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ABSTRACT OF THE DISSERTATION 

PREDICTING THE GEOGRAPHIC ORIGIN OF HEROIN BY 

MULTIVARIATE ANALYSIS OF ELEMENTAL COMPOSITION AND 

STRONTIUM ISOTOPE RATIOS 

by 

Joshua DeBord 

Florida International University, 2018 

Miami, Florida 

Professor José Almirall, Major Professor 

The goal of this research was to aid in the fight against the heroin and opioid 

epidemic by developing new methodology for heroin provenance determination and 

forensic sample comparison. Over 400 illicit heroin powder samples were analyzed using 

quadrupole and high-resolution inductively coupled plasma-mass spectrometry (Q-ICP-

MS and HR-ICP-MS) to measure and to identify elemental contaminants useful for 

associating heroin samples of common origin and differentiating heroin of different 

geographic origins. Additionally, 198 heroin samples were analyzed by multi-collector 

ICP-MS (MC-ICP-MS) to measure radiogenic strontium isotope ratios (87Sr/86Sr) with 

high-precision for heroin provenance determination, for the first time. 

Supervised discriminant analysis models were constructed to predict heroin origin 

using elemental composition. The model was able to correctly associate 88% of the 

samples to their region of origin. When 87Sr/86Sr data were combined with Q-ICP-MS 
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elemental data, the correct association of heroin samples improved to ≥90% for all groups 

with an average of 93% correct classification. 

For forensic sample comparisons, quantitative elemental data (11 elements 

measured) from 120 samples, 30 from each of the four regions, were compared to assess 

the rate of discrimination (5400 total comparisons). Using a match criterion of ±3 standard 

deviations about the mean, only 14 of the 5400 possible comparison pairs were not 

discriminated resulting in a discrimination rate of 99.7%. For determining the rate of 

correct associations, three replicates of 24 duplicate samples were prepared and analyzed 

on separate days.  Only one of the 24 correct pairs were not associated for a correct 

association rate of 95.8%. New methods for provenance determination and sample 

comparison are expected to be incredibly useful to intelligence agencies and law 

enforcement working to reduce the proliferation of heroin. 

Additional research performed includes evaluation of boron isotope ratios for 

provenance determination, assessment of the contribution of adulterants to the elemental 

profile of simulated street-level heroin and analysis of the volatile and semi volatile organic 

compounds of heroin for the purpose of sample profiling. 
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CHAPTER 1. INTRODUCTION 

1.1 Statement of the Problem 

Heroin was discovered and first synthesized in 1874 by Charles Wright in London 

at St Mary’s Hospital Medical School [1]. Heroin was first commercially developed in the 

late nineteenth century by scientists at Bayer and Co, who also were responsible for the 

development of aspirin [2]. Initially marketed as a cough suppressant, like the less-potent 

opiate codeine is today, heroin gained infamy quickly because of its great potential for 

addiction and was consequently removed from the consumer market. Today heroin is 

illicitly produced in Mexico, South America, Southeast and Southwest Asia from opium 

poppies and profits from its distribution and sales are used to finance the operations of 

criminal and terrorist organizations [3]. Drug smugglers traffic heroin internationally to 

wealthy countries such as the United States, where demand for the drug is high, to increase 

profitability. 

In the United States the level of abuse of heroin and synthetic opioids is often 

described in the media as an epidemic, with overdoses of heroin killing more than 15,000 

and synthetic opioids killing more than 20,000 individuals in the US in 2016  [4]. The effort 

to curtail the trafficking and distribution of heroin, which is often a vehicle for synthetic 

opioids, is of interest to law enforcement and intelligence agencies. Having the capability 

to chemically analyze heroin samples and statistically associate samples of common origin 

(as well as discriminate heroin of different origins) is beneficial to building the network of 

knowledge surrounding the heroin black markets. Being about to predict the origin of 
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seized heroin allows law enforcement agencies to apply resources strategically, such that 

they may have the most beneficial effects on reducing the propagation of heroin. 

1.2 Review of Current Methods for Profiling Heroin 

French forensic scientists first published a review on the various approaches to 

chemical profiling of heroin in 1997; efforts had been underway for several decades 

preceding the publication [5]. The authors of the review recognized that no single method 

was sufficient to capture the total degree of variation among heroin samples, especially 

considering that heroin producers could change their methods to improve yield or adapt to 

the availability of reagents. Therefore Besacier et al. generalized the procedure for 

chemically profiling heroin into three processes, chemical analysis of the opioid 

compounds, chemical analysis of processing impurities and analysis of stable isotopes [5]. 

Naturally there are other methods described more recently for the purpose of chemical 

profiling of heroin that will be discussed within this chapter, but Besacier et al. recognized 

that a multi-technique strategy was necessary to effectively determine the common origin 

of heroin samples [5].  

A large portion of research into heroin chemical profiling has been performed at 

The United States Drug Enforcement Administration’s Special Testing and Research Lab 

(DEA-STRL). Therefore, many of the author names will be repeated in the following 

sections, many of whom have dedicated more than 20 years to furthering the effort. 

Scientists at DEA-STRL such as John Casale, Ellen Casale, Donald Cooper, Samuel 

Cooper, Patrick Hayes, Ira Lurie, David Morello, Sini Panicker, and Steven Toske appear 

as authors on a number of manuscripts related to the endeavor to chemically profile heroin 
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that will be discussed in the following chapter. As heroin is and has been a global adversary, 

forensic chemistry approaches to profile heroin for strategic intelligence has been 

developed by French [5], German [6] and Australian [7, 8] government laboratories and 

will be discussed as well. 

1.2.1 Analysis of Organic Opioid Impurities 

By far the most common means of profiling heroin uses the organic characterization 

and quantification of a sample’s organic opioid impurities. While some differentiation of 

alkaloids is associated with the natural abundance within the varieties of opium poppy, 

Papaver somniferum, the methods and reagents used in the chemical processing have far 

greater contribution to observed differences in the profiles of impurities. 

Two-dimensional gas chromatography was utilized to perform complex separations 

on co-eluting opioid compounds by German authors Gröger et al. in 2008 for the purposes 

of profiling heroin samples [9]. The resulting 2-D data could be plotted in blocks akin to 

the pixels of an image and processed by pixel-based Fisher analysis [9]. However, the 

method reported did not conclusively demonstrate that it could be used to successfully 

profile heroin originating from different geographic regions and was perhaps more 

appropriate for inter-sample comparison purposes. Unfortunately, the paper did not specify 

how the samples of heroin differed, nor did they have a test set of samples used to evaluate 

the performance of the method as a profiling technique. 

1.2.2 Analysis of Basic Organic Impurities 

Building from a method used for analysis of opium samples [10], Lurie et al. in 

2004 described a method wherein capillary electrophoresis (CE) enhanced by dynamically 
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coating the capillary with cyclodextrins micelles (micellar electrokinetic capillary 

electrophoresis, MEKC) was used to analyze the basic organic impurities of heroin samples 

at greater resolution than previously reported by LC and GC methods [11]. Analyses with 

higher sensitivity and separations with greater theoretical-plate values than previous LC 

and GC methods were achieved with the use of dimethyl-ß-cyclodextrin or hydroxypropyl-

ß-cyclodextrin coated capillary columns as a result of the increased sample loading 

permitted and the electroosmotic flow of CE [11]. In addition, CE can offer faster sample 

analysis times and decreased cost of analysis compared to HPLC. 

On the basis of  over 20 years of research experience [12, 13], Lurie and Toske of 

DEA-STRL reported on Ultra-performance liquid chromatography tandem-mass 

spectrometry as a method for analysis of basic and neutral opioid impurities for profiling 

heroin in 2008 [14]. Using a bimodal separation scheme with a first aqueous solution of 

pH 2.2 (1% formic acid) and a second of pH 10 (10mM ammonium bicarbonate) allowed 

for many advantages in separation and overall resulted in high selectivity. The acid 

condition separation was used for analysis of basic impurities, while the basic conditions 

were used for neutral impurities. Using an increased amount of non-polar solvent during 

sample loading (25% v 5% acetonitrile) allowed for simultaneous separation and detection 

of basic and neutral impurities, albeit at 10-fold reduction in sensitivity compared to the 

low pH conditions [14]. Lurie and Toske’s manuscript detailed the observation of 

impurities by UPLC-MS/MS which had not yet been reported, including narceine, 

reticuline, laudanidine, codamine, cryptopine, laudanosine and some possible isomers of 

these compounds [14].  
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1.2.3 Analysis of Acidic Organic Impurities 

Scientists at the Australian Government Analytical Laboratories developed a 

method of statistical analysis [8] that uses the GC-FID method in use by the United States 

Drug Enforcement Administration (DEA) at the time to chemically characterize the acidic 

and neutral impurities of heroin samples to profile them for intelligence purposes. Their 

sample set was limited to two classes of heroin, samples that were classified as refined 

Southeast Asia and those that were not [8]. Using a sample set of 54 samples, over 600 

compounds were identified as impurities and potential targets for profiling [8]. To make 

analysis repeatable, the total number of analytes was reduced to less than 300 because of 

the infrequency of their observation in sample replicates or observation of the compounds 

in method blank samples [8]. The profiling parameters were developed from both 

continuous and dichotomized data, wherein data are simplified by treating them 

categorically as either present/absent, high/low or 1/0 etc. [8]. Logistic regression analysis 

of dichotomized data with as few as 4 independent variables was shown to correctly predict 

>95% of samples when challenged only with making SEA vs. Non-SEA classifications [8]. 

With the exception of black tar heroin, conversion of morphine into heroin takes 

place under basic conditions. Therefore, the majority of organic impurities are also basic. 

However, the acidic and neutral impurities can also be informative of characteristic 

production methods, which vary regionally [15]. Chemists with DEA-STRL have further 

developed their GC-MS method by which acidic and neutral impurities can be analyzed 

semi-quantitatively via programmed temperature vaporizing injector-gas chromatography 

mass-spectrometry (PTV-GC-MS) to profile samples from each of the four major regions 
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[15]. The analysis was preceded by liquid/liquid extraction and subsequent derivatization 

by MTSFA, N-Methyl-N-trimethylsilyl-trifluoroacetamide. As one might expect, as 

refinement of heroin samples increased, the levels of acidic and neutral impurities 

decreased to sub-ppm levels relative to morphine [15]. The work by Morello et al. yielded 

a robust chemical profiling method and increased the understanding of the nuanced 

differences among heroin samples from different regions of heroin production and sub-

classes existing within each those regions. One limitation of the method by Morello et al. 

is that it could not clearly distinguish between the most highly refined heroin samples from 

South America and Southwest Asia as a result of their low abundances of acid and neutral 

impurities. The aforementioned South American and Southwest Asian highly-refined 

heroin samples were only dissimilar on the basis of a few unidentified compounds at very 

low relative abundances. 

Capillary electrophoresis has been shown to offer benefits for the analysis of acidic 

analyte targets for heroin profiling. A modification of the MEKC procedure described by 

Lurie et al. using alternative buffer reagents (sodium dodecylsulfate and a phosphate-borate 

buffer), allowed for the acidic, neutral and weakly basic impurities of heroin samples to be 

separated [11]. 

1.2.4 Analysis of Residual Solvents 

Trapped solvents that are occluded within the crystalline matrix of illicit drugs 

during acidic precipitation can be analyzed for profiling [16-18]. Differences in the 

mixtures of organic solvents through which HCl gasses are bubbled or to which liquid HCl 
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is directly spiked, can produce distinct solvent composition within the final HCl salt 

product with amine drugs such as cocaine HCl and heroin HCl [18]. 

In 1995, Morello and Meyers reported a static headspace-gas chromatography-mass 

spectrometry (SHS-GC-MS) method to sample the residual solvents of both heroin HCl 

and cocaine HCl [18]. The samples were first dissolved in saturated sodium sulfate solution 

to release any occluded solvents from the drug’s crystalline matrix. Static headspace-gas 

chromatography-mass spectrometry is performed by sampling a consistent volume of 

headspace gas above a sample, which can optionally be heated and/or mixed, and directly 

transferring the sampled headspace gas into the inlet of a GC. The compounds within the 

headspace are separated on the fused-silica column and qualitatively and quantitatively 

analyzed by mass spectrometry by means of deuterated internal standards and external 

calibration solutions. Morello and Meyers also reported testing of common adulterants and 

did not find that adulterants made a significant contribution to the solvent profile of heroin 

samples, except in the case of amine drugs in the form of an HCl-salt, such as 

diphenhydramine HCl [18]. The most common solvents encountered for heroin samples 

were ethyl acetate, acetone, ethyl ether, methyl ethyl ketone and toluene [18]. The SHS-

GC-MS method described by Morello and Meyers shows potential for heroin profiling but 

has not been published demonstrating its use in such a way. 

1.2.5 Isotope Ratio Analysis 

Stable isotope ratios have been used to profile heroin origins and associate heroin 

samples to a geographic region of origin. A method using gas chromatography isotope-

ratio mass spectrometry (GC-IRMS) has been shown to have utility in associating samples 
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from each of the four, major regions of heroin production based upon their d13C and d15N 

isotopic compositions [19]. A few years later there was a study authored by Casale et al. 

with DEA-STRL to determine the isotopic fractionation taking place during the chemical 

refinement of morphine into heroin final product [20].  

1.2.6 Elemental Analysis of Heroin 

The earliest report of heroin profiling by ICP-MS was published in 1998 by Myors 

et al [7]. Myors et al. proposed criteria for evaluating an element’s repeatability and 

reproducibility, with a cut-off RSD value of ≤ 30% and a Pearson R2 coefficient of ≥ 0.6 

[7]. The repeatability and reproducibility of the method described herein is shown in 

Chapter 2.3.1. Myors et al. developed an analytical method using inductively coupled 

plasma-mass spectrometry (ICP-MS) to quantitatively analyze 73 elements to 

geographically profile heroin [7]. As with the Myors et al. method for profiling with GC-

MS analysis of organic composition [8], the data set was comprised of continuous as well 

as dichotomized data used in logistic regression and supported by unsupervised 

multivariant statistical analysis [7]. Some drawbacks of the results were the classification 

of heroin samples as either SEA or non-SEA, which is not likely useful to a region where 

the majority of the heroin originates from the Western Hemisphere, such as the United 

States. Nor does it make any attempt to distinguish heroin of non-SEA origin. Another 

point to mention is that only Na, Ca, Zn and Zr were elements that are deemed informative 

in both this dissertation and the paper published by Myors et al. [7]; other elements used 

such as As, Ce, Cs and Gd were often observed in very low concentrations in the samples 
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analyzed as part of this dissertation’s research and did not meet standards for 

reproducibility in all of the samples tested, see subchapter 2.4.4. 

1.2.7 Use of Heroin Profiling in Casework 

Profiling techniques not only provide a means for association of samples which are 

of common origin and have similar production methods, but they also allow for 

discrimination of unique or novel methods of preparation. John Casale and his coauthors 

have reported on multiple occasions of how unique methods of heroin preparation can be 

distinguished from those more commonly encountered in casework [21-23]. In the analysis 

of samples seized from a North Korean merchant ship and the associated port of call, the 

authors were able to make discrimination of the samples based upon the accepted methods 

for heroin signature profiling (at the time) as well as analysis of stable isotope ratios [21, 

22]. The authors determined the heroin was of a unique type one the basis of its d13C value 

being dissimilar to samples originating from Mexico, South America, Southwest Asia and 

Southeast Asia [21]. 

Although previously reported with cocaine [24], scientists from DEA-STRL 

witnessed the controlled processing of heroin by way of an unreported method using 

bleach, sodium hypochlorite and afterward obtained the sample for chemical analysis [23]. 

The chemist stated that the purpose of using the bleach was to whiten the heroin product, 

which usually is reflective of high-quality (refined) heroin product [15]. The procedure 

using sodium hypochlorite produced chlorinated heroin derivatives which could be 

incorporated into profile techniques to identify heroin samples following the bleach 

method. Nine chlorinated opioids, 1-chloroheroin, 1-chloroacetylcodeine, 1-chloro-O6-
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monoacetylmorphine, 2’-chloropapaverine and five that could not be characterized were 

observed and studied by GC-MS, LC-MS, 1H NMR and 13C NMR, however the process 

resulted in almost no heroin remaining in the final product as a result of the excessive 

amounts of bleach used by the clandestine chemist [23]. Nearly all of the heroin was 

chlorinated during the oxidation. 

1.3 Conclusion 

With the exception of publications made by researchers from DEA-STRL, most 

other studies do not consider authentic samples from each of the four, main heroin-

producing regions. Some only classify samples a “Type-X” or “Non Type-X.” Failing to 

consider all four regions will produce a method may not be relevant in the dynamic global 

heroin market. Obviously, the supply and heroin market characteristic in Europe will not 

be consistent with that of the United States, therefore being able to distinguish between all 

of the major sources of heroin will be more useful to the various organizations standing in 

the way of the international heroin cartels.  

Many of the methods described for heroin profiling rely upon sophisticated 

methods of instrumental analysis and often complex statistical means of data interpretation. 

One limitation to some of the published reports is the inability of the reader to implement 

the methodology either through incomplete reporting of the explicit parameters used in 

determining provenance or because full explanation of the statistical approach was taken 

for granted. This could be as a result of the fact that there is a reasonable measure of security 

with respect to some methods of analyses, for example, there may have been a desire to 

conceal intricate details of the method to inhibit counter-measures by the heroin producers. 
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In other cases, the parameters used in the profiling method number into the hundreds and 

a full delineation of each would ruin the brevity of a scientific manuscript. 

In any case, it is useful for the continuation of research in the area of illegal drug 

profiling for authors to fully describe the methodology such that a reader is able to replicate 

the results of the study and can understand the rationale for the selection of useful 

parameters. Many analytes are likely redundant or otherwise not informative; describing 

the process by which useful profiling parameters are chosen, is invaluable. It should be the 

burden on the authors to fully describe details to prove that the method of profiling is 

reasonable to the satisfaction of a critical reader, and at the very least provide some 

discussion as to how the parameters work to provide differences between groups. 
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CHAPTER 2. ELEMENTAL ANALYSIS OF HEROIN 

2.1 Abstract 

 Elemental impurities are of interest in the effort to profile heroin, a US Schedule 1 

narcotic, and determine a seized sample’s region of origin. A profile of elemental 

impurities is imparted to the heroin sample through cultivation of opium poppy farmland, 

local water supplies, biological uptake from the environment into the plant, and from 

human processing of the natural material, morphine, into the heroin final product. Using 

223 authentic samples to construct a linear discriminant model on the basis of the 

abundances of nine elements, (23Na, 24Mg, 52Cr, 57Fe, 66Zn, 90Zr, 111Cd, 208Pb, and 238U), 

88% of a test set of 169 authentic heroin were correctly associated to their region of origin 

(Mexico, South America, Southeast Asia or Southwest Asia). To the best of the author’s 

knowledge this dissertation and the associated manuscripts report the first analysis of a 

large-scale heroin profiling study using authentic, seized heroin samples using quantitative, 

inorganic analysis of elemental composition acquired through both quadrupole inductively 

coupled plasma-mass spectrometry (ICP-MS) and high-resolution ICP-MS (HR-ICP-MS) 

for the purpose of differentiating heroin on the basis of its geographic and/or processing 

origins. 

2.2 Introduction 

The abuse of opiates and synthetic opioids has been at the forefront of media for 

the past decade because of its detrimental harms on society. Overdoses continue to increase 

year after year and the effort to fight the trade of heroin and synthetic opioids is a top 

priority for Federal law enforcement. The ability to correctly predict the geographic origin 
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of seized heroin samples is of great concern to investigators in the efforts to address the 

reemergence of heroin that has occurred in recent years. To gain strategic intelligence used 

to intercept drug trafficking and distribution, chemical profiling techniques have been 

developed to determine provenance and gain understanding of the dynamic, illegal drug 

market. 

According to the Center for Disease Control and Prevention (CDC), heroin-related 

deaths in 2016 were over 15,000, more than 6 times the rate in 2002 [4]. The epidemic 

levels of heroin use has been linked to stricter enforcement of the non-medical use of 

prescription opioids and the transition of users to heroin, which can be cheaper, easier to 

obtain and more potent than prescription painkillers [25]. Additionally, heroin is often a 

vehicle for extremely potent synthetic opioids, such as fentanyl and fentanyl analogs which 

have had an even larger death toll than heroin itself since 2016 with more than 20,000 

individuals killed in that year [4]. As of 2017, the DEA has formed a signature program for 

fentanyl and fentanyl analogs to study inter-sample variations akin to that of the Heroin 

Signature Program, established in 1977 [26-28].  

However, the rise in fentanyl and synthetic opioid abuse has not negatively affected 

heroin markets nor the availability of heroin. Drug dealers often seek to increase their 

profits by cutting heroin with adulterants such as cheap, nonprescription drugs (caffeine, 

dextromethorphan, acetaminophen etc.) or inactive diluents, and offset the decreased 

potency with trace amounts (mg) of fentanyl [29]. According to the 2017 National Drug 

Threat Assessment published by DEA Strategic Intelligence Section, heroin compared to 

fentanyl is more widely accessible (49% survey respondents reporting heroin as highly 
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available, compared to 15% for fentanyl), responsible for a greater share of violent crimes 

(36.3% and 5.5%, respectively) and consumes more of the available law enforcement 

resources (36.1% and 8.2%, respectively) [29]. 

The four geographic regions described 20 years ago are still the major producers of 

heroin: Mexico, South America, Southeast and Southwest Asia [3]. Forensic drug analysts 

around the globe continue to gather strategic intelligence on heroin trafficking by 

conducting profiling studies of seized heroin samples using chemical analysis of its 

naturally-occurring compounds, processing-related impurities, stable isotope ratios and 

residual solvent signatures [6, 8, 9, 11-15, 18-20, 30-35]. While attempts to profile heroin 

using an inorganic analysis of elemental impurities have been investigated [7, 36-39], the 

method has yet to become adopted for provenance determination, but rather shows promise 

for conducting street-level sample comparisons [40, 41].   

The DEA’s interest in determining the utility of elemental analysis in profiling 

heroin samples, lead to the opportunity to conduct the research described in this 

dissertation. The specified requirements were investigation of elemental impurities by 

high-resolution inductively couple plasma-mass spectrometry (HR-ICP-MS). The 

proposed methods of sample preparation were microwave-assisted acid digestion and 

analysis of quantitative elemental analysis by ICP-MS and HR-ICP-MS (Chapter 2). Also 

proposed was isotope ratio analysis by multi-collector inductively coupled plasma-mass 

spectrometry (MC-ICP-MS) of strontium (Chapter 4), isotope ratio analysis of boron 

(subchapter 5.1) and isotope ratio analysis of lead (subchapter 5.2). Professor José Almirall 

at Florida International University was awarded the contract to perform the research, and 
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The Scientific Working Group at the US Counter Terrorism Technical Support Office was 

responsible for management of the contract and funding under award IS-FI-4174.  

