP-MS, the EAWG suggested using a modified ± 4 

standard deviations (SD) for the comparison between a K and Q sample[60]. Using the K, 
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the mean and SD for each element are calculated. A minimum SD equal to at least 3% of 

the mean for each element is also calculated. This is sometimes referred to as the fixed 

relative standard deviation (FRSD). If the SD is less than the FRSD, the FRSD is used for 

creating a comparison interval. The K comparison interval is calculated for each element 

as the mean ± 4 × SD (or ± 4 × FRSD, whichever is greatest). The average concentration 

for each element of the Q sample is then calculated and compared to the K comparison 

interval. If the Q average lies outside the comparison interval for any element, then the K 

and Q are distinguishable. This match criterion has been published in ASTM E2927 [60]. 

6.8 Interpretation of Glass Evidence 

Verbal Scale 

Some forensic laboratories are currently using a verbal scale to help report their 

findings to a jury. These verbal scales are divided by the presence or absence of 

individual or class characteristics as well as the discrimination potential of the techniques 

used [48]. One such verbal scale was presented by Chris Bommarito at the 2009 Trace 

Evidence Symposium. This scale is listed below and taken from Bommarito’s 

presentation.  

 “Type I Association: A positive identification; an association in which items 

share individual characteristics that show that the items were once from the same 

source.  

 Type II Association: An association in which items are consistent in all measured 

physical properties and/or chemical composition and share unusual 
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characteristic(s) that would not be expected to be found in the population of this 

evidence type.  

 Type III Association: An association in which items are consistent in all 

measured physical properties and/or chemical composition and could have 

originated from the same source. Because similar items have been manufactured 

and would be indistinguishable from the submitted evidence, an individual source 

cannot be determined. 

  Type IV Association: An association in which items are consistent in measured 

physical properties and/or chemical composition. This sample type is commonly 

encountered in our environment and may have limited associative value. 

 Type V Association: An association in which items are consistent in some, but 

not all, physical properties and/or chemical composition. Some minor variation 

exists between the known and questioned items and could be due to factors such 

as sample heterogeneity or contamination of the sample(s).  

 Inconclusive: No conclusion could be reached regarding an association between 

the items.  

 Elimination: The items were dissimilar in physical properties and/or chemical 

composition and did not originate from the same source. This approach may be 

considered as subjective since it relies on the analyst’s personal experience and 

assessment of the glass evidence [48].” 

Scientists, however, do not always agree on what category evidence falls in. There is 

also no standard verbal scale and usually each forensic lab uses their own. Some of 

these scales take into account the activity level of the suspect, such as the number of 
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glass fragments found. Others like the Bommarito scale presented here only look at 

the source level of the glass. Therefore, this approach may be considered as 

subjective since it relies on the analyst’s personal experience and assessment of the 

glass evidence.  

Random Match Probability 

 A random match probability is defined here as the probability of two glass 

samples from different sources being indistinguishable in elemental composition. Some 

laboratories estimate the random match probability as the false inclusion rate of a 

comparison criterion. Today, the reported error rate for most LA-ICP-MS generated glass 

databases is approximately 0.1% [45, 46].  

In this study, different comparison criteria were tested to determine which one 

correctly associates glass duplicate samples ran months apart while still providing the 

ability to discriminate samples from different vehicles.  

Frequency 

 Another statistic calculated from databases is the frequency of an elemental 

composition. Unlike the random match probability, the frequency is defined here as how 

many times a specific elemental composition is encountered in a database i.e. how many 

samples in the database are indistinguishable with the K from a case. The match criteria 

used to calculate the random match frequency was also used here to compare a specific 

sample to a database.  
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CHAPTER 7. Creating the M&M Salvage Yard Glass Database 

7.1 Glass Sample Set 

Reference Standards 

 The standard reference materials SRM NIST612 and SRM NIST1831 (National 

Institute of Standards and Technology, Gaithersburg, MD, USA) were used as well as 

matrix-matched float glass standards FGS1 and FGS2 (Bundeskriminalamt, Wiesbaden, 

Germany). 

 Table 14 shows the elemental values for the references glasses used in this study. 

For the NIST glasses, the reported values used were from ASTM E2927 [60]. For the 

FGS glasses, the reported values used were from Latkoczy et al [42]. 
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Table 14 - Concentrations (ppm) of elements in reference glasses 

 

 

 Li7 Mg25 Al27 K39 Ca42 Ti49 Mn55 Fe57 
 

NIST612 40.0 68.0 10743.8 62.3 85048.2 44.0 37.7 51.0 
 

FGS2 29.0 23400.0 7400.0 4600.0 59300.0 326.0 221.0 2600.0 
 

NIST1831 5.0 21200.0 6380.0 2740.0 58600.0 114.0 13.1 608.0 
 

FGS1 6.0 23900.0 1500.0 920.0 60600.0 69.0 43.0 580.0 
 

          

 Rb85 Sr88 Zr90 Ba137 La139 Ce140 Nd146 Hf178 Pb208 

NIST612 31.4 78.4 37.9 38.6 36.0 38.4 35.5 36.7 38.6 

FGS2 35.0 253.0 223.0 199.0 18.0 23.0 25.0 15.0 24.0 

NIST1831 6.1 85.0 36.0 31.5 2.1 4.5 1.8 1.0 1.8 

FGS1 8.6 57.0 49.0 40.0 4.3 5.2 5.1 3.2 5.8 
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M&M Salvage Yard 

 The M&M Salvage Yard (Ruckersville, VA) was selected for sample collection 

because this is the salvage yard that the Insurance Institute of Highway Safety uses to 

dispose of their vehicles after their safety rating tests. This means that this salvage yard 

contains a wide variety of relatively new vehicles with OEM windshields as well as older 

vehicles. 

 Cars with a broken windshield were sampled. A windshield cutter (RHYNO, 

Pittsburgh, PA) was used to cut a 5-8 cm square out of each windshield. Where possible, 

three squares were taken. A numbered sticker, 1-210, was attached to the pane of glass 

that was exposed to the outside. If the window marking was legible, a photo was taken, 

Figure 31.  

 

Figure 31 - An example of a window marking found on the windshield of a vehicle 

 A total of 210 cars were sampled. The years of the vehicles ranged from 2004-

2017 and 26 car makes were represented. The distribution of years and makes can be seen 

in Figure 32 and Figure 33. 
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Figure 32 - Distribution of the years of vehicles sampled 

 
Figure 33 - Distribution of the makes of vehicles sampled 

7.2 Preparation of Glass Samples for LA-ICP-MS 

 Each 5-8 cm square of laminated glass from M&M Salvage Yard was wrapped in 

3 sheets of copy paper. While completely wrapped, a large pestle was used to fragment 
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the glass panes. A black marker was used to draw a  on multiple fragments on the outer 

pane. Three fragments were selected and carefully removed from the polymer film, 

wrapped in weighing paper, and placed in a pill box labeled with the sample number and 

“Outer”. A purple marker was used to draw an × on multiple fragments on the inner pane. 

Three full thickness fragments were selected and carefully removed from the polymer 

film, wrapped in weighing paper, and placed in pill box labeled with the sample number 

and “Inner”. 

 

Figure 34 - Sample preparation for LA-ICP-MS 

7.3 Analysis with LA-ICP-MS 

 Laser ablation ICP-MS was performed using a quadrupole ELAN DRC II 6100 

(Perkin Elmer LAS, Shelton, CT) connected to a 213 nm laser ablation system (New 

Wave Research Inc., Fremont, CA). The laser parameters were optimized and validated 

for casework by a previous student. The parameters were as follows: 100% energy (0.65 

mJ), 10 Hz, 90 µm spot, 60 s dwell. Helium at 0.9 L/minutes was used as the ablation and 

carrier gas. The ICP-MS parameters were RF power of 1500 W, 8.3 μs dwell time, peak 

hopping mode, and 2 sweeps per reading. The number of readings was set at 220. This 
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allowed for the collection of a 20 s gas blank, a 60 s ablation signal, and 20 s cleanup. 

The following isotopes were monitored in time resolved analysis mode: 7Li, 25Mg, 27Al, 

29Si, 39K, 42Ca, 57Fe, 49Ti, 55Mn, 85Rb, 88Sr, 90Zr, 118Sn, 137Ba, 139La, 140Ce, 146Nd, 180Hf, 

208Pb.  

 Both the laser and ICP-MS were warmed up for at least an hour prior to analysis. 

After the warm-up, daily performance was performed each day using NIST SRM 612 

(Trace Elements in Glass Matrix) (NIST, Gaithersburg, MD). The counts for 7Li, 139La, 

140Ce, 21Ca++/42Ca, 248 ThO/232Th, were monitored and compared to previous days to 

make sure the instrument did not need maintenance.  

 The sample analysis for each day was: FGS2, Sample 1 inner pane, Sample 1 

outer pane, Sample 2 inner pane, Sample 2 outer pane, NIST1831, Sample 3 inner pane, 

Sample 3 outer pane, Sample 4 inner pane, Sample 4 outer pane, FGS2, Sample 5 inner 

pane, Sample 5 outer pane, Sample 6 inner pane, Sample 6 outer pane, FGS1, Sample 7 

inner pane, Sample 7 outer pane, Sample 8 inner pane, Sample 8 outer pane, FGS2.  

 Five replicate measurements were taken on each sample glass fragment (15 total 

measurements for each sample pane). Five replicates were taken on each reference glass. 

FGS2 was analyzed during the beginning, middle, and end of each day to better account 

for instrumental drift.  

7.4 Data Analysis 

 After LA-ICP-MS analysis, signal processing was accomplished using GLITTER 

(MacQuarie University, Australia). An example of the integration strategy is shown in, 

Figure 35. The first few seconds of laser-sample interaction were ignored. The software 
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integrated the signal, subtracted the gas blank signal, and normalized the data 29Si. The 

GLITTER software also corrected for instrumental drift using linear yield to ratio and 

calculated the concentration of each isotope in each of the replicate measurements using 

concentration values for FGS2. Sometimes, a spike in the signal will occur. These spikes 

could be caused by difference in the particle size causing only partial vaporization of the 

sample. During integration of the signal, spikes that were only one reading long were 

removed by using the filtering button. This button averaged the reading before and after 

the spike to reduce the spike to a more plausible value.  
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Figure 35 - Integration strategy used for glass 

7.5 Statistical Analysis 

FGS1 and NIST1831 Control Charts 

 FGS1 and NIST1831 were analyzed on every day of analysis. NIST1831 was 

analyzed as a quality control for the morning while FGS1 was analyzed during the 

afternoon, see section 2.3. Present in this section are the quality control charts for the 

NIST1831 control glass. The FGS1 control charts can be found in the Appendix.  

 The control charts were created using the Levey Jennings style. The average for 

each measurement is plotted as a point along with the standard deviation. The green line 

is the overall average. The dotted yellow lines are equal to the overall average ± the 

overall standard deviation × 2 and represent warning lines. The red dotted lines are equal 

to the overall average ± the overall standard deviation × 3 and represent the acceptable 
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upper and lower limit. If a point falls outside the red lines, further investigation was done. 

The solid blue line is the reported concentration in NIST1831 according to ASTM 2927 

[60]. For Li, Mg, K, Fe, Ti and Rb the reported value is different than the overall average 

and falls either near the yellow warning line or outside the upper or lower limits. This 

might is most likely caused by inaccuracies in the reported concentration for the 

calibrator, FGS2. According to a scientist at the BKA, the values for FGS2 and FGS1 are 

going to be updated. The updated values will be based on new inter-laboratory tests 

and/or additional elemental analyses of the glass using neutron activation analysis.  
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Figure 36 - Levey Jennings control charts for NIST1831 
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Levey Jennings control charts for NIST1831 (continued) 
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Levey Jennings control charts for NIST1831 (continued) 
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Levey Jennings control charts for NIST1831 (continued) 
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Levey Jennings control charts for NIST1831 (continued) 
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Levey Jennings control charts for NIST1831 (continued) 

Thickness Measurements 

 Using a micrometer, the thickness of each glass fragment was measured. The 

average was recorded. The average thickness can be found in the Appendix. Each sample 

was handled as a K and used to create a comparison interval equal to the K ± 0.15mm. 

The other samples would then be treated as Qs and if the thickness of these samples fell 

within the comparison interval, the samples were indistinguishable. Of the possible 

175980 comparisons, 74182 (42%) were distinguished by thickness.  
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7.6 Simplifying the Database 

Removing Similar Panes 

 One thing that was noticed about the M&M vehicle database is that some samples 

(~20%) had different colored inner and outer panes, which resulted in dissimilar 

elemental profiles. While others had inner and outer panes that were the same color and 

had very similar elemental compositions. Having panes with similar elemental profiles 

makes determining error rates difficult. For example, if one pane is found to be 

indistinguishable with another source, the other pane is most likely going to be 

indistinguishable. This causes an increase in the false inclusion error rate. Also from a 

forensic standpoint, if a Q sample was found to be indistinguishable with both the K inner 

and K outer taken from the windshield of a suspect vehicle, the scientist usually reports 

that no differences were found therefore the Q could have originated from the same 

source as the K i.e. the windshield of the suspect car. When forensic glass examiners 

were asked how they treat vehicles with similar inner and outer panes, in their databases, 

they stated that only one pane is added to the database.  

 Since the inner and outer pane were analyzed on the same day, the ASTM E2927 

comparison criteria with a FRSD of 3% for all elements was used to compare inner panes 

to outer. If the pairs were found to be indistinguishable, the outer pane was removed. The 

reduced the M&M database from 420 samples to 333. This reduced database was used 

for the remainder of this study.  
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Limiting the Element Menu 

 Forensic scientists participating in the GIWG have said that 90Zr and 178Hf are 

very correlated. Some of these scientists removed 178Hf from their database and others 

talked about no longer analyzing 178Hf. The correlation of elements within the FIU M&M 

samples is shown in Figure 37. The darker the blue color, the more positively correlated 

two elements are. The darker the red color, the more negatively correlated two elements 

are. As can be seen, 90Zr and 178Hf are indeed correlated with a coefficient 0.997. 

Therefore 178Hf was removed from the database. There are indications of other elements 

that may be correlated such as: 27Al with 39K and 85Rb, 130La with 140Ce and 148Nd, and 

197Ba with 208Pb, etc. These were not discussed with the other participants of the GIWG, 

and thus remained in the database.  
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Figure 37 - Correlation of elements in the M&M database 

7.7 Determining Random Match Probability and Frequency Comparison Criteria 

 As the LA-ICP-MS system performs analyses day after day, the sampling and 

skimmer cones become dirty, the calibration of the pulse/analog mode of detector starts 

to shift, the laser energy begins to decrease, and maintenance needs to be done. All of 

these can cause slight variations in the concentration of samples run on different days. 

When comparing samples to a database, it is important that the inter-day variation is 

accounted for. However, ASTM E2927 states that the K and Q should be analyzed on the 

same day and does not mention how to incorporate inter-day variation into the 

comparison criteria. Fortunately, there are two laboratories have tested and evaluated 

different approaches to incorporate inter-day variation.  
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One approach was to use the ASTM E2927 comparison criteria but assign a 

minimum FRSD that was based on the element’s variation within the database. This 

group first calculated the elemental variation within two data sets: a single float glass 

pane and between different float glass sources. For each data set, the relative standard 

deviation (RSD) was calculated for each sample. The average RSD was used to help 

determine a minimum FRSD for each element. The lowest FRSD used was 4%.  

The other approach was to calculate a FRSD based on the inter-day variability of 

a control glass that was analyzed over the course of 90 days. For each day the average 

concentration of the control was calculated (mean of 3 replicates). Then the RSD of the 

averages was calculated and used to estimate the FRSD. In cases where the RSD was 

below 3%, the FRSD was set to 3%. This group used a slightly different comparison 

criterion. The upper limit was equal to Sample 1 × (1 + 4 × FRSD) and the lower limit 

was Sample 1 ÷ (1 + 4 × FRSD). If the mean of Sample 2 fell within the comparison 

interval, the samples were indistinguishable. Unlike the ASTM E2927 comparison 

criteria, the mean of Sample 1 is not at the center of the interval and the SD of the 

measurement is not used. However because of these differences, the end result, 

indistinguishable or distinguished, is the same regardless of which sample was selected as 

Sample 1. 

 Both approaches of determining a minimum FRSD were applied to the FIU M&M 

database as well as other comparison criteria. The calculated FRSD differed greatly for 

some elements based on which method was used, Table 15. For example, 208Pb ranged 

from 3.8 to 12.2. To evaluate each criteria, 52 duplicate samples which were run 

anywhere from 3-8 months apart, Table 16. The duplicate samples were analyzed using 
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the same instrumental parameters as the M&M glass samples with 3 fragments with 5 

replicates each.  