Budic and Klemenc reported the first instance of microwave-assisted acid digestion 

for the analysis of major crustal elements in heroin by inductively coupled plasma-atomic 

emission spectrometry (ICP-AES) [37]. While they were not reporting the method for 

profiling, Budic and Klemenc measured several elements which were identified as useful 

in the results for forensic sample comparisons (Chapter 3). The authors reported good-

quality digestions with low elemental background, however they observed challenges 

associated with increased detection limits because of the dilution steps in microwave 

digestion when using a pneumatic nebulizer with ICP-AES; they overcame this difficulty 

by using a ultra-sonic (desolvation) nebulizer [37]. The difficulty associated with dilution 

was overcome in this research of this dissertation by using ICP-MS for elemental 

quantitative analysis, which has lower detection limits compared to ICP-AES.  

Bora et al. reported using only high-purity nitric acid for successful digestions in 

an earlier-model Milestone digestion oven, using 3 mL of acid to digest between 200 and 

400g of heroin in PFA vessels [36]. The oven program was quite simple; it was set to apply 

650 W of microwave power for 20 minutes [36]. From the reported success of this 

methodology, it was expected that successful digestion of up to 150mg could readily be 

achieved using 2.3mL of nitric acid in low-volume quartz micro-vessels for lower memory 

effects compared to using PFA. Repeatability of various acid volumes and oven programs 

were tested (Section 2.2.2) before establishing the final method parameters.  
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Chan et al. reported a validated method of analysis for elemental impurities of 

heroin by ICP-MS, however their method only used physical and ultrasonic dissolution 

with 1% HNO3 [42]. It is very likely that filtration of those samples would be necessary, 

and digestion would be incomplete under the specified parameters. However, the results of 

this dissertation chapter were consistent with those reported and similar good repeatability 

and reproducibility was observed for the elements in common. 

2.2.1 Description of Heroin Samples 

The total number of heroin samples received from (DEA-STRL) was 415 individual 

powdered heroin samples. The set of samples included one sample each of high purity 

heroin and morphine for initial testing and sample preparation method development, 

“authentic” heroin samples of known origin, blind samples of known origin (unknown to 

the author), truly unknown samples and samples for cutting experiments. The samples had 

known origins assigned by the signature determination methods at DEA-STRL Heroin 

Signature Program (HSP). The truly unknown samples were those which did not have 

conclusive results from the signature analysis methods used by DEA-STRL.  

The collection of heroin samples consisted of 54 samples of heroin from Mexico 

that were manufactured using similar processing methods to those used by clandestine 

processors in South America (MEX-SA), 98 samples of South American heroin (SA), 36 

samples of heroin from Southeast Asia (SEA) and 34 samples from Southwest Asia 

(SWA). The total number of samples received with known origins was 223 samples.  An 

additional SWA sample with a large sample mass was used as a “Heroin Control” to test 

the daily repeatability of the methods. To test the statistical provenance prediction methods 
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described in this report, 169 “blind” samples were received, the origin of which was 

initially unknown to the researchers at Florida International University (FIU). Additionally, 

eight samples of truly unknown origin were received. Lastly, 13 samples consisting of 

authentic seized adulterants and a mixture of the adulterants with a heroin sample were 

received and analyzed to assess the contribution of adulterants and diluents to the profile 

of inorganic elements. The sample summary is shown on Figure 1. 

 

Figure 1. Pie chart showing sample description. Samples marked "test" were initially unknown. 

Representatives of the HSP at the DEA-STRL selected the samples to obtain the 

most useful information using the potential efficacy of inorganic analysis at supplementing 

their present provenance determination methods, some of which are summarized in 

Chapter 1. In addition to the samples provided for provenance determination, 13 samples 

consisting of authentic seized cutting agents and mixtures of the cutting agents with a 
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heroin sample were received and analyzed to determine the contribution of cutting agents 

to the profile of inorganic elements, the results of which are described in subchapter 5.3. 

2.2.2 Inductively Coupled Plasma-Mass Spectrometry 

The principle of inductively coupled plasma-mass spectrometry (ICP-MS) centers 

around the atomization and ionization of the sample in a plasma under an intense, 

radiofrequency-induced field. The ions of the sample are carried by a gas (generally high 

purity Argon) through the mass spectrometer interface under high vacuum (>10-7 Torr). 

The ions are then directed through the ion optics by charged lenses and then separated by 

their mass-to-charge ratio (m/z) by a mass analyzer. Finally, the ions are typically detected 

by an electron multiplier, which is a discrete dynode array type of ion counter; in the case 

of the multi-collector ICP-MS, the detector is an array of Faraday cups that directly 

measure voltage but also features a dynode array for ion counting. The ICP-MS instrument 

includes the following basic components: sample introduction system, torch, interface, ion 

optics, mass separator, and ion detector. The ICP-MS, a 7700x (Agilent Technologies, 

USA) and the HR-ICP-MS, an Element 2 (Thermo Fisher Scientific, USA), which were 

used in the element quantitation work of this dissertation, operate very similarly, in 

principle. However, each have unique design features that lend each instrument certain 

advantages over the other. 

The sample introduction systems (see Figure 2) of the instruments used in this work 

consist of an autosampler to move the sample probe to the specified sample vial, a 

peristaltic pump (Q-ICP-MS and HR-ICP-MS only) to pump a steady controlled flow of 

solution through the tubing, an internal standard mixing tee (Q-ICP-MS and HR-ICP-MS 
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only) to mix the internal standard with the sample solution, a nebulizer where the solution 

is sprayed into a fine aerosol using a flow of argon gas, and a spray chamber where the 

finest and most homogeneous part of the aerosol is directed to the plasma torch. The main 

differences in the instruments’ sample introduction systems is that the 7700x has a Peltier-

cooled, double pass spray chamber and the Element 2 has a cyclonic spray chamber that is 

operated at room temperature. 

 

Figure 2. The sample introduction system of the Thermo Element 2 HR-ICP-MS. 

The torch is made of concentric tubes of quartz that are open at the end, with the 

injector in the center. Argon gas flows through the torch between the tubes to stabilize and 

isolate the plasma from the outer tubes and to carry the sample through the injector into the 
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plasma. The torch is surrounded by a radiofrequency (RF) coil that supplies an alternating 

current with enough power to create an alternating magnetic field. A high voltage spark 

generates free electrons that are accelerated by the field until some have enough energy to 

ionize some of the argon atoms, whose electrons in turn ionize other argon atoms in a 

cascade, creating a plasma [43]. The RF power sustains the hot plasma (6,000 to 10,000 

K), which is used as an ionization source. In the plasma the sample is vaporized, molecules 

are broken down into atoms, and positively charged ions are formed at atmospheric 

pressure.  

The next feature of the instrument is the interface region is where the sample ions 

are transferred from atmospheric pressure to a region that is kept under vacuum to prevent 

contamination from air and stray ions that could collide with the sample ions. Small 

diameter orifices of the skimmer and sampler cones provide the passage of ion into the 

low-pressure vacuum manifold. The central, core channel (z-axis) of the plasma is usually 

aligned with the orifices of the skimmer and sampler cones for the highest transmittance of 

ions in to interface region. The gas flows and position of the torch, as well as the RF power, 

are optimized for maximum signal intensity and signal stability, and minimal formation of 

oxides and doubly-charged species that could interfere with the ions of interest.   

The ion optics are a series of mostly negatively-charged lenses used to accelerate, 

shape, and direct the beam of sample ions toward the mass analyzer. The mass analyzer 

separates the ions on the basis of their m/z. The instruments described in this dissertation 

differ in the design of their mass analyzers, which are designed to suit their preferred 

application(s). The Agilent 7700x uses a quadrupole (Q-ICP-MS) mass analyzer for rapid 
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analysis and high-sample throughput, and the Thermo Fisher Element 2 uses a double-

focusing magnetic-electrostatic sector (HR-ICP-MS) for high sensitivity and mass 

resolution. The Thermo Fisher Neptune multi-collector (MC-ICP-MS, discussed in 

Chapter 4), also uses a double-focusing mass analyzer but in the opposite orientation of 

electrostatic-magnetic sectors. The ions that make it through the mass analyzer are then 

detected by the detector (or array of detectors in MC-ICP-MS) where a signal is generated 

with an intensity proportional to the number of ions (which is related to the concentration 

of the sample). 

One of the drawbacks of ICP-MS analysis is that it is one-dimensional and has no 

inherent means of separation. All sample elements and polyatomic molecules, both 

intrinsic and extraneous, are analyzed by mass/charge (m/z). The main sources of 

interference are differing species of equal m/z that are referred to as isobaric and 

polyatomic interferences. Although the term isobaric implies equal mass, isobaric (and 

polyatomic) interferences are of equal m/z and not necessarily equal in mass. For example, 

142Ce+ and 142Nd+ actually do have the same nominal mass (142 u). In very hot regions 

occurring near the outside edges of the plasma, a second electron can be removed, resulting 

in doubly-charged species (M2+) with a m/z of half the normal nominal mass, such as in 

the example of 138Ba2+ and 69Ga+ [44]. Doubly charged 138Ba2+ has a m/z of 69, which is 

the same m/z as singly charged 69Ga+. Not only do the polyatomic and doubly-charged 

species cause interferences at other m/z, but their formation also reduces the intensity 

measured at the target isotope’s nominal mass. Not surprisingly, the more 238U16O+ (m/z = 

254) or 138Ba2+ (m/z = 69) that forms, the less there is available of 238U+ or 138Ba+ to be 

measured.  
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Polyatomic species can also have the same nominal mass as an isotope of interest. 

For example, both 40Ar16O+ and 56Fe+ have a nominal mass of 56 u (and also equal m/z). 

These form by recombination of ions in the cooler regions of the plasma and most 

commonly include oxides (M+16), hydrides (M+1), carbides (M+12), chlorides (M+35), 

and dimers (2M), where M is the m/z of the single target ion. Often polyatomic isobaric 

interferences are generated from the matrices of the plasma gas, atmospheric gas, the water 

and acids used in the solutions, and from the sample matrix itself.  

Isotopes without any interferences should be selected for measurement, but 

sometimes it is not possible because alternative isotopes either have interferences 

themselves or exist at such low relative abundances that makes them undesirable targets 

for analysis. Each instrument has its own strategically designed means for separating and 

detecting ions, enhancing signal and reducing interferences, which will be discussed in 

subchapters 2.3.4 and 2.3.5. 

2.3 Methods and Materials 

2.3.1 Method Development 

In 2012 Chan and Wong published on validating a method for the use of ICP-MS 

with respect to heroin analysis [42]. However, during to the course of the research 

described in this dissertation, an apparent flaw was noted in their reported sample 

preparation. It was noted that described method of sample dissolution was likely not 

sufficiently aggressive for total digestion of the heroin. During the course of method 

development, it was observed that there was incomplete dissolution of heroin samples in 

closed perfluoroalkoxy alkane (PFA) vessels under conditions of 6 M Nitric Acid and 
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heated to near boiling. Filtering away residual solids, as Chan and Wong report should not 

be considered a quantitative extraction method; in addition, there was no certified reference 

material used to evaluate the completeness of trace element liberation from the matrix [42]. 

Spiking a mixture of elements in acidic solution onto a sample cannot be expected to 

produce a realistic representation of the recovery of an extraction method as the elements 

are already in solution. Therefore, the sample preparation developed for the method 

described in this chapter followed methods of total sample dissolution by microwave-

assisted acid digestion and validated using SRM NIST 1570a, trace elements in spinach 

leaves [45]. 

During the process of method development, it was first desired to determine a 

sample preparation method that would achieve a completely, optically-transparent 

digestion product. The development of the digestion method, the selection of instrumental 

parameters and robustness testing experiments were performed with Standard Reference 

Material (SRM) NIST 1570a, trace elements in spinach leaves. The choice of SRM NIST 

1570a for use in method development was for several reasons. The primary reason being 

that the SRM was certified for its trace element composition by multiple individual 

laboratories. A second reason was that the sample mass was abundant, while the heroin 

samples had limited sample mass available to be used for method development. Finally, 

over the course of some preliminary digestion experiments, it became apparent that 

producing an optically transparent digestion product with the plant material was more 

challenging than for powdered heroin samples. 
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From the standpoint of producing a robust method, it seemed logical to select a 

more challenging sample matrix to use during method development. If the method was 

sufficient for digestion of a more challenging sample matrix, differences in heroin sample 

matrices would have less of an effect on the digestion efficiency. Despite the fact that 

heroin samples provided for this work by DEA were not heavily adulterated, “street-

quality” samples, there were differences in the opiate composition, the organic impurities 

and the overall quality of refinement. However, the differences are at the level of the small 

molecule composition, while the plant material of the SRM 1570a contains pectin, 

cellulose and other complex cellular macromolecules, which are greater obstacles to 

achieving complete oxidation. It was expected that a sample preparation method that was 

suitable to completely digest the complex matrix of SRM NIST1570a would be more than 

aggressive enough for heroin samples. Therefore, complete digestion would be expected 

despite relatively minor sample-to-sample differences in the heroin.  

 

Figure 3: SRM NIST1570a before digestion (A), an unsuccessful digestion because of excessive microwave 
power causing sample boiling and loss (B), an unsuccessful digestion because hydrogen peroxide was omitted 
from digestion vessel bath (C) and a successful digestion of SRM NIST1570a with optic transparency (D). 
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Nitric acid, HNO3, was initially chosen as the digestion solvent because it is a 

strong oxidizing agent and will readily oxidize carbon bonds in organic molecules [45]. 

Addition of hydrogen peroxide (H2O2) and/or water (H2O) can increase the oxidation 

potential and reduce molarity of nitric acid (HNO3). After testing a variety of acid 

combinations, the choice of Optima-grade HNO3 (Fisher Scientific International Inc., 

USA) was made because it was the simplest formula that achieved total sample solution 

resulting in the optically transparent product, which was free of any fine particles. The 

inclusion of any additional reagents in the mixture, even Ultra-pure Millipore water, not 

only increased the uncertainty of a successful digestion but also raised the background 

concentration of ultra-trace elements. Inclusion of other solvents, especially hydrochloric 

acid (HCl) and hydrogen peroxide (H2O2) produced vapors from the digestion solution. It 

was impossible to contain solutions of H2O2 + HNO3 and solution escaped from the 

digestion vessel before the microwave program could be initiated. 

Concurrently with testing of the digestion mixtures, the microwave parameters 

were adjusted until a complete digestion could be achieved. The Milestone digestion oven, 

model ETHOS UP, was preprogrammed with methods designed for a variety of sample 

types. Taking input from Milestone technicians, the maximum microwave power was 

adjusted depending upon the loading of vessels within the oven. For example, when the 

oven was loaded with only four (out of a maximum of 15 vessels) the maximum microwave 

power applied was set to 600W. During a routine run, when the oven was loaded with 10 

vessels, the maximum microwave power was set to 1600W. The power adjustment was an 

important modification to the method because the microwave adjusts power output at a rate 

of 1 Hz, if the temperature in the reference vessel is below the current set-point, the 
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microwave applies microwave radiation (generally at the maximum power setting, which 

at default is 1800W). For a partially-loaded microwave digestion oven, excessive 

microwave radiation applied to the sample could produce over heating without sufficient 

pressure to keep the acid sub-boiling. Therefore, a milder application of microwave energy 

was desirable to keep from over-heating the solution within the vessel. 

 

Figure 4: Digested high-purity morphine (upper row) and heroin (lower row) in concentrated nitric acid; 
samples were provided by DEA. 

To determine the source of elements inherent to heroin of the highest-order of 

refinement, laboratory grade morphine and heroin was provided by DEA. Four replicate 

samples each of heroin and morphine and four reagent blank samples were placed into 

micro-insert quartz vessels. Each of four polyether ether ketone (PEEK) digestion vessels 
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contains one micro-insert of morphine, one of heroin and one blank. The morphine samples 

had masses between ranging from 42.4 to 80.8 mg and the heroin samples had masses 

ranging from 50.5 to 65.0 mg. Both of the high-purity heroin and morphine dissolved 

readily into concentrated nitric acid, producing vibrant colors along with their conventional 

expected coloration in forensic color testing without any visible particulates remaining (see 

Figure 4). The morphine samples and heroin samples had very vibrant crimson and gold 

colorations when dissolved in nitric acid, respectively. 

The high-purity morphine and heroin samples were dissolved in the Milestone 

Ethos UP digestion oven with parameters very near to the final method parameters given 

on Table 3, however a lower maximum microwave power setting was used as previously 

mentioned. Following digestion there was no visible particles and all color was gone, 

leaving the solutions completely transparent. Relative to the SRM NIST 1570a, trace 

elements in spinach leaves, the high-purity morphine and heroin samples dissolved much 

more readily in the concentrated nitric acid. 

2.3.2 Testing for Method Robustness 

When both the digestion solution and microwave method were established, slight 

variations were made to the parameters to determine the robustness of the method. In other 

words, how much could one deviate from the prescribed acid mixture and microwave 

settings and still achieve statistically equivalent digestion results. A Plackett-Burman 

experiment was performed according to ASTM E1319.02 [46] (it has since been updated), 

by measuring several elemental concentrations in the digestion solutions that were 

produced after slightly modifying method parameters between each experiment. The 
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results of the robustness test provide an assessment of the significance of effects during a 

multifactorial design of experiment.  

The purpose of the Plackett-Burman design of experiment is to reduce the number 

of trials needed to assess the robustness of a method. For example, to test all possible 

combinations of five parameters with a high and low setting, one would need to perform 

32 (25) separate experiments. With the Plackett-Burman design, various combinations of 

the high and low parameters will be made to reduce the labor in method development. Of 

course, there will be some compounding effects by changing multiple parameters between 

each experiment, which is why is useful to have performed some method optimization 

beforehand. The Plackett-Burman design of experiment summary can be found below in 

Table 1, which shows the combinations of high and low method parameters.    

Table 1. Design of Plackett-Burman experiment 

  Experiment # 
Effect 1 2 3 4 5 6 7 8 

sample mg 40-60 20-39.9 20-39.9 40-60 20-39.9 40-60 40-60 20-39.9 
acid volume 3 mL 3 mL 2 mL 2 mL 3 mL 2 mL 3 mL 2 mL 
max temp 220°C 220°C 220°C 200°C 200°C 220°C 200°C 200°C 
ramp time 10 min 20 min 20 min 20 min 10 min 10 min 20 min 10 min 
hold time 20 min 10 min 20 min 20 min 20 min 10 min 10 min 10 min 

 

 The results of the Plackett-Burman shown on Table 2 indicate very little 

significance in the effects (when teffect is greater than 2.37) when changing the tested 

parameters from their high or low values. An extraction method that uses all of the 

parameters at the low setting, all at the high setting, any combination of high and low or 

any setting in between should produce not produce significant differences in overall 

performance. Nickel did show a slightly higher teffect value over the threshold value for the 
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hold time parameter, however there was some difficulty with repeatability of the 60Ni 

measurements for SRM NIST 1570a as can be seen in the instrumental validation results 

in sections 2.4.2 and 2.4.3. Additionally, the hold time parameter had very little effect on 

any of the other isotopes being monitored. Consequently, it was concluded that the result 

was anomalous, and the method was robust when performed within the parameter 

specifications set in the experiment. 

Table 2. Results of significance testing of Plackett-Burman experiment; teffect values are shown for 
each parameter. 

Isotope 

 Effect is significant if teffect > 2.35 

 sample mass   acid volume   max temp   ramp time   hold time 
11B  0.71  0.17  0.93  1.44  1.09 
51V  1.05  1.25  0.29  0.40  0.83 

55Mn  0.21  0.96  1.70  0.45  0.89 
59Co  1.77  0.12  1.65  0.87  0.14 
60Ni  0.85  0.61  0.28  0.33  2.39 
63Cu  0.58  1.41  0.58  1.11  1.29 
66Zn  1.87  1.50  0.58  0.79  0.16 
85Rb  1.21  0.68  1.12  0.73  1.26 
88Sr  1.42  0.43  1.28  0.63  1.40 

111Cd  0.00  0.10  0.90  1.35  0.81 
208Pb  1.94  1.16  0.41  0.81  0.44 
238U   2.03  0.60  1.22  0.46  0.23 

 

2.3.3 Micro-wave Assisted Acid Digestion for Elemental Analysis 

The Environmental Protection Agency’s (EPA) Method 3052 for total sample 

dissolution recommends sample preparation by microwave-assisted acid digestion. The 

dissolution of heroin samples by microwave-assisted acid digestion was chosen as it could 

deliver total digestion of organic compounds and minerals which may have been 

encountered in the sample set of heroin samples. The samples were prepared in such a way 

that a single acid digestion of the sample could be suitable for all of three methods of 
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inorganic analysis (Q-ICP-MS, HR-ICP-MS, and MC-ICP-MS). Digested samples were 

stored in sealed 15 mL centrifuge tubes at 4 °C until instrumental analysis was performed. 

Samples were not diluted until just prior to instrumental analysis. 

Microwave-assisted digestion greatly facilitated the process of sample preparation, 

making complete digestions much more readily than closed-vessel, hotplate digestion 

allowing for higher throughput of heroin samples. The heroin samples were prepared in 

nitric acid with a method modified from the procedures of EPA Method 3052 [45]. The 

digestion was overly strong for the heroin sample, because the method was optimized for 

a more challenging matrix as mentioned in subchapter 2.3.1. Because of the complex nature 

of the plant material compounds and composition of large, carbon-bearing molecules (e.g., 

peptides, saccharides, cellulose, etc.), the digestions were observed to be much more 

challenging than for equivalent masses of heroin. The choice of SRM NIST 1570a (trace 

elements in spinach leaves) as a standard by which to evaluate its digestive power meant 

the method could be certain to ensure total digestion of heroin samples, which consisted of 

much smaller molecules.  

To oxidize the covalent bonds of the organic heroin matrix, an efficient and 

reproducible digestion method was most desirable for processing a large number of 

samples for ICP-MS analysis. Microwave-assisted acid digestion was desirable for 

achieving total sample decomposition in accordance to EPA method 3052, which defines 

the parameters necessary to achieve total digestion of organic and soil matrices [9]. The 

Milestone Ethos-UP microwave digestion oven conforms or greatly exceeds all parameters 

for EPA method 3052. The rotor and vessels with the greatest pressure tolerance and widest 



 31 

application flexibility, the Milestone SK-15 rotor, was chosen to accompany the 

microwave. Optional 4 mL quartz micro-insert vials were purchased (as HF was not 

required for digestion of heroin or standard matrices) that permitted sample and acid 

volumes to be scaled back compared to most 3052 methods by approximately 70%. The 

quartz micro-insert vials also allowed three replicates to be digested simultaneously, which 

increased the throughput of the 10 vessels to 30 samples per digestion. All digestion vessels 

and accessories were purchased from Milestone, Scientific (USA). 

Three aliquots (replicates) each of nine samples were digested in a single 

microwave run, along with a replicate SRM NIST 1570a, heroin control and a method 

blank. Approximately 30-100 mg of each sample or control were weighed directly into 

individual quartz micro-insert vials to the nearest 0.1 mg on a Mettler AE240 (Mettler 

Toledo, USA) balance using disposable polypropylene (PPE) spatulas to transfer the 

samples from the original sample containers. The quartz micro-insert vials were 

immediately topped with polyether ketone (PEK) caps, which were only removed briefly 

for the addition of internal standards and nitric acid to minimize exposure to the open-air 

environment. All of the sample manipulation was conducted inside class-100 fume hoods 

wearing appropriate personal protective equipment as well as covering the hair and mouth 

to protect the sample against contamination.  

To each quartz vial, including one empty vial to be used as the method blank, a 

digestion internal standard was spiked by electronic pipette (Ovation® Macro10; Vistalabs, 

USA). This standard consisted of 200 µL of 200 ppb 6Li, Sc, Y, In, Tb and Bi in 0.8 M 

HNO3 (diluted from 71D). This spike was added both to be used as digestion internal 
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standards as well as to pre-wet the sample before adding acids. Occasionally the dry 

powder samples would stick to the inside of the micro-insert vessels and such cases, the 

internal standard aliquot was directed to rinse the sample down to the bottom of the vial. 

In the event of any sample losses during solution transfer and recover, these standards could 

be used adjust the calculation of mass dilution. Lastly, 2.3 ml of Optima grade nitric acid 

was added to all samples, rinsing any remaining solids down from the walls and ensuring 

that the entire sample was wet and in contact with the acid solution.  

For each microwave digestion run, ten polyether ether ketone (PEEK) digestion 

vessels (SK-15; Milestone, Scientific, USA) were used, each containing a buffer solution 

of 10mL 20% v/v H2O2 (ACS grade, Fisher Chemical) and three quartz vials carefully 

loaded with clean plastic tweezers. Vessels 2-10 contained heroin samples (three replicates 

per vessel). Vessel 1 (the reference vessel) contained one replicate each of spinach control 

NIST SRM 1570a, heroin control GFX2-83/8200-9, and the method blank. 

The buffer solution never came in contact with the sample solutions and was present 

to regulate the temperature within each vessel as well as to assist in the conversion of NOx 

(g) back in to HNO3. Without H2O2 present in the outer buffer solution, the vessels released 

a substantial about of noxious, yellow NOx(g) fumes to be vented post-digestion. The 

method described resulted in no colored vapors and digested solutions with total visual 

clarity. The chemical reaction for the oxidation of covalent carbon bonds by nitric acid is 

shown in Equation 1 along with three reactions governing the convergence of nitric and 

nitrous oxides ultimately back into nitric acid via reaction with hydrogen peroxide are 

shown in the following equations[47]. 
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Equation 1: chemical reactions of carbon bond oxidation by HNO3 and remediation of NO by way of 
converting HNO2 to HNO3 by H2O2[47]. 

(CH2)x + 2x(HNO3) → xCO2 + 2xNO + 2xH2O 

3NO2 + H2O ⇔ 2HNO3 + NO 

2NO + HNO3 + H2O → 3HNO2 

HNO2 + H2O2 → HNO3 + H2O 

After loading, the vessels were assembled and sealed to a specification of 10 N m 

with a torque wrench supplied by Milestone and then loaded into position in the microwave 

oven with the thermal probe positioned into the reference vessel. EPA method 3052 

requires that a thermal probe be used in at least one vessel [45]. The microwave continually 

adjusts its power depending upon the temperature in the reference vessel to within ±1 W 

in less than one second. The maximum power of the microwave was optimized for the 

number of samples used. If the power is too high the pressure will build up too rapidly, 

leading to venting and possible sample loss. If the power is too low, the internal 

temperature of the vessels will not reach the prescribed temperature within the ramp time, 

resulting in incomplete digestion. For 10 vessels (30 individual samples), a maximum 

power of 1600 Watts was used. 

The optimized method (see Table 3) was a 15-minute ramp from room temperate 

to 220 °C followed by a hold at 220 °C for an additional 15 minutes. Following the 

digestion program, the microwave’s ventilation fan allowed the samples to cool slowly to 

≤40 °C to avoid rapid depressurization of the vessel, which could lead to loss of sample.  
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Table 3: Microwave parameters for a batch of 30 heroin samples 

1.	Ramp	to	220	°C	in	15	min,	1600	Watts	of	max	power	

2.	Hold	at	220	°C	for	15	min,	1600	Watts	of	max	power	

3.	Cool	for	90	min	or	until	internal	temperature	is	≤40	°C	

 

Following digestion, the vessels were removed from the microwave oven once the 

internal temperature had reached ≤40°C (60-90 minutes was typically sufficient). Using 

the torque wrench, the seals were slowly released and the PEK inserts that held the quartz 

insert vials were carefully removed with plastic tweezers.  

Pre-weighed, 15mL polypropylene centrifuge tubes (Corning, USA) were used to 

collect the digestion product from the quartz vials. A centrifuge tube was set around the 

opening of the quartz vial and then both were inverted to transfer the sample to the 

centrifuge tube without loss.  Boron-free DI H2O from a clean wash bottle was used to 

rinse the vial approximately 3 times into the centrifuge tube, which yielded approximately 

13 mL of diluted solution.  The final mass was determined by weighing by difference of 

the centrifuge tubes to the nearest 0.01 g on a Sartorius LC4200 balance (Sartorius AG, 

Germany). The masses were converted to volumes using the average density, which was 

determined to be 1.082 g/mL (see subchapter 2.3.7). 

Trace metal grade (TMG) acids (Fisher Scientific, USA) and > 18 MΩ Evoqua® 

DI H2O (Evoqua, USA) were used to prepare all acid leaching baths. Reused lab-ware, 

such as PEK caps for the quartz vials, Teflon® beakers, plastic tweezers, and plastic 

spatulas were thoroughly rinsed with DI H2O, then leached in 1:1 v/v DI: HNO3 (~6M 
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HNO3) overnight. The following day they were transferred to a 5% HCl bath and left 

overnight.  After a final rinse in DI H2O, they were allowed to dry on a clean plastic rack 

in a Class 100 clean lab before use. 

Following a digestion, the quartz micro-insert vials were first cleaned by a thorough 

DI H2O rinse and mild agitation with a cotton-tipped applicator and a final rinse in DI H2O. 

If the quartz vials required heavy cleaning, the vials were bathed overnight in aqua regia, 

prepared by carefully adding 370 mL HCl to 100 mL HNO3, both of trace metal grade. 

Usually the vials appeared very clean following digestions, and were routinely cleaned by 

soaking overnight in 1:1 HNO3 and DI H2O at 90°C. The next day the vials were removed, 

rinsed with DI H2O, and allowed to dry on a cleaned plastic rack in a Class 100 clean lab 

before reuse. Aqua regia is aggressively corrosive and produces noxious fumes when 

prepared. It should not be stored for longer than one week because it becomes unstable. It 

requires roughly 4 L of a saturated NaHCO3 solution to neutralize 500mL of aqua regia, 

which should be done with copious amounts of ice inside of a fume hood for safety. 

2.3.4 Q-ICP-MS Method 

The most basic configuration of a modern ICP-MS instrument is the quadrupole 

mass analyzer. The instrument used for the preliminary elemental analysis in this research 

was the Agilent 7700X quadrupole ICP-MS (see Figure 5). In addition to the instrument 

specifications described in subchapter 2.2.2, it is equipped with an octapole 

reaction/collision cell that can be operated in normal (NO GAS), Hydrogen (H2) and 

Helium (He) modes depending upon the anticipated isobaric interferences for a particular 
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analyte. A full list of analyte elements and the corresponding mode of operation can be 

found in Table 4. 

Typically, He mode was used for transition metals as their primary matrix 

interferences were expected to be polyatomic ions such as X+Cl+ and Ar2+. Helium has a 

wider atomic radius and interacts with molecules in the octapole via collision. Collision-

induced dissociation is the accepted mechanism by which helium interacts to suppress the 

signal of isobaric interferences. Elements such as arsenic (75As) were measured in He mode 

because chloride complexes were the most problematic interferences (e.g., 75ArCl). 

 

Figure 5. Thermo Element 2 HR-ICP-MS (left) and Agilent 7700x Q-ICP-MS (right) in the Trace Evidence 
Analysis Facility (TEAF) at FIU. 

Hydrogen (H2) mode was employed to reduce the signal for plasma-based 

interferences. Oxides of lighter elements X+O+, often pose an issue for the measurement 
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of heavier analytes where X is an isotope 16 u lighter than the isotope of interest. Hydrogen 

is a reaction gas and the accepted mechanism by which H2 interacts with isobaric 

interferences is through charge-transfer neutralization of the interfering species. Neutral 

species cannot be analyzed in the mass analyzer region and hence no longer interfere with 

the measurement. Rare earth elements were monitored in H2 mode as X+O+ interferences 

were expected. 

Table 4: Acquisition parameters for Agilent 7700x method, showing elements in the mode selected in 
the XR-cell and total integration time/replicate measurement. 

No Gas Mode   Hydrogen (H2) Mode   Helium (He) Mode 

Isotope  Integration 
(s) 

 Isotope  Integration 
(s) 

 Isotope  Integration 
(s) 

 6 Li  0.09   39 K  0.3   24 Mg  0.3 
7 Li  0.09  51 V  0.3  27 Al  0.3 
9 Be  0.09  72 Ge  0.3  45 Sc  0.3 

10 B  0.09  78 Se  0.51  47 Ti  0.3 
11 B  0.09  103 Rh  0.3  52 Cr  0.3 
23 Na  0.09  146 Nd  0.3  57 Fe  0.3 
31 P  0.09  147 Sm  0.3  59 Co  0.3 
43 Ca  0.09  153 Eu  0.3  60 Ni  0.3 
55 Mn  0.09  157 Gd  0.3  63 Cu  0.3 
85 Rb  0.09  163 Dy  0.3  66 Zn  0.3 
88 Sr  0.09  165 Ho  0.3  71 Ga  0.3 
89 Y  0.09  166 Er  0.3  75 As  0.51 
90 Zr  0.09  169 Tm  0.3  95 Mo  0.3 
93 Nb  0.09  172 Yb  0.3   103 Rh  0.3 

103 Rh  0.3  175 Lu  0.3  107 Ag  0.3 
115 In  0.09  178 Hf  0.3  111 Cd  0.3 
118 Sn  0.09  181 Ta  0.3  133 Cs  0.3 
121 Sb  0.09  182 W  0.3  

  
   

125 Te  0.09  197 Au  0.3  
  

   
137 Ba  0.09  

  
 

 
 

  
   

139 La  0.09  
  

 
 

 
  

   
140 Ce  0.09  

  
 

 
 

  
   

141 Pr  0.09  
  

 
 

 
  

   
159 Tb  0.09  

  
 

 
 

  
   

205 Tl  0.09  
  

 
 

 
  

   
208 Pb  0.09  

  
 

 
 

  
   

209 Bi  0.09  
  

 
 

 
  

   
 232 Th  0.09  

  
 

 
 

  
   

238 U   0.09                     
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 Calibration solutions were prepared from ICP-MS multielement mixtures 

(Inorganic Ventures, USA) at 0.03, 0.1, 0.3, 1.0, 3.0, 10, 30 and 100 µg/L in 0.8 M HNO3. 

To ensure the accuracy and stability of the calibration, QC standards from a third party 

vendor (High-purity Standards, USA) were used. They were prepared at 2.0 (QC1) and 20 

(QC2) µg/L in 0.8 M HNO3. To account for the instrumental variation associated with 

sample introduction and plasma inconsistencies, internal standards were used. A 10 µg/L 

Rh solution was introduced inline via an integrated mixing tee and measured as 103Rh. A 

reagent blank of 0.8 M HNO3 was also prepared. 

Table 5: Instrumental parameters for ICP-MS measurements using the Agilent 7700x 

Parameter   Value   Parameter   Value 
Peristaltic pump   0.1 rps  Extraction lens 1  0 V 
Sample gas  1.00 L/min  Extraction lens 2  -190 V 
Dilution gas  0.13 L/min  Omega Bias  -70 V 
Spray chamber T  2°C  Omega Lens  7.6 V 
RF power  1550 W  He flow rate  5.0-5.2 mL/min 
Detector mode   Both   H2 flow rate   4.6 mL/min 

 

Instrumental parameters are listed on Table 5. Note that tuning was done daily to 

optimize the instrumental parameters for high signal, low oxides, low doubly-charged 

levels, and low RDSs so the actual values on a given day may vary slightly. 

The sample sequence was set up in the following order: reagent blank, calibration 

standards (in order of increasing concentration), reagent blank, QC1, QC2, reagent blank, 

digestion internal standard solutions, reagent blank, diluted digest solutions (method blank, 

heroin control, spinach control, samples), reagent blank QC1, QC2, and calibrations 

standards once again as samples. Before measuring a sample, the sample introduction 

system was flushed with the rinse solution or 0.1% Triton-X (MilliporeSigma, USA) in 



 39 

0.8M HNO3 to prevent carry-over from the previous sample, followed by a 20 second take-

up and 15 second stabilization time to bring a stable, homogeneous sample aerosol into the 

plasma. 

The analysis software performs the following operations to convert the measured 

intensities to element concentrations in solution: normalization of all samples to the 

internal standard, subtraction of the reagent blank signal, linear regression of the calibration 

standards to build a calibration curve, and calculation of the concentrations of each sample 

solution from the linear regression equations from the calibration samples. Each sample 

was measured in three replicates, which were used by the software to calculate the mean, 

standard deviation, and relative standard deviation of each sample. The instrument’s 

software calculates the limits of detection (LOD) for each element. The method LOD for 

each sample was determined by multiplying the sample’s dilution factor by the average 

instrumental LOD for each element; the method LOD was lowest value reported for any 

element of a sample. 

2.3.5 HR-ICP-MS Method 

High resolution ICP-MS analysis was performed using the Element 2 (Thermo 

Electron, Germany) shown on Figure 5, is a sector field ICP-MS. The instrument is more 

sensitive and has much better resolution than quadrupole instruments. However, it is also 

more costly to purchase and more expensive to maintain than quadrupole instruments. It 

also requires a greater degree of expertise to correctly operate a high-resolution ICP-MS 

instrument and to achieve accurate, precise and reproducible results as compared to a 

quadrupole ICP-MS. 
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The main strategy the Element 2 uses to deal with interferences is to increase the 

mass resolution. The mass resolution of a peak is the mass of the peak center divided by 

the peak width at 5% of its height. As the peaks are narrowed and the mass separation is 

improved, the mass resolution increases and improved separation between neighboring 

peaks is achieved. There are two ways by which this is achieved: using slits and a double-

focusing magnetic-electrostatic sector mass separator in reversed Nier-Johnson geometry 

(see Figure 6). 

 

Figure 6. Schematic of a Thermo Element 2 HR-ICP-MS with reversed Nier-Johnson geometry. Modified 
from [48]. 

The Element 2 has three slits: an entrance slit between the ion optics and the 

magnetic sector, an intermediate slit between the magnetic and electrostatic sectors, and an 

exit slit between the electrostatic analyzer (ESA) and the detector. The entrance slit is used 
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to focus and narrow the beam more than is possible by the ion optics alone. Ions exiting 

from the entrance slit enter into the magnetic field produced in the curved magnetic sector, 

which imposes a force on the ions perpendicular to the direction of motion and thus a 

curved flight path. The ions will get dispersed by their momentum (energy and mass) until 

they reach an intermediate slit.  At a given velocity and magnetic field induction, only ions 

with a specific m/z will have the correct curved trajectory to make it through the 

intermediate slit into the ESA. In the ESA, a direct current is applied to the ESA inner and 

outer plates giving the inner plate a negative polarity attracting the positive ions, while the 

outer plate (positive polarity) repels them. The ions directed towards the ESA get dispersed 

with respect to their energy only and are then refocused onto the exit slit leading into the 

detector.  

 

Figure 7. Left: moveable slits in the Thermo Element 2 HR-ICP-MS. Right: comparison of the peak shape, 
resolution, and sensitivity of the three mass resolutions, modified from [48]. 

The width of the entrance and exit slits can be set for low, medium, or high (the 

narrowest width) resolution (LR, MR, and HR, respectively, see Figure 7). Low resolution 

is capable of a resolution of approximately 300 (in contrast with a quadrupole which has a 

resolution of approximately 1), MR 4000, and HR 10,000. Note that the narrower the slit, 
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the fewer ions pass through it, so there is a loss in sensitivity. However, the sensitivity of 

the Element 2 in LR is still 1-2 orders of magnitude greater than that of a quadrupole (which 

is comparable to the sensitivity of the Element 2 in MR).  

The nominal masses described earlier are simply rounded to the nearest whole 

number, but the exact masses may be different enough to be resolved by a high-resolution 

instrument such as the Element 2.   For example, the exact mass of 75As is 74.921597 u, 

while the exact mass of the 40Ar35Cl is 74.931235 u, which can be separated with a 

resolution of 7774 or greater, is easily achieved in HR, shown in Figure 8. 

 

Figure 8. Baseline resolution of 75As+ (left) from the (40Ar35Cl)+ interference (right) in high resolution by the 
Thermo Fisher Element 2 HR-ICP-MS in a solution of 4 ppb As, 0.08M HCl and 0.6M HNO3. 
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Calibration solutions were prepared at 0, 0.003, 0.03, 0.3, 3, and, 30 µg/L in 0.8 M 

HNO3. To ensure the accuracy and stability of the calibration, quality control (QC1 and 

QC2) standard mixtures were used. They were prepared at 2.0 (QC1) and 20 (QC2) µg/L 

in 0.8 M HNO3. To account for the instrumental variation associated with sample 

introduction and plasma inconsistencies, internal standards were used. A 10 µg/L Rh 

solution was introduced inline via a mixing tee (Glass Expansion, USA) and measured as 

103Rh. A reagent blank was prepared from the 0.8 M HNO3 used for preparing the above 

solutions.  

The following isotopes were measured in low resolution: 9Be, 11B, 23Na, 53Cr, 85Rb, 

88Sr, 90Zr, 93Nb, 95Mo, 107Ag, 111Cd, 118Sn, 121Sb, 125Te, 133Cs, 137Ba, 139La, 140Ce, 141Pr, 

146Nd, 147Sm, 153Eu, 157Gd, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, 178Hf, 182W, 205Tl, 208Pb, 

232Th, 238U. The following isotopes were measured in medium resolution: 24Mg, 27Al, 31P, 

32S, 43Ca, 44Ca, 47Ti, 51V, 52Cr, 53Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 69Ga. The following 

isotopes were measured in high resolution: 39K, 72Ge, 75As, 77Se.  Each of the elements 

measured by HR-ICP-MS were also measured by Q-ICP-MS to cross-check the 

performance between the two instruments.  

Instrumental method parameters for the Thermo Fisher Element 2 HR-ICP-MS are 

listed on Table 6. Note that tuning was done daily to optimize the instrumental parameters 

for achieving high signal intensity, low oxides formation, low doubly-charged species, and 

signal stability so the actual values on a given day may vary slightly. The sequence and 

data processing were very similar in principle to that done for the Q-ICP-MS analysis (see 

subchapter 2.3.4. 
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Table 6. Instrumental parameters for HR-ICP-MS measurements using the Thermo Element 2. 

Parameter   Value   Parameter   Value 
Peristaltic pump   6 rpm  Extraction lens  -2000 V 
Sample gas  0.98 L/min  Focus lens  -900 V 
Auxiliary gas  0.9 L/min  Shape lens  120 V 
Cool gas  16 L/min  MS mode  Mass Accuracy 
Z position  -3 mm  Scan mode  E-Scan 
RF power   1200 W   Detector mode   Both 

 

2.3.6 Reagents and Elemental Standards 

For all sample preparation and digestion, Optima grade nitric acid (Fisher 

Scientific, USA) was used.  All deionized (DI) water used for preparation of samples, 

standards, and blanks was obtained at > 18 MΩ from a Millipore Milli-Q systems (EMD 

Millipore, Germany) equipped with a boron-free filter to achieve low boron levels, as well 

as the lowest possible levels of other trace metals. 

Calibration standards for ICP-MS were prepared from stock solutions of ICP-MS 

Mix 71A (Ag, Al, As, B, Ba, Be, Ca, Cd, Ce, Co, Cr(III), Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, 

Ho, K, La, Lu, Mg, Mn, Na, Nd, Ni, P, Pb, Pr, Rb, S, Se, Sm, Sr, Th, Tl, Tm, U, V, Yb, 

and Zn), 71B (Ge, Hf, Mo, Nb, Sb, Si, Sn, Ta, Te, Ti, W, and Zr), 71D (Bi, In, 6Li, Sc, Tb, 

and Y) and Au single element solution (Inorganic Ventures, USA). Internal digestion 

standard solutions were prepared from stock solutions of ICP-MS Mix 71D. Instrumental 

calibration standard was a 100 µg/L dilution in 0.8 M HNO3 of rhodium single element 

standard (Inorganic Ventures, USA). Solutions of Al, B, Ba, Ca, Dy, K, Mo, Pb, Se, Sn, 

Sr, Ti, Tl, Zn used for quality control standards (QC) solutions were purchased from a 

secondary source (High Purity Standards, USA). ICP-MS rinse solutions were prepared 
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with 0.1 % Triton-X (Fisher Scientific, USA) in 2 % trace metal grade nitric acid (Fisher 

Scientific, USA).  

2.3.7 Characterization of Sample Post-Digestion 

The samples were characterized for both the acid molarity to calculate the 

appropriate dilution factor to prepare the samples for analysis by ICP-MS. Even though the 

instrument may tolerate high molar acids, it does accelerate the pace of maintenance. In 

addition, the acid matrix of calibration solutions should be matched as closely as possible 

to that of the samples being analyzed. It would consume expensive acid reagents to 

prepared them in higher concentrations, so it was determined that dilution of the sample 

was more cost effective. In addition, dilution of the samples would afford an opportunity 

to partition the samples and reduce contamination to the main portion of the sample given 

the need to reanalyze the sample. This made it also suitable for an aliquot of the sample to 

be reserved for analysis for 87Sr/86Sr isotope analysis as well, which is described in Chapter 

4.  

The results of the titration are shown on Figure 9, wherein samples over a range of 

sample masses were analyzed for their resulting nitric acid concentration. The titration 

results suggest that using lesser sample masses yields a higher final acid molarity post-

digestion. Not surprisingly, the titration also demonstrated that using a larger volume of 

concentrated nitric acid allows for a larger mass of heroin sample to be digested, while still 

resulting in equitable acid molarities in the post-digestion solution. The target mass range 

was set at approximately 50 - 80 mg therefore the final acid molarity was assumed to be 
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1.4 - 1.8 M HNO3 and the final dilution ratio was 1:1, where 3mL diluted to a final volume 

of 6mL.  

 

Figure 9. Titration with ~0.1 M NaOH solution of heroin samples to determine sample mass/post-digest acid 
molarity. Only one titration was performed for each sample as obtaining the range of nitric acid molarity was 
more desirable than obtaining a precise determination for each sample.  