 The comparison criterion used to compare samples in the database was the 

comparison interval mentioned above in which the upper limit was Sample 1 × (1 + 4 × 

FRSD) and the lower limit was Sample 1 ÷ (1 + 4 × FRSD). This comparison interval 

was selected because the end result, indistinguishable or distinguished, is the same 

regardless of which sample was selected as Sample 1. The results using the duplicates 

and the different FRSDs can be found in Table 17. 
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Table 15 - Shown are the calculated %RSDs 

 
7Li 25Mg 27Al 39K 42Ca 49Ti 55Mn 57Fe 85Rb 88Sr 90Zr 137Ba 139La 140Ce 146Nd 208Pb 

NIST1831 

Inter-day Variation of Control 

4.5 3.0 3.2 3.0 3.0 3.0 3.0 3.0 3.7 7.5 7.1 5.1 5.8 5.2 5.6 12.2 

FGS1 

Inter-day Variation of Control 

3.7 3.0 3.7 3.0 3.0 3.2 3.0 3.0 3.0 3.0 4.6 3.0 3.9 7.8 3.6 9.1 

Same Source NIST1831 6.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.6 3.8 

Same Source FGS1 6.6 3.0 3.0 3.0 3.0 3.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.7 3.0 

Different Source M&M 8.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.1 3.0 3.1 3.0 5.3 3.6 

Max %FRSD for M&M 8.2 3.0 3.7 3.0 3.0 3.8 3.0 3.0 3.7 7.5 7.1 5.1 5.8 7.8 5.6 12.2 

Adjusted %FRSD for M&M 8.2 3.0 7.0 3.0 4.0 3.8 3.0 3.0 4.0 4.0 7.1 5.1 5.8 9.0 7.0 12.2 
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Table 16 - Duplicate samples and the days of analysis 

Sample Date of Sample Analysis Date of Duplicate Analysis 

001 Outer 10/3/16 5/25/17 
002 Inner 10/3/16 6/14/17 
003 Inner 10/3/16 5/18/17 
004 Inner 10/3/16 5/13/17 
008 Inner 10/13/16 5/25/17 
015 Inner 10/14/16 6/14/17 
017 Inner 10/14/16 6/14/17 
019 Outer 10/14/16 5/19/17 
025 Inner 10/15/16 6/14/17 
029 Outer 10/17/16 6/14/17 
030 Outer 10/17/16 5/25/17 
031 Inner 10/17/16 5/19/17 
033 Outer 10/17/16 5/25/17 
036 Inner 10/20/16 6/14/17 
036 Outer 10/20/16 5/13/17 
039 Inner 10/20/16 6/14/17 
040 Outer 10/20/16 5/18/17 
041 Inner 10/20/16 6/14/17 
045 Outer 10/22/16 5/18/17 
046 Inner 10/22/16 5/19/17 
053 Inner 11/3/16 6/14/17 
057 Outer 11/4/17 5/18/17 
059 Outer 11/4/17 5/19/17 
064 Outer 11/5/16 5/18/17 
071 Outer 11/6/16 5/13/17 
073 Inner 11/7/16 6/14/17 
076 Inner 11/7/16 5/19/17 
078 Outer 11/7/16 5/19/17 
083 Inner 11/8/16 5/25/17 
094 Inner 1/5/17 5/19/17 
097 Inner 1/6/17 6/14/17 
105 Outer 1/12/17 6/14/17 
107 Inner 1/12/17 5/25/17 
109 Inner 1/12/17 6/14/17 
119 Outer 1/18/17 5/18/17 
122 Outer 1/24/17 5/18/17 
133 Inner 1/26/17 5/13/17 
145 Outer 1/29/17 5/18/17 
146 Inner 1/29/17 5/13/17 
149 Outer 2/1/17 5/19/17 
152 Outer 2/1/17 5/13/17 
153 Inner 2/1/17 5/19/17 
155 Inner 2/1/17 5/18/17 
161 Outer 2/2/17 5/13/17 
181 Outer 2/8/17 5/18/17 
183 Outer 2/8/17 5/13/17 
185 Outer 2/8/17 5/25/17 
188 Inner 2/8/17 5/19/17 
191 Outer 2/9/17 5/18/17 
195 Inner 2/11/17 5/19/17 
204 Inner 2/16/17 5/19/17 
210 Outer 2/17/17 5/25/17 
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 Table 17 - The results for the duplicate samples with different comparison criteria. *This is 

the result of the ASTM E2927 comparison criterion. This criterion depends on which sample is 

selected as the Known sample, so the original data in the database was selected as the duplicate. The 

FRSD selected for further use in this study was FRSD (Adjusted FIU). 

Comparison Criteria 
Sample 1 mean × (1 + 4 × FRSD)  
Sample 1 mean ÷ (1 + 4 × FRSD) 

Duplicates 
Type I Error 

(%) 
*ASTM 2927: ±4s (FRSD 3%) (Known=Original) 52 
FRSD 3% 58 
FRSD 4% 40 
FRSD 5% 27 
FRSD 3% Limited Menu (No Al, Zr, Ce, Pb ) 31 
FRSD (FIU FGS01) 37 
FRSD (FIU NIST1831) 44 
FRSD (Max Control Glass) 33 
FRSD (FIU Same Source/ Different Source) 56 
FRSD (Max FIU) 31 
FRSD (Adjusted FIU) 2 

 

 Even after determining the maximum inter-day variation of the M&M database, 

some elements were still distinguishing the duplicate pairs, Figure 38. The issues with Al 

and Ca appeared to be caused by the calibration of the pulse/analog mode of the detector. 

For some of the samples that were distinguished by these particular elements, the counts 

were above 2 million, which also indicates the problem is caused by the pulse/analog 

calibration.  
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Figure 38 – Elements distinguishing duplicates using the max FIU FRSD 

 The duplicates that were distinguished by Nd and Rb were caused by fall off the 

cliff effects where the duplicate mean fell just outside the comparison interval, Figure 39. 

This could be attributed to the low concentration of these elements in the duplicates (< 2 

ppm). The FRSD for all of these elements (Al, Ca, Nd, Rb) was increased, which helped 

correctly associate the duplicates.  
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Figure 39 - Examples of some duplicate pairs being distinguished using the maximum FRSDs of the 

M&M database. 

 Increasing the FRSDs for Ce and Pb did not alleviate the problem for three of the 

comparison pairs. The problem with the Ce pairs is caused by the calibration of the 

pulse/analog mode of the detector. Both samples that were distinguished from their 

duplicate had an unusually high (> 2000 ppm) Ce concentration compared to most 

samples in the database. There are only 7 samples out of 333 that have a Ce concentration 

greater than 2000 ppm. The transient signal for Ce in these samples was above 2 million 

counts, which is the point where the detector switches modes from pulse to analog. 

Improper calibration of the detector caused the concentration of Ce to be 7900 ± 26 ppm 

for the original and 4520 ±69 ppm for the duplicate sample for one pair and 2110 ± 17 

ppm for the original and 3680 ± 56 ppm for the duplicate in the other distinguished pair. 
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Therefore, Ce was flagged in the 7 samples with a concentration greater than 2000 ppm 

and not used in comparisons involving these samples. 

 Pb has been a consistent problem. Over half of the samples in this database 

contain a concentration of Pb around 2 ppm. Differences in the performance of the laser 

and ICP-MS between days could result in a spiky, uneven signal. A look at the first 

replicate measurement of each fragment for the comparison pair that was distinguished 

by Pb, Figure 40, showed that some replicates in the original (black) had spikes. Even 

after filtering with GLITTER, these spikes caused the concentration of 208Pb to range 

from 3.1-6.7 ppm in the original sample. Since the comparison criterion used does not 

take the SD of the measurement into consideration, the poor reproducibility of this 

sample was not accounted for. In the future Pb may be excluded from the database, but 

for this study it was kept.  

 

Figure 40 - Transient signal for Pb 208 in duplicate pair 

The FRSD determined for Sr when examining the inter-day variation of the NIST1831 

control glass very large (7.5%) especially when compared to the FRSDs determined for 
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this element using FGS1 (3%) and the other approaches. This large variation in Sr could 

not be determined. Therefore, the FRSD was reduced to 4% for future analyses. This new 

FRSD for the M&M database is denoted as “Adjusted” in Table 15 and Table 17. After 

removing Ce from the problematic samples, this comparison criterion resulted in a 2% 

Type I error. This comparison criterion will be used from now on. The daily control 

glasses NIST1831 and FGS1 were also evaluated using the this comparison criteria. 

However, these samples only have 5 replicates. The daily control glasses were analyzed 

40 (FGS1) or 42 (NIST1831) times over the course of 8 months (10/3/16 – 6/14/17). 

Using the adjusted FRSD, the results of the control glass FGS1 was correctly associated 

with itself 96% of the time and NIST1831 was correctly associated 78% of the time. 

Figure 41, shows the problematic elements. As can be seen, most of the inter-day 

measurements were distinguished by Pb and Sr. The differences in Pb for NIST1831 

were caused by only two days of analysis, November 4th and November 6th being 

distinguish from most of the other days. Examining the daily control charts for 

NIST1831, Figure 36, it can be observed that these two days have a higher concentration 

of Pb than the others. A similar thing happened with FGS1, but for a different day, 

October 22nd. The control chart for FGS1 can be found in the Appendix. When these 

problematic days are removed, the correct association rates are 100% for FGS1 and 84% 

for NIST1831. 

 The poor performance of Sr in NIST1831 cannot be explained. Unlike Pb, it is not 

the result of a single day of analysis. The concentration of Sr in NIST1831 is a little more 

than FGS1, 87 and 55 ppm respectively, Table 14. Since Sr performs fine in FGS1, it is 

not an issue with limits of detection. It is therefore hypothesized to be an issue with the 
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NIST1831 glass. This glass is clear, colorless, and much thicker than FGS1. Its larger 

size could be causing issues with particles being successfully carried to the ICP-MS or 

the issue could be with the laser sample interaction. The FGS glasses are cloudier than 

the NIST1831 glass, thus it is easy to focus the laser on the surface of the FGS glasses. 

However, due to the transparency of the NIST1831 glass, care had to be taken to ensure 

that the laser was properly focused on the top of the glass and not the bottom. These 

elements can be removed in future studies, but since the duplicate glass samples did not 

have a problem with Sr this element was kept in the element menu.  

 

Figure 41 - Using the selected FRSD, the elements shown in the graph were found to incorrectly 

distinguish inter-day control samples. The Sr variation seen in NIST1831 was only seen in this glass. 

FGS1 and the duplicates appeared to have no problem with Sr. Pb reproducibility was an issue for 

both control glasses and some of the duplicate pairs. 

Blind Study 

 To further test the accuracy of the match criterion selected in 7.7 , another student 

was asked to randomly select ten glass fragments from the M&M collection set and place 

34 

1 4 1 

64 

4 

140 

5 1 
0 

20 

40 

60 

80 

100 

120 

140 

160 

Ba Fe Mn Pb Rb Sr Zr La 

Distinguishing Elements for Control Glasses 

FGS1 

NIST1831 



 129 

them in pill boxes labeled as Blind #1-10. These glass samples were analyzed using the 

same instrument parameters as the M&M collection.  

 Each blind sample was compared to the database using the match criterion 

determined in the previous section. Table 18 shows the results of the comparison. All 

blind samples were associated with their duplicate in the database. Some of the blind 

samples had more than one database match. In these cases, the other samples were 

usually from a vehicle of the same make. Automobile manufacturers have an annual 

contract with glass manufacturers. Therefore, vehicles of the same make and year are 

highly likely to have the same glass manufacturer. This can be observed in the blind 

study. One exception is Blind 6. This sample was indistinguishable with two Hondas and 

one Dodge. The window manufacturer information was only available for sample 210. A 

Pittsburgh Glass Works division called Mopar manufactured this glass. An Internet 

search on the Mopar website showed that Mopar glass is mostly found on Dodge, 

Chrysler, Jeep vehicles, but is also offered as a replacement glass. Since the other two 

database hits are Hondas, it could be possible that these vehicles had a Mopar 

replacement windshield. It is possible that the windowpanes were produced by the same 

manufacturer.  
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Sample Database Hits Year Make Model True Identity of Blind 

Blind 1 

029.1 Inner & Outer 2016 Toyota Tundra 

053.3 Inner 

053.3 Inner 2016 Toyota Tundra 

Blind 2 

029.1 Inner & Outer 2016 Toyota Tundra 

029.1 Outer 

053.3 Inner 2016 Toyota Tundra 

Blind 3 015.1 Inner & Outer 2010 Toyota Tacoma 015.1 Outer 

Blind 4 017.1 Inner & Outer 2011 Scion tC 017.1 Outer 

Blind 5 039.1 Inner 2016 Mazda CX-3 039.1 Inner 

Blind 6 

069.1 Outer 2013 Honda Civic 

073.1 Inner 073.1 Inner & Outer 2015 Honda CR-Z 

210.1 Inner & Outer 2016 Dodge Challenger 

Blind 7 

025.1 Inner 2010 Kia Forte 

097.1 Inner 041.1 Inner 2010 Kia Forte 

097.1 Inner 2010 Kia Forte 

Blind 8 

002.1 Inner & Outer 2013 Honda Civic 

069.1 Outer 

069.1 Outer 2013 Honda Civic 

Blind 9 105.1 Inner & Outer 2014 Mitsubishi Outlander 105.1 Outer 

Blind 10 109.1 Inner & Outer 2008 Mitsubishi Lancer 109.1 Inner 

Table 18 - Comparing the blind samples to the database 

7.8 Discrimination Potential 

 Using the comparison criteria from the previous section, the samples in the M&M 

database were compared to each other resulting in 55278 comparison pairs. The elements 

distinguishing each comparison pair were examined to determine the percent 

discrimination of each element. Comparison pairs that were distinguished by only one 
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element were also examined to determine if the pairs shared the same source, make, 

and/or year. The results are shown in Figure 42. Ca and Mg were the least discriminating 

elements with only 14.9% and 41.1% of the comparison pairs being distinguished by 

them, respectively. The low discrimination potential for these elements can be explained 

because this database contains only soda-lime vehicle glass, so the composition of main 

ingredients and modifiers are expected to be somewhat controlled within each glass 

manufacturer. However elements such as Fe and Sr, that are common contaminants in 

glass, have a high discrimination potential. It also isn’t surprising to see that some similar 

vehicles are only discriminated by these elements. This could be because the 

concentration of these contaminants changed over time within a manufacturer so glass 

produced on different days can be distinguished.  
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Figure 42 - Discrimination potential of each element. The grey columns represent the percent (%) of comparisons that were distinguished by that 

element. The colored segmented columns represent how many comparisons were only distinguished by that element and what type of samples they 

were (same year, same make etc.) 
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CHAPTER 8. Collection and Evaluation of Glass Databases 

8.1 Glass Databases 

 A survey was sent out to forensic laboratories across the world asking if they had 

a glass database generated by (LA) ICP-MS that could be shared with the interpretation 

working group. If possible the databases were reduced to only soda-lime glass. However, 

some of the databases contained casework samples in which the true source of the glass is 

unknown. Table 19 shows a brief description of each database and how many samples it 

contained after removing non-soda-lime glass.  

8.2 Random Match Probability 

The random match probability can be estimated as the false inclusion rate of the 

database. That is, the number of comparison pairs of samples that originated from 

different sources that were found to be indistinguishable. Each database in Table 19 was 

used to calculate a random match probability to see what effect sample size and element 

menu has. For the comparisons, each database was limited to only elements listed within 

ASTM E2927-16e1 without Hf since it is found to be highly correlated with Zr in glass, 

Figure 37 : 7Li, 25Mg, 27Al, 39K, 42Ca, 57Fe, 49Ti, 55Mn, 85Rb, 88Sr, 90Zr, 137Ba, 139La, 140Ce, 

146Nd, 208Pb. For databases that do not contain all of these elements, the error rate was 

calculated using their limited menu.  

 The comparison criterion described in the previous section was used to 

compare the samples within each database even though this criterion was designed to be 

used with the M&M glass database. Ideally each lab should determine their inter-day 

variation and if databases are to be combined a comparison criterion should be used that 
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encompasses all inter-day and inter-lab variations. Table 20 shows the false inclusion rate 

for each database. The results in this table are consistent with the two previous reports in 

the literature that the false inclusion error rate is approximately 0.1% for the databases 

examined. With the exception of Database 4 which is only contains 43 samples, the 

random match probability was found to be ~0.1% for the collected databases. Each 

database is a snapshot of a specific place and time, but regardless of where the database 

came from the random match probability was similar. Database 2 is the FIU M&M 

vehicle database that contains many vehicles of the same make and year and thus has a 

higher error rate but when the vehicles known to be related (same make and year) are 

excluded from the number of indistinguishable pairs, the error rate is 0.13 %. Since the 

FIU M&M database also has thickness measurements, these were used to further 

compare the pairs with indistinguishable elemental profiles. Of the 132 pairs, 26 can be 

distinguished by thickness measurements. The samples that were distinguished by 

thickness did not follow any visible pattern. There were some vehicles that were the same 

year, make, and model (6 pairs); some pairs were inner and outer panes from the same 

vehicle (3 pairs); some were different years and/or different makes (17 pairs).  