For the development of a systematic method of sample preparation and data 

analysis, the major part of a mass dilution factor must be calculated. The mass dilution 

factor of a particular sample can be calculated using the following data points: the mass of 

the heroin sample, the mass of the undiluted solution, the volume of the undiluted sample, 

the volume of diluted sample, and the specific gravity of both the undiluted and diluted 

samples. However, it is not practical to determine acid molarity and specific gravity of 
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more than 1,200 samples. Therefore, the same dilution was applied systematically to all 

samples and only the sample mass and the post-digestion sample masses were measured 

for each individual sample. Five replicate density measurements were taken from three 

sample replicates before and after dilution. The undiluted density was found to be 

1.0817±0.0014 g/mL and the diluted density was found to be 1.0358±0.0026 g/mL; these 

values were input into the mass dilution factor calculation. The equation for the calculation 

of the mass dilution factor applied to each sample is shown below in Equation 2. Using the 

mass dilution factor, the mass concentration of elements in solution (µg/L), from the 

instrumental analysis, was transformed into a mass concentration in the heroin samples 

(µg/kg). 

Equation 2: Calculation of the mass dilution factor, shown in parentheses. 

µg/L × &
3.0	𝑚𝐿
6.0	𝑚𝐿 ×

1.082	 1 𝑔𝑚𝑙4𝑢𝑛𝑑𝑖𝑙. 𝑠𝑎𝑚𝑝𝑙𝑒

1.036	 1 𝑔𝑚𝑙4𝑑𝑖𝑙. 𝑠𝑎𝑚𝑝𝑙𝑒
×

𝑚𝑔	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒
1000 ∗ (𝑔	of	𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑔	𝑜𝑓	𝑣𝑖𝑎𝑙)

F

GH

= µ𝑔/𝑘𝑔 

 

2.4 Results 

2.4.1 Data Analysis 

The method blank was subtracted from the rest of the diluted digest samples. Any 

measured concentration that was less than the LOD was assigned a value of the LOD for 

that element (i.e., LOD-filtering).  A set of global LODs was calculated as the average 

LOD for each element over the 12 months of measurements. These were used for LOD-

filtering instead of the daily LODs to avoid introducing artificial differences to samples 

analyzed on different days. 
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Up to this point all concentrations obtained were the concentrations of the solutions 

that were diluted for analysis by Q-ICP-MS and HR-ICP-MS. To determine the 

concentration in the original powdered sample the overall dilution factors were applied to 

LOD-filtered data. Applying the dilution factor is possible in the instrument software, but 

it is very time-consuming, and the data would not be properly LOD-filtered, therefore 

multiplying the filtered data by the dilution factor was done offline.  As noted in subchapter 

2.3.7, the overall dilution factors were calculated for each sample using the mass of 

powdered sample, the masses and densities of the 13mL digest products, and subsequent 

dilution volumes.  

The performance of the Q-ICP-MS and HR-ICP-MS methods was monitored by 

plotting the concentrations obtained for the spinach and heroin controls for each digestion 

on control charts using the Levey-Jennings Control Chart in JMP software (SAS Institute, 

USA). Routinely monitoring control charts facilitated identification of potential problems 

with either the digestion or the instrumental performance, see Figure 10-19. Each data point 

is a different digestion of the control sample, and the horizontal bars represent the number 

of standard deviations (SDs) from the mean (the green line): C is within 1 SD, B is within 

2 SDs, and A is within 3 SDs.  Any point that falls inside of 2 SDs is considered normal, 

between 2 SDs and 3 SDs should be investigated for potential problems and outside of 3 

SDs is expected to be an erroneous data point and an outlier from a normally distributed 

set of data. Some examples are shown in the figures on the following pages for Q-ICP-MS 

data.  
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Of note are the SRM NIST 1570a samples for digestions JD2-117, JD2-119, JD2-

120 are in the action zone for multiple elements, but not JD2-118, and since 117, 118 and 

119 were analyzed on the same day this indicated that the problem was with the digestions, 

but not the analysis (see Figure 10-14). As mentioned previously, the total digestion of 

heroin samples was much easier than that of the SRM spinach leave matrix. One can see 

for the JD2-117, JD2-119 and JD2-120 digestions of the heroin duplicate samples, there 

were no apparent problems with the extractions (see Figure 15-19). As a precaution all 

samples in JD2-117, 118, 119 and 120 were re-digested and analyzed again.  

 

Figure 10. Levy-Jennings Control chart of 43Ca in SRM NIST 1570a as measured by Q-ICP-MS. 

 

Figure 11. Levy-Jennings Control chart of 51V in SRM NIST 1570a as measured by Q-ICP-MS. 
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Figure 12. Levy-Jennings Control chart of 66Zn in SRM NIST 1570a as measured by Q-ICP-MS. 

 

Figure 13. Levy-Jennings Control chart of 88Sr in SRM NIST 1570a as measured by Q-ICP-MS. 

 

Figure 14. Levy-Jennings Control chart of 238U in SRM NIST 1570a as measured by Q-ICP-MS. 
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Figure 15. Levy-Jennings Control chart of 43Ca in GFX2-83-8009/2 as measured by Q-ICP-MS. 

 

Figure 16. Levy-Jennings Control chart of 51V in GFX2-83-8009/2 as measured by Q-ICP-MS. 

 

Figure 17. Levy-Jennings Control chart of 66Zn in GFX2-83-8009/2 as measured by Q-ICP-MS. 
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Figure 18. Levy-Jennings Control chart of 88Sr in GFX2-83-8009/2 as measured by Q-ICP-MS. 

 

Figure 19. Levy-Jennings Control chart of 238U in GFX2-83-8009/2 as measured by Q-ICP-MS. 
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concentrations on the x-axis and the measured HR-ICP-MS µg/g concentration on the y 

axis. Pearson correlations coefficients were 0.9695 for Cu, 0.9912 for Zn, 0.9950 for Sr 

and 0.9947 for Ba, the plot of the data is shown on Figure 20. The fact that the calibration 
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and Ba were chosen for this plot on the basis of having a suitable distribution of sample 

concentrations for an observable linearity, although they were not the only elements 

exhibiting good correlations. Other elements had large concentration disparity between the 

samples with low abundance and the samples with high abundance that linearity would be 

imperceptible. There were elements, such as P, Ar and Se which were not well correlated 

between the two instruments, as a result of the analytical challenges of these analytes. 

 

Figure 20. x/y plot of µg/g concentration heroin samples measured by the Agilent 7700x Q-ICP-MS on the 
x-axis and the Thermo Fisher Element2 HR-ICP-MS on the y-axis for Cu, Zn, Sr and Ba. 

Some dispersion was seen at higher concentrations, which was likely because these 

concentrations were above the highest point in the calibration range of the HR-ICP-MS (30 
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µg/g). The slopes of the lines are between 0.83 and 0.95 which suggests there is a 

systematic drift in the calculation of mass concentration in favor of a higher value in the 

Q-ICP-MS, which is also likely a result of a more concentrated upper-level calibration 

solution being used on the Q-ICP-MS of 100 µg/g as opposed to the HR-ICP-MS of 30 

µg/g. However, the observation could also be a result of differences between the ionization 

efficiencies of the plasma or detector responsiveness in the Q-ICP-MS and HR-ICP-MS. 

2.4.2 Q-ICP-MS 

The analytical method of Q-ICP-MS of heroin samples prepared by micro-wave 

assisted acid digestion was validated by conducting repeated analyses of SRM NIST 1570a 

and the heroin duplicate control sample (GFX2-83-8002/9). The method limit of detection 

(LOD) was determined by multiplying the instrumental limit of detection, found by a linear 

calibration of 3 standard deviations of the 0 ppb calibration solution, multiplied by the 

average mass dilution factor of SRM NIST 1570a and GFX2-83-8002/9. Since the overall 

dilution factor described above differed for each individual sample, an average dilution 

factor of 752 was used for the spinach control and 433 for the heroin control.  The inter-

day repeatability was found by determination of RSD over 62 separate preparations and 

analyses of the SRM NIST 1570a and 47 separate preparations and analyses of GFX2-83-

8002/9. The extraction recovery (Rec %) was determined by the percent recovery of the 

calculated mass concentration of each listed element compared to the certified value on the 

certificate of analysis of SRM NIST 1570a; figures of merit are shown on Table 7. Since 

the GFX2-83-8002/9 does not have independent lab values Rec % could not be calculated 

and therefore are not shown on Table 8. 
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Table 7. Figures of merit for analysis of the spinach control by Q-ICP-MS (n=62). Missing recovery 
values indicate elements not reported on the certificate of analysis of NIST SRM 1570a. An asterisk 
(*) indicates elements were reported only as information values on the certificate of analysis of 
NIST SRM 1570a. 

 LOD MEAN (µg/g) RSD 
(%) Rec %  LOD MEAN (µg/g) RSD 

(%) Rec % 

9Be 0.002 0.004±0.0003 33   118Sn 0.007 0.033±0.0058 70  

11B 0.084 41±1.3 13 107.7 121Sb 0.001 0.007±0.0008 43  

23Na 4.2 19300±600 10 105.8 125Te 0.006 0.008±0.0013 62  

24Mg 0.032 9370±250 10 104.1* 133Cs 0.001 0.04±0.011 109  

27Al 0.18 214±8 14 68.9 137Ba 0.006 6.8±0.19 11  

31P 4.1 6020±260 17 116.1 139La 0.0004 0.14±0.005 14  

39K 1.2 31100±800 11 107.1 140Ce 0.0006 0.29±0.01 13  

43Ca 0.4 4880±190 15 32 141Pr 0.0001 0.033±0.0011 14  

47Ti 0.08 14.9±0.7 17   146Nd 0.0001 0.12±0.004 14  

51V 0.002 0.57±0.02 14 100.2 147Sm 0.0001 0.023±0.0008 14  

52Cr 0.004 1.6±0.06 15   153Eu 0.0001 0.005±0.0002 14 109.6 
55Mn 0.003 82±2 10 108.2 157Gd 0.0001 0.022±0.0008 14  

57Fe 0.34 283±15 21   163Dy 0.00004 0.017±0.0006 15  

59Co 0.001 0.37±0.01 11 95.3 165Ho 0.00002 0.003±0.0001 15  

60Ni 0.079 1.2±0.19 65 54.4 166Er 0.00004 0.009±0.0003 14  

63Cu 0.004 12±0.3 9 98.6 169Tm 0.00001 0.001±0.0001 19  

66Zn 0.086 82±1.9 9 99.9 172Yb 0.0001 0.007±0.0003 16  

71Ga 0.002 0.082±0.0028 13   175Lu 0.00004 0.001±0.0003 111  

75As 0.02 0.04±0.0044 44 58.1 178Hf 0.0001 0.004±0.0003 27  

78Se 0.008 0.11±0.006 20 96.9 181Ta 0.0005 0.0008±0.0001 51  

85Rb 0.003 14±0.3 8 109.7 182W 0.003 0.008±0.0022 103  

88Sr 0.002 60±1.6 11 107.2 197Au 0.005 0.007±0.0015 86  

90Zr 0.002 0.13±0.006 19   205Tl 0.003 0.018±0.0014 31  

93Nb 0.0004 0.035±0.0017 19   208Pb 0.002 0.18±0.012 26 89* 
95Mo 0.002 0.36±0.016 17   232Th 0.0002 0.043±0.0017 16 90.5 
107Ag 0.0006 0.016±0.004 96   238U 0.0002 0.15±0.005 12 99.1  
111Cd 0.003 2.8±0.07 10 98.9      

 

 When prepared by microwave assisted acid digestion and analyzed by Q-ICP-MS, 

most elements above 0.5 ppm which corresponds to ~ 1 ppb in the solution have RSD 

<20% except for 60Ni, which experienced repeatability issues likely because of the high 
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60Ni background. As shown on Figure 21, beginning with digest JD2-117, 60Ni present in 

the background caused the calculation of the mass concentration in the sample to drop. The 

60Ni signal was likely present by being introduced by the sampler and/or skimmer cones of 

the Q-ICP-MS as the background was not observed in the control charts of the HR-ICP-

MS. Once they were cleaned the background improved somewhat, and once they were 

replaced, the background returned to normal. 

 

Figure 21. Levy-Jennings Control Chart of 60Ni for SRM NIST 1570a 

The percent recoveries are within ±10% of the certified values for all elements 

except for 27Al, 31P, 43Ca, 60Ni and 75As. The RSD for 60Ni and 43Ca are both quite low, 

which suggests there is some systematic inefficiency in attaining 100% extraction of that 

analyte. Perhaps this is a consequence of some fraction of Al and Ni being occluded with 

a siliceous mineral that is not dissolved without the inclusion of hydrofluoric acid. The 

isotopes of 31P and 75As suffer from well-known polyatomic interferences, 14N16O1H and 

40Ar35Cl respectively. Nitrogen hydroxide is unavoidable as the digestion acid is HNO3 as 

well as nitrogen being part of the chemical structure of heroin. Argon chloride is also 

prevalent because of the vary large quantity of argon gas used in ICP-MS analysis as well 
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as the heroin sample being of the HCl salt form for most of the samples. While the method 

was designed to remove the 40Ar35Cl interference for the analysis of 75As, the low 

concentration in both the SRM and heroin control and therefore validated performed was 

poor. As previously mentioned, 60Ni suffered from a loss in measured concentration for 

many samples because of background contamination, which explains why the average 

percent recovery approximately half of what was expected. 

Table 8. Figures of merit for analysis of the heroin control by Q-ICP-MS (n=47). 

Isotope LOD MEAN (µg/g) RSD (%) Isotope LOD MEAN (µg/g) RSD (%) 
9Be 0.001 0.003±0.0002 24 118Sn 0.004 26.4±0.55 7 
11B 0.05 0.48±0.186 132 121Sb 0.001 0.021±0.0028 46 

23Na 2.4 720±14.3 7 125Te 0.003 0.004±0.0005 43 
24Mg 0.02 85.2±3.52 14 133Cs 0.0008 0.018±0.0006 12 

27Al 0.1 141±3.5 8 137Ba 0.003 59.2±1.27 7 
31P 2.3 27.3±3 37 139La 0.0002 0.17±0.024 48 
39K 0.68 62.4±12.75 70 140Ce 0.0004 0.27±0.05 64 

43Ca 0.25 1080±40 12 141Pr 0.0001 0.033±0.0054 55 
47Ti 0.04 6.13±0.306 17 146Nd 0.0001 0.12±0.016 46 
51V 0.001 0.462±0.0099 7 147Sm 0.0001 0.019±0.0009 16 

52Cr 0.002 1.15±0.066 20 153Eu 0.00003 0.014±0.0008 19 
55Mn 0.002 3.76±0.325 29 157Gd 0.0001 0.018±0.0008 16 

57Fe 0.19 189±12 22 163Dy 0.00002 0.012±0.0006 16 
59Co 0.001 0.059±0.0038 22 165Ho 0.00001 0.002±0.0001 19 
60Ni 0.046 0.13±0.037 99 166Er 0.00002 0.006±0.0004 24 

63Cu 0.002 4.2±0.64 52 169Tm 0.00001 0.001±0.0001 24 
66Zn 0.05 141±3.1 7 172Yb 0.0001 0.005±0.0003 25 
71Ga 0.001 0.075±0.0057 26 175Lu 0.00002 0.001±0.0003 132 
75As 0.013 0.021±0.0027 45 178Hf 0.0001 0.003±0.0001 15 
78Se 0.005 0.024±0.0016 22 181Ta 0.0003 0.0004±0.0001 62 

85Rb 0.002 0.25±0.007 10 182W 0.002 0.013±0.0085 219 
88Sr 0.001 23.8±0.38 5 197Au 0.00309 0.007±0.0017 88 
90Zr 0.001 0.12±0.01 30 205Tl 0.002 0.003±0.0004 51 

93Nb 0.0002 0.022±0.0014 22 208Pb 0.001 2.43±0.248 35 
95Mo 0.001 0.098±0.0102 36 232Th 0.0001 0.032±0.0028 31 
107Ag 0.0003 0.004±0.0007 63 238U 0.0001 0.088±0.0019 7 
111Cd 0.001 0.075±0.002 9     



 58 

2.4.3 HR-ICP-MS 

The validation of the HR-ICP-MS method for heroin samples prepared by micro-

wave assisted acid digestion the same as that of the Q-ICP-MS, which accomplished by 

means of repeated analyses of SRM NIST 1570a and the heroin duplicate control sample 

(GFX2-83-8002/9). The HR-ICP-MS did not perform as consistently for most major 

elements compared to the Q-ICP-MS. For most elements, the measured mean values from 

both instruments are within the reported uncertainty ranges, however the RSD’s for many 

elements are much higher on the HR-ICP-MS. The figures of merit are given in Table 9 

and Table 10 for the HR-ICP-MS. The mean, 95 % confidence interval (CI), and inter-day 

relative standard deviation (RSD) were calculated from all (n=61) analyses of each control.  

The primary reasons for high inter-day RSDs for the Q-ICP-MS were low 

concentration of analyte in the sample or high concentrations in method blank. For 

elements such as B and Ni, it was likely the low sample concentrations relative to the 

background signal of these elements that led to low reproducibility. For some elements, 

such as B, Na, Al, P, S, K, Ca, the concentrations in the spinach control were above the 

upper calibration limit for the HR-ICP-MS (30 µg/g), resulting in poor precision and 

recovery (see Table 9). Low concentration elements, such as Lu and W in the spinach 

control (see Table 9) and Te, Lu and W in the heroin control (see Table 10), were very 

close to the LOD, which commonly results in poor RSD. The poor performance of As and 

Se by the HR-ICP-MS was because of a problem with the mass calibration in HR for a few 

of the analysis days, which allowed the interfering polyatomic ions of (40Ar35Cl)+ and 
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(40Ar38Ar)+ to enter the analytical window, resulting in much greater calculated recovery 

than was expected from the SRM NIST 1570a. 

Table 9. Figures of merit for analysis of the spinach control by HR-ICP-MS (n=61). Missing recovery 
values indicate elements not reported on the certificate of analysis of NIST SRM 1570a. An asterisk 
(*) indicates elements were reported only as information values on the certificate of analysis of NIST 
SRM 1570a. 

Isotope LOD MEAN 
(µg/g) 

RSD 
(%) Rec % Isotope LOD MEAN (µg/g) RSD 

(%) 
Rec 
% 

9Be 0.0051 0.041±0.014 141   95Mo 0.0018 0.45±0.02 16  

11B 0.059 46±2 18 123 107Ag 0.0011 0.024±0.003 50  

23Na 5.2 1190±820 275 7 111Cd 0.0008 2.8±0.1 11 97 
24Mg 0.084 8660±360 17 96* 118Sn 0.0058 0.071±0.019 109  

27Al 0.076 205±8 15 66 121Sb 0.0005 0.019±0.004 92  

31P 0.11 5550±320 23 107 125Te 0.0029 0.18±0.07 148  

32S 0.81 6060±430 28 121 133Cs 0.0003 0.028±0.005 76  

39K 0.049 26800±2400 36 92 137Ba 0.0026 7.1±0.3 14  

43Ca 0.26 3920±690 70 26 139La 0.0003 0.15±0.01 13  

44Ca 0.02 3990±700 70 26 140Ce 0.0003 0.3±0.01 12  

47Ti 0.016 16±1 19   141Pr 0.00009 0.036±0.001 16  

51V 0.0007 0.62±0.02 11 110 146Nd 0.00036 0.14±0.01 18  

52Cr 0.0035 1.7±0.1 14   147Sm 0.00018 0.036±0.005 51  

55Mn 0.0032 72±2 14 95 153Eu 0.00016 0.011±0.001 47 191 
56Fe 0.037 242±10 16   157Gd 0.00039 0.035±0.004 43  

59Co 0.0028 0.41±0.01 12 104 163Dy 0.00018 0.024±0.003 41  

60Ni 0.0035 2±0.1 18 95 165Ho 0.00004 0.0051±0.0006 49  

63Cu 0.0078 11±0 14 93 166Er 0.0001 0.015±0.002 49  

66Zn 0.11 75±4 22 92 169Tm 0.00004 0.0028±0.0006 84  

69Ga 0.0006 0.11±0.02 79   172Yb 0.00014 0.015±0.003 69  

72Ge 0.0023 0.67±0.27 159   175Lu 0.0018 0.0076±0.0043 226  

75As 0.012 1.3±0.5 154 1948 178Hf 0.00014 0.011±0.003 90  

77Se 0.091 17±7 160 14504 182W 0.016 0.027±0.005 80  

85Rb 0.001 14±0 10 109 205Tl 0.00009 0.026±0.004 54  

88Sr 0.017 59±1 10 107 208Pb 0.0009 0.2±0.03 61 102* 
90Zr 0.0008 0.14±0.01 21   232Th 0.00005 0.054±0.008 63 112 

93Nb 0.0005 0.04±0.002 18   238U 0.00005 0.18±0.03 62 117 
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Table 10. Figures of merit for analysis of the heroin control by HR-ICP-MS (n=48). 

Isotope LOD MEAN (µg/g) RSD (%) Isotope LOD MEAN (µg/g) RSD (%) 

9Be 0.003 0.0046±0.0009 73 95Mo 0.001 0.099±0.009 33 
11B 0.034 0.38±0.13 118 107Ag 0.00063 0.0056±0.0007 47 

23Na 3 657±40 22 111Cd 0.00048 0.069±0.002 11 
24Mg 0.048 80±4 19 118Sn 0.0033 24±1 9 

27Al 0.044 130±4 10 121Sb 0.00027 0.02±0.002 45 
31P 0.064 34±3 27 125Te 0.0017 0.0044±0.0024 193 
32S 0.46 338±16 17 133Cs 0.00019 0.017±0.001 19 
39K 0.028 52±8 56 137Ba 0.0015 55±2 11 

43Ca 0.15 1060±110 38 139La 0.00017 0.18±0.03 54 
44Ca 0.011 1090±110 36 140Ce 0.00016 0.26±0.05 70 
47Ti 0.0093 5.7±0.2 15 141Pr 0.00005 0.033±0.007 71 
51V 0.00038 0.44±0.01 7 146Nd 0.00021 0.12±0.02 56 

52Cr 0.002 1.1±0.1 18 147Sm 0.0001 0.019±0.001 17 
55Mn 0.0019 3.3±0.1 11 153Eu 0.00009 0.025±0.001 16 

56Fe 0.021 157±6 14 157Gd 0.00023 0.022±0.002 38 
59Co 0.0016 0.058±0.005 30 163Dy 0.0001 0.011±0.001 15 
60Ni 0.002 0.35±0.01 11 165Ho 0.00002 0.0021±0.0001 19 

63Cu 0.0045 3.9±0.6 52 166Er 0.00006 0.006±0.001 18 
66Zn 0.064 126±5 14 169Tm 0.00002 0.00076±0.00007 31 
69Ga 0.00034 0.051±0.002 11 172Yb 0.00008 0.0046±0.0003 24 
72Ge 0.0013 0.017±0.011 227 175Lu 0.001 0.0021±0.0019 310 
75As 0.0069 0.048±0.017 128 178Hf 0.00008 0.0029±0.0002 20 
77Se 0.052 0.35±0.23 231 182W 0.0092 0.026±0.013 177 

85Rb 0.00055 0.23±0.01 15 205Tl 0.00005 0.0019±0.0001 13 
88Sr 0.01 22±1 9 208Pb 0.00051 2.4±0.2 36 
90Zr 0.00047 0.097±0.006 21 232Th 0.00003 0.031±0.003 31 

93Nb 0.00026 0.02±0.001 17 238U 0.00003 0.087±0.003 12 

 

Relative to the results from the Q-ICP-MS the RSD are worse for the HR-ICP-MS. 

While unexpected, there are a few explanations for the better performance of the Q-ICP-

MS. The primarily cause was the author’s inexperience in using the instrument and 

performance was much less easily monitored during analysis. The instrument software for 
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the Q-ICP-MS, Masshunter 4.1 version C.01.01 (Agilent Technologies, USA) was much 

more amenable to method modification in response to observations made over the course 

of analysis the that of the HR-ICP-MS, Thermo ELEMENT 3.1.2.242 (Thermo Fisher, 

USA). The HR-ICP-MS was not initially equipped for an externally supplied calibration 

solution, and spiking of an internal standard solution was required for about half of the 

samples. Once it was set up, it introduced some challenges with proper sample stabilization 

time. Samples needed to be reanalyzed once the solution to the sample stabilization time 

was identified. Additionally, the Q-ICP-MS had a Peltier-chilled spray chamber which is 

designed to reduce the formation of oxide interferences, and typically oxides were 

approximately 2% on the Q-ICP-MS and 15% on the HR-ICP-MS. Lastly, because of the 

longer sampling time, the workflow was established to first analyze the samples on Q-ICP-

MS and then transfer them to the HR-ICP-MS. It is possible that there could have some 

external contamination during the analysis on Q-ICP-MS, during the transfer or whilst 

awaiting analysis on the HR-ICP-MS for the samples to cause the relatively poorer 

repeatability of the samples. Therefore, the HR-ICP-MS results were not used in 

subsequent statistical analysis. 

2.4.4 Method Performance with Heroin Samples 

An assessment of repeatability, and reproducibility was conducted for the heroin 

control sample and two other heroin samples. Evaluating RSD values for both intra-sample 

and inter-sample deviation helped to explain whether the variation is a result of 

instrumental challenges (primarily as a result of low sample concentrations) or a result of 

heterogeneity within the sample. It was recognized that homogenization would be useful 
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to reduce sampling variation, however because of the sample is a Schedule 1 controlled 

substance, loss of sample, workplace contamination and security concerns made physical 

homogenization undesirable. Therefore, the sample was simply agitated in its vessel prior 

to sampling by gentle shaking. In addition, a clean spatula was used to stir the sample 

somewhat during sampling. Finally, in lieu of homogenization of the heroin samples, to 

mitigate bias from intra-sample variability, three separate replicates were taken for every 

sample with very few exceptions, and only when the sample mass was limited.  

The ideal sample masses during routine sample preparation was 60-70 mg, however 

judging the sample size was difficult in some cases. The dry powder density was greatly 

variable sample to sample, therefore some sample masses were a low as 30 mg while others 

as high as 100 mg. Sample was not returned to the parent vessel once removed to avoid 

contamination of the bulk samples, as the excess sample was to be returned to DEA-STRL 

following the conclusion of the research. To evaluate the reproducibility of the method 

using a large mass range, 8 samples of 3 different heroin samples were digested over a 

mass range of approximately 30 mg to 120 mg. Table 11, Table 12 and Table 13 show the 

repeatability of the method, as relative standard deviation (RSD) of the calculated mass 

concentration in the sample (µg/g) and the reproducibility as a linear (x/y) function of the 

Pearson correlation coefficient (R2) of the sample mass and the elemental concentration in 

the post-digest solutions. Only elements which met criteria of being repeatable, by having 

relative standard deviations less than 30%, and reproducible with a Pearson correlation 

coefficient of greater than 0.7 are shown on the following tables.  
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Table 11. Elements of GFX2-83-8002/9 with Repeatability (<30%RSD) and Reproducibility 
(>0.7 R2); N=8  

Isotope Mean (µg/g) RSD R2 Isotope Mean (µg/g) RSD R2 

9Be 0.00507±0.00087 13.9% 0.85042 107Ag 0.00586±0.00116 23.6% 0.75477 
10B     111Cd 0.0774±0.0084 12.9% 0.93542 
11B     118Sn 26.4±1.3 5.7% 0.98454 

23Na 695±21 3.6% 0.99475 121Sb 0.0191±0.0016 10.0% 0.9524 
24Mg 83.6±11.3 16.1% 0.83941 125Te    

27Al 132±9 8.3% 0.97952 133Cs    

31P     137Ba 56.1±3.3 7.1% 0.96142 
39K     139La 0.154±0.019 14.5% 0.89193 

43Ca 955±40 5.0% 0.99604 140Ce 0.228±0.041 21.4% 0.80435 
47Ti 6.45±0.83 15.4% 0.92668 141Pr 0.0294±0.0047 19.3% 0.79589 
51V 0.417±0.019 5.5% 0.98701 146Nd 0.0988±0.0178 21.5% 0.80764 

52Cr     147Sm 0.0187±0.0033 21.1% 0.78888 
55Mn 3.32±0.16 5.8% 0.98566 153Eu 0.016±0.0011 8.0% 0.93965 

57Fe 163±8 5.5% 0.98303 157Gd 0.0173±0.0025 17.2% 0.84345 
59Co 0.0565±0.003 6.4% 0.97794 163Dy 0.0106±0.0016 18.4% 0.92426 
60Ni     165Ho 0.00217±0.00039 21.3% 0.90744 

63Cu 3.57±0.17 5.8% 0.97814 166Er 0.0052±0.0011 25.3% 0.85271 
66Zn 140±5 4.0% 0.99182 169Tm 0.000822±0.00015 21.9% 0.93964 
71Ga 0.0714±0.0056 9.3% 0.9395 172Yb 0.00422±0.00094 26.6% 0.83285 
72Ge 0.00872±0.00099 13.5% 0.92695 175Lu    

75As     178Hf 0.00348±0.00049 16.8% 0.90787 
78Se 0.0318±0.004 15.1% 0.93477 181Ta    

85Rb 0.264±0.03 13.4% 0.93301 182W    

88Sr 22.9±0.6 3.3% 0.99794 197Au    

90Zr 0.119±0.014 13.8% 0.89008 208Pb 2.12±0.33 18.4% 0.88239 
93Nb 0.0256±0.0046 21.6% 0.82187 232Th 0.0301±0.0056 22.2% 0.80616 

95Mo     238U 0.0878±0.0048 6.6% 0.97324 
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Table 12. Elements of 88130 with Repeatability (<30%RSD) and Reproducibility (>0.7 R2); 
N=8  

Isotope Mean (µg/g) RSD R2 Isotope Mean (µg/g) RSD R2 
9Be     107Ag 0.00331±0.00052 18.6% 0.78672 
10B 2.85±0.2 8.3% 0.92273 111Cd 0.0383±0.0021 6.6% 0.96591 
11B 2.87±0.2 8.3% 0.92013 118Sn    

23Na 95.1±6.3 7.9% 0.92126 121Sb    

24Mg 111±6 6.4% 0.9495 125Te    

27Al     133Cs    

31P     137Ba    

39K     139La    

43Ca 740±43 7.0% 0.94612 140Ce    

47Ti     141Pr    

51V     146Nd    

52Cr     147Sm    

55Mn 2.86±0.2 8.4% 0.90353 153Eu    

57Fe     157Gd    

59Co     163Dy    

60Ni     165Ho    

63Cu 0.283±0.016 6.9% 0.95864 166Er    

66Zn 67.8±2.1 3.7% 0.98812 169Tm    

71Ga     172Yb    

72Ge     175Lu    

75As     178Hf    

78Se     181Ta    

85Rb     182W    

88Sr 4.58±0.29 7.6% 0.93062 197Au    

90Zr     208Pb 1.09±0.1 10.6% 0.926 
93Nb     232Th    

95Mo     238U    
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Table 13. Elements of 88210 with Repeatability (<30%RSD) and Reproducibility (>0.7 R2); 
N=8  

Isotope Mean (µg/g) RSD R2 Isotope Mean (µg/g) RSD R2 
9Be     107Ag    

10B 5.68±1.34 28.3% 0.85042 111Cd 0.00984±0.00148 18.0% 0.95858 
11B 5.73±1.32 27.6% 0.85909 118Sn 0.243±0.044 21.9% 0.93586 

23Na 14600±700 1.9% 0.99835 121Sb    

24Mg 24.5±0.9 4.4% 0.98358 125Te    

27Al 645±62 11.6% 0.94698 133Cs    

31P 27.9±2.3 10.1% 0.98128 137Ba 1.11±0.06 6.6% 0.99453 
39K 18.9±3.7 23.3% 0.86504 139La    

43Ca 23.3±1.8 9.4% 0.93437 140Ce    

47Ti 0.679±0.152 26.8% 0.82079 141Pr 0.00192±0.00019 12.0% 0.94788 
51V 0.0795±0.0136 20.5% 0.87052 146Nd 0.00577±0.00053 10.9% 0.96001 

52Cr 1.11±0.17 18.4% 0.92338 147Sm 0.0010±0.00018 21.3% 0.90628 
55Mn 1.62±0.18 13.5% 0.94076 153Eu 0.000572±0.000051 10.7% 0.97434 

57Fe 65.9±8.6 15.6% 0.93767 157Gd 0.00114±0.00012 12.7% 0.9706 
59Co     163Dy 0.000639±0.000044 8.2% 0.98022 
60Ni 0.773±0.165 25.6% 0.83621 165Ho 0.000147±0.000024 19.8% 0.8925 

63Cu 4.89±0.52 12.8% 0.93737 166Er 0.000285±0.00003 12.5% 0.95061 
66Zn 35.4±2.4 8.1% 0.98352 169Tm    

71Ga 0.0547±0.0051 11.2% 0.94819 172Yb    

72Ge     175Lu    

75As     178Hf 0.00193±0.00017 10.8% 0.96387 
78Se 0.00788±0.00266 13.6% 0.93673 181Ta    

85Rb     182W    

88Sr 1.66±0.06 4.3% 0.99306 197Au    

90Zr 0.0598±0.0045 9.0% 0.99111 208Pb 0.309±0.043 16.5% 0.92888 
93Nb 0.00317±0.00045 17.1% 0.86572 232Th    

95Mo 0.0217±0.0032 17.5% 0.91726 238U 0.00143±0.00033 18.3% 0.82572 
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Table 11 shows that GFX2-83-8002/9 had many elements that were both repeatable 

and reproducible, so it was fortuitous that sample was made available for use as a duplicate 

heroin control for sample preparation and anlysis. As one can see from Tables 11, 12 and 

13, there are elements that perform better in some heroin samples compared to others. 

However, between all three heroin samples, almost every element has good repeatability 

and reproducibility in at least one sample, which presents the argument to measure that 

element. Initially, it was unclear which elements would lend beneficial information to 

profiling heroin, therefore many elements were quantified for each sample with the 

assumption that some may not prove to be useful. However, the alternative of not collecting 

some useful data was less desirable than having some redundant or useless data. 

2.4.5 Distribution of Elements in Heroin Samples 

The elemental concentrations for the ICP-MS and HR-ICP-MS analysis for all 

measured isotopes monitored are shown in Figure 22. The logarithmic scale box-and-

whisker plots illustrate the range of concentrations for the elements for the heroin samples 

of each of the four geographic regions. The trends observed were that crustal elements (10-

103 mg/kg) were present in concentrations approximately two - three orders of magnitude 

higher than the trace metals (10 µg/kg – 10 mg/kg), which were found to be one or more 

orders of magnitude higher than the rare earth elements (REE; < 102 ng/kg – 10 mg/kg). 

The elements having the highest abundances, with median mass concentrations in the 

heroin powder greater than 100 µg/g, were Ca and Na. Elements with median mass 

concentrations in the heroin powder between 1 and 100 µg/g were Al, B, Ba, Cr, Fe, K, 

Mg, Mn, P, Sr and Zn. The elements with median mass concentrations in the heroin powder 
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between 10 and 1000 ng/g were As, Cd, Ce, Co, Cu, Ga, La, Mo, Ni, Pb, Rb, Sb, Sn, Ti, V 

and Zr. And lastly, the elements with median mass concentrations in the heroin powder 

below 10 ng/g were Ag, Au, Be, Cs, Dy, Er, Eu, Gd, Hf, Ho, Lu, Nb, Nd, Pr, Se, Sm, Ta, 

Te, Th, Tl, Tm, U, W and Yb; of these ultra-trace elements only hafnium and uranium were 

found to be useful in provenance modelling although preference of inclusion was given to 

zirconium over hafnium due to its higher concentration in the sample (see page 70). The 

concentrations of rare earth elements were near or below the limits of quantitation with Q-

ICP-MS methods for most of the heroin samples. 

 

Figure 22. Log-scale box and whisker plots of concentration (X, µg/g) data obtained on the quadrupole ICP-
MS. There are three points of data for each sample heroin. Total lead was determined from the sum of the 
isotopes 206Pb, 207Pb and 208Pb. 
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A logarithmic transformation of the data was necessary to reduce the effect of 

outlier values on shifting the mean value of the group excessively high. Outliers for some 

elements had values that were 3 or more orders of magnitude higher than the median value. 

A logarithmic (Log10) transformation was made of all data prior to multivariate analysis to 

avoid loss of data or arbitrary imputation of substitution values for outliers. Loss of data 

weakens the predictive power of supervised multivariate statistics as well as muddles the 

data analysis for real samples. Each sample is informative and should not be removed 

without good cause, such as a gross error in sample preparation or analysis.  

To analyze which elements to include in the predictive modelling, the quantiles of 

each group were analyzed for between-group differences. It was expected that there would 

be significate overlaps in the distribution of elemental concentration between regions and 

few, if any, elements would be significantly different between all four regions. For many 

elements, it was observed that the concentration was only significantly different for one or 

two of the regions. Figure 23 and Figure 24 demonstrates the distributions of the most 

useful elements. The logical process of elemental selection was to choose elements that 

made one of the following distinctions possible: MEX-SA and SA from SEA and SWA, 

MEX-SA from SA or SEA from SWA. Unfortunately, there was no element in significantly 

higher abundance in MEX-SA samples as compared to SA samples. 
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Figure 23. Box plot of Log10 (23Na, 24Mg, 52Cr, 57Fe and 66Zn) µg/g separated by region. The boxes represent 
the 25% to 75% quantiles and whiskers are the 5% to 95% quantiles; the median (line) and mean are also 
shown (star). MEX-SA is shown in red with diagonal fill, SA is shown in blue with crossed fill, SEA is 
shown in gold with a horizontal fill and SWA is shown in green with a checkered fill. 

Figure 23 shows a grouped box plot of distribution quantiles of Log10 (23Na, 24Mg, 

52Cr, 57Fe and 66Zn) of the µg/g elemental concentrations for heroin from each of the four 

regions. These five elements were chosen because they show the clearest distinction 

between two or more regions. There is very little overlap in the concentration of 23Na, 

which is vastly higher concentration in MEX-SA and SA than in SEA and SWA samples. 

The mean concentration of 23Na in MEX-SA and SA samples is greater than 1000 ppm, 

whereas it is approximately 100 ppm in SEA and SA samples. The opposite trend was 

observed with 24Mg, 43Ca and 88Sr where concentrations were generally greater in 
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SEA/SWA than in MEX-SA/SA samples. Presumably this could be a result of the regional 

preferences in a reducing or alkaline agent. Perhaps in the East reduction of morphine to 

morphine base is performed with CaOH and in the West, with NaOH. Another possibility 

is the preference of CaCO3 or NaHCO3 as an alkaline reagent to increase the pH of the 

solution after acetylation. However, because the three elements were highly correlated, the 

only one kept for modelling was 24Mg. Both 52Cr and 57Fe tend to show the most distinction 

between SEA and SWA groups, however the elements are only weakly correlated in the 

data set. The distribution of 66Zn data overlaps less than 25% between the MEX-SA/SA 

and SEA/SWA groups. 

 

Figure 24. Box plot of Log10 (90Zr, 111Cd, 208Pb and 238U) µg/g concentration by region. The boxes represent 
the 25% to 75% quantiles and whiskers are the 5% to 95% quantiles; the median (line) and mean are also 
shown (star). MEX-SA is shown in red with diagonal fill, SA is shown in blue with crossed fill, SEA is 
shown in gold with a horizontal fill and SWA is shown in green with a checkered fill. 
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The next selection of elements, shown on Figure 24, shows trace elements that have 

lower concentrations but still are distinguishing between heroin samples from different 

regions. There are only overlapping values for 90Zr between the upper 25% and lower 25% 

of data for MEX-SA and SA respectively. Additionally, there is almost no overlap in the 

SA concentration values for 90Zr from either SEA or SWA data. The trend of 178Hf is 

similar to that of 90Zr as these elements are correlated in both the data set and in nature 

because of their very similar chemistry and ionic radii, but since they are highly correlated 

and informative similar ways, 178Hf was removed from the model.  

The overlap of MEX-SA and SA data points for 111Cd is even less than for 90Zr, 

and SEA overlaps with less than 25% of the SA data as well, which also allows some 

distinction between SEA and SWA with 111Cd. There are less than 30% of MEX-SA and 

SA samples with overlapping concentrations of 208Pb; it was included because elements 

differentiating the groups of MEX-SA and SA were very limited. The distinction of SEA 

from SWA is clear in 238U, although there is significant overlap with MEX-SA/SA for SEA 

with 238U. Between the Log-transformed concentration data of the 9 elements, 23Na, 24Mg, 

52Cr, 57Fe, 66Zn, 90Zr, 111Cd, 208Pb and 238U, a linear discriminant model can be generated 

to correctly predict the origin of greater than 85% of blind heroin samples.   

2.4.6 Multivariate Analysis 

Data handling and organization was performed using Excel 2016 (Microsoft, USA). 

Visual data exploration of data and multivariate analysis was performed using commercial 

statistical software, JMP 13.0 (SAS, USA), Origin 2017 and 2018 (OriginLabs, USA). 

Analysis of means, distribution quantiles, and one-way analysis of variance were used to 
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rank elements based upon their discrimination power between the 4 heroin producing 

regions. As mentioned in subchapter 2.4.5, 9 elements were chosen for building the 

supervised model for heroin profiling and prediction of origin. Three elements were chosen 

each that explain the differences between MEX-SA and SA, three that explain the 

differences between MEX-SA/SA and SEA/SWA groups, and three that explain the 

differences between SEA and SWA. 

Multivariate statistical analysis was performed on the data to determine the utility 

of elemental data obtained via Q-ICP-MS in predicting the geographic origin of unknown 

data. Linear discriminant analysis was investigated as it is a supervised method of analysis 

in which multivariate data is reduced into one-dimensional linear equations, consisting of 

a canonical coefficient and a linear combination of observed data multiplied by a variable 

coefficient [49].  

Equation 3: The form of a linear equation for n number of variables. 

Y	=	a1X1	+	a2X2	+	a3X3	+	.	.	.	+	anXn.	

Linear discriminant analysis (LDA) was used to develop a supervised model for 

predicting the origin of an unknown heroin sample. DEA-STRL provided approximately 

60% of the samples as a training set for model construction and 40% of the samples as 

“blind” samples, with which to test the model. LDA was also performed on the entire data 

set using leave-one out cross-validation to calculate the number of misclassified samples 

in a model using all of the samples. As previously explained, the Log-transformed 

concentration data of 9 elements, 23Na, 24Mg, 52Cr, 57Fe, 66Zn, 90Zr, 111Cd, 208Pb and 238U, 
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measured on the Q-ICP-MS were used to create a linear discriminant model to correctly 

predict the origin of the heroin samples.   

The results of the LDA prediction were tabulated and are shown on Table 14. The 

canonical scores of each sample were then plotted using a 3D scatter plot to render the data. 

The output can be simplified to a classification (confusion) matrix where the known 

assignments are arranged vertically, and the predicted assignments are listed horizontally. 

The classification matrix can be generated using leave-one-out (LOO) cross validation in 

the case where a true set of unknown data is not used. Leave-one-out essentially treats each 

sample as an unknown and predicts its assignment without participating in the model. 

Linear discriminant analysis suffers from over-training of the prediction models 

when excessive numbers of variables are input in the model. The result of this over-training 

can result in excellent classification rates for training data sets, but very poor rates of 

correct classification with blind samples or with truly unknown samples. To avoid over-

training the LDA model, all of the variables that were used were confirmed to have no 

significant correlation among them. Only a maximum of 9 elements were chosen such that 

the 9 elements could also be combined with the previously reported 87Sr/86Sr isotope ratio 

measurements for a total of 10 elements. The SWA group had smallest sample size of n=40 

for 87Sr/86Sr isotope ratio data and it was not wished to exceed a combined number of 

variables greater than n/4. 

 The results shown on Table 14 show clearly that MEX-SA and SA are the most 

challenging regions to differentiate. Of the “blind” test set about 20% of the MEX-SA 

samples and 10% of SA samples are confused, primarily between the other group. The test 
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sample set is correctly associated 97% and 98% for SEA and SWA test samples, 

respectively. Overall the test set is very well associated and differentiated, with correct 

association over 88%. Differentiation performs well also with 11%, 17%, 5% and 11% of 

called samples being falsely classified as MEX-SA, SA, SEA and SWA respectively. For 

SEA the test set is both correctly associated and discriminated 95% of the time; 98% of 

true SEA samples are classified as SEA and only 5% of samples that are called SEA are 

not actually SEA. 

Table 14. Prediction of Heroin Origin by linear discriminant analysis using LOG10 
(23Na, 24Mg, 52Cr, 57Fe, 66Zn, 90Zr, 111Cd, 208Pb and 238U) µg/g mass concentrations. 

Actual Origin 
 Predicted Count for Training Set 
 MEX-SA  SA  SEA  SWA  % Correct 

MEX-SA (n=168)  142  23  0  3  85% 
SA (n=293)  40  249  0  4  85% 

SEA (n=116)  1  3  107  5  92% 
SWA (n=97)  0  0  0  97  100% 

SUM (n=674)  183  275  107  109  88% 
% Confusion  22%  9%  0%  11%   

Actual Origin 

 Predicted Count for Test Set 
 MEX-SA  SA  SEA  SWA  % Correct 

MEX-SA (n=192)  151  35  1  5  79% 
SA (n=195)  19  173  3  0  89% 
SEA (n=96)  0  1  93  2  97% 

SWA (n=57)  0  0  1  56  98% 
SUM (n=540)  170  209  98  63  88% 
% Confusion  11%  17%  5%  11%   

Actual Origin 

 Predicted Count for Combined Data 
 MEX-SA  SA  SEA  SWA  % Correct 

MEX-SA (n=360)  310  41  4  5  86% 
SA (n=488)  65  416  3  4  85% 

SEA (n=212)  1  6  194  11  92% 
SWA (n=154)  0  0  1  153  99% 

SUM (n=1214)  376  463  202  173  88% 
% Confusion  18%  10%  4%  12%   
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Additionally, the overall performance is equitable in the both training and test set, 

overall at 88% correct association, which further strengthens the argument that the model 

is not over-trained. In the situation of an over-trained LDA, the modelling of the training 

set would be noticeably superior in performance compared to the fitting of the test set. The 

intention of this profiling method would be to strengthen its efficacy by adding authentic 

data points to the model as time goes on, or completely rebuilding the model in the event 

that the nature of heroin production happens to change in one or more regions. 