Interestingly, even though it had a limited element menu, Database 6 also had a 

false inclusion error rate of ~0.1%. This shows that not all the elements listed in ASTM 

E-2927 are necessary to discriminate glass samples. It may be possible to limit the 

element menu, which will allow for more databases to be combined if combining is 

deemed appropriate.  
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Table 19 - Description of each database donated to the FIU GIWG 

 Database 1 Database 2 Database 3 Database 4 Database 5 Database 6 

Instrument LA-ICP-MS LA-ICP-MS ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS 

# of Samples 517 333 300 43 300 969 

Replicates per 

Sample 

9 15 3 5 6 

5 

Elements 

7Li, 25Mg, 27Al, 39K, 

42Ca, 57Fe, 49Ti, 

55Mn, 85Rb, 88Sr, 

90Zr, 137Ba, 139La, 

140Ce, 146Nd, ,208Pb 

Additional Elements: 

 59Co, 89Y, 95Mo, 121Sb, 

182W, 232Th, 238U 

--- 

Elements not Used: 

7Li, 27Al, 39K, 42Ca, 57Fe, 

146Nd 

--- 

Additional 

Elements: 23Na 

Elements not Used: 

7Li, 25Mg, 27Al, 42Ca, 57Fe, 

146Nd 

Types of 

Samples 

Casework & Survey:  

Float Glass 

Survey:  

Float Glass 

Survey: 

Float Glass & 

Containers 

Casework Casework Casework 

Calibration External Calibration 

Single Point 

FGS2 

External 

Calibration 

Single Point 

NIST612 

Single Point FGS2 

Single Point 

NIST612 
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Table 20 – False inclusion rates for the donated databases 

 
Samples Comparison Pairs Indistinguishable Pairs Error (%) 

Database 1 517 133386 183 0.14 

Database 2 333 55278 132 0.24 

Database 2 

Without Related 
333 55219 73 0.13 

Database 3 300 44850 53 0.12 

Database 4 43 903 0 0 

Database 5 370 68265 44 0.06 

Database 6 969 468996 557 0.12 

Each LA-ICP-MS database was donated by a participant of the GIWG first inter-

laboratory study that will be discussed in a later chapter. If each participant used the same 

LA-ICP-MS method that they used in the first inter-laboratory study, the data for the 

samples can be evaluated to see what elements have similar concentration for each lab 

regardless of what calibration technique was used. This could help in eliminating 

problematic elements. Each lab’s data for the K samples compared to each other and to 

the M&M database sample as well as their data for the quality control glasses can be 

found in the Appendix. 
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CHAPTER 9. Equivalence Test vs. ASTM E2927 Match Criterion 

 The EAWG evaluated several statistical tests to determine which one produced 

the lowest false inclusion and false exclusion error rates. One test that has not yet been 

assessed as a possible match criterion for forensic glass comparisons is the equivalence 

test also known as the two one sided t-tests (TOST). This test is another type of 

hypothesis testing similar to the T-test. However, unlike the T-test, the equivalence test 

evaluates the null hypothesis that the sample means are different, H0: μ1≠μ2. In the 

criminal justice system, you are innocent until proven guilty. One statistician is pushing 

for the equivalence test to be used more in forensic comparisons, since the null 

hypothesis is that the sample from the suspect did not come from the scene of the crime.  

9.1 Basics of the Equivalence Test 

 For this test, the analyst defines an acceptance criterion (θ) on the basis of prior 

knowledge of the measurement as well as its intended application. The acceptance 

criterion is the maximum value that two sample means can differ by and still be deemed 

practically equivalent. For glass analysis, an acceptance criterion has to be assigned for 

each element that is being compared. If the 90% confidence interval of the difference in 

the elemental means of the K and Q samples falls within [-θ,θ], the null hypothesis is 

rejected. The samples are deemed “practically equivalent”. However, if one elemental 

comparison falls outside [-θ,θ], the samples are considered distinguishable. Figure 43 

shows an example of sample means that are practically equivalent, A and C, and sample 

means that are distinguishable, B.  
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Figure 43 - Modified from [61], this figure depicts how the equivalence test decides if the sample 

means are practically equivalent.  

 The application of the equivalence test to elemental data is not very 

straightforward; the most challenging part is defining the acceptance criteria [-θ,θ]. Some 

papers and statisticians suggest using a database to define θ; so for this study, the 

variation within a subset of 109 float architectural glass samples from known different 

sources was used to determine θ for each element as well as a subset of 63 glass samples 

produced at the same manufacturing plant over the course of a couple of years (1997-

2001). However, not all forensic analysts have access to a database. Given the lack of a 

suitable database, the 9 replicate measurements on the known sample were also used to 

define θ. One publication was found within the analytical chemistry literature that showed 

how to calculate θ, and it was applied to these calculations [61].  

 Equation (18) was used to ensure that the standard deviation represents true 

measurement precision. In this equation, γ was selected to be 20%. The 𝜒(𝛾,𝑛−1)
2  was 

solved for using CHIINV (1-γ, n-1) in Excel. The n for this calculation was either 109 or 

63 if θ was being calculated using a database or 9 if θ was being calculated using only the 

replicate measurements done on the known sample. The s stands for the standard 

A. 

 

B. 

 

C. 
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deviation of an element within the database or the standard deviation of the element 

within the replicate measurements of the known. This calculation calculates a confidence 

limit for the standard deviation. 

 
𝑠∗ = 𝑠√

𝑛 − 1

𝜒(𝛾,𝑛−1)
2  

Equation (18) 

 Equation (19) was used to determine θ for each element. As previously stated, θ 

was calculated three ways. Two approaches used a database. The third approach used the 

replicate measurements of the K glass sample. Regardless of the approach, an α=β=0.05 

and δ=0 was used to solve Equation (19). 

 𝜃 = 𝛿 + 𝑠∗[𝑡(1−𝛼,2𝑛−2) + 𝑡(1−𝛽 2⁄ ,2𝑛−2)]√
2
𝑛⁄  Equation (19) 

The 90% confidence interval for the difference between the K and Q sample’s mean was 

calculated using Equation (20) for each element. In this equation, 𝑠𝑝
2 stands for the pooled 

standard deviation of the K and Q samples, �̅�1 − �̅�2 is the difference in means, and n1 and 

n2 are the number of replicate measurements for the K and Q samples.  

 
(�̅�1 − �̅�2) ± 𝑡(1−𝛼,𝑛1+𝑛2−2)√𝑠𝑝

2(
1

𝑛1
+
1

𝑛2
) 

Equation (20) 

 The equivalence test was evaluated using LA-ICP-MS and ICP-MS data acquired 

during the Elemental Analysis Working Group inter-laboratory studies and by using the 

FIU ICP-MS database of 109 different known source float architectural glass samples.  
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9.2 Evaluating the Equivalence Test using EAWG Inter-Laboratory Studies 

 The first inter-laboratory test was used to establish analytical protocols for LA-

ICP-MS, ICP-MS, and μXRF and was not used to evaluate the equivalence test. In the 

second, third, and fourth inter-laboratory tests, the EAWG was asked to analyze float 

architectural glass samples that were labeled as known (K) and questioned (Q) samples. 

Table 21 shows a description of the samples and the number of labs using ICP-MS who 

participated in each test. These tests will be discussed in more detail in the following 

sections.  

 The data generated by each of the labs using ICP-MS was collected and used to 

evaluate the equivalence test. The results from the EAWG as well as the equivalence test 

are shown in Table 22. This table is modified from the EAWG publication [44]. For Test 

2, the false inclusion and false exclusion rates were both calculated out of 19 

comparisons from 7 laboratories. The design of the third inter-laboratory test did not 

account for false exclusion errors. The false inclusions for Test 3 were calculated from 

126 comparisons from 7 laboratories. The false exclusions for Test 4 were calculated 

from 120 comparisons from 10 laboratories and the false inclusions were calculated out 

of 60 comparisons from 10 laboratories. 
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Test Test 2 Test 3 Test 4 

Sample K1, Q1 Q2 K1 K2 Q1 Q2 Q3 

K1, K2, 

Q2, Q3 

Q1 

Plant Cardinal Cardinal Cardinal Cardinal Cardinal Cardinal Cardinal Pilkington Pilkington 

Manufacture Date 4/1/01 8/12/98 8/17/01 4/15/98 8/31/01 5/17/98 7/17/98 3/3/10 2/18/10 

Labs Participating 7 7 10 

    

Table 21 – The samples used and the number of labs performing ICP-MS in EAWG 
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Table 22 – False inclusion and exclusion error rates for the different statistical test using the EAWG 

inter-laboratory test data. The first four tests listed in this table are the reported results found in 

[44]. The three equivalence tests are the results from this study. 

Match Criteria 

False Inclusion Error Rate (%) False Exclusion Error Rate (%) 

Test 2 Test 3 Test 4c Test 2d Test 3e Test 4f 

  42 - 81 0 0 0 

T-Test (0.05) 74 - 93 0 1 0 

T-Test (0.01) 53 - 84 0 1 0 

T-Test with Bonferroni 

Correction 

53 - 69 0 2 0 

±4 Standard Deviations 

(Standard Deviation >3%) 

0 - 28 0 5 0 

Equivalence Test 

100 - 80 0 5 0 (θ calculated from Subset 

of FIU Database) 

Equivalence Test 

37 - 90 0 12 0 
(θ calculated from 

Variation within 

Manufacturing Plant) 

Equivalence Test 

74 - 100 0 1 0 

(θ calculated from Known) 

 

As previously discussed in section 5.7, the match criterion that produced the 

lowest false inclusion and false exclusion rates was the comparison interval generated 

from the K sample with a range calculated for each element as the mean ± 4 standard 

deviations with a minimum standard deviation equal to at least 3% of the mean value.  
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False Exclusions 

 The false exclusions were calculated using the outcome of the second (K1 vs Q1) 

and fourth (K1 vs Q1.1, Q1.2, Q1.3, Q2.1, Q2.2, Q2.3 and K2 vs Q1.1, Q1.2, Q1.3, Q2.1, 

Q2.2, Q2.3) inter-laboratory studies. Please note that for the second test the participants 

were told to group the analyses from each question fragment together, but in the fourth 

test they were told not to group the question fragments of Q1 together. The fourth test 

better mimics a real forensic case, because one should not assume that all the glass 

fragments found on the suspect originated from the same source.  

 The results of the second and fourth inter-laboratory studies were interesting. The 

equivalence test resulted in a high false exclusion rate (>70%), except when θ was 

calculated using the Cardinal manufacturing plant. When this θ was used, the second 

inter-laboratory study had an error rate of 37%. This decrease in the error could be due to 

the fact that the second test contained Cardinal glass samples. However, the fourth test 

contained Pilkington samples, which the equivalence test failed to correctly associate 

with a 90% error rate.  

 When θ, was calculated using the 9 measurements done on the K, the equivalence 

test had a 100% false exclusion rate for the fourth study and 74% for the second. The 

acceptance criterion differed for each laboratory doing the analysis. 88Sr for example had 

a range of θs from 0.67-9.66 ppm. Figure 44 shows the equivalence test being used by 

each lab to evaluate the 88Sr composition in the K1 vs Q2.1 comparison pair of the 

Pilkington glass samples. Though these samples originated from the same pane, seven of 

the ten labs found that the 88Sr composition in the two was significantly different. 88Sr 
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was not the only distinguishable element, out of the total 120 comparison pairs used to 

calculate the false exclusion rate, 118 were distinguishable by two or more elements.  

 

Figure 44 - Equivalence test for Sr using the 4th inter-laboratory data (K1 vs Q2.1) 

False Inclusions 

 The samples produced only weeks apart showed to be the hardest to correctly 

discriminate, third inter-laboratory test. For ASTM E2927 comparison criterion, the 

samples produced two weeks apart were the only contribution to the false inclusion error 

rate.  

 For the equivalence test, when θ was calculated using the database, K1 vs Q1 and 

K2 vs Q3 were the pairs that were incorrectly associated. The false inclusion error rate 

was the highest when θ was calculated from the manufacturing plant. This happened to be 

the θ that produced the lowest amounts of false exclusions. 
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9.3 ASTM E2927 Error Rates for the M&M Glass Database 

 The newly created M&M database was also used to assess the false exclusion 

error rate of the ASTM E2927 method. Since the comparison criterion in ASTM E2927 is 

used to compare K and Q fragments that were analyzed on the same day, the three 

fragments for each sample were used. Each fragment was treated as a Q sample and 

compared to the other two fragments, K, using the ASTM E2927 match criterion with a 

FRSD of 3% applied to all elements. Table 23 shows the error rate for each fragment as 

well as problematic elements. Fragment 2 had the highest error rate at 2.6%. This could 

be accounted to the fact that fragment 2 was often in the center of the ablation chamber. 

Differences were noted for how the laser interacted with fragments placed directly in the 

center of the chamber. For example the plasma produced by the laser was noticeably 

smaller for the fragments in the middle. Also the transient signal would drastically 

decrease. For some samples, the concentrations for the second fragment were slightly 

lower than the other two fragments. Once this was noticed, care was taken not to place 

fragments directly in the center of the ablation chamber.  

 Looking at the problematic elements, it can be observed that all fragments had an 

issue with 208Pb. ASTM E2927 recommends using a FRSD of at least 3%, but for some 

elements such as Pb, the FRSD is often increased. Therefore it is recommended that labs 

validate their methods and adjust the FRSDs accordingly.  
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Table 23 - False exclusion rate for M&M Database 

 

Fragment 1 Fragment 2 Fragment 3 Average 

# of Distinguished Pairs 5 11 6 7 

Number of 

Comparisons 

420 420 420 420 

Discriminating 

Elements 

137Ba, 140Ce, 208Pb 

27Al, 90Zr, 

139La,146Nd, 180Hf, 

208Pb 

49Ti, 88Sr, 90Zr, 208Pb  

False Exclusion  

Error Rate (%) 

1.2 2.6 1.4 1.7 

     

9.4 Conclusion 

 This section focused on the evaluation of glass ICP-MS data using different match 

criteria. The application of the equivalence test to the EAWG inter-laboratory data 

resulted in a false exclusion error rate of 74-100% and false inclusion error rate of 0-12%, 

depending on the how θ was calculated.  

 The results of this study support the use of the match criterion recommended in 

ASTM-E2927 and ASTM-E2330 (±4s, FRSD at least 3%) When using this match 

criterion with the minimum FRSD to compare a large dataset of 420 samples, this match 

criterion produced an average false exclusion error rate of 1.7%.  
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CHAPTER 10. Glass Interpretation Working Group Inter-Laboratory Studies 

 This chapter details the results of the three Glass Interpretation Working Group 

(GIWG) inter-laboratory studies. The main focuses of this chapter are the evaluation of 

the performance of ASTM E2927 in terms of the false exclusion and false inclusion error 

rates, the comparison of how forensic labs interpret the same casework samples, and the 

use of a frequency calculation as a tool for interpretation. Though a variety of 

instrumentation was included, this study only focuses on the LA-ICP-MS. It should also 

be noted that likelihood ratios were tested as a tool for interpretation, but that is outside 

the scope of this research. For information about the likelihood ratio, please see Corzo et 

al [62]. 

10.1 Samples 

 The inter-laboratory test samples were all vehicle windshield glass. These 

samples originated from a salvage yard in Ruckersville, Virginia and were collected and 

analyzed by researchers at Florida International University prior to being used in the 

inter-laboratory tests. The inter-laboratory tests were designed as mock cases in which 

participants were asked to analyze and compare Q glass samples to K glass samples. The 

samples chosen for each inter-laboratory study are presented in Table 24. Since 

windshields are composed of two glass panes held together by a polymer film, each K 

glass was sent out as two samples (K1 inner, K1 outer). 
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Table 24 – GIWG inter-laboratory test samples 

Inter-laboratory Test 1 

Sample Make Model Year VIN Remarks 

K1(inner & outer) Mitsubishi Galant 2009 4A3AB36F39E024088 
 

K2(inner & outer) Subaru Impreza 2008 JF1GE61658H503418 
 

Q1 Mitsubishi Galant 2009 4A3AB36F39E029145 Similar to K1 

Q2 Subaru Impreza 2008 JF1GE61658H503418 K2 outer 

Inter-laboratory Test 2 

Sample Make Model Year VIN Remarks 

K1(inner & outer) Honda Civic 2006 2HGFG21506H707035  

Q1 Honda Civic 2006 2HGFG21506H707035 
2 fragments K1 inner 

1 fragment K1 outer 

Q2 BMW 2 Series 2014 WBA1F5C58EVV98871  

Inter-laboratory Test 3 

Sample Make Model Year VIN Remarks 

K1 (inner & outer) Honda Civic 2007 2HGFG12607H511521  

Q1 Honda Civic 2007 2HGFG12607H511521 K1 outer 

Q2 Mercedes R-Class 2009 4JGCB65E59A094913  

10.2 Inter-laboratory Test 1 

 This test was organized to evaluate and compare the current analytical schemes 

used by the participating laboratories, to examine the tools that are presently being used 
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in interpreting results, and to determine if elemental glass databases could be combined. 