The LDA model can be rebuilt in a matter of seconds with a statistical analysis 

software equipped with discriminant functions, such as JMP or Origin, which were used in 

this research. New elemental data can be added to (or removed from) the discriminant 

function if available. Once variables are selected, the discrete, categorical data of the 

authentic samples’ origins are used for grouping. A canonical function is generated and 

reported, usually in 3 dimensions, each a linear function consisting of a weighed coefficient 

for all variables in the model, as described in Equation 3 on page 72. The output of the LDA 

function includes the coefficients of the linear functions for each dimension (canonical 1, 

2 and 3) as shown on Table 15. The canonical functions are constructed in such a way that 

each dimension serves to separate data orthogonally.  

Multiplied by the canonical coefficients, each element’s concentration value (Log 

transformed) is linearly summed to locate the date within 1, 2 or in this case, 3-dimensional 

space. The prediction of each sample’s origin is made depending on the shortest vector 

from the closest group mean to the data point of the sample. 
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Table 15. Canonical coefficients of linear discriminant analysis by LOG10 (23Na, 24Mg, 
52Cr, 57Fe, 66Zn, 90Zr, 111Cd, 208Pb, 238U). 

Variable  Canon1  Canon2  Canon3 
23Na  0.8016  0.0875  0.1195 

24Mg  -0.5085  -0.0510  0.3350 
52Cr  0.2785  -0.5115  0.5035 
57Fe  0.2868  -0.3416  0.4077 
66Zn  -0.5482  0.1450  0.2570 
90Zr  0.7251  0.2866  0.4497 

111Cd  -0.4804  0.5373  0.6219 
208Pb  -0.1998  0.3571  0.3527 

238U  -0.1163  -0.5671  0.6942 

  

2.5 Conclusion 

The performance of the discriminant model for provenance determination method 

for elemental impurities in heroin prepared by microwave-assisted acid digestion analyzed 

by ICP-MS had excellent performance in being able to correctly classify the region of 

origin in authentic heroin samples. Overall, 88% of the test sample set of authentic heroin 

was correctly classified to the region of origin as previously determined by the HSP at 

DEA-STRL. For the test sample set, SEA and SWA were correctly assigned for over 95% 

of the samples. Moreover, other regions were only confused 5% of the time with SEA, 

meaning if a sample was called SEA, it was actually a SEA sample 95% of the time. For 

the other three groups the confusion rates were between 11-17%.  

The excellent association rates of SEA and SWA heroin were as a result of very 

clear differences observed in the concentrations of Cr, Fe, Cd and U between SEA and 

SWA samples. In addition, comparison of elemental concentrations of Na, Mg, Zn and Zr 
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made it possible to distinguish samples originating from the Western hemisphere (MEX-

SA and SA) from samples originating from the Eastern Hemisphere (SEA and SWA). 

There remains room for improvement in the classification of heroin samples of 

MEX-SA and SA origins. Only four elements were found to differentiate MEX-SA from 

SA samples, Zr, Cd, Hf and Pb. Because Zr and Hf are so chemically similar, and well 

correlated in the samples, Hf was not included in the model. Furthermore, SA samples were 

higher in concentration for all of these elements. There was not a single element for which 

MEX-SA samples had consistently higher concentrations than SA samples. It was not 

surprising that most of the confusion of determining provenance was between the MEX-

SA and SA samples. 

The results suggest that the rare earth elements are not in sufficient abundance to 

be useful by analysis by ICP-MS unless the method is optimized for more sensitive 

detection of these elements and pushing the background signal lower, perhaps by in-house 

distillation of acids and water. It was an unfortunate decision in the design of the 

experiment to use the elements of Li, Sc, Y, In, Tb, and Bi as internal standards for the 

digestion as they could have provided valuable information. In particular, scandium and 

yttrium, which are often correlated with lanthanide-series rare earth elements in plants and 

soils [50], could have been measured instead of rare earth elements, resulting in a 

simplified elemental menu.  

Based upon the results and observations, improvements can be made in future 

efforts to profile heroin by its elemental impurities. For example, the elements shown 

herein to have utility for provenance determination could be specifically targeted rather 
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than attempting to quantify so many other, inessential (with respect to profiling heroin) 

elements of the periodic table. Using a reduced element menu would simplify analysis as 

well as facilitate the use of customized external calibration solutions. Calibration solutions 

with varying concentration could be prepared from single element standards to provide 

better results than a commercially purchased mixture. For example, an element with high 

abundance, like sodium, can be calibrated over a range of mg/L concentrations, while a 

trace element, like uranium, calibrated over a range of ng/L concentrations. 

Important aspects of the validation of this method and for the entire research effort 

were the inclusion of SRM (NIST 1570a), a control heroin sample, and instrumental QC 

solutions which were purchased from a separate vendor from the calibration stock mixture. 

The inclusion of the SRM allowed for the extraction efficiency of the digestion as well as 

the analysis to be monitored from day to day. The control heroin sample allowed inter-day 

repeatability to be assessed on elements recovered from an actual heroin sample. The QC 

solution important to check for accuracy in the calibration stock mixture as prepared by 

vendor and alert to any error in preparation of calibration solutions. Samples should also 

be analyzed as soon after digestion as possible and results should be rigorously monitored 

for consistency in performance for all elements of interest. If possible, samples should be 

prepared and analyzed from multiple sources to avoid inter-day biasing, which can alter 

statistical analysis.  
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CHAPTER 3. FORENSIC SAMPLE COMPARISON OF HEROIN 

3.1 Abstract 

Forensic sample comparison of illegal drug evidence can be used to associate 

samples of drug taken at different points of seizure. In this work is reported a demonstration 

of a statistical means of performing pair-wise comparisons of heroin samples on the basis 

of their elemental compositions. A profile of 11 isotopes, 23Na, 24Mg, 27Al, 51V, 52Cr, 55Mn, 

66Zn, 88Sr, 90Zr, 111Cd and 137Ba was determined to be most useful in correctly associating 

as well as discriminating between heroin samples in forensic pairwise comparisons. 

Samples were prepared by microwave-assisted acid digestion and quantitatively analyzed 

by inductively coupled plasma-mass spectrometry to measure the elemental abundance 

within each sample.  

With a match criterion of 3 standard deviations for quantitative data of 11 elements, 

the rate of discrimination and association were 99.7% and 95.8%, respectively. Type 1 

error rates (false exclusion) were found to be 4.2% and type 2 error (false inclusion) rates 

were 0.03%. Furthermore, a set of unknown samples suspected of having commonality 

were compared to test the method performance with simulated casework samples. Several 

of the unknown samples were found to be indistinguishable. This is the first known work 

to report a method for performing pair-wise forensic sample comparison of heroin by 

targeting elemental impurities. It is also the first to use authentic heroin samples to develop 

and test the method and report error rates using a large test set. The availability of a method 

in which samples can be prepared, analyzed and compared in less than 24 hours with no 
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necessary chemical derivatizations nor separations is expected to be of great use to forensic 

drug chemists. 

3.2 Introduction 

Forensic comparisons based upon the analysis of the minor and trace elements of 

evidence samples are useful for investigation and intelligence purposes to link evidence 

found at an accident or crime scene to evidence recovered elsewhere. For instance, glass 

evidence recovered from the clothing of a hit and run victim can be elementally analyzed 

and compared to evidence recovered from a suspect’s vehicle to determine if the suspect 

was the perpetrator in the crime [51-53]. Soils recovered at a crime scene and/or from 

physical evidence can be compared by their elemental composition [54, 55]. In cases such 

as improvised explosives, copper wires have been shown to be able to be associated based 

upon their trace elemental composition [56]. Trace element analysis and analysis of 

radiogenic lead isotope ratios have been reported for comparing bullets and bullet 

fragments in forensic evidence comparison cases [57].  

Forensic drug analysis is typically conducted with the objective of identifying and 

quantifying the illegal compounds within seized materials that are suspected of being 

illegal drugs by law enforcement officers. However, sample comparison of illegal drug 

evidence can help investigators to solve an individual criminal case as well as support the 

fight against illegal drug trafficking through gathering intel on distribution networks [40, 

41, 58]. The majority of the works on forensic heroin comparisons have been performed 

by analysis of associated organic components [5, 6, 40, 59-61]. Taking samples from the 

same container is an overly simplistic representation of a forensic comparison scenario and 
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is not an accurate reflection of how the method might perform for samples that are 

unknown; however, it is necessary given that one must use samples that are known to share 

the same intra-sample chemical composition. Incidentally, the manuscript by Klemenc 

reports the same rate of false inclusion (1/24) that was observed in this dissertation [61].  

There have been attempts to perform source comparisons using trace elements [40-42], 

however these have reported observations of sample grouping and similarity rather than 

clearly describing a method that could be used to compare two samples in forensic 

casework. 

Chan et al. reported the first demonstration of trace elements being used for street-

level sample investigation, however accurate false inclusion and false exclusion rates could 

not be provided as the samples were not authenticated by other means [42]. The following 

year, another manuscript by Chan et al. took the investigation further with a larger samples 

set, while performing unsupervised multivariate analysis, PCA, to observe the inter-sample 

grouping on the basis of the elements being measured [41]. However, neither of the 

manuscripts reported on a method to perform a pair-wise forensic sample comparison of 

two or more heroin samples on the basis of their elemental compositions. 

Inductively coupled plasma-mass spectrometry (ICP-MS) was chosen as the 

method of inorganic analysis of heroin samples. The benefits of ICP-MS are its wide 

dynamic range and its ability to quantitatively measure many different elements. Statistical 

comparisons were made on the basis of the resultant quantitative analytical data of 

inorganic impurities within each heroin sample. The presence of elemental impurities is 
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expected to be, in major part, resultant from chemical adulteration and contamination 

during processing, packaging and handling.  

Chemical analysis can make sample comparisons at the micro level between a 

heroin dealer’s supply and the drug user. For example, comparison of drug samples can 

help law enforcement to determine if a sample recovered from a local heroin dealer is 

chemically indistinguishable from that recovered from an overdose victim. The penalties 

for distribution of drugs could be harsher with the evidence that drugs have resulted in 

fatalities. With the increased prevalence of synthetic opioids being mixed with heroin, there 

may be increased culpability by a dealer who knowingly increases the overdose potential 

of their product. A method to make chemical comparisons is especially helpful for local 

law enforcement working such cases. 

Chemical analysis can be used to match heroin samples at the macro level of bulk 

shipments and traffickers. Forensic sample comparison can also allow investigators to 

determine if samples taken from seizures in different cities or at ports of entry are 

indistinguishable, and therefore possibly part of related trafficking organizations. For 

example, samples seized in Dubai could be found indistinguishable from samples seized 

from a clandestine lab in Afghanistan and traced back to a terrorist organization using 

heroin to finance its operation. The technique of elemental comparison will be another 

point of comparison to organic compound analysis which attempts to compare the opiate 

adulterant profiles within a particular sample. 

The hypothesis for forensic sample matching based upon the elemental similarity 

of two samples is that samples of the same source and production run will be able to be 
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associated on the basis of their elemental compositions. But it is not at all expected that a 

sample’s elemental profiles will remain unchanged from the sample’s illicit production to 

consumption by the end user. It is known, especially for heroin, that sample can be largely 

cut with other organic substances. Each adulterant will contribute elemental impurities to 

the sample, as shown in 5.3 the contribution may be quite significant. However, samples 

that are processed, handled, packaged, adulterated and repackaged in common are expected 

to contain an indistinguishable profile of minor and trace elements. 

In highly refined bulk samples, the concentration of elemental impurities is 

expected to be lower relative to the adulterated, street samples. Therefore, the elemental 

fingerprinting technique will be most useful for two forensic case scenarios wherein 

samples have changed possession and not subsequently been adulterated. Transactions 

where upon adulteration is less likely to occur are primarily at the trafficking level during 

large-quantity, bulk exchanges and secondarily on the small-scale during dealer to user 

exchanges. The assumption is that the majority of the adulterants are added to the sample 

before the drugs change hands on the medium to small scale in order to increase the mass 

of the sample and seller’s profit during down-stream transactions.  

During a study conducted to determine the geographic origin of heroin samples 

based upon their elemental composition [62], it was noted that several of the samples 

provided by the US Drug Enforcement Administration’s Special Testing and Research 

Laboratory (DEA-STRL) may be useful to evaluate the technique’s usefulness in sample 

to sample comparisons as well. For the profiling research over 400 heroin samples were 

available. While there was limited background information available on the samples, it was 
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noted during the course of sample inventory that several separate containers of heroin 

seemed to have a serialized labeling convention. For example, there were some samples 

labeled as XXXXY-A, XXXXY-B or XXXXZ001, XXXXZ002, etc. and had, from a 

visual assessment, very similar heroin in each package. The observed similarity of the 

heroin and the labeling previously mentioned, led to the assumption that these samples 

might be duplicates or perhaps recovered from a common seizure. The samples that were 

suspected of being chemically related were reserved as test samples for the comparison 

method. 

For the purpose of testing the sample comparison method in simulated casework, 

all of the samples were compared to one another without any assumption of grouping. 

Sample A was of Mexican origin (MEX), samples B-F were Southeast Asian (SEA), and 

samples G-K were Southwest Asian (SWA). Samples marked B, C, and D also shared a 

common origin being from Southeast Asia (SEA) and were labeled as XXXX7, XXXX8, 

and XXXX9, respectively. The similar numbering suggested that there may be some 

additional similarity amongst these sample types. 

There were no samples available from South America (SA) that met this 

requirement. The over-representation of SWA and SEA in the test set was not seen as a 

limitation because of the practical application of a sample-to-sample comparison method 

for illegal drugs. Most likely, a country such as in the United States, has one or two main 

supply lines of heroin. Since 2000, the main sources of heroin in the US are Mexico and 

South America [29]. Therefore, associating (or differentiating) heroin samples from one or 
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two regional types will be the most likely scenario for a forensic lab attempting sample-to-

sample comparisons. 

Interpretation of evidence and reported findings in forensic analysis has become 

reliant upon statistical analysis of results in order to accurately represent the significance 

of findings, rather than relying upon the subjective interpretation of the expert. In the case 

of forensic sample comparisons, a widely accepted means of presenting the results are in 

the form of likelihood ratios from Bayesian statistics [58]. The results are presented as a 

ratio between the probabilities of the analyst’s observation given two competing 

hypotheses. Determination of the elemental profile uniqueness for each sample was beyond 

the scope of this work, which precludes the calculation of likelihood ratios. However, the 

error rates for the entire method were determined and used in a similar fashion. For 

example, if an analyst makes an observation that two drug evidence samples are 

indistinguishable, the results are reported as a random match probability, which is defined 

as the probability of making the match given the hypothesis that the samples are, in fact, 

chemically indistinguishable divided by the probability of a match given the hypothesis 

that the match was made purely by random chance.  

To calculate random match probability, the probability of observing false positives 

was determined from a set of 120 heroin samples known to be chemically distinct from one 

another. Elemental data from 120 samples, 30 from each of the four regions, Mexico, South 

America, Southeast Asia and Southwest Asia, were compared to assess the rate of 

discrimination (5400 total comparisons) and type 2 error rates (false inclusions). The 30 

samples from each region were compared to the 90 other samples not of that region for a 
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total of 5400 total pairwise comparisons (120 ´ 90 ÷ 2 = 5400). The probability of 

observing false negatives was determined from a set of 24 samples (3 replicates) prepared 

and analyzed in duplicate on separate days, for a total of 24 pairwise comparisons 

3.3 Methods and Materials 

3.3.1 Standard Mixtures 

The internal element standard mixture (ICP-MS 71D), the calibration element 

standard mixtures (ICP-MS 71A, 71B and 71D), and additional elemental standards (Au 

and Rh) were purchased from Inorganic Ventures, USA. The internal standard mixture, 

ICP-MS 71D, was prepared in 0.8 M HNO3 at a concentration of 200 ppb 6Li, Sc, Y, In, 

Tb, and Bi, in order to account for the dilutions pre- and post-digestion, which produced a 

final concentration of approximately 1 ppb in the samples for analysis. The spiked internal 

standard was used to verify complete digestion and monitor for losses during samples 

transfer post-digestion. 

Calibration solutions consisted of ICP-MS mixes 71A, 71B, 71D and Au elemental 

standard. The elements within the mixes were: ICP-MS Mix 71A (Ag, Al, As, B, Ba, Be, 

Ca, Cd, Ce, Co, Cr(III), Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ho, K, La, Lu, Mg, Mn, Na, Nd, 

Ni, P, Pb, Pr, Rb, S, Se, Sm, Sr, Th, Tl, Tm, U, V, Yb, and Zn), 71B (Ge, Hf, Mo, Nb, Sb, 

Si, Sn, Ta, Te, Ti, W, and Zr), 71D (Bi, In, 6Li, Sc, Tb, and Y). The calibration solution 

was prepared as a stock solution in 0.8 M HNO3 at a concentration of 300 ng/g. The 

external calibration samples were prepared by serial dilution from 300 300 ng/g using an 

Ovation® Macro10 electronic pipette (Vistalab Technologies, USA) with a serial dilution 

function to 100, 30, 10, 3.0, 1.0, 0.3, 0.1, 0.03 and 0 ng/g. 
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Rhodium elemental standard diluted to 100 ppb in 0.8 M HNO3 was supplied 

externally into the nebulizer of the ICP-MS, a 7700x (Agilent Technologies, USA) for 

monitoring plasma inconsistencies and instrumental variation over the course of the 

analytical run. It was determined that Rh had not been present at any appreciable 

concentration in the initial batch of 50 heroin samples and was therefore a suitable 

candidate element for the purpose of an instrumental check standard. 

All reagent solutions were prepared using DI H2O from a Milli-Q water system 

(MilliporeSigma, USA) with a boron filter pack and Optima-grade nitric acid (Fisher 

Scientific, USA). 

3.3.2 Digestion Method 

Heroin samples were dissolved by microwave-assisted acid digestion using a 

Milestone Ethos UP digestion oven (Milestone Scientific, Italy) with Milestone SK-15, 

polyether ether ketone (PEEK) digestion vessels. Each vessel was outfitted with additional 

accessories that allowed the insertion of 3 quartz vials with PEEK caps, referred to as 

micro-insert vials. The quartz micro-inserts facilitated digestion of three heroin sample 

replicates within a single, larger vessel. The addition of the smaller volume, quartz micro-

inserts also permitted the digestion of smaller mass heroin samples with lower volumes of 

expensive, Optima-grade nitric acid. 

For each digestion replicate, heroin samples of mass 30 to 100 mg were weighed 

directly into the quartz micro-inserts on a Mettler AE 240 (Mettler-Toledo, USA) balance 

to ±0.1mg. In order to pre-wet the heroin sample before digestion, 0.2 mL of the internal 

standard mixture was added to each quartz micro-insert with an Ovation® Macro10 
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electronic pipette (Vistalab Technologies, USA) including reagent blanks, SRM and 

duplicate control heroin samples. The pipette tips were pre-rinsed in freshly prepared 0.8 

M HNO3 prior to all applications. Lastly, 2.3 mL of Optima-grade nitric acid (Fisher 

Scientific, USA) was added to each micro-insert. 

In order to both reduce the formation of nitrous and nitric oxide gas during sample 

oxidation and uniformly regulate the temperature of each of the three micro-inserts, 10 mL 

of an equal volume mixture of DI H2O and ACS-grade hydrogen peroxide (Fisher 

Scientific, USA) was added to the inner PEEK sleeve of the SK-15 digestion vessel. The 

micro-inserts were lowered into the H2O2 bath, but the bath solution never came into direct 

contact with the samples. Careful assembly of the SK-15 digestion vessel was done 

following the instruction from the manufacturer using safety-spring caps, which allowed 

for venting and resealing of the vessel in the event of excessive pressurization during the 

digestion. Pressures exceeding 75 bars could be experienced within the digestion vessel 

and incorrect assembly could result in sample loss or contamination, damage to the 

equipment or physical injury to the operator. The microwave digestion oven follows the 

oven program given on Table 3 on page 34. 

3.3.3 Instrumental Analysis Method 

The instrumental parameters for the Agilent 7700x quadrupole ICP-MS can be 

found on Table 4 and Table 5. The instrument was equipped with an ASX-510 autosampler 

(Teledyne Cetac ,USA).  
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3.4 Data analysis 

There was no removal of outlier measurements or other pretreatment of data, save 

from background subtraction using the calculated concentration of the method blanks and 

multiplication of the elemental concentration in solution (µg/L) by the sample’s dilution 

factor to produce a mass concentration in the heroin sample itself (µg/kg).  

Once the analytical results were transformed to mass concentrations for each 

element, it was necessary to determine how best to compare two samples. Two match 

criteria were evaluated. For the first match criterion, a comparison interval was created for 

each element; the interval was defined as the average ± n × s, where s is the standard 

deviation and n is a coefficient of s. If the comparison interval for one sample (the 

“known”) overlapped with the comparison interval for another sample (the “questioned”) 

for all 11 elements, the two samples were considered to be indistinguishable. For the 

second match criterion, the average of the questioned sample was compared to the 

comparison interval (average ± n × s) of the known sample; thus, this approach does not 

take the standard deviation of the questioned sample into account. If the average of the 

questioned sample fell within the known comparison interval for all 11 elements, the two 

samples were considered to be indistinguishable. The second match criterion has been 

reported for the comparison of forensic glass evidence and is prescribed in the glass 

standard ASTM E2927 [63]. Unlike the first match criterion described, the second 

approach is asymmetrical (i.e., the conclusion depends on which sample is used to calculate 

the comparison interval). Thus, every pair was compared twice so that each sample was 

treated as the known. For each match criterion, a minimum standard deviation (s) equal to 
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3% of the average was enforced; thus, the comparison interval is more accurately defined 

as the average ± n × s or the average ± n × 0.03 × average, whichever is greatest. 

Establishing a minimum standard deviation reduces the risk of false exclusions [63]. 

Table 16. Figures of merit for analysis of the spinach control by Q-ICP-MS (n=62). Missing recovery 
values indicate elements not reported on the certificate of analysis of NIST SRM 1570a and an asterisk 
(*) indicates elements that were reported only as information values. 