The use of ASTM E2927 was encouraged, but not enforced.  

 Each laboratory received six samples labeled as K1 inner, K1 outer, K2 inner, K2 

outer, Q1, and Q2. Each sample consisted of three full thickness fragments approximately 

3-5mm in size. Laboratories were instructed to follow the analytical scheme that they use 

for casework and to analyze NIST1831 as a quality control standard. They were asked to 

submit a description of the comparison criteria used and a report with their interpretation 

of the data. The samples were selected to test how well the analytical scheme used by 

each lab can discriminate samples from very different vehicles (K1 and Q2, K2 and Q1), 

discriminate samples from similar vehicles (K1 and Q1), and associate samples that 

originate from the same windshield pane (K2 and Q2).  

Analytical Schemes 

 The analytical scheme differed between laboratories. Some laboratories measured 

thickness and RI before performing elemental analysis while others only used elemental 

analysis. Moreover, the comparison criteria, element menu, and calibration technique 

used differed slightly between laboratories. Though the calibration technique differed, all 

labs used 29Si as an internal standard. Each lab previously validated their instrumentation 

and method.  

 Laboratory A measured both thickness and RI. They used the ASTM E2927 

comparison criterion but with a minimum FRSD that was defined per element. The FRSD 

was based off a previous study that evaluated the elemental variation within a single float 

glass pane and between different float glass sources. Elements with a higher variability 
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have a higher minimum FRSD. The FRSD ranged from 4% all the way to 12.5%. 

Laboratory A also included more elements than any other lab: 7Li, 25Mg, 27Al, 42Ca, 49Ti, 

55Mn, 59Co, 85Rb, 88Sr, 89Y, 90Zr, 95Mo, 118Sn, 121Sb, 137Ba, 139La, 140Ce, 146Nd, 182W, 

208Pb, 232Th, 238U. Though 39K and 57Fe were monitored, these elements are excluded 

from casework since they caused inconsistent results during method development. This 

lab used the software PlasmaLab, which utilizes a blank and glass standards, NIST614 

and NIST612, to determine the concentration in the samples.  

 Laboratory B only performed elemental analysis. They used the ASTM E2927 

comparison criterion with a minimum FRSD of 3% applied to all elements. This lab 

analyzed 17 elements for comparative purposes: 7Li, 25Mg, 27Al, 39K, 42Ca, 57Fe, 49Ti, 

55Mn, 85Rb, 88Sr, 90Zr, 137Ba, 139La, 140Ce, 146Nd, 180Hf, 208Pb. 118Sn was monitored only to 

determine float side. This lab used GLITTER’s single-point calibration with FGS2 as the 

calibrator. 

 Laboratory C measured both thickness and RI. If differences were found, they did 

not perform elemental analysis. Like laboratory B, they also used the ASTM E2927 

comparison criterion with a minimum FRSD of 3% applied to all elements. This lab 

analyzed 18 elements: 7Li, 25Mg, 27Al, 39K, 42Ca, 57Fe, 49Ti, 55Mn, 85Rb, 88Sr, 90Zr, 118Sn, 

137Ba, 139La, 140Ce, 146Nd, 180Hf, 208Pb. When it came to comparing the Q mean to the 

comparison interval, this laboratory was the only one to round the numbers. There were 

two instances where a comparison pair was distinguished by only one element, 88Sr or 

7Li. In both cases, the Q means fell just outside the comparison interval with the 

difference in concentration being in the first decimal place. This situation is referred to as 

the “fall off the cliff” effect. By rounding the numbers to the nearest whole number, this 
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lab found the comparisons to be indistinguishable. When discussing the “fall off the cliff” 

effect with the participating analysts, most responded that they would also label the 

samples as indistinguishable or re-analyze the samples if time allowed. This lab used 

GLITTER’s single-point calibration with NIST612 as the calibrator. 

 Laboratory D measured thickness and RI. This lab used a different comparison 

criterion. They used the K sample to create a comparison interval for each element where 

the upper limit was K mean × (1 + 4 × FRSD) and the lower limit was K mean ÷ (1 + 4 × 

FRSD). They did not use the SD of the K sample, and instead used only a FRSD that was 

determined in their laboratory based on the inter-day variability of a control glass. The 

minimum FRSD was 3%, but increased depending on the inter-day variability of each 

element. This lab used 18 elements in their comparisons: 7Li, 23Na, 25Mg, 27Al, 39K, 42Ca, 

57Fe, 49Ti, 55Mn, 85Rb, 88Sr, 90Zr, 137Ba, 139La, 140Ce, 146Nd, 180Hf, 208Pb. 118Sn was 

monitored only to determine float side. This lab evaluated the data two ways. They used 

GLITTER’s single-point calibration with FGS2 as the calibrator, and then re-evaluated 

the data with NIST612 as the calibrator. 

Results and Interpretation 

 Focusing only on the elemental data submitted by each lab, the following results 

were found. Four labs submitted elemental data for the comparisons of K1 inner with Q1 

and Q2; one lab found differences between these samples with thickness measurements 

and RI and therefore did not analyze K1 inner with LA-ICP-MS. All labs that submitted 

data correctly distinguished K1 inner from Q1 with all labs detecting a difference in 57Fe 

and 137Ba. Some also detected differences in 49Ti, 88Sr, and 90Zr. All labs also correctly 
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distinguished K1 outer from Q2, K2 outer from Q1, and K2 inner from Q1. However, for 

the comparison of K1 outer with Q1, most labs could not detect reproducible elemental 

differences. Since K1 and Q1 originated from very similar vehicles (same make, model, 

year with VINs less than 5000 apart), it is possible that the glass from these windshield 

panes were produced at the same plant around the same time. 

 All labs correctly associated K2 outer with Q2. All labs also associated K2 inner 

with Q2 even though Q2 came from the outer pane of this windshield. From a forensic 

point of view, the participants correctly associated Q2 with the windshield of the vehicle 

it originated from. 

 The elemental concentrations for NIST1831 were compared between labs and to 

the reported value to determine whether glass databases created by different laboratories 

could be combined into one large database. The following element menu was used: 7Li, 

25Mg, 27Al, 39K, 42Ca, 57Fe, 49Ti, 55Mn, 85Rb, 88Sr, 90Zr, 137Ba, 139La, 140Ce, 146Nd, 208Pb. 

Differences were seen between the different calibration techniques for the concentrations 

of 25Mg, 39K, 49Ti, and 57Fe, Figure 46. Though calibrated the same way, Lab C and the 

NIST612 calibrated data from Lab D differed for 25Mg, 39K, and 49Ti. It should also be 

noted that Lab C reported issues with their LA-ICP-MS system that led to unusual high 

RSDs for all samples analyzed. The differences in 39K have been seen in our research 

group before. The issue is thought to be caused by the distribution of this element in the 

NIST612 glass. As can be seen in Figure 45, 39K in NIST612 (dark blue) is more 

concentrated at the surface. Overtime, as the laser creates a crater in the glass, the 39K 

signal drastically decreases. The other elements in NIST612 do not exhibit this behavior 

as can be seen by the 55Mn signal (light blue). The 39K in FGS2 (black) does not display 
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this behavior either, which leads to the conclusion that the problem is with the NIST612 

glass sample and not the instrument. 

 

Figure 45 - Transient signal of K in NIST612 and FGS2 

 Similarities between Labs B, D, and E were seen for all elements when these labs 

used single point calibration with FGS2 as the calibrator. Interestingly all labs detected a 

concentration for 55Mn, 90Zr, 140Ce, and 208Pb that was below the reported value, Figure 

46. This could indicate a systematic negative bias. 

 It was concluded that databases from labs using FGS2 to calibrate could 

potentially be combined without limiting the element menu. Since both the FIU M&M 

database and database 5, Table 19, are calibrated this way, these databases were 

combined and the combined database was used for the rest of the inter-laboratory studies.  

It may be possible to combine databases that were calibrated with NIST612 and 

by external calibration with FGS2 calibration database, but the element menu would have 
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to be restricted to only the elements that produced similar concentrations regardless of the 

calibration technique used.  To test this, 25Mg, 39K, 49Ti, and 57Fe were removed from 

the database. Each lab’s data for K1 and K2 were compared to the duplicate glass in the 

database: Sample 110 inner and outer and Sample 201 inner (the outer pane of this 

sample was removed from the database because it was found to be indistinguishable from 

the inner pane). All of the K1 inner data was found to be indistinguishable with Sample 

110 inner. The same was true for the comparison of K2 inner and outer with Sample 201. 

The only difference was seen in the K1 outer data from Lab D with Sample 110 Outer. 

This pair was distinguished by Rb. This was just an exercise to demonstrate the potential 

of using a central database and combining databases by limiting the element menu. For 

the remaining studies, the full element menu was used.  
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Figure 46 - Inter-lab comparison of NIST1831. Shown are each labs calculated mean ± the standard deviation of the measurement for select 

elements 
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Interpretation for First Inter-Laboratory Test 

Laboratory B did not provide an interpretation for the comparison of K2 inner and 

Outer with Q2 comparison pairs, Laboratories A and C did not include any statements 

about the strength of the association. These labs stated that Q2 was indistinguishable in 

the measured physical and chemical properties from K2 inner and K2 outer. Therefore, 

Q2 could have originated from the same source as K2 or from another source of glass 

produced by the same manufacturer exhibiting the same physical and chemical 

properties. Laboratories D and E used statistics based on their databases to aid in their 

interpretation. Laboratory D used an estimated random match probability stating that 

their database is not large enough to give a value for one given sample. This probability 

of a random match was calculated based on the false inclusion rate of their comparison 

criterion and reported to be 0.1%. They also used a verbal scale that is based on how 

common or uncommon the measured properties are in the population. Since K2 and Q2 

were indistinguishable in thickness, RI, and elemental analysis by LA-ICP-MS, they 

concluded that the results showed very strong support for the hypothesis that Q2 

originated from one of the two panes of K2. Laboratory E calculated a likelihood ratio 

using a database populated with Known samples from casework and used a verbal scale 

to report their results. The lab noted that their likelihood ratios should be interpreted as a 

score, since the values are un-calibrated. Based on their LR score, Lab E concluded that 

the results of the investigation are appreciably more probable when the Q2 fragments 

originate from the windowpane to which the reference glass, K2, has belonged.  
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Frequency of Occurrence for the First Inter-Laboratory Exercise 

 The random match probability of the Database 5, the FIU database, and the 

combined database was calculated to be 0.06% (44/68265), 0.24% (132/55278), and 

0.08% (186/246753) respectively. The random match probability is higher for the FIU 

database, because this database includes many vehicles that have the same make, model, 

and/or year. However, after combining the databases, the random match probability is 

closer to 0.13%, which has been reported for other casework databases.  

 The use of a common database to determine the frequency of a specific elemental 

composition was tested by comparing each lab’s measurements for K1 outer and K2 (the 

K samples of indistinguishable pairs) to the combine database using the comparison 

criterion described in section 7.7 . 

 A description of the samples in the FIU vehicle database can be found in the 

appendix. Database 5 is made up of the Ks and Qs from casework, so the true identity of 

the samples is unknown. K1 outer originated from sample 110. When the outer pane of 

sample 110 was compared to the other 703 samples in the combined database, it was 

found to be indistinguishable with the outer pane of samples 65 and 66. Therefore if it 

expected that when comparing the data for K1 outer from the labs to the database, they 

will also be indistinguishable with these samples as well as sample 110. Interestingly, all 

of the samples found to be indistinguishable came from 2009 Mitsubishi Galants.  

Labs B, D (FGS2 calibrated), and E had similar frequencies. The concentrations 

for K1 outer from these three laboratories were found to be indistinguishable with the 

outer pane of sample 110, the outer pane of sample 66, and the outer pane of sample 65. 

Lab B’s K1 outer was also found to be indistinguishable with the inner pane of sample 
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111. Sample 111 was distinguished from sample 110 and Labs D and E by 39K. All 

elemental comparisons for K1 outer, K1 inner and K2 to their duplicate in the database 

can be found in the Appendix. Figure 47 shows the comparison of the lab’s K1 data to 

sample 110 using the comparison criteria for a few elements. Also shown in the figure are 

the outer panes of samples 65, 66, and the inner pane of sample 111. When looking at 

39K, it can be seen that sample 111 has a higher concentration that just falls outside the 

comparison interval created using sample 110. Lab B determined a concentration of 39K 

in K1 outer that is higher than the database sample 110. Thus causing K1 outer to be 

indistinguishable with sample 111. The concentration of 39K for Labs D and E is right in 

line with the concentration of sample 110. Thus these samples would be distinguished 

from sample 111. This is once again an example of the fall off the cliff effect.  
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Figure 47 - Comparison of each lab’s K1 outer to its duplicate in the database 

 The data for K1 outer from Labs A, C, and the NIST612 calibrated data from Lab 

D were found to be distinguished from every sample in the database. This is caused by 

differences in how these labs calibrated their data in comparison to how the database was 

calibrated. Differences were seen for the concentrations of 25Mg, 39K, 49Ti, 57Fe, and 

85Rb. The frequency of K1 outer is 3/703 for Labs B and D (FGS2 calibrated), 4/703 for 

Lab E, and 0/703 for Labs A, C, and D (NIST612 calibrated).  

K2 originated from sample 201. When comparing sample 201 to the database, it was 

found to be distinguished from all the samples. Labs B, D (FGS2 calibrated), and E found 

their K2 measurements to be indistinguishable with only sample 201 in the database. The 

data from Labs A, C, and the NIST612 calibrated data from Lab D were found to be 

distinguished from every sample in the database. The frequency of K2 is 1/703 for Labs 
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B, D (FGS2 calibrated), and E. For Labs A, C, and D (NIST612 calibrated), the 

frequency is 0/703. 

10.3 Inter-laboratory Test 2 

 This test served several functions: to evaluate the performance of ASTM E2927-

17e1, to examine the use of a common database for interpreting results when all labs use 

the same calibration technique, and to assess how laboratories report results when a Q 

sample contains two different glasses that are indistinguishable with a single K source. 

The laboratories were instructed to use single point calibration with FGS2 as the 

calibrator and the comparison criterion in ASTM E2927-17e1. The following element 

menu was to be used: 7Li, 25Mg, 27Al, 39K, 42Ca, 57Fe, 49Ti, 55Mn, 85Rb, 88Sr, 90Zr, 137Ba, 

139La, 140Ce, 146Nd, 208Pb or combined average of 206Pb, 207Pb, 208Pb. Though ASTM 

E2927 also suggests using 180Hf, this element was excluded because it is highly 

correlated with 90Zr. The participants were instructed to perform elemental analysis on all 

the samples even if they found them to be distinguished using RI or thickness.  

 The number of participants increased to nine labs for this exercise. Each 

laboratory received four samples labeled K1 inner, K1 outer, Q1, and Q2. Each K sample 

consisted of three full thickness fragments approximately 3-5 mm in size. To better 

mimic actual casework, the Q samples consisted of three thin, irregularly shaped 

fragments of approximately 1 mm in size. Though they were of similar thickness and 

color, the inner and outer panes of K1 differed greatly in elemental concentration. Q1 

consisted of two fragments from the inner pane and one fragment from the outer. Q2 was 

from another vehicle that should easily be discriminated from both panes of K1. The 
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laboratories were also sent FGS2 and FGS1 to serve as a calibrator and quality control, 

respectively. To account for instrumental drift, participants were asked to measure five 

replicates on FGS2 at the beginning and end of their analysis. Participants were also told 

to measure at least five replicates on FGS1 and a minimum of three replicates on each 

glass fragment.  

For comparing the K and Q samples, the replicate measurements on each fragment of a K 

glass pane (K1 inner or K1 outer) were grouped together. Each Q fragment was to be 

considered separately (Q1.1, Q1.2, Q1.3). Participants were asked to submit a report with 

their interpretation of the data.  

 The participants of the first inter-laboratory study mentioned that including a case 

scenario would aid in writing a report. Thus, as requested, the participants of the second 

study were given a case scenario that stated a vehicle, 2006 Honda Civic, was found with 

a broken front windshield, K1. There were two possible suspects. Three glass fragments, 

Q1, were found on the clothing of suspect #1. Three glass fragments were found on the 

clothing of suspect #2, Q2.  

Evaluation of ASTM E2927-17e1 as a Method for Glass Comparisons 

 Since participants were asked to deviate from their validated methods, ASTM 

E2927 with a FRSD of 3% for all elements was used to compare all Ks and Qs. For Q1, 

two of the fragments originated from K1 inner and the third from K1 outer. Q2 was 

sampled from the outer pane of another vehicle that was very different from both panes 

of K1. There were a total of 27 comparisons that should have resulted in an association. 
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(2 Q1 Fragments with K1 inner + 1 Q1 Fragment with K1 outer) × 9 Participating 

Laboratories = 27 Comparisons 

There were no false exclusions: all labs correctly associated two Q1 fragments with K1 

inner and one Q1 fragment with K1 outer. 

There were 81 comparisons that should have resulted in an exclusion.  

(1 Q1 Fragment with K1 inner + 2 Q1 Fragments with K1 outer + 3 Q2 Fragments with 

K1 inner + 3 Q2 Fragments with K1 outer) × 9 Participating Laboratories = 81 

Comparisons 

There were no false inclusions: all labs correctly distinguished Q2 from both K1 panes, 

one Q1 fragment from K1 inner, and two Q1 fragments from K1 outer.  

Interpretation for Second Inter-Laboratory Exercise 

 The interpretation of the pairs found to be indistinguishable improved compared 

to the first inter-laboratory study, with more labs using significance statements based on 

statistical analysis with a database and/or a verbal scale. However, there were some 

disagreements in the strength of the association. There were still two laboratories 

reporting only that the indistinguishable pairs could have originated from the same source 

with only one of these labs mentioning that this sample could be from another source 

produced at the same manufacturing plant around the same time. This lab also assessed 

the rarity of the glass by comparing K1 outer’s elemental profile, refractive index, and 

thickness to their database. Though there were some glasses with a similar elemental 

profile, all of these were distinguished from K1 outer by either RI or thickness. One lab 

stated that they do not have an official verbal scale, but have some wordings that they 
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use. For this comparison, the results strongly suggest that the glass fragments found on 

the clothing of suspect # 1 (Q1) are originally from the front windshield of the Honda 

Civic (K1). Strongly suggests is used when they find case samples that are 

indistinguishable in refractive index and LA-ICP-MS analysis. Three labs used the fact 

that Q1 contained glasses that were indistinguishable with both K1 panes to increase the 

significance of the elemental analysis. Two of these labs reported that there is very strong 

indication that the Q1 fragments originated from the same source as K1. The other lab 

reported that the results are far more probable when these fragments (Q1) originate from 

the window to which the reference glass K1 has belonged, than when they originate from 

another random float glass or glass object. One lab used a verbal scale that did not 

account for multiple Q fragments matching with the K source. This lab reported that the 

Q1 fragments very likely originated from the same source as K1. They also stated that 

other sources of glass with similar characteristics are limited. This interpretation was 

based on these glass samples sharing the same class characteristics with no significant 

differences in terms of trace elemental composition and refractive index. Two 

laboratories did not provide an interpretation of the results.  

Frequency for Second Inter-Laboratory Exercise 

The use of the same calibration technique improved the frequency calculations. 

K1 originated from sample 78. When the inner pane of sample 78 was compared to the 

other 703 samples in the combined database, it was distinguished from all samples. The 

data for K1 inner for all but two labs, Labs C and F, was indistinguishable with only the 

inner pane of sample 78. The data for K1 inner from Lab C and Lab F was distinguished 
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from this sample by either 139La or 85Rb. When comparing Lab C’s concentration for 

139La and Lab F’s concentration for 85Rb to the concentration determined by the other 

laboratories, both are extreme values (lowest/highest), which were different by more than 

15% of the inter-laboratory average. The frequency for K1 inner for is 1/703 for Labs A, 

B, D, E, G, H, and I and 0/703 for Labs C and F. 

 When the outer pane of sample 78 was compared to the database, it was 

indistinguishable with the outer pane of samples 21 and 45. Most elements had very 

similar concentrations between the samples.  

 The data for K1 outer for all labs except Lab C and Lab F was found to be 

indistinguishable with the outer pane of sample 78 in the database. For Lab C and Lab F 

the same issue seen for K1 inner was seen. Labs A, B, D, E, G, H, and I also found K1 

outer to be indistinguishable with the outer pane of sample 21. Only labs B and G found 

their data for K1 outer to be indistinguishable with sample 45. This sample was 

distinguished from K1 outer by 208Pb for most labs with some also detecting differences 

in 88Sr, 139La for Lab C, and 85Rb for Lab F. Looking at the comparison of each lab’s K1 

outer to the outer pane of sample 78, it can be seen that all lab’s have an average for Pb 

that is less than the database average. The FIU database has a high inter-day variation for 

Pb, which may not be properly accounted for in the current match criteria. This may also 

be an indication of an element that should be eliminated from the element menu. The 

frequency for K1 outer is 0/703 for Labs C and F, 1/703 for Lab E, and 2/703 for Labs A, 

D, H, and I, and 3/703 for Labs B and G.  
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Figure 48 – Comparison of each lab’s K1 outer to sample 45 and sample 78 in the database 

10.4 Third Inter-Laboratory Exercise 

 This test was designed to assess the use of a common database for calculating the 

frequency. In the second inter-laboratory exercise, participants were sent sample 78 as 

K1. When comparing the lab’s K1 outer to the combined database, it was found to be 

indistinguishable by most labs with the outer pane of sample 21. For the third inter-

laboratory exercise, participants were sent sample 21 as K1 to test if it has the same or 

similar frequency as sample 78. The laboratories were instructed to use single point 

calibration with FGS2 as the calibrator and use the comparison criterion recommended in 

ASTM E2927-17e1.  

 Ten laboratories participated in this exercise. Each laboratory received four 

samples labeled K1 inner, K1 outer, Q1, and Q2. The Ks and Qs were similar in size to 

those used in the second inter-laboratory study. Q1 originated from the same pane as K1 

outer. Q2 was sampled from the outer pane of another vehicle. The glass manufacturer 

information was available for both vehicles. The glass information included the name of 

the vehicle manufacturer, Honda or Mercedes, which is an indication that these are most 
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likely OEM windshields. Both windshields were manufactured by PPG, were 

SOLARGREEN M413, and had the same DOT code, DOT 18. Despite originating from 

vehicles of different makes and produced two years apart, both windshields had similar 

elemental profiles in their outer panes. However, when analyzed by LA-ICP-MS, 

reproducible differences could be detected in 57Fe. Like in the second inter-laboratory 

study, K1 inner and K1 outer differed in their elemental profiles.  

 The participants of the third study were given a case scenario that stated a vehicle, 

2007 Honda Civic, was found with a broken front windshield, K1. There were two 

possible suspects. Three glass fragments, Q1, were found on the clothing of suspect #1. 

Three glass fragments were found on the clothing of suspect #2, Q2.  

The participants were told to follow the same instructions as the second inter-laboratory 

exercise. For reporting the results, a verbal scale was sent to the participants. No 

information was given about how to use the scale. Participants were asked what category 

they would use to report their findings considering only the LA-ICP-MS data: 

Level 1: Physical/Fracture Match 

Level 2: Association with highly discriminating characteristics 

Level 3: Association with discriminating characteristics 

Level 4: Association with limitations 

Level 5: Inconclusive 

Level 6: Elimination/Exclusion  
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Evaluation of ASTM E2927 

 The comparison criterion in ASTM E2927-16e1 with a FRSD of 3% for all 

elements was used to compare all Ks and Qs. There were 30 comparisons that should 

have resulted in an association.  

(3 Q1 Fragments with K1 outer) × 10 Participating Laboratories = 30 Comparisons 

 There were no false exclusions. All labs correctly associated all Q1 fragments 

with K1 outer. 

 There were 90 comparisons that should have resulted in an exclusion.  

(3 Q1 Fragments with K1 inner + 3 Q2 Fragments with K1 inner + 3 Q2 Fragments with 

K1 outer) × 10 Participating Laboratories = 90 Comparisons 

 Figure 49, provides an example of the ASTM E2927-16e1 match criterion for the 

comparison of K1 outer and Q2.1. Even though Q2 had a similar elemental composition 

to K1 outer, all of the participating laboratories were able to detect differences in 57Fe 

with some also detecting differences in 90Zr and 137Ba. Figure 49 also depicts the inter-

laboratory average for each element with limits set at 10% and 15% of the inter-

laboratory average. Lab C’s measurements for 139La improved since the second inter-

laboratory exercise and are now closer to the concentration determined by the other labs. 

The same is true for Lab’s F measurements for 85Rb, not shown.  
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Figure 49 - ASTM E2927 comparison of K1 outer and Q2.1 

Interpretation of the Third Inter-Laboratory Exercise Results 

 Using the verbal scale that was sent out, only seven laboratories sent back a 

response. For the comparison of K1 outer with all Q1 fragments, three of the labs said the 

results were a “Level 2: Association with highly discriminating characteristics.” The 

remaining four labs classified the results as “Level 3: Association with discriminating 

characteristics.”  

Frequency for Third Inter-Laboratory Test 

 K1 for this exercise originated from sample 21. As previously mentioned, the 

outer panes of samples 21, 45, and 78 were found to be indistinguishable in the database, 
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however for the second exercise, differences were seen between the data submitted by the 

labs for sample 78 and the database data for samples 21 and 45. The data for K1 outer for 

this exercise from all labs were indistinguishable with the outer pane of samples 21 and 

45 in the database. For eight of the labs, K1 outer was indistinguishable with the outer 

pane of sample 78. For the other two labs, this sample was distinguished by the same 

element, 137Ba. When examining how labs’ data for sample 21 compares to the database’s 

21, Figure 50, the concentration for 137Ba was found to be very similar, unlike what was 

seen for 208Pb in the second exercise. Therefore, the differences between the lab’s data for 

K1 and sample 78 in the database are most likely caused by the “fall off the cliff” effect 

and not by failing to account for the inter-day variation of 137Ba in the database. For K1 

outer the frequency is 3/703 for Labs B, C, D, E, F, G, and I. The frequency is 2/703 for 

Labs A and J. 
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Figure 50 - Comparison of K1 outer to sample 78 and 21 in the database 

10.5 Conclusions 

 The performance of ten (10) forensic laboratories participating in three (3) inter-

laboratory exercises that assess the use of ASTM 2927-16e1 for the LA-ICP-MS analysis 

and comparison of glass evidence from mock case scenarios was evaluated. The rate of 

misleading evidence (ROME) for these sets of blind scenarios when the participating 

laboratories were asked to compare the glass samples (K vs. Q) and report on their 

findings as they would in an actual case was also determined. Three different databases 

were used as background populations in order to calculate frequency of occurrence for 

the case scenarios that were distributed as part of the inter-laboratory exercises. The 

results of the inter-laboratory exercises suggest that, the participating laboratories 

correctly associate glass samples originating from the same source 100% of the time 

(total of 57 comparisons requested) and correctly discriminate glass samples from 

different sources 100% of the time (total of 167 comparisons requested throughout the 

three exercises). This error rate does not include the results of the first inter-laboratory 

exercise because each lab used a different match criterion rather than the standardized 

ASTM match criterion. The random match probability of glass samples known to 
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originate from two different glass sources was found to be ~ 0.1% and is in agreement 

with previously reported values by other research groups. 
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CHAPTER 11. Refractive Index Study 

 For the first inter-laboratory study, K1 outer and Q1 originated from very similar 

vehicles (same make, model, year and VINs <5000 apart). Elemental analysis using LA-

ICP-MS was not able to detect differences in these glasses, however, the labs that 

included RI as part of their analytical scheme were able to differentiate these glasses. 

Today, some forensic labs are considering removing RI from their analytical scheme. In 

this chapter, the usefulness of RI to distinguish cars with indistinguishable elemental 

profiles was tested. 

11.1 Sample Set 

All samples came from the FIU M&M vehicle glass collection. The samples were 

selected in pairs of vehicles with the same make, same year, and elemental profiles that 

were indistinguishable from each other. The sample pairs can be seen in Table 25. Care 

was taken to select some glass samples that were indistinguishable with multiple glasses: 

sample 002, sample 018, sample 024. A total of 31 samples were sent which resulted in 

22 pairs. A full thickness glass fragment for each sample was selected, wrapped in 

weighing paper, and placed in a labeled white pill box with only the sample number on it. 

These samples were sent off to another lab for the RI measurements.  

11.2 Refractive Index Measurements 

The refractive index measurements were conducted at West Virginia University. 

The true identity of each sample was not disclosed. The lab was asked to take at least 4 

replicate measurements using ASTM E1967 [63] and report the replicate measurements 

for each sample.  
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11.3 Comparing Refractive Index 

There is no standard for the forensic comparison of refractive index, however 

most participants in the GIWG use a comparison interval created by the mean of the K ± 

3 ×SD. Some state a minimum SD of 0.00003 or 0.000033. One participant used a 

comparison criterion of the mean K ± 0.0001. The SD was not taken into account at all. 

Regardless of the comparison interval, if the Q mean falls within the comparison interval, 

the samples are indistinguishable.  

To compare the RI of these samples, the comparison interval of K ± 3 ×SD with a 

minimum SD of 0.00003 was used.  

11.4 Results 

The results of the RI comparisons can be seen in the last column of Table 25. 

Sample 002 inner and sample 005 outer were analyzed twice. Both duplicates were used 

in the comparison. Since the comparison interval changes depending on which sample is 

selected as the K and taking into consideration that two samples, which are included in 3 

of the pairs were ran in duplicate, there were 50 of these challenging comparisons. There 

were 12 comparisons that were distinguished by RI. However, there were instances where 

a comparison pair was distinguished when one sample was K and indistinguishable when 

the other was selected as the K. The duplicates also provided mixed results. The results 

for these types of comparison pairs were therefore called inconclusive. In total, there 

were 3 pairs (6 comparisons) of vehicles that were distinguished by RI regardless of 

which sample was used as the K.  
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 These 3 pairs of vehicles were all same make, model, and year. The VINs are 

very similar. Most of these samples did not have a readable window marking, so the 

manufacturer or the glass and date the glass was manufactured is unknown. Since most 

vehicle manufacturers have an annual contract with a glass manufacturer, it is assumed 

that the pairs selected for this study were all produced by the same manufacturer around 

the same time. It could be that during the process of turning the float glass sheets into 

laminated windshields, the heating process slightly alters the refractive index. If different 

enough, this difference in thermal history could be used to distinguish very similar glass 

samples from each other.  

If all possible pairs are considered and not just the challenging ones, there is a 

total of 1056 comparison pairs. Of these 1056 comparisons, 950 were distinguished by RI 

(~90%).  

This study shows that refractive index is still a useful tool in forensic labs. All the 

samples selected were challenging cases in which sensitive elemental tools were unable 

to detect statistical differences. The fact that some of these challenging cases were 

distinguished by RI shows that this technique still is useful in forensic laboratories.  
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Table 25 - Sample pairs that were found to be indistinguishable with LA-ICP-MS analysis used for 

refractive index study  

 
Pairs Year Make Model VIN RI Results 

1 002 Inner 

068 Outer 

2013 

2013 

Honda 

Honda 

Civic 

Civic 

2HGFG3B54DH500424 

2HGFG3B59DH501522 
Indistinguishable 

2 002 Inner 

069 Outer 

2013 

2013 

Honda 

Honda 

Civic 

Civic 

2HGFG3B54DH500424 

2HGFB2F50DH504344 
Inconclusive 

3 005 Outer 

080 Inner 

2016 

2016 

Ford 

Ford 

Mustang 

F-150 

1FA6P8CF7G5224485 

1FTEX1CF1GFA20367 
Inconclusive 

4 010 Inner 

090 Inner 

2015 

2015 

Kia 

Kia 

Sedona 

Sedona 

KNDMC5C16F6019328 

KNDMC5C14F6018761 
Indistinguishable 

5 012 Outer 

020 Inner 

2013 

2013 

Honda 

Honda 

Accord 

Accord 

1HGCT1B38DA000184 

1HGCR2F37DA011773 
Indistinguishable 

6 018 Inner 

024 Inner 

2014 

2014 

Mitsubishi 

Mitsubishi 

Mirage 

Mirage 

ML32A3HJ6EH003209 

ML32A3HJ4EH003547 
Indistinguishable 

7 018 Inner 

106 Outer 

2014 

2014 

Mitsubishi 

Mitsubishi 

Mirage 

Mirage 

ML32A3HJ6EH003209 

ML32A3HJ1EH003425 
Indistinguishable 

8 024 Inner 

106 Outer 

2014 

2014 

Mitsubishi 

Mitsubishi 

Mirage 

Mirage 

ML32A3HJ4EH003547 

ML32A3HJ1EH003425 
Indistinguishable 

9 025 Inner 

041 Inner 

2010 

2010 

Kia 

Kia 

Forte 

Forte 

KNAFW4A34A5148033 

KNAFU4A29A5143195 
Indistinguishable 

10 025 Inner 

097 Inner 

2010 

2010 

Kia 

Kia 

Forte 

Forte 

KNAFW4A34A5148033 

KNAFU4A23A5809774 
Indistinguishable 

11 028 Outer 

047 Outer 

2012 

2012 

Honda 

Honda 

Civic 

Pilot 

2HGFB2F52CH300384 

5FNYF4H41CB001552 
Indistinguishable 

12 029 Inner 

053 Inner 

2016 

2016 

Toyota 

Toyota 

Tundra 

Tundra 

5TFEY5F18GX197447 

5TFEY5F14GX199602 
Indistinguishable 

 029 Outer 

053 Inner 

2016 

2016 

Toyota 

Toyota 

Tundra 

Tundra 

5TFEY5F18GX197447 

5TFEY5F14GX199602 
Indistinguishable 

13 039 Outer 

055 Outer 

2016 

2016 

Mazda 

Mazda 

CX-3 

CX-3 

JM1DKFB72G0129070 

JM1DKFC79G0136435 
Indistinguishable 

14 041 Inner 

097 Inner 

2010 

2010 

Kia 

Kia 

Forte 

Forte 

KNAFU4A29A5143195 

KNAFU4A23A5809774 
Indistinguishable 

15 042 Inner 

185 Inner 

2014 

2014 

BMW 

BMW 

2 Series 

2 Series 

WBA1F5C58EVV98871 

WBA1F5C59EVV98894 
Inconclusive 

16 044 Inner 

129 Inner 

2016 

2016 

Nissan 

Nissan 

Maxima 

Maxima 

1N4AA6AP7GC380842 

1N4AA6AP3GC378439 
Distinguished 

17 050 Inner 

149 Inner 

2014 

2014 

Hyundai 

Hyundai 

Veloster 

Veloster 

KMHTC6AD8EU195530 

KMHTC6AD9EU195701 
Indistinguishable 

18 065 Outer 

066 Outer 

2009 

2009 

Mitsubishi 

Mitsubishi 

Galant 

Galant 

4A3AB36F49E015450 

4A3AB36F39E029145 
Indistinguishable 

19 065 Outer 

110 Outer 

2009 

2009 

Mitsubishi 

Mitsubishi 

Galant 

Galant 

4A3AB36F49E015450 

4A3AB36F39E024088 
Indistinguishable 

20 066 Outer 

110 Outer 

2009 

2009 

Mitsubishi 

Mitsubishi 

Galant 

Galant 

4A3AB36F39E029145 

4A3AB36F39E024088 
Distinguished 

21 068 Outer 

069 Outer 

2013 

2013 

Honda 

Honda 

Civic 

Civic 

2HGFG3B59DH501522 

2HGFB2F50DH504344 
Distinguished 
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CHAPTER 12. Analysis & Interpretation of Glass Conclusions 