Analyte LOD (µg/g) MEAN Inter-day RSD (%) RECOVERY (%) 
23Na 4.2 19300±600 10 105.8 

24Mg 0.032 9370±250 10 104.1* 
27Al 0.18 214±8 14 68.9 
51V 0.002 0.57±0.02 14 100.2 

52Cr 0.004 1.6±0.06 15   
55Mn 0.003 82±2 10 108.2 
66Zn 0.086 82±1.9 9 99.9 
88Sr 0.002 60±1.6 11 107.2 
90Zr 0.002 0.13±0.006 19   

111Cd 0.003 2.8±0.07 10 98.9 
137Ba 0.006 6.8±0.19 11   

 
In order to evaluate the type 1 error rate (false exclusion), the match criteria 

described above were applied to the 24 samples analyzed in duplicate. If one (or more) 

element(s) was found to be distinguishable for a pair of samples, that pair was considered 

a false exclusion. In order to evaluate the type 2 error rate (false inclusion), each of the 30 

samples for one region was compared to all samples from a different region, resulting in 

5400 comparison pairs [30 × (90 + 60 + 30)]. Note that the number of comparison pairs is 

doubled (10,800) for the second match criterion since, as described above, this match 

criterion is asymmetrical. If all 11 elements overlapped for a pair of samples, the pair was 

considered a false inclusion. By comparing two samples from different regions, the 

possibility of encountering matches within the same region was avoided. Coefficient values 
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(n) for multiplying the standard deviations were evaluated between 1.0 and 4.0, at intervals 

of 0.5. The false exclusion and inclusion rate for both match criteria and for all coefficients 

tested are shown in Figure 25.  

The selection of useful elements for forensic comparison was also performed during 

the procedure for determining match criteria. The selected elements (23Na, 24Mg, 27Al, 51V, 

52Cr, 55Mn, 66Zn, 88Sr, 90Zr, 111Cd, and 137Ba) were chosen on the basis of their analytical 

performance with the SRM NIST 1570a shown on Table 16, and for producing the lower 

rates of false inclusions and exclusions than were observed when using other elements. All 

pairwise comparisons were calculated using the R programming language (RStudio version 

1.0.143) [64]. To reduce computing time, parallelization was used via the packages 

“parallel,” “doParallel,” and “foreach” [64-66]. After the R script finishes all pairwise 

comparisons, the results are stored in an excel file (using package “openxlsx”) [67].  

3.5 Results 

3.5.1 Calculating Error Rates and Random Match Probability 

As mentioned previously, two types of match criteria were evaluated. From Figure 

25, it is clear that the first approach (labeled “s1 to s2”) was more suitable for the heroin 

sample matrix than the second approach (labeled “x1 to s2”). When the questioned average 

was compared to the known interval, intra-sample variation had significant effects on the 

results (>30% of duplicate samples were falsely excluded). The high false exclusion rate 

was the result of one aberrant replicate in the questioned sample, significantly affecting the 

questioned average, and ultimately leading to the average falling outside the known 

interval. With a more homogeneous sample matrix, the intra-sample variation is minor and 
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the average of a small number of questioned replicates is more likely to fall within the 

known interval. However, heroin samples are not produced in a controlled environment 

and are subject to contamination by minerals and unnatural materials that may alter the 

elemental composition greatly from one replicate to the next. 

 
Figure 25. Plot of type 1 and type 2 error rates with increasing coefficient of s used for match criteria. The 
error rates using match criteria comparing the range of uncertainty of the test set (s1) to that of the reference 
set (s2) are shown in black. The error rates using match criteria comparing the mean value of the test set (x1) 
to the uncertainty of the reference set (s2) are shown in red. 

The results of the data analysis showed that a coefficient of 3.0 multiplied by the 

samples’ standard deviation produced the optimal balance between the type 1 and type 2 

error rates (4.2% and 0.3%, respectively). A plot of the effect of the coefficient on the error 

rates is shown on Figure 25. Although a coefficient of 2.5 produced a lower type 2 error 
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rate and the same type 1 error rate compared to a coefficient of 3.0, it is suspected that the 

estimation of the type 1 error rate is limited by the small sample size (24 samples). For 

standard deviation coefficients between 2.5 and 4.0 there was only a single false exclusion 

(1/24), producing the same type 1 error rate across that range (Table 17). A larger interval 

(±3s) was selected to minimize the risk of a false exclusion; this is especially important for 

actual casework samples, which are expected to exhibit greater inter-sample variation than 

duplicate samples taken from the same container, as was done in this study. Furthermore, 

an interval of ±3s contains >99% of normally distributed data, giving additional 

significance to the choice of ±3s. 

Based upon the determination of the error rates, a random match probability can be 

calculated for a match of all 11 elements. The significance of a random match probability 

calculation is that an expert witness can compare the probability of an observation of 

evidence with respect to the hypothesis posed by the prosecution (H0) and the hypothesis 

posed by the defense (H1). A random match probability of 1 means that there is an equal 

support of the hypotheses that a forensic comparison match occurred through random 

chance or through veritable similarity in their elemental compositions. For matches of all 

11 elements, the calculated random match probability is 386, calculated by 1 ÷ the type 2 

error rate. The numerator is 1 because the chance of observing a match at all 11 elements, 

given the hypothesis that the samples are of common source is 100%. The denominator is 

the probability of observing a match of all 11 elements given random chance, which is the 

rate of type 2 errors. A way of phrasing the significance of the random match probability 

is to say, it is 386 times more likely that the elemental profiles of the heroin samples match 

as a result of having a common source rather than being matched by random chance. 
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Matching fewer than 11 elements were said to have distinguished the two samples due to 

their being of different sources, being of different processing batches, or because the 

elemental profile had been altered by means of contamination. 

Table 17. Summary of error rates and calculation of random match probability over a 
range of match criteria. ND = not defined 

coefficient 
of s  

(n=24) 
false 
exclusions  

false 
exclusion 
rate  

(n=5400) 
false 
inclusion  

false 
inclusion 
rate  

Random 
Match 
Probability 

4  1/24  4.17%  21/5400  0.39%  257 

3.5  1/24  4.17%  18/5400  0.33%  300 

3  1/24  4.17%  14/5400  0.26%  386 

2.5  1/24  4.17%  4/5400  0.07%  1350 

2  2/24  8.33%  1/5400  0.02%  5400 

1.5  4/24  20.83%  0/5400  0.00%  ND 

1  10/24  75.00%  0/5400  0.00%  ND 

 
With respect to the samples with were falsely included at a ±3s range interval for 

match, in each of the 14 pairs of mismatched samples, at least one member was one of four 

“bad-apple” samples. The cause of the mismatching of the “bad-apple” samples were their 

elements are either in low abundance, which is common for many other samples, and they 

overlap from the 3% RSD minimum s value or there was a moderate to high concentration 

of element(s) present, but the sampling (or less likely, the analytical) variation was large 

enough to have ±3s range overlap with samples with lower (or higher) abundances of the 

element(s). 
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3.5.2 Matching Simulated Case Samples 

 
Figure 26. Heatmap showing samples with ≤5 matching elements in white and 6-10 matching elements in 
increasingly darker shades of gray. The samples matching at all 11 elements are shown in red with striped 
fill and generally are found along the diagonal, suggesting similar origin with other members of their test 
groups. Samples were not compared to themselves. 

For demonstration of the method on simulated casework samples, two approaches 

were undertaken. The first was simply to compare each sample to all of the others in order 

to identify trends among the samples with serial labels and between samples with similar 

numbering and/or region of origin. As seen in Figure 26, nearly all sample pairs that 

matched at all 11 elements were part of the same group, suspected from their label. 

However, not all of the groups showed similarity (e.g., group J). 
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There were several matched elements in groups B, C, D, and E, which were all 

Southeast Asian samples. Since samples B, C, and D were labeled sequentially, interesting 

challenges were expected with the samples. It should be noted that the commonality of the 

samples is unknown apart from their region of origin. Samples B, C, and D were SEA 

specimens that were seized in Australia and provided to DEA for characterization by their 

signature methods, but it is unknown whether these samples were part of the same seizure 

or what level of interrelatedness, if any, should be expected.  

 
Figure 27. Hierarchical cluster analysis constellation plot (left) and principle component analysis plot (right) 
of sample replicates of groups A, B, E, F, G, H, I and K. 

It is clear that samples within groups A, B, E, F, G, H, I and K are all very closely 

related as nearly all samples within each group matched at all 11 elements. It is very likely 

that they are from the same source and perhaps even the same processing batches. The 

relatedness of all replicates of groups A, B, E, F, G, H, I and K are represented visually 

with unsupervised multivariate analysis plots on Figure 27 using JMP 13 (SAS, USA). One 
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replicate of group B is observed to be deviant from the group, which demonstrates the 

effects of intra-sample variation. 

 
Figure 28. Heatmap of test samples (A’-K’) compared to the aggregate profiles of a reference group of 
samples (A-K). Samples with <5 matching elements are shown in white and 5-10 matching elements in 
increasingly darker shades of gray. The samples matching at all 11 elements are shown in red with stripe fill. 

The second approach to simulate forensic casework was to batch all of the samples 

of each letter group (A-K) into a reference group and remove one sample as a test sample 

(A’-K’). The selected test samples were prepared and analyzed in separate runs from all 

reference samples within each group. Reference samples ranged in numbers from one to 

five samples, each with three replicates for a total of 3-15 replicates in a particular reference 
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group. The purpose of this exercise was to simulate a case where a bulk seizure of heroin 

was made, and a single seized evidence sample was compared to the profile of the bulk. 

The results of this analysis are shown in Figure 28 and suggest that a single sample can be 

matched to a pool of heroin samples. However, it is unknown whether these samples are 

actually part of common seizures.  

It is vitally important that the samples of the seizure first be compared internally 

(as was done in Figure 26) in order to confirm that the samples of the seizure are 

indistinguishable from each other. It is quite possible that samples in a seizure may not be 

part of the same processing run and possibly not even from a common source. Grouping 

samples without first comparing them increases the chance of a false inclusion, since the 

standard deviation interval will be expanded by using non-matching samples. All of the 

test samples matched at all 11 elements to their respective groups except D’ and J’, which 

was not surprising as these samples did not seem to have much interrelatedness among 

them (Figure 26). A total of 10 elements matched between test sample J’ and its reference 

group, when there were actually very few matches made between the individual samples 

in the J group. It is clear that by grouping the unrelated samples based upon assumptions 

of similarity, the probability of exhibiting a match increased. 

3.6 Conclusion 

The method reported in this paper is the first description of a simple approach for 

the analysis and interpretation of evidence involving pairwise comparisons of heroin 

samples based upon their minor and trace elemental profiles. However, recognizing the 

limitation in the interpretation of the results is crucial. For example, as was observed, very 
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closely related samples have higher probability of being matched as opposed to completely 

unrelated samples. Therefore, if the local heroin market is flooded with a single source of 

heroin, it may be challenging to distinguish uncut sample batches from one another, 

although that observation could be useful information from the perspective of gathering 

intelligence about the local heroin supply. Fortunately, from the standpoint of chemical 

discrimination, middle- and lower-tiered dealers are likely to dilute their product with one 

(or more) adulterant compound(s) before selling it to a heroin user, which will impart 

unique elemental features to the final product and will actually support efforts to associate 

and discriminate samples using the described method.  

The best practice would be to compare evidence samples taken from multiple 

available evidentiary exhibits, as well as vary the sampling point within each exhibit to 

avoid bias due to sampling. It is advisable that reference samples be taken from multiple 

containers as well as from multiple sampling locations (such as exterior and interior of 

sample bulk) in order to account for sample variation. Careful documentation must be 

maintained especially in the case of bulk seizures such that evidence is properly labeled to 

allow for comparison of all samples to one another. Batching of samples from separate 

packages should be avoided completely, as the assumption that the samples are of a 

common production batch may be incorrect, even if they are part of the same bulk seizure. 

Comparing samples will reveal if they are, in fact, indistinguishable and post-hoc pooling 

can be done afterward. It is also recommended that when using the match criterion 

described for sample-to-sample comparisons, >3 sample replicates should be collected, 

sample mass permitting, to account for the intra-sample variation. 
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The ability to assign a statistical quality to the match criterion allows forensic 

experts to testify without overstating the importance of a match. In the case where samples 

are recovered from a suspect dealer and a user, if the two samples are found to be 

indistinguishable using the match criterion described, it does not necessarily follow that 

the suspect dealer supplied the user. Using a match criterion of ±3.0s a match of all 11 

elements described in this report will produce a random match probability of 384. 

However, increasing the sample size of the type 1 error analysis may result in a lower type 

1 error rate and consequently a larger value for the random match probability. Using a 

match criterion of ±2.5s is stricter and produces a random match probability of 1,428. As 

such, an analyst may opt to report the random match probability of the lowest, however 

using more stringent match criterion may increase the chances of making false exclusions, 

type 1 errors, when applied to actual casework samples. 
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CHAPTER 4. STRONTIUM ISOTOPE RATIO ANALYSIS OF HEROIN 

4.1 Introduction 

Forensic drug analysts around the globe continue to gather strategic or tactical 

intelligence information on heroin trafficking by conducting profiling studies of opium and 

processing-related impurities found in heroin [7, 36, 37, 39, 41, 42]. The presence of 

adulterants and/or diluents is also being used for tactical comparisons by investigating 

agencies. The U.S. Drug Enforcement Administration’s (DEA) Special Testing and 

Research Laboratory (STRL) is entering its 40th year of Heroin Signature Program (HSP) 

analyses and currently employs ultra-high performance liquid chromatography [34], gas 

chromatography mass spectrometry (GC-MS) with liquid-liquid extraction and subsequent 

derivatization [15, 33], Static headspace GC-MS [68], and isotope ratio mass spectrometry 

[20, 21] as signature methodologies. The presence, absence, and relative abundances of 

opium and other manufacturing impurities including residual organic solvents are 

determined quantitatively or semi-quantitatively using these analytical techniques. The 

results are compared to the databases of authentic heroin samples to assign geographic 

origin classifications such as Southeast Asia (SEA), Southwest Asia (SWA), South 

America (SA) or SA-like heroin manufactured in Mexico (MEX-SA).  

Heroin is clandestinely manufactured from opium via morphine using a series of 

chemical processing steps. Depending on the efficacy of isolation and purification steps 

employed and the knowledge and proficiency of the clandestine processors, the final heroin 

product can vary from a crude brown to a very highly refined white powder. Or the product 

can advertently be manufactured crudely to supply to certain markets (i.e., black tar heroin 
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shipments). The basic morphine isolation chemistry and the subsequent synthetic reaction 

scheme to convert morphine into heroin are consistently similar amongst many regions; 

however, the “regional recipes” remain unique in their own ways by using different 

apparatus, chemicals, and organic solvents.  

One of the challenges the HSP has been encountering is the dynamic nature of 

heroin production. For example, opium poppy cultivation could use alternative varieties of 

poppy seeds and, as a result, the established opium alkaloid profile for that particular region 

can be altered. The opium alkaloid profiles from all poppy-growing regions constitute the 

necessary foundation for many HSP methods and any changes in them may require 

modifications for HSP. In addition, one specific region can adopt another region’s heroin 

manufacturing recipes, thus narrowing the differences between the chemical signatures of 

the final products. Foreseeing such potential deviations in heroin production, the DEA 

laboratory has explored new research areas and has engaged in new analytical and 

geochemical method development.  

Collaboration with the U.S. Geological Survey and National Geospatial-

Intelligence Agency has led to the preliminary analysis of more than 100 heroin and opium 

samples to develop a profiling method on the basis of trace elemental data (DEA laboratory 

unpublished research). The results of this research suggested that the variation in elemental 

composition between samples of different regional origins may not be significant compared 

to the variation between samples originating from the same region. Other research has been 

undertaken to characterize the elemental composition of heroin and the results have shown 

promise for sample matching [7, 36, 39, 41]. Unfortunately, many studies attempting to 
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profile heroin based upon element composition have produced inconclusive findings 

regarding the utility of elemental concentrations for provenance determination. This may 

have been because of a limited sample size or incomplete representation from one or more 

geographic regions.  

Analyses of stable isotope ratios have been made for heroin samples and shown to 

have potential for sample comparison [31, 69] as well as for origin prediction [19, 21, 32, 

70].  There have also been endeavors to determine provenance for geographic heroin origin 

by means of stable isotope ratio analysis. Through analysis of stable isotope ratios d15N 

and d13C, it has been shown to be possible to differentiate between all four regional groups 

following deacetylation of heroin to the morphine starting material [19]. The analysis of 

the stable isotope ratios of elements H, C, N and O is affected by the presence of cutting 

agents and other organic impurities, as well as the semi-synthetic acetyl groups of heroin. 

Researchers in this field would agree that mass diluents as well as synthetic and other semi-

synthetic compounds present in street level heroin would have complicating effects on the 

analysis, which would require chemical modification and separation to correct for the bias 

to the measurement of these light element stable isotope ratios.  

Unfortunately, there are no data available for elemental concentrations in either the 

parent poppies (Papaver somniferum) or the opium latex, compared to those in the heroin 

product produced from that material. Thus, it is unknown whether the origin of the 

elements found in the heroin is biologically relevant or, instead, is present from external 

contamination (including potential contaminants from the reagents, solvents, and vessels 

used in the extraction and subsequent conversion of morphine into heroin). Therefore, it 
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was desirable to target the 87Sr/86Sr systematic as an analyte that may discriminate between 

heroin samples based upon regional characteristics rather than process-related variation. 

The radiogenic strontium isotope composition of illicit heroin may be the result of 

contribution from natural and anthropogenic sources. One possibility is the geogenic 

transfer of the bedrock composition as recorded in weathered top-soil to the P. somniferum 

plant and then to the plant extract and carried through to the heroin final product. While 

the authors are unaware of any measurements of radiogenic Sr isotopes in P. somniferum 

biomass, substantial evidence has been mounting on unfractionated transference of the soil 

strontium isotope signature to various plants and plant products [71-73]. Specifically, Song 

et al [74] showed that the 87Sr/86Sr isotopic signature of soil types associated with basaltic, 

granitic and carbonate bedrocks is preserved with fidelity within the plant biomass that 

grows atop the soil.  

It is therefore reasonable to expect that P. somniferum also maintains the 

geochemical composition of the soil that can potentially pass onto processed products such 

as heroin without fractionation, considering the large masses of Sr isotopes. While this 

opens the possibility of associating a link between illicit heroin and the growing grounds 

of P. somniferum, its successful application hinges on prior knowledge of the bedrock/soil 

Sr isotope composition. A first step in this direction is mapping the geographic expanses 

of growing grounds, followed by analysis of local soil composition. Considering the 

inherent limitations in accessing some of these regions, a more feasible approach maybe to 

compare the existing geological maps of exposure rock formations that identify ranges of 

Sr isotope composition and developing a model for the representative Sr isotope signatures 



 105 

for these regions. Similar studies have been previously conducted with success in North 

America [75-77].  

It is important to also recognize other potential mechanisms that can exert control 

on the Sr isotope composition of heroin. For example, Degryse and coauthors [78] found 

that the Sr isotope composition of groundwater, which may not be representative of the 

bedrock, can leave a significant imprint on the bulk composition of the plant biomass. 

Because of the large masses of Sr isotopes, the biological influence of the P. somniferum 

plant on fractionating Sr isotopes during plant uptake and metabolic processes is unlikely, 

however it also needs further investigation. 

The potential anthropogenic contributions of strontium should be not ignored and 

may be sourced from cutting material used to dilute heroin after production, 

packaging/handling contamination, and/or contamination from equipment or chemicals 

used in the process of heroin production. Constraining the contribution from such 

contaminants is the most challenging aspect of this new toolbox. Nevertheless, while the 

individual components of local operations are difficult if not impossible to tease out 

geochemically, the average influence of natural and anthropogenic sources of Sr isotope 

composition on large regional scales can be discerned with great fidelity as we 

demonstrated in this study, making this a potentially powerful new tool in geochemical 

fingerprinting of heroin. Preliminary exploration into the isotopic systematics of B and Pb 

was also done, but analysis of B and Pb isotope ratios was found to be challenging by this 

means of sample preparation. 
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To the best of the authors’ knowledge this manuscript reports the first analysis of 

radiogenic 87Sr/86Sr isotope ratios of authentic seized heroin samples for the exploratory 

purpose of differentiating heroin based upon its geographic and/or processing origins. It 

also is the first to report 87Sr/86Sr isotope ratio values for the NIST SRM 1570a (trace 

elements in spinach leaves), sometimes referred to as IAEA-331 in the literature, which 

can be used for inter-laboratory comparison in geochemical fingerprinting of plants and 

illicit drugs. 

4.2 Methods and Materials 

4.2.1 Samples and Standards 

One hundred and eighty-six authentic (known country of origin), unadulterated and 

undiluted illicit heroin samples that were made available by the DEA STRL were analyzed 

for their radiogenic strontium isotope ratios. Samples were categorized as having 

originated from Mexico manufactured using a South American recipe (MEX-SA, n=44), 

South America (SA, n=61), Southwest Asia (SWA, n=40) or Southeast Asia (SEA, n=41).  

These authentic samples were clandestinely produced heroin samples seized either 

in the country of production or in direct transit to the United States from a source country 

of production. Upon seizure and opening of the original packaging, a sub-sample was 

collected and stored in glass vials for analysis. The exact origin locations (e.g., villages or 

towns) of these samples were typically unknown. It is also worth noting that different types 

of metallic and plastic utensils are commonly used for heroin production. Mixing and/or 

contamination after production are also expected with the packaging and shipping. The 

objective of this research was to profile heroin shipments that are trafficked to the United 
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States without any bias or additional purification steps, and any elemental contamination 

from cooking pots to packaging has to be considered unavoidable and part of the sample 

matrix. 

Calibration standards for inductively coupled plasma-mass spectrometry (ICP-MS) 

were prepared from stock solutions of 71A (Inorganic Ventures, USA). Internal standard 

solutions were also obtained from Inorganic Ventures. Calibration verification standards 

(CCV) were prepared from single element solutions (Ricca, USA). All were prepared in 

0.6 M HNO3 using MQ water (EMD Millipore, Germany) at > 18 MΩ and Optima grade 

nitric acid (Fisher Scientific, USA). The digestion recovery standard was NIST SRM 1570a 

(Trace Elements in Spinach Leaves; NIST, USA). The Sr isotope standard was SRM 987 

(Strontium Carbonate Isotopic Standard); NIST, USA). One of the heroin samples (SWA) 

was provided with sufficient mass quantity to be used as a daily heroin control standard. 

The 87Sr/86Sr values of this heroin control sample were included with the SWA sample set.  

4.2.2 Microwave-assisted acid digestion 

Approximately 0.03-0.1 g of each sample was weighed to ±0.0001 g on a Mettler 

AE240 (Mettler Toledo, USA) balance into a 4 mL quartz digestion vessel using a 

disposable polypropylene (PPE) spatula to transfer the samples from the glass sample 

containers. Polyetherketone (PEK) caps were only removed when absolutely necessary to 

minimize exposure to the open-air environment.  

All sample manipulation was conducted inside class-100 fume hoods. An electronic 

pipette (Ovation Macro10; Vistalabs, USA) was used to deliver 2.5 mL of concentrated 

Optima HNO3 (Fisher Scientific, USA) to each digestion vessel containing the sample, 
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rinsing residual powder down from the walls of the vials. Three quartz vessels, each 

containing a separate replicate mass of the same heroin sample were placed into a 

perfluoroalkoxy alkane (PFA) digestion bomb that contained a buffer solution of 10 mL 

20% v/v H2O2 (ACS grade; Fisher Scientific, USA). The vessels were assembled and 

loaded into a microwave oven (ETHOS-UP; Milestone Inc, USA) with the thermal probe 

position inserted within a reference vessel as described in EPA method 3052 [45].  