The main goals of this project were to collect existing elemental glass databases 

and create of a new vehicle database, evaluate the current ASTM guidelines for the 

analysis and comparison of glass evidence, and asses the use of different statistical 

models for the objective and quantitative interpretation of glass evidence using a large 

user community of glass examiners named the Glass Interpretation Working Group 

(GIWG).  

Five databases were collected and a new vehicle glass database consisting of 

windshield glass from 210 different vehicles was created using LA-ICP-MS. The new 

vehicle database was used to determine a comparison criterion for comparing database 

samples to each other and to casework samples. This comparison criterion needed to 

incorporate inter-day variation since most databases are generated over a couple of years. 

The comparison criterion that was found to correctly associate duplicate pairs 92% (48/52 

pairs) of the time was a comparison interval for each element where the upper limit was 

sample 1 mean × (1 + 4 × FRSD) and the lower limit was sample 1 mean ÷ (1 + 4 × 

FRSD). If the mean of sample 2 fell within the comparison interval for all elements, the 

samples were indistinguishable. This comparison interval was selected because the end 

result, indistinguishable or distinguished, is the same regardless of which sample was 

selected as sample 1.The FRSDs were based off of the inter-day variability of two control 

glasses and the variability of each element in glasses that originate from the same source 

and different sources.  

Using this comparison criteria, the random match probability (false inclusion) of 

the collected and created databases was found to range from 0.06-0.2%. The 0.2% was 
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for the FIU vehicle database. This database contains a smaller population variation since 

it has many cars with similar years and makes. Thus it is highly likely to contain many 

glasses that were produced at the same manufacturer around the same time. When similar 

vehicles are removed, the random match probability drops to ~0.1%. Even though each 

tested database represents a snapshot of a different place and time, the probability of 

finding two glasses from different sources with the same elemental profile was found to 

consistently be ~0.1%. This is a useful observation that should be used to place a higher 

value on LA-ICP-MS elemental glass evidence. 

This comparison criterion was also used to calculate the frequency of a specific 

elemental profile in the inter-laboratory trials. The FIU vehicle glass database and a 

donated casework database were used in the frequency calculations. The use of the 

different databases provided different frequencies. All samples used in the inter-

laboratory study were part of the FIU database, thus labs should find their sample to have 

the same elemental profile as at least one sample in the database, its duplicate. When 

using the FIU database, which contains glass from very similar vehicles, it was not 

surprising to discover that some of the samples had a frequency greater than 1/333. 

However when the casework database was used, only one sample was found to be similar 

to one in the database. This sample was the Q2 in the third inter-laboratory study. It is 

advised to only calculate a frequency for a specific glass sample when there is a large 

database to work with. One forensic examiner said to only calculate a frequency when 

your database is greater than 4000 samples. Therefore, the frequency calculations are 

only used here to see if other laboratories can produce data for a sample that is found to 

be indistinguishable with the same sample in a database created by another user. If labs 
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are able to correctly associate their data with the data from other labs, it could mean that a 

single common glass database can be created. For the first inter-laboratory study, there 

were differences in the frequency of data from labs that used a different calibration 

strategy than the only used to create the database. The different calibration techniques 

caused a large variation in the concentrations determined for Mg, Fe, K, and Ti. 

However, labs that calibrated their data the same way as the database found similar 

results. In the second inter-laboratory study, all participants were told to use single-point 

calibration with FGS2 as the calibrator. This improved the results, but some laboratories 

had problematic elements, which differed from the other participants. These laboratories 

were not able to correctly associate their sample to its duplicate in the database. By the 

third inter- laboratory study, most of the problematic elements were fixed. The data from 

all of the participants were correctly associated to the duplicate in the database, and 

similar frequencies were seen when using the FIU vehicle database. Though these results 

indicate that it may be possible to combine databases intro a central repository, it may not 

be appropriate for a German casework database to be combined with a database of 

windshield glass collected in the United States. More research needs to be done. 

However, the combined database was included as an exercise in this study in order to test 

how the random match probability and frequency changes when using glass databases of 

different sizes and comprised of diverse samples. 

When evaluating the ASTM E2927 comparison criterion for comparing K and Q 

samples ran on the same day, the results of the inter-laboratory exercises suggest that the 

participating laboratories correctly associate glass samples originating from the same 

source 100% of the time (total of 57 comparisons requested) and correctly discriminate 



 179 

glass samples from different sources 100% of the time (total of 167 comparisons 

requested throughout the three exercises). This error rate does not include the results of 

the first inter-laboratory exercise because each lab used a different match criterion rather 

than the standardized ASTM match criterion.  

The inter-laboratory studies also showed how labs using a verbal scale differ in 

the significance they place on the same evidence. For example when the participants were 

told to interpret their results considering only the LA-ICP-MS analysis, some labs said 

that the evidence strongly suggests the K and Q originated from the same source while 

others said very strongly suggests. Even when all labs were given the same K and Q 

samples, found similar concentrations for the elements within these samples, and were 

given the same verbal scale to use and told to only consider LA-ICP-MS, forensic glass 

examiners still differed in what level they would place the results in. Half of the forensic 

glass examiners consider LA-ICP-MS and highly discriminating technique while the 

other half consider it to be only a discriminating technique.  

My recommendations for future studies would be to see how the random match 

probability changes when eliminating problematic elements such as Pb. This in one 

element that was discriminating some of the lab’s data from the duplicate in the database. 

It also may be possible to combine NIST612 and FGS2 calibrated databases together with 

the removal of the elements that were found to differ with calibration technique: K, Mg, 

Fe, Ti, and Mn. Also, other forensic glass examiners suggest that a database of at least 

4000 samples should be used to calculate the frequency of a specific glass. Removing 

problematic elements and combining databases would result in a database of ~2500 

samples. This new combined database could be furthers tested to see if any of the inter-
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laboratory samples are found to have a similar profile to glasses in other databases. 

Another recommendation would be to further test how well refractive index can pick up 

differences in the thermal history of glass. This tool could be used to distinguish vehicle 

glass produced at the same manufacturing plant around the same time since the glass 

from these plants needs to be heated in molds to form the vehicle windshields, and thus 

have a slightly different thermal history. Lastly, since the new comparison criterion 

needed to incorporate inter-day variation, there were some samples from different 

vehicles that were found to be indistinguishable. If these samples would have been 

analyzed on the same day and compared with the ASTM E2927 comparison criterion 

with a FRSD of 3%, would they still be indistinguishable or are there differences that can 

be detected. 
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CHAPTER 13. Overall Conclusions 

The first study focused on the development of a laser based method for the 

elemental analysis of solid milk powder. A variety of sample preparations and calibration 

strategies were tested and evaluated using a reference milk powder IAEA-153. These 

sample preparations included: spreading milk powder on tape, dried discs, dried spots, 

and pellets. The calibration strategies tested included external calibration curves, standard 

addition curves, and single point calibration. The best sample preparation method was a 

standard addition method that involved creating pellets. This method yields accurate 

elemental concentrations for Na, Mg, Ca, Rb, and Sr without the need for acid digestion. 

Precision of 10% RSD or better and a bias of 10% were achieved for most elements. 

The accuracy of this method was further evaluated by comparing the LA-ICP-MS 

results of 13 samples to those obtained from a primary technique, k0-INAA. The 

comparison of LA-ICP-MS to k0-INAA showed overlap of the 95% confidence intervals 

for all comparison samples. Thus showing that the LA-ICP-MS method performs well for 

a variety of different milk samples. 

As a preliminary study on combining datasets from different labs, five 

laboratories were asked to analyze IAEA-153 and submit their data. Ca and Zn were 

problematic elements and their concentration differed between participants and produced 

a high bias for some laboratories. Thus, these elements were excluded from the menu. 

Na, Mg, Sr, and Rb all performed well between the participants, which suggests that 

database creation is a viable option for select elements.  

The data for 68 authentic milk powder samples representing five different 

countries (Argentina, Russia, Singapore, Slovenia, and the United States) was collected 
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and used as a preliminary database. The data submitted was limited to the following 

elements: Na, Mg, Rb, and Sr. Principle component analysis (PCA) showed different 

groupings for the United States, Argentina, Singapore, and Slovenia. However, the 

collected data represented a few localized areas and does not account for the total 

variation within every country. Samples collected from a large geographic area within 

Russia produces an expected large variation in the elemental profiles and therefore the 

limited element menu was not able to distinguish the Russian milk samples from those 

for Argentina, the United States, and Slovenia. The goal of being able to determine if 

commercial milk could have originated from a specific country has not been met. 

However, the few samples from Singapore appear to be very different from the samples 

from the drying facilities in the United States and Slovenia, and from the samples from 

Russia. If milk produced in Singapore was labeled as being made in the Russia, the 

elemental profile of that milk would not line up with that the current profile found in 

southern Russia. More samples would need be analyzed for each county to better account 

for the within country variation. The addition of isotope ratios, additional trace elements, 

or another discriminating factor may help in further distinguishing one country from 

another thus making it easier to determine if an unknown milk could have originated 

from a specific country.  

The second study focused on the use of trace elemental databases for the objective 

interpretation of forensic glass evidence. The main goals of this study were to collect 

existing elemental glass databases and create a new vehicle glass database, evaluate the 

current ASTM guidelines for the analysis and comparison of glass evidence, and assess 

the use of different statistical models for the objective and quantitative interpretation of 
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glass evidence using a large user community of glass examiners named the Glass 

Interpretation Working Group (GIWG).  

 Five glass databases were collected and a new vehicle glass database composed of 

420 vehicle windshield samples collected from 210 different vehicles representing 

manufacturing dates between 2004-2017 and 26 vehicle manufacturers was created.  

 The new database, and data from the EAWG and GIWG were used to evaluate the 

ASTM E2927 comparison criterion and test the performance of the equivalence test. The 

inter-laboratory data from the EAWG contains some glass comparisons that are examples 

of worst-case scenarios (produced at the same manufacturing plant only weeks apart). 

Using this data, the equivalence test performed very poorly with a false exclusion error 

rate that ranged from 37-100% depending on how theta was calculated vs the false 

exclusion error rate of 0-28% for the ASTM E2927 and ASTM E2330 comparison 

criterion. The number of false inclusions for the equivalence test was also larger than the 

error rate for the ASTM comparison criterion (0-12% vs 0-5%).  

 Using the new FIU vehicle database the false exclusion rate of the ASTM E2927 

comparison criterion with a FRSD of 3% for all elements was calculated. Fragments were 

split up as K and Q samples and compared to each other. The average false exclusion 

error rate was found to be 1.7% with some elements such as Pb flagged as problematic. 

ASTM E2927 states that a minimum FRSD of at least 3% should be used. Therefore, it is 

possible to use a larger FRSD for elements that have been shown to vary between 

fragments. Each lab prior to performing casework should validate their FRSDs and 

element menu.  
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 Also the data from second and third inter-laboratory studies of the GIWG were 

used to assess the performance of ASTM E2927. The results showed that even with a 

FRSD of 3% for all elements, all laboratories were able to correctly associate samples 

that originated from the same source (total of 57 comparisons requested) and exclude 

samples that originated from different sources (total of 167 comparisons requested 

throughout the exercises) for all comparisons. This error rate does not include the results 

of the first inter-laboratory exercise because each lab used a different match criterion 

rather than the standardized ASTM match criterion. 

The ASTM E2927 comparison criterion performs great when comparing a K and 

Q that were analyzed on the same day. However, this comparison criterion is not 

designed to compare samples that were analyzed days, months, or years apart. Therefore, 

the new vehicle database was used to determine a comparison criterion for comparing 

database samples to each other and to casework samples. Daily quality control samples as 

well as 52 duplicate samples analyzed months apart were assessed to determine the inter-

day variability of the database and evaluate different approaches to incorporate the inter-

day variation into a comparison criterion.  

The comparison criterion that was found to correctly associate the duplicate pairs 

98% (51/52 pairs) of the time was a comparison interval for each element where the 

upper limit was sample 1 mean × (1 + 4 × FRSD) and the lower limit was sample 1 mean 

÷ (1 + 4 × FRSD). If the mean of sample 2 fell within the comparison interval for all 

elements, the samples were indistinguishable. This comparison interval was selected 

because the end result, indistinguishable or distinguished, is the same regardless of which 

sample was selected as sample 1.The FRSDs were based off of the inter-day variability of 
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two control glasses and the variability of each element in glasses that originate from the 

same source and different sources. There were some issues with improper calibration of 

the detector for Ce, so the seven samples in the new database with a concentration above 

2000 ppm were flagged and the Ce of these samples was not used for the comparisons.  

Using this new comparison criteria, the random match probability (false 

inclusion) of the collected and created databases was found to range from 0.06-0.2%. The 

0.2% was for the FIU vehicle database. This database contains a smaller population 

variation since it has many cars with similar years and makes. Thus it is highly likely to 

contain many glasses that were produced at the same manufacturer around the same time. 

Removing the indistinguishable pairs that are known to come from the same car (inner 

and outer panes) and cars that are the same make and year, the false inclusion error rate 

decreased to 0.1%. The fact that most of the collected databases (the exception being a 

very small database of ~40 samples) that represent different times and locations have a 

random match probability of ~0.1 % should be noted. This means that 1 out of 1000 

comparisons will result in a false inclusions. This random match probability gives an 

indication of how powerful a tool LA-ICP-MS is for glass analysis. Also, this random 

match probability could even be reduced further if forensic laboratories incorporate 

thickness measurements and/or RI as part of their analytical scheme. The usefulness of RI 

to distinguish cars with indistinguishable elemental profiles was tested. A small sample 

set of samples in which elemental analysis using LA-ICP-MS was not able to detect 

differences was selected. Since there is currently no standard for the forensic comparison 

of refractive index, the comparison criterion used by some of the participants in the 

GIWG was used to compare samples. This criterion was a comparison interval created by 
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the mean of the K ± 3 ×SD. Some participants state a minimum SD of 0.00003. If the Q 

mean falls within the comparison interval, the samples are indistinguishable. Though 

there were some mixed results in which switching the K and Q samples caused the pair to 

go from indistinguishable to distinguished, there were some pairs that were distinguished 

both ways by RI. This small study shows that refractive index is still a useful tool in 

forensic labs. All the samples selected were challenging cases in which sensitive 

elemental tools were unable to detect statistical differences.  

This comparison criterion was also used to calculate the frequency of a specific 

elemental profile in the GIWG inter-laboratory trials. The new FIU vehicle glass database 

and a donated casework database were used in the frequency calculations. The use of the 

different databases provided different frequencies. All samples used in the inter-

laboratory study were part of the FIU database, thus labs should find their sample to have 

the same elemental profile as at least one sample in the database, its duplicate. When 

using the FIU database, which contains glass from very similar vehicles, it was not 

surprising to discover that some of the samples had a frequency greater than 1/333. 

However when the casework database was used, only one sample was found to be similar 

to one in the database. This sample was the Q2 in the third inter-laboratory study. It is 

advised to only calculate a frequency for a specific glass sample when there is a large 

database to work with. One forensic examiner said to only calculate a frequency when 

your database is greater than 4000 samples. Therefore, the frequency calculations are 

only used here to see if other laboratories can produce data for a sample that is found to 

be indistinguishable with the same sample in a database created by another user. If labs 
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are able to correctly associate their data with the data from other labs, it could mean that a 

single common glass database can be created.  

 For the first inter-laboratory study, there were differences in the frequency of data 

from labs that used a different calibration strategy than the database. The different 

calibration technique caused a large variation in the concentrations determined for Mg, 

Fe, K, and Ti. However, labs that calibrated their data the same way as the database 

found similar results. In the second inter-laboratory study, all participants were told to 

use single-point calibration with FGS2 as the calibrator. This improved the results, but 

some laboratories had problematic elements, which differed from the other participants. 

These laboratories were not able to correctly associate their sample to its duplicate in the 

database. By the third inter- laboratory study, most of the problematic elements were 

fixed. The data from all of the participants were correctly associated to the duplicate in 

the database, and similar frequencies were seen when using the FIU vehicle database. 

Though these results indicate that it may be possible to combine databases intro a central 

repository, it may not be appropriate for a European casework database to be combined 

with a database of windshield glass collected in the United States. More research needs to 

be done. However, the combined database was included as an exercise in this study in 

order to test how the random match probability and frequency changes when using glass 

databases of different sizes and comprised of diverse samples. 

The inter-laboratory study indicates that the majority of forensic laboratories use a 

comparison criterion to compare a K and Q sample. Of all participating laboratories, two 

use a database to calculate a frequency and/or the random match probability and only one 

uses a likelihood ratio (score) for casework. Many of the labs used their own verbal scale, 
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which sometimes resulted in different strengths for the evidence. Even when a generic 

verbal scale was supplied to the participants in the third inter-laboratory study, 

differences were still seen. Half of the respondents said that elemental analysis using LA-

ICP-MS for the samples in the third study were highly discriminating while the other half 

said it was only discriminating. Seven forensic laboratories responded to a survey and, 

when asked what interpretation tools are appropriate for LA-ICP-MS analysis of glass 

(select all that apply), four participants selected a verbal scale, four selected a frequency 

and/or random match probability, two selected a LR, and three selected a match criterion 

combined with a LR. The results of this research suggest that the use of databases adds 

additional information that can be used to assess the significance of glass comparisons. 

 During both studies, I had the opportunity to interact with two different groups of 

researchers. The group involved in the first study all came from research laboratories and 

were just starting to develop methods to answer their research questions, which differed 

by participant. Some participants were more focused on detecting organic adulterants 

added to milk. Others were focused on elemental analysis to detect diluted whole milk 

and provenancing milk to a specific region or country. The instrumentation available to 

each participant varied, however each participant was willing to help donate samples and 

run analyses for those who needed assistance answering their research questions. Besides 

the development of a LA-ICP-MS method, my other major contributions to this group 

were evaluating the quality of data for those performing elemental analysis by comparing 

their concentrations for IAEA-153 and IAEA-155 to the reported values and helping the 

ICP-MS labs work towards a common method for digestion and analysis. My 

contribution assisted the participants by showing them their problematic elements and the 
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importance of running a daily control sample. I also talked with them about steps in their 

sample preparation and analysis method that may be unnecessary and adding sources of 

error. This group of researchers was willing to incorporate changes to enhance the 

accuracy and precision of their methods.  

 The group of researchers in the second study mostly came from forensic 

laboratories. The methods of analyzing glass fragments, comparing the K and Q, and 

interpreting the results were well defined within each laboratory. Though there is a 

standardized method for LA-ICP-MS analysis of soda-lime glass (ASTM E2927), not all 

laboratories follow this method and some of these laboratories were resistant to 

incorporate changes to their methods. Working with this group helped me to realize the 

amount of work that is involved with incorporating something new into forensic 

laboratories. Each laboratory was comfortable with the way they were doing things and 

hesitant to do anything that differed from their SOP. I was able to make some progress 

with the participants such as showing them that the calibration technique and choice of 

standard reference material are important, and when all labs used FGS2 to calibrate, I was 

able to show the participants how they compared with the other laboratories and 

identified problematic elements. I also was able to introduce some additional statistical 

tools that could be used to aid in interpreting results. I was able to show the laboratories 

how their interpretation of glass evidence differed in strength from other participants and 

how a standardized interpretation needs to be developed and incorporated into the report 

for forensic glass evidence. Most of my contribution to this group was providing 

evidence that forensic labs around the world differed in how they were evaluating glass 
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evidence and interpreting results and making small steps to introduce them to the idea of 

a standardized method for the evaluation and interpretation of glass evidence.  
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APPENDIX 

1. M&M Glass Samples 

# VIN Year Make Model 

1 4T1BE32K94U272646 2004 Toyota Camry 

2 2HGFG3B54DH500424 2013 Honda Civic 

3 4JGCB65E18A071448 2008 Mercedes R350 

4 2HGFG12629H527108 2009 Honda Civic 

5 1FA6P8CF7G5224485 2016 Ford Mustang 

6 1YVHP80C185M32614 2008 Mazda 6 

7 WMWXP5C59G3B76438 2016 Mini Cooper 

8 JTDKTUD35CD500860 2012 Toyota Yaris 

9 JTDZN3EU1C3024669 2012 Toyota Prius v 

10 KNDMC5C16F6019328 2015 Kia Sedona 

11 4T1BK1EB5DU003862 2013 Toyota Avalon 

12 1HGCT1B38DA000184 2013 Honda Accord 

13 JM3KE4BE0D0100445 2013 Mazda CX-5 

14 3N1CN7AP5CL809250 2012 Nissan Versa 

15 3TMJU4GN0AM093246 2010 Toyota Tacoma 

16 WAUAFAFC6CN003676 2012 Audi A6 

17 JTKJF5C70B3001720 2011 Scion tC 

18 ML32A3HJ6EH003209 2014 Mitsubishi Mirage 

19 WVWJK73C99P049019 2009 Volkswagen Passat 

20 1HGCR2F37DA011773 2013 Honda Accord 

21 2HGFG12607H511521 2007 Honda Civic 

22 4JGCB65E59A094913 2009 Mercedes R-Class 

23 WBAVL1C56DVR91057 2013 BMW X1 

24 ML32A3HJ4EH003547 2014 Mitsubishi Mirage 

25 KNAFW4A34A5148033 2010 Kia Forte 

26 WAUGNAF49HN009162 2017 Audi A4 

27 KNADM4A34D6227438 2013 Kia Rio 

28 2HGFB2F52CH300384 2012 Honda Civic 

29 5TFEY5F18GX197447 2016 Toyota Tundra 

30 JM1BL1K53B1445800 2011 Mazda 3 

31 5NPDH4AEXBH019866 2011 Hyundai Elantra 

32 KNAFX4A65E5055079 2014 Kia Forte 

33 JF1ZNAA11D2703970 2013 Scion FR-S 

34 2T1KU40E69C102910 2009 Toyota Matrix 

35 JTMBD33V065032593 2006 Toyota RAV4 

36 5TFRM5F14BX023073 2011 Toyota Tundra 

37 5TDZA23C55S339489 2005 Toyota Sienna 

38 KNADM4A37D6178283 2013 Kia Rio 

39 JM1DKFB72G0129070 2016 Mazda CX-3 

40 WA1EFCFS2GR000662 2016 Audi Q3 

41 KNAFU4A29A5143195 2010 Kia Forte 

42 WBA1F5C58EVV98871 2014 BMW 2 Series 

43 3MYDLBZV8GY100139 2016 Scion iA 

44 1N4AA6AP7GC380842 2016 Nissan Maxima 

45 4T1BK36B96U135066 2006 Toyota Avalon 

46 WBA3A9C59CF270171 2012 BMW 3 Series 

47 5FNYF4H41CB001552 2012 Honda Pilot 

48 5N1AZ2MH3FN202392 2015 Nissan Murano 

49 JHMGE88209S009320 2009 Honda Fit 

50 KMHTC6AD8EU195530 2014 Hyundai Veloster 

51 JM1CW2BL7E0166862 2014 Mazda 5 
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# VIN Year Make Model 

     

52 2HGFC4B51GH301966 2016 Honda Civic 

53 5TFEY5F14GX199602 2016 Toyota Tundra 

54 JM1DKFC70G0136470 2016 Mazda CX-3 

55 JM1DKFC79G0136435 2016 Mazda CX-3 

56 1G1ZB5EB5A4129282 2010 Chevrolet Malibu 

57 1VWAT7A37GC002279 2016 Volkswagen Passat 

58 JTDKARFUXG3001654 2016 Toyota Prius 

59 JA32U2FU0EU010058 2014 Mitsubishi Lancer 

60 1G1ZB5EB0AF210940 2010 Chevrolet Malibu 

61 3FA6P08D7HR103611 2017 Ford Fusion 

62 2LMTJ8KRXGBL39605 2016 Lincoln MKX 

63 KMHD74LF5HU166048 2017 Hyundai Elantra 

64 4A3AB36FX9E043222 2009 Mitsubishi Galant 

65 4A3AB36F49E015450 2009 Mitsubishi Galant 

66 4A3AB36F39E029145 2009 Mitsubishi Galant 

67 2C3CCAAGXFH842181 2015 Chrysler 300 

68 2HGFG3B59DH501522 2013 Honda Civic 

69 2HGFB2F50DH504344 2013 Honda Civic 

70 JHMZF1D43BS008964 2011 Honda CR-Z 

71 5J6RM4H35CL072875 2012 Honda CR-Z 

72 JHMZF1D48BS007552 2011 Honda CR-Z 

73 2HKRM4H38FH627963 2015 Honda CR-Z 

74 2HGFC2F52GH504878 2016 Honda Civic 

75 5J6RM4H34FL000599 2015 Honda CR-Z 

76 3CZRU6H39GM717785 2016 Honda HR-V 

77 3HGGK5H58FM712771 2015 Honda Fit 

78 2HGFG21506H707035 2006 Honda Civic 

79 1FA6P8CF3G5236374 2016 Ford Mustang 

80 1FTEX1CF1GFA20367 2016 Ford F-150 

81 1FTEX1CF7FFB30998 2015 Ford F-150 

82 2FMTK4J85FBB64687 2015 Ford Edge 

83 KL4CJFSB7FB044306 2015 Buick Encore 

84 1LNHL9DK9EG608524 2014 Lincoln MKS 

85 1G1RE6E47EU140143 2014 Chevrolet Volt 

86 1GCRCREC3GZ171577 2016 Chevrolet Silverado 1500 

87 1G1ZC5E0XAF215588 2010 Chevrolet Malibu 

88 YS3FD79Y876001896 2007 Saab 9-3 

89 1G1JC5SH2F4177056 2015 Chevrolet Sonic 

90 KNDMC5C14F6018761 2015 Kia Sedona 

91 5XYPHDA55GG004235 2016 Kia Sorento 

92 KNDJN2A23F7115161 2015 Kia Soul 

93 KNAFK4A61F5256185 2015 Kia Forte 

94 KNDJT2A69C7365668 2012 Kia Soul 

95 KNADN5A31C6064782 2012 Kia Rio 

96 KNADM4A35D6250775 2013 Kia Rio 

97 KNAFU4A23A5809774 2010 Kia Forte 

98 KNAFU4A20A5061193 2010 Kia Forte 

99 KNAFU4A24A5196726 2010 Kia Forte 

100 KNDUP131646544318 2004 Kia Sedona 

101 KNDJC735685790186 2008 Kia Sorento 

102 KNDMB233466028628 2006 Kia Sedona 

103 KNDJC733855460026 2005 Kia Sorento 

104 1C3CCCAB4FN500832 2015 Chrysler 200 

105 JA4AZ3A30EZ000940 2014 Mitsubishi Outlander 

106 ML32A3HJ1EH003425 2014 Mitsubishi Mirage 

107 2B3KA43DX9H576961 2009 Dodge Charger 
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# VIN Year Make Model 

108 1C4RDJAG4FC709700 2015 Dodge Durango 

109 JA3AU26U88U042188 2008 Mitsubishi Lancer 

110 4A3AB36F39E024088 2009 Mitsubishi Galant 

111 4A3AB36F29E039116 2009 Mitsubishi Galant 

112 JA4AR4AU9CZ000785 2012 Mitsubishi Outlander 

113 JM1BM1L7XE1140067 2014 Mazda 3 

114 JM1DE1KY7D0166100 2014 Mazda 2 

115 JM1CW2BL1E0169143 2015 Mazda 5 

116 1FADP5AU6EL509856 2014 Ford C-Max Hybrid 

117 JM1DE1HYXB0105280 2011 Mazda 2 

118 JM1BK323761529766 2006 Mazda 3 

119 JM1GJ1V51E1101202 2014 Mazda 6 

120 1YVHZ8DH8C5M40525 2012 Mazda 6 

121 1N4AL2AP0AN450308 2010 Nissan Altima 

122 KMHDU4AD8AU171938 2010 Hyundai Elantra 

123 JS2YC415585103206 2008 Suzuki SX4 

124 JS2RE9A32A6101695 2010 Suzuki Kizashi 

125 JS2RE9A36C6101041 2012 Suzuki Kizashi 

126 1N4AL3AP5DC153542 2013 Nissan Altima 

127 1N4AL11D46N373837 2006 Nissan Altima 

128 1N4AL3AP0GC123773 2016 Nissan Altima 

129 1N4AA6AP3GC378439 2016 Nissan Maxima 

130 3N1BC13E57L352925 2007 Nissan Versa 

131 JN8AF5MR1BT006565 2011 Nissan Juke 

132 JN8AE2KP1E9107979 2014 Nissan Quest 

133 5N1AZ2MH8FN203215 2015 Nissan Murano 

134 5N1AR2MM0FC604332 2015 Nissan Pathfinder 

135 3N1AB61E78L637820 2008 Nissan Sentra 

136 3N1CN7AP8EL809326 2014 Nissan Versa 

137 JN8AF5MR6ET354981 2014 Nissan Juke 

138 3N1AB7AP6FY215175 2015 Nissan Sentra 

139 1N4AZ0CP2EC330348 2014 Nissan Leaf 

140 3N1AB61EX8L637586 2008 Nissan Sentra 

141 JN8AZ28R59T100782 2009 Nissan Cube 

142 1N4AL21E49C197032 2009 Nissan Altima 

143 WAUAFAFL0CA118555 2012 Audi A4 

144 WVWLK73C87E003165 2007 Volkswagen Passat 

145 KM8SMDHF5FU099649 2015 Hyundai Santa Fe 

146 KM8JUCAC9AU071268 2010 Hyundai Tucson 

147 5NPEU46F36H004326 2006 Hyundai Sonata 

148 5NPE24AA4GH265905 2016 Hyundai Sonata 

149 KMHTC6AD9EU195701 2014 Hyundai Veloster 

150 KM8J3CA44GU039705 2016 Hyundai Tucson 

151 KMHCT4AE5DU423849 2013 Hyundai Accent 

152 KMHGN4JE1FU012205 2015 Hyundai Genesis 

153 KMHGC46E59U043461 2009 Hyundai Genesis 

154 5NPE24AA7GH327619 2016 Hyundai Sonata 

155 KM8JN72D26U380194 2006 Hyundai Tucson 

156 5NPE24AF0FH005401 2015 Hyundai Sonata 

157 WAUFFAFC6GN005150 2016 Audi A6 

158 1VWAP7A32CC062775 2012 Volkswagen Passat 

159 WVGBV3AX7DW592597 2013 Volkswagen Tiguan 

160 3VW2K7AJ4CM385273 2012 Volkswagen Jetta 

161 WVGBV75N99W000785 2009 Volkswagen Tiguan 

162 3VWJP7AT2DM675477 2013 Volkswagen Beetle 

163 JN1DV6AP2CM811431 2012 Infiniti G 

164 3FAHP06Z17R191545 2007 Ford Fusion 
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# VIN Year Make Model 

165 JH4KB2F56AC000729 2010 Acura RL 

166 19UUB2F33FA005996 2015 Acura TLX 

167 19UUB2F75FA001855 2015 Acura TLX 

168 5J8TB4H34GL002597 2016 Acura RDX 

169 2LMTJ8LR7GBL47532 2016 Lincoln MKX 

170 19UUA8F23CA021785 2012 Acura TL 

171 19UUA8F20CA012719 2012 Acura TL 

172 JH4CU2F44CC004593 2012 Acura TSX 

173 JH4KC1F38EC002509 2014 Acura RLX 

174 YV1MK672X92146049 2009 Volvo C30 

175 YV4982DZ2A2058523 2010 Volvo XC60 

176 YV1MC68267J021595 2007 Volvo C70 

177 YV1622FS3C2037006 2012 Volvo S60 

178 YV4CZ592361284695 2006 Volvo XC90 

179 YV1622FS1C2087628 2012 Volvo S60 

180 YV1622FS0C2102782 2012 Volvo S60 

181 YV4952CZ9E1684771 2014 Volvo XC90 

182 YV1952AS0E1179656 2014 Volvo S80 

183 WBA3A5C55CF259029 2012 BMW 3 Series 

184 WMWXM5C55ET936691 2014 Mini Cooper 

185 WBA1F5C59EVV98894 2014 BMW 2 Series 

186 WBA5B1C52ED484411 2014 BMW 5 Series 

187 WBAVL1C58DVR88063 2013 BMW X1 

188 WMWZC3C52BWH97939 2011 Mini Cooper Countryman 

189 WDDGF4HB6DR283277 2013 Mercedes C Class 

190 WDDGF4HB4CR213372 2012 Mercedes C Class 

191 5TFRY5F12FX187772 2015 Toyota Tundra 

192 JTEBU5JR5E5155284 2014 Toyota 4Runner 

193 JF1GD75647G505362 2007 Subaru Impreza 

194 JF2SH6AC4AH737008 2010 Subaru Forester 

195 JF1GD67656H504575 2006 Subaru Impreza 

196 4S3BNAA61F3003502 2015 Subaru Legacy 

197 JF1GE61659H515022 2009 Subaru Impreza 

198 4S4WX82C864430559 2009 Subaru B9 Tribeca 

199 JF2SJADC7EH400163 2014 Subaru Forester 

200 4S3BNAA69F3003523 2015 Subaru Legacy 

201 JF1GE61658H503418 2008 Subaru Impreza 

202 JF2SJAAC0EH409856 2014 Subaru Forester 

203 JF2SH61699H704494 2009 Subaru Forester 

204 4S3BMCA65C3032608 2012 Subaru Legacy 

205 JF1GH61699H816786 2009 Subaru Impreza 

206 JF1GPAA63EH203000 2014 Subaru Impreza 

207 3C4PDDBG3FT598049 2015 Dodge Journey 

208 ZACCJBAT1FPC09734 2015 Jeep Renegade 

209 ZACCJBAT5FPC27590 2015 Jeep Renegade 

210 2C3CDZBT9GH108611 2016 Dodge Challenger 
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2. M&M Database Control Charts for FGS1 
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3. Thickness Measurements 

 

Sample Thickness (mm) 

001.2 Inner 2.07 

001.2 Outer 2.07 

002.1 Inner 1.90 

002.1 Outer 2.04 

003.1 Inner 2.20 

003.1 Outer 2.10 

004.1 Inner 2.03 

004.1 Outer 2.10 

005.1 Inner 1.94 

005.1 Outer 1.94 

006.1 Inner 2.10 

006.1 Outer 2.09 

007.1 Inner 1.76 

007.1 Outer 2.04 

008.1 Inner 1.84 

008.1 Outer 2.01 

009.1 Inner 1.80 

009.1 Outer 1.95 

010.1 Inner 2.06 

010.1 Outer 2.05 

011.1 Inner 1.85 

011.1 Outer 1.99 

012.1 Inner 2.04 

012.1 Outer 2.00 

013.1 Inner 1.93 

013.1 Outer 2.02 

014.1 Inner 2.11 

014.1 Outer 2.18 

015.1 Inner 2.25 

015.1 Outer 2.25 

016.1 Inner 1.60 

016.1 Outer 2.11 

017.1 Inner 2.04 

017.1 Outer 2.02 

018.1 Inner 2.06 

018.1 Outer 2.07 

019.1 Inner 1.64 

019.1 Outer 2.07 

020.1 Inner 2.02 

Sample Thickness (mm) 

020.1 Outer 2.03 

021.1 Inner 2.11 

021.1 Outer 2.15 

022.3 Inner 2.20 

022.3 Outer 2.12 

023.1 Inner 1.57 

023.1 Outer 2.10 

024.2 Inner 2.09 

024.2 Outer 2.10 

025.1 Inner 2.11 

025.1 Outer 2.10 

026.1 Inner 1.63 

026.1 Outer 2.03 

027.1 Inner 1.80 

027.1 Outer 2.06 

028.1 Inner 1.85 

028.1 Outer 2.06 

029.1 Inner 2.26 

029.1 Outer 2.25 

030.1 Inner 2.03 

030.1 Outer 2.06 

031.1 Inner 2.07 

031.1 Outer 2.05 

032.1 Inner 2.10 

032.1 Outer 2.08 

033.3 Inner 2.00 

033.3 Outer 2.01 

034.3 Inner 2.01 

034.3 Outer 2.09 

035.1 Inner 2.09 

035.1 Outer 2.07 

036.1 Inner 2.19 

036.1 Outer 2.26 

037.1 Inner 2.00 

037.1 Outer 2.09 

038.1 Inner 1.84 

038.1 Outer 2.09 

039.1 Inner 1.82 

039.1 Outer 2.03 
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Sample Thickness (mm) 

040.1 Inner 1.63 

040.1 Outer 2.03 

041.1 Inner 2.09 

041.1 Outer 2.08 

042.3 Inner 1.63 

042.3 Outer 2.17 

043.1 Inner 1.59 

043.1 Outer 2.13 

044.1 Inner 2.05 

044.1 Outer 2.15 

045.1 Inner 2.09 

045.1 Outer 2.11 

046.1 Inner 1.63 

046.1 Outer 2.08 

047.1 Inner 1.87 

047.1 Outer 2.04 

048.1 Inner 2.02 

048.1 Outer 1.95 

049.1 Inner 1.84 

049.1 Outer 1.99 

050.3 Inner 2.10 

050.3 Outer 2.09 

051.1 Inner 1.96 

051.1 Outer 1.95 

052.2 Inner 1.85 

052.2 Outer 2.05 

053.3 Inner 2.25 

053.3 Outer 2.23 

054.1 Inner 2.04 

054.1 Outer 1.83 

055.1 Inner 1.85 

055.1 Outer 2.01 

056.1 Inner 2.25 

056.1 Outer 2.24 

057.2 Inner 2.11 

057.2 Outer 2.08 

058.2 Inner 1.98 

058.2 Outer 1.62 

059.1 Inner 1.95 

059.1 Outer 1.95 

060.3 Inner 2.26 

060.3 Outer 2.23 

061.1 Inner 2.11 

Sample Thickness (mm) 

061.1 Outer 2.12 

062.3 Inner 2.22 

062.3 Outer 2.09 

063.2 Inner 2.09 

063.2 Outer 2.09 

064.2 Inner 2.00 

064.2 Outer 2.27 

065.2 Inner 2.01 

065.2 Outer 2.29 

066.3 Inner 2.05 

066.3 Outer 2.27 

067.1 Inner 2.27 

067.1 Outer 2.26 

068.2 Inner 1.89 

068.2 Outer 2.06 

069.1 Inner 2.07 

069.1 Outer 1.90 

070.1 Inner 2.03 

070.1 Outer 2.09 

071.1 Inner 2.05 

071.1 Outer 2.05 

072.3 Inner 2.04 

072.3 Outer 2.10 

073.1 Inner 2.00 

073.1 Outer 2.00 

074.1 Inner 1.80 

074.1 Outer 2.05 

075.3 Inner 2.10 

075.3 Outer 2.09 

076.1 Inner 1.63 

076.1 Outer 2.12 

077.1 Inner 1.88 

077.1 Outer 2.05 

078.1 Inner 2.10 

078.1 Outer 2.02 

079.1 Inner 1.96 

079.1 Outer 1.96 

080.1 Inner 2.18 

080.1 Outer 2.21 

081.1 Inner 2.22 

081.1 Outer 2.23 

082.1 Inner 2.11 

082.1 Outer 2.12 
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Sample Thickness (mm) 

083.1 Inner 2.08 

083.1 Outer 2.09 

084.1 Inner 2.24 

084.1 Outer 2.23 

085.1 Inner 2.04 

085.1 Outer 2.02 

086.1 Inner 2.30 

086.1 Outer 2.31 

087.1 Inner 2.24 

087.1 Outer 2.24 

088.1 Inner 2.10 

088.1 Outer 2.63 

089.1 Inner 2.02 

089.1 Outer 2.02 

090.1 Inner 2.08 

090.1 Outer 2.14 

091.1 Inner 2.06 

091.1 Outer 2.07 

092.1 Inner 2.06 

092.1 Outer 2.07 

093.1 Inner 2.10 

093.1 Outer 2.06 

094.1 Inner 2.05 

094.1 Outer 2.07 

095.1 Inner 1.84 

095.1 Outer 2.10 

096.1 Inner 1.81 

096.1 Outer 2.08 

097.1 Inner 2.07 

097.1 Outer 2.11 

098.1 Inner 2.06 

098.1 Outer 2.11 

099.1 Inner 2.07 

099.1 Outer 2.12 

100.1 Inner 2.11 

100.1 Outer 2.21 

101.1 Inner 2.11 

101.1 Outer 2.12 

102.1 Inner 2.11 

102.1 Outer 2.12 

103.1 Inner 2.09 

103.1 Outer 2.06 

104.1 Inner 2.04 

Sample Thickness (mm) 

104.1 Outer 2.03 

105.1 Inner 1.97 

105.1 Outer 2.04 

106.1 Inner 2.02 

106.1 Outer 2.06 

107.1 Inner 2.25 

107.1 Outer 2.22 

108.1 Inner 2.09 

108.1 Outer 2.09 

109.1 Inner 2.06 

109.1 Outer 2.05 

110.1 Inner 2.04 

110.1 Outer 2.24 

111.1 Inner 2.26 

111.1 Outer 2.03 

112.1 Inner 2.00 

112.1 Outer 2.03 

113.1 Inner 1.95 

113.1 Outer 1.93 

114.1 Inner 2.00 

114.1 Outer 2.00 

115.1 Inner 2.01 

115.1 Outer 2.00 

116.1 Inner 2.13 

116.1 Outer 2.12 

117.1 Inner 1.95 

117.1 Outer 1.98 

118.1 Inner 1.94 

118.1 Outer 1.93 

119.1 Inner 1.90 

119.1 Outer 2.04 

120.1 Inner 2.16 

120.1 Outer 2.16 

121.1 Inner 1.99 

121.1 Outer 2.00 

122.1 Inner 1.82 

122.1 Outer 2.08 

123.1 Inner 2.01 

123.1 Outer 2.05 

124.1 Inner 2.03 

124.1 Outer 2.03 

125.1 Inner 1.99 

125.1 Outer 1.98 
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Sample Thickness (mm) 

126.1 Inner 1.99 

126.1 Outer 1.99 

127.1 Inner 2.09 

127.1 Outer 2.11 

128.1 Inner 2.02 

128.1 Outer 2.01 

129.1 Inner 2.06 

129.1 Outer 2.08 

130.1 Inner 2.13 

130.1 Outer 2.07 

131.1 Inner 1.93 

131.1 Outer 2.10 

132.1 Inner 1.95 

132.1 Outer 1.95 

133.1 Inner 1.98 

133.1 Outer 1.97 

134.1 Inner 2.04 

134.1 Outer 1.95 

135.1 Inner 2.03 

135.1 Outer 2.04 

136.1 Inner 2.12 

136.1 Outer 2.12 

137.1 Inner 1.99 

137.1 Outer 2.00 

138.1 Inner 2.13 

138.1 Outer 2.10 

139.1 Inner 2.00 

139.1 Outer 2.00 

140.1 Inner 2.02 

140.1 Outer 2.00 

141.1 Inner 1.75 

141.1 Outer 1.96 

142.1 Inner 2.14 

142.1 Outer 2.14 

143.1 Inner 1.61 

143.1 Outer 2.11 

144.1 Inner 2.01 

144.1 Outer 2.03 

145.1 Inner 1.67 

145.1 Outer 2.06 

146.1 Inner 2.05 

146.1 Outer 2.05 

147.1 Inner 2.11 

Sample Thickness (mm) 

147.1 Outer 2.12 

148.1 Inner 2.05 

148.1 Outer 2.06 

149.1 Inner 2.11 

149.1 Outer 2.10 

150.1 Inner 1.63 

150.1 Outer 2.08 

151.1 Inner 2.07 

151.1 Outer 2.06 

152.1 Inner 1.81 

152.1 Outer 2.09 

153.1 Inner 1.84 

153.1 Outer 2.07 

154.1 Inner 2.04 

154.1 Outer 2.07 

155.1 Inner 2.10 

155.1 Outer 2.14 

156.1 Inner 2.06 

156.1 Outer 2.07 

157.1 Inner 1.63 

157.1 Outer 2.11 

158.1 Inner 2.06 

158.1 Outer 2.09 

159.1 Inner 1.64 

159.1 Outer 2.05 

160.1 Inner 1.61 

160.1 Outer 2.12 

161.1 Inner 1.68 

161.1 Outer 2.05 

162.1 Inner 1.60 

162.1 Outer 2.09 

163.1 Inner 1.96 

163.1 Outer 2.05 

164.1 Inner 2.01 

164.1 Outer 2.10 

165.1 Inner 2.09 

165.1 Outer 2.05 

166.1 Inner 1.84 

166.1 Outer 2.01 

167.1 Inner 1.84 

167.1 Outer 2.00 

168.1 Inner 2.04 

168.1 Outer 2.00 
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Sample Thickness (mm) 

169.1 Inner 2.23 

169.1 Outer 2.24 

170.1 Inner 1.88 

170.1 Outer 1.98 

171.1 Inner 1.83 

171.1 Outer 1.96 

172.1 Inner 1.99 

172.1 Outer 2.05 

173.1 Inner 1.93 

173.1 Outer 2.04 

174.1 Inner 1.64 

174.1 Outer 2.03 

175.2 Inner 2.09 

175.2 Outer 2.61 

176.1 Inner 1.61 

176.1 Outer 2.12 

177.1 Inner 2.12 

177.1 Outer 2.61 

178.1 Inner 2.20 

178.1 Outer 2.53 

179.1 Inner 2.09 

179.1 Outer 2.60 

180.1 Inner 2.09 

180.1 Outer 2.59 

181.1 Inner 2.11 

181.1 Outer 2.58 

182.1 Inner 1.62 

182.1 Outer 2.09 

183.1 Inner 1.62 

183.1 Outer 2.08 

184.1 Inner 1.59 

184.1 Outer 2.10 

185.1 Inner 1.61 

185.1 Outer 2.17 

186.1 Inner 1.62 

186.1 Outer 2.09 

187.1 Inner 1.54 

187.1 Outer 2.11 

188.1 Inner 1.60 

188.1 Outer 2.09 

189.1 Inner 1.79 

189.1 Outer 1.80 

190.1 Inner 1.78 

Sample Thickness (mm) 

190.1 Outer 1.77 

191.1 Inner 2.25 

191.1 Outer 2.25 

192.1 Inner 2.17 

192.1 Outer 2.20 

193.1 Inner 1.97 

193.1 Outer 1.99 

194.1 Inner 1.99 

194.1 Outer 2.01 

195.1 Inner 1.97 

195.1 Outer 1.93 

196.1 Inner 1.96 

196.1 Outer 1.99 

197.1 Inner 2.03 

197.1 Outer 2.06 

198.1 Inner 2.02 

198.1 Outer 1.99 

199.1 Inner 2.05 

199.1 Outer 2.06 

200.1 Inner 2.03 

200.1 Outer 1.99 

201.1 Inner 1.94 

201.1 Outer 1.94 

202.1 Inner 2.00 

202.1 Outer 1.99 

203.1 Inner 1.95 

203.1 Outer 1.94 

204.1 Inner 2.10 

204.1 Outer 2.11 

205.1 Inner 2.06 

205.1 Outer 2.05 

206.1 Inner 1.94 

206.1 Outer 1.94 

207.2 Inner 2.06 

207.2 Outer 2.27 

208.1 Inner 1.68 

208.1 Outer 2.13 

209.1 Inner 1.60 

209.1 Outer 2.08 

210.1 Inner 2.06 

210.1 Outer 2.05 
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4. Comparison of First Inter-laboratory K glasses to Duplicate in Database 

 K1 Inner vs. Sample 110 Inner 
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 K1 Outer vs. Sample 110 Outer 
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 K2 vs. Sample 201 
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5. Comparison of Second Inter-laboratory K glasses to Duplicate  

 K1 Inner vs. Sample 78 Inner 
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 K1 Outer vs. Sample 78 Outer 
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6. Comparison of Third Inter-laboratory K glasses to Duplicate 

 K1 Inner vs. Sample 21 
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 K1 Outer vs. Sample 21 Outer 
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7. Inter-laboratory Quality Control Glasses NIST1831 and FGS1  

 First Inter-Laboratory Study NIST1831 
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 Second Inter-Laboratory Study FGS1 
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 Third Inter-Laboratory Study FGS1 
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