The digestion program consisted of a 15-minute ramp from room temperature to 

220 °C. The temperature was held for 15 minutes and then passively cooled to room 

temperature within 1 hour of the completion of the program. The digested volume, which 

was typically reduced to approximately 1.5 mL, was quantitatively transferred to 15 mL 

centrifuge tubes with > 18 MΩ MQ water (EMD Millipore, Germany) to approximately 13 

mL of total volume. The final digestion volume was determined to the nearest 0.01 g on a 

Sartorius LC4200 (Sartorius AG, Germany) balance after subtracting the mass of the 

centrifuge tube. Each digestion run included a blank, NIST SRM 1570a, and the heroin 

control sample. 

The average concentration of nitric acid in 6 unique digestion samples was found 

to be 1.87±0.31 M HNO3. For the Sr ratio measurements, 2 mL aliquots of the digestion 

samples were used without further dilution for extraction chromatography and Sr isotope 

analysis. For the ICP-MS measurements, aliquots of the digestion samples were further 

diluted to approximately 0.6 M HNO3 with MQ water.  

All digestion vessels were cleaned in a blank microwave run using 3 mL trace metal 

grade nitric acid (Fisher Scientific, USA) and soaked in 6 M HNO3 overnight at 90°C in a 
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covered PFA beaker. All PFA beakers and polypropylene spatulas were soaked in 6 M 

HNO3 overnight followed by immersion in a 5% HCl bath overnight prior to processing 

new samples. The digestion vessels and labware were twice rinsed with Evoqua® DI H2O 

and allowed to dry. Trace metal grade (Fisher Scientific, USA) acids and > 18 MΩ 

Evoqua® DI H2O were used to prepare all acid leaching baths. 

4.2.3 Extraction Chromatography for Strontium Isotope Ratio Analysis 

Separating Rb (and also other matrix interferences) from Sr prior to analysis was 

necessary because in samples with significant amounts of Rb, higher abundance of 87Rb 

leads to an isobaric interference on 87Sr that cannot be resolved by the mass spectrometer 

and because SRM987, which was measured routinely to monitor drift in isotope ratios 

during the course of the measurement, does not contain Rb.  

Nitric acid was distilled once from concentrated ACS grade HNO3 in a Savillex 

DST-1000 sub-boiling still (Savillex, USA). The concentration of the acid after distillation 

was determined by volumetric titration against certified 0.1 and 1 M sodium hydroxide 

solutions. Further acid dilutions were made gravimetrically using MQ water.  

To achieve a small elution volume (approximately 2 mL) and low levels of 

procedural blank, an extraction chromatography protocol was modified from a previously 

reported method for Sr isotope analysis of dust particles [79]. This procedure takes 

advantage of a commercially available resin for Sr separation (4,4'(5')-di-t-

butylcyclohexano 18-crown-6 [crown ether] in 1-octanol, SR1ML-R50-S; Eichrom 

Technologies, USA). As reported by Horwitz et al. [80], the partition coefficient (k’) of 

this resin is highest for 88Sr in HNO3 concentrations that exceed 6 M, although the k’ is 
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reasonably high at the 5-6 M HNO3  used in this study. In contrast, the resin shows no 

affinity for interfering cations such as Ca, Mg and other trace elements at this acid 

concentration. At 0.01 M HNO3, the k’ for Sr drops significantly below 1, allowing for 

quantitative separation of Sr from matrix elements.   

To downscale the elution scheme from using a pre-packed 1 mL cartridge (SR1ML-

R50-S), approximately 0.04 g of the resin was slurry-packed onto the center column of a 

Luer-Lock male-female fitting (Cole-Parmer, USA). A custom-cut piece of Whatman 41 

ashless filter (W-41; Sigma-Aldrich, USA) with an approximate diameter of 3 mm was 

used to retain the resin within the column reservoir. The packed micro-columns were 

placed on a vacuum box to control the load and elution flow rates. 

Extraction chromatography was conducted inside a class-100 Microzone trace-

metal workstation (DFMZ Inc, Canada). Prior to processing the samples on the resin, 

approximately 2 mL of the digested heroin at 1.87±0.31 M HNO3 was mixed with 1 mL of 

concentrated HNO3 (15-16 M) in 5 mL PPE centrifuge vials to raise the concentration of 

the load solution to greater than 5 M HNO3. Background Sr on the resin was removed by 

loading 2 mL of 0.01 M HNO3 and the columns were converted to the load solution by 

adding 1 mL of 6 M HNO3. Samples were subsequently loaded, and the matrix elements 

were removed by adding 1 mL of 6 M HNO3. Strontium was eluted in 1.9 mL of 0.01 M 

HNO3 into 5 mL PPE centrifuge vials for measurement of Sr isotope ratios. The flow rate 

for load and elution of Sr was adjusted to less than 1 mL/min to ensure quantitative 

separation. The resin was flushed from the micro-columns with MQ water and replaced 

with fresh resin for each sample.  
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4.2.4 High-precision Strontium Isotope Ratio Analysis 

The 87Sr/86Sr isotope ratio consists of the radiogenic isotope 87Sr and the stable 

reference isotope 86Sr. The ratio of 87Sr/86Sr were measured in 198 heroin samples with 

>1.25 µg/g [Sr] on a Neptune Plus (Thermo Fisher Scientific, Germany) multi-collector 

ICP mass spectrometer at the Neptune Isotope Lab (NIL) at the University of Miami. The 

instrument at NIL is equipped with 9 Faraday collectors that can be associated to eight 1011 

Ω, and two 1010 Ω and 1012 Ω amplifiers to extend the dynamic range of the measurements. 

A more detailed description of the instrumental configuration and the acquisition 

parameters can be found in Pourmand et al. [79].  

The Faraday collectors and associated isotopes of Kr, Rb and Sr are shown in Table 

18. After loading the cup configuration for Sr isotopes, an automatic gain calibration of the 

Faraday collectors was carried out through the Neptune software and the instrumental 

parameters (sample, cooling and auxiliary gases, torch position and ion optics) were tuned 

to optimize for sensitivity and stability of the signal in a 100 ng g-1 Sr solution. The sample 

and standard solutions were introduced into the plasma through an ESI® Apex-Q 

desolvation nebulizer at a flow rate of ~ 100 µL min-1 via an autosampler controlled 

through the Neptune software.  

Data acquisition involved five blocks of five cycles at 8.389 s integration time. 

Sample uptake was set to 70 seconds and baseline calibration was performed prior to each 

measurement through the Neptune software for 30 s. The analytical precision reported on 

isotope ratios from this study was on the basis of 95% confidence intervals (2σ mean) of 

individual measurements.  
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Equation 4. Where Rtrue and Rmeasured are the accepted and measured isotopic ratios of masses M2 and M1, 
respectively. The mass bias coefficient, β, is a free parameter determined experimentally and applied to other 
measured isotope ratios for mass bias correction 

𝑅QRST = 𝑅UTVWSRTX Y
𝑀[

𝑀H
\
]

 

Mass-dependent fractionation of heavy versus light isotopes of Sr that occurs in the 

plasma was characterized by internal normalization using the exponential law and the 

relationship shown in Equation 4[81]. Data reduction and adjustments for isobaric 

interferences were performed directly through the Neptune Method Editor software. 

Table 18: Collector configuration for Sr isotope analysis. 

Faraday detectors and corresponding isotopes Integration 
Time (s) 

    

L4 L3 L2 L1 C H1 H2 H3 H4 Block Cycle 

82Kr 83Kr 84Sr 85Rb 86Sr 87Sr 88Sr - - 8.389 5 10 

   

During the Sr isotope measurements (Table 18), the abundances of 82Kr, 83Kr and 

85Rb isotopes were also monitored. The contributions of 84Kr and 86Kr on 84Sr and 86Sr 

beams, respectively, were accounted for by measuring 83Kr and allowing for abundance 

ratios 83Kr/84Kr=0.2017 and 83Kr/86Kr=0.6647. The influence of background Kr isotopes 

on Sr was accounted for by initiating on-peak-zero subtraction (OPZ) at the beginning of 

each measurement sequence, which rendered the Kr beam contribution to Sr isotopes 

negligible. The natural abundance ratio 88Sr/86Sr = 8.375209 was used to correct for the 

influence of instrumental mass bias on isotope ratios using Equation 4.  

High-performance Jet sampler and X-series Ni skimmer cones were used to 

improve sensitivity. Every five sample measurements were bracketed with analysis of two 
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SRM987 standard solutions at 100 µg/L. The mean 87Sr/86Sr ratio in SRM987 measured 

during the course of this study was 0.710271 ± 0.00002 (n=22), which deviated from the 

accepted value of 0.710248 by 32 ppm on average [82]. The measured 87Sr/86Sr ratios in 

the samples were corrected for mass bias and isobaric interferences and the final ratio was 

further adjusted relative to the accepted value of 0.710248 for SRM 987 to allow 

comparison with literature measurements of radiogenic Sr isotopes. 

4.2.5 Other Isotopic Systems 

The isotope systematics of boron and lead were investigated as well, however there 

were difficulties with these analytes as a result of the microwave digestion method. 

Fractionation of boron isotope composition was experienced because of the open-vessel 

nature of microwave-assisted acid digestion, as well as persistent boron contamination in 

reagents. Lead was not present in sufficient concentrations to be amenable for precise 

measurement of lead isotopic ratios. It was estimated that <10% of the samples would have 

sufficient lead concentrations for isotope ratio measurement by the sample preparation 

method described above. More information on boron and lead isotope systematics are 

provided in Chapter 5. 

4.3 Results 

4.3.1 Strontium Isotope Ratios 

To examine the influence of matrix elements on the Sr isotope ratios, 12 samples 

were processed by diluting the digestion solutions 2:1 to bring the solutions to 

approximately 0.6 M HNO3 and [Sr] into the ranges of 5-50 µg/L and analyzed directly for 

87Sr/86Sr. The results were compared to those from aliquots of the same samples processed 
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through extraction chromatography before measurement. As shown in Figure 29, large 

discrepancies were observed between some samples that were measured by direct dilution 

and those where Sr was separated from interfering elements. The concentrations of 

elemental Sr and Rb had been previously determined for these samples, and some were as 

high as 33% relative abundance of Rb/Sr. These results demonstrated the need for 

extraction chromatography to achieve accurate measurements of 87Sr/86Sr in illicit heroin 

samples. 

 

Figure 29. Effect of column chemistry (green circles), compared to direct dilution (red diamonds) on the 
measured values of 87Sr/86Sr in 12 authentic heroin samples. Samples JD2-62-2A/B and JD2-53-9A/B are 
pairs of duplicate digestions of two different heroin samples. 
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Figure 30. Means and uncertainty of 87Sr/86Sr isotope ratios for powder heroin samples A-D (arbitrary ID 
assignment), heroin duplicate standard and NIST SRM 1570a, where all samples were separately digested, 
prepared and analyzed. Error bars are shown for all samples but are too small to be seen for the heroin 
duplicate standard and for NIST SRM 1570a. N=3 for all samples except for C (SEA), where N=4. 

The fidelity of Sr isotope measurements at NIL was previously shown by analyzing 

geological reference materials [83]. There were no assumptions made regarding sample 

homogeneity. Because of the controlled substance status of the heroin samples and averting 

the risk of external and cross-contamination, there were no attempts made to homogenize 

the samples prior to digestion. One sample from each region, as well as the heroin control 

sample and NIST SRM 1570a, were analyzed in triplicate. The samples were all separately 

digested and individually processed by column chemistry for strontium isolation to account 

for method reproducibility. The means and 95% confidence intervals of the replicate 

digestions are shown in Figure 30. The NIST SRM 1570a and heroin control sample 
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showed consistent 87Sr/86Sr and therefore good method reproducibility (the errors were so 

small the error bars cannot be seen). The variation observed in the heroin samples A, B, C 

and D was believed to have been caused by sample heterogeneity. This is also the first 

reported value of 87Sr/86Sr for NIST SRM 1570a, trace elements in spinach leaves (0.70905 

± 0.00002, n=3, 95% confidence interval). 

 

Figure 31. Box and whisker plot of the distributions and group means of 87Sr/86Sr isotope ratios for powder 
heroin 

The measured ratio of 87Sr/86Sr of illicit heroin samples is shown in Figure 31, 

grouped by the four major heroin-producing regions. The 87Sr/86Sr values of heroin samples 

were averaged and are reported at 95% confidence levels. Samples from MEX-SA had a 
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mean of 0.70619 ± 0.00035, (range: 0.70370 - 0.70837). SA heroin samples had a mean of 

0.70810 ± 0.00038 (range: 0.70599 to 0.71658), although 90% of the values were below 

0.70912. The heroin samples from SEA had a mean of 0.71036 ± 0.00070 (range: 0.70806 

to 0.71830). While the groups of MEX-SA, SA and SEA had data that were distributed 

tightly surrounding their means, there were actually very few SWA samples with 87Sr/86Sr 

values near to the calculated mean (0.71417 ± 0.00141, range: 0.70831 - 0.72405). The 

mean of the SWA group was not as well defined as compared to MEX-SA, SA and SEA 

samples; analysis of the data indicated this may have been the results of subgrouping and 

non-normality within distribution of 87Sr/86Sr values from the SWA group.  

Obtaining additional intelligence information about these samples may reveal that 

they represent subgroups and may allow for discrimination between different countries 

within SWA (e.g., Afghanistan and Iran). 

4.3.2 Evaluation of Predictive Potential 

In addition to characterizing the 87Sr/86Sr values for the heroin sample from the four 

geographic regions, the rate of accuracy in predicting provenance was estimated by 

comparing the 87Sr/86Sr values of the authentic heroin samples to the mean values of each 

group. The results are shown in Table 19. Heroin samples of groups MEX-SA and SA were 

correctly classified 76% and 81% of the time, respectively. From Figure 31, it can be seen 

that MEX-SA and SA have some overlap in their sample distribution and it was not 

surprising that a few samples from these groups would be misclassified because their 

87Sr/86Sr values were closer to the mean of the other group. There were also a few SA 

samples which had much higher than average 87Sr/86Sr values and were misclassified as 
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SEA and SWA. Considering the additional groups of Southeast and Southwest Asia, an 

overall correct classification rate of 71% was estimated for unknown heroin samples. 

Table 19. Prediction of Heroin Origin by logistic regression of 87Sr/86Sr isotope 
ratios 

Actual Origin 

 Predicted Count for Training Set (n=121) 
 MEX-SA  SA  SEA  SWA  % Correct 

MEX-SA (n=26)  20  6  0  0  77% 
SA (n=36)  9  24  2  1  67% 

SEA (n=30)  0  10  16  4  53% 
SWA (n=29)  0  1  8  20  69% 

SUM (n=121)  29  41  26  25  66% 
% Confusion  31%  41%  38%  20%   

Actual Origin 

 Predicted Count for Test Set (n=77) 
 MEX-SA  SA  SEA  SWA  % Correct 

MEX-SA (n=24)  20  4  0  0  83% 
SA (n=31)  4  26  1  0  84% 

SEA (n=11)  0  1  10  0  91% 
SWA (n=11)  0  5  4  2  18% 
SUM (n=77)  24  36  15  2  75% 
% Confusion  17%  28%  33%  0%   

Actual Origin 

 Predicted Count for Combined Data (n=198) 
 MEX-SA  SA  SEA  SWA  % Correct 

MEX-SA (n=50)  38  12  0  0  76% 
SA (n=67)  9  54  2  2  81% 

SEA (n=41)  0  11  26  4  63% 
SWA (n=40)  0  5  13  22  55% 

SUM (n=198)  47  82  41  28  71% 
% Confusion  19%  34%  37%  21%   

 

The prediction accuracy of the authentic samples from SEA and SWA was 

complicated by overlap of their samples’ 87Sr/86Sr values. There were 11 SEA samples 

with lower than average 87Sr/86Sr values that fell closer to the mean of SA and so were 
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misclassified as SA. In addition, the SEA samples with very high 87Sr/86Sr values and were 

misclassified as SWA. Of the SWA samples, 18 had 87Sr/86Sr values that overlapped with 

the samples of SA and SEA. As mentioned previously, from Figure 31, the SWA data 

appear to exist in multiple clusters, unlike the data from the other regions. If the apparent 

sub-groups of SWA were treated separately, the lower cluster of 18 samples would still be 

confused as SA and SEA and the mean 87Sr/86Sr ratio for the other SWA samples would 

be shifted to a higher value, which would be distinguishable from the other regions. 

4.4 Merging Elemental Data with 87Sr/86Sr Isotope Ratios 

The work performed in Chapter 2 produced a multivariate model of analysis based 

upon the quantitative analysis of nine elements. None of the nine elements, on their own 

quantitative values, had the discrimination power of the 87Sr/86Sr radiogenic isotope ratio 

systematic. A log transform of the elemental concentration (µg/g) of the elements 23Na, 

24Mg, 52Cr, 57Fe, 66Zn, 90Zr, 111Cd, 208Pb and 238U have shown the potential to correctly 

associate 88% of unknown heroin samples to their region of origin. It was expected that 

combining the data of the most useful elements with that of the 87Sr/86Sr would further 

improve the model’s performance, being that the radiogenic strontium isotope ratio as a 

single data point was able to correctly assign 75% of the unknown samples. 

The radiogenic isotope ratio of strontium performed relatively poorly for SWA 

samples with regard to correct assignment, because of the apparently bimodal distribution 

of the data from that region. It would be useful if the inclusion of elemental data into a 

prediction model, which performed well for classification of SWA samples, would make 

up for the challenges of 87Sr/86Sr in determining provenance for the SWA samples. 
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Therefore, a fusion of elemental quantitative data and 87Sr/86Sr data was desired to see if 

the two data sets could supplement one another and produce a higher rate of correct 

provenance determination than either could separately.  

Table 20. Prediction of Origin by linear discriminant analysis by LOG10 (23Na, 52Cr, 
66Zn, 90Zr, 111Cd, 238U) and 87Sr/86Sr isotope ratios. 

Actual Origin 
 Predicted Count for Training Set 
 MEX-SA  SA  SEA  SWA  % Correct 

MEX-SA (n=26)  25  1  0  0  96% 
SA (n=36)  2  33  0  1  92% 

SEA (n=30)  0  0  30  0  100% 
SWA (n=29)  1  0  0  28  97% 

SUM (n=121)  28  34  30  29  96% 
% Confusion  11%  3%  0%  3%   

Actual Origin 

 Predicted Count for Test Set 
 MEX-SA  SA  SEA  SWA  % Correct 

MEX-SA (n=24)  19  5  0  0  79% 
SA (n=31)  2  29  0  0  94% 

SEA (n=11)  0  0  11  0  100% 
SWA (n=11)  0  1  1  9  82% 
SUM (n=77)  21  35  12  9  88% 
% Confusion  10%  17%  8%  0%   

Actual Origin 

 Predicted Count for Combined Data 
 MEX-SA  SA  SEA  SWA  % Correct 

MEX-SA (n=50)  45  5  0  0  90% 
SA (n=67)  5  61  0  1  91% 

SEA (n=41)  0  0  41  0  100% 
SWA (n=40)  1  0  1  38  95% 

SUM (n=198)  51  66  42  39  93% 
% Confusion  12%  8%  2%  3%   

 

 Because the data set was limited to ≥40 samples per group by the availability of 

87Sr/86Sr isotope ratio data, the elemental data to be combined was reduced to the most 

informative 6 elements. A stepwise selection of the most useful 6 variables out of the 

included elements from Chapter 2 was made on the basis of the highest F ratio from the 



 121 

remaining variables after each selection. The F ratio is an indication of the variable’s 

discriminatory power with respect to the assignment of region, in this case [84]. Table 20 

shows the correct associations as confusion rates when LOG10 (23Na, 52Cr, 66Zn, 90Zr, 111Cd, 

238U) and 87Sr/86Sr data are used together in a linear discriminant model for provenance 

determination. For the unknown test samples, the model performed 88%, however the 

number of samples for which 87Sr/86Sr data were available limited the size of both the 

training as well as the testing set. When using the entire data set of samples with 87Sr/86Sr 

data available, the prediction rates increased to 93%. Each region was correctly assigned 

≥90% of the time. 

Table 21. Canonical coefficients of linear discriminant analysis by LOG10 (23Na, 52Cr, 
66Zn, 90Zr, 111Cd, 238U) and 87Sr/86Sr isotope ratios. 

Variable  Canon1  Canon2  Canon3 
87Sr/86Sr  -0.6212  0.4871  0.4754 

23Na  0.9067  -0.1372  0.0590 
52Cr  0.4200  0.5892  0.1991 
66Zn  -0.6142  0.0089  -0.0080 
90Zr  0.7269  -0.1994  0.4479 

111Cd  -0.5780  -0.3656  0.5788 
238U  0.0509  0.7310  0.4008 

  

 The canonical coefficients of the LDA model are shown on Table 21. The canonical 

coefficients are multiplied by the data of each variable for all samples to define the position 

of the sample within, in this case, three-dimensional space. The length of the sample’s 

vector in the x, y and z dimensions are defined by the linear combination of Canon 1, 2 and 

3 coefficient and the sample’s value for each variable. The assignment of provenance is 

made by measuring the shortest vector distance of the sample’s data point to that of the 
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group means of MEX-SA, SA, SEA and SWA. The canonical scores of all data points are 

shown in a 3D scatter plot on Figure 32. 

 

Figure 32. 3D scatter plot of canonical score of 198 samples for which LOG10 (23Na, 52Cr, 66Zn, 90Zr, 111Cd, 
238U) and 87Sr/86Sr data are available. MEX-SA is shown in red, SA in blue, SEA in gold and SWA in green. 

4.5 Conclusion 

This work presents the first reported use of strontium isotope ratio analysis for the 

geographic sourcing of 186 illicit heroin samples of known origin. A microwave-assisted 
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acid digestion method is described for the heroin matrix and methods for micro-column 

purification and strontium ratio measurements by MC-ICP-MS are also reported.  

The fact that the 87Sr/86Sr ratios showed 77 to 82% discrimination between South 

American and SA-like Mexican heroin suggests that whether the elemental strontium is 

biologically available from the opium or introduced by external contamination, it carries a 

characteristic radiogenic strontium isotope ratio associated with a geographic location. 

Considering the additional groups of Southeast and Southwest Asia, an overall correct 

classification rate of approximately 70% was estimated for unknown heroin samples.  

Data resulting from the work described in Chapter 2 and Chapter 4 of this 

dissertation includes over 200 heroin samples for which elemental quantitative data as well 

as isotope ratio data were available. Details on the methods of preparation and analysis of 

those samples can be found in Chapters 2 and 4. The most useful set of nine elements 

(Log10 transformed µg/g concentration) is described in Chapter 2 and correctly assigns 

heroin samples to the region from which it originated at an overall rate of 89% and no 

worse than 85% of the time for any particular region.  

The isotope ratio of radiogenic strontium 87Sr/86Sr correctly predicted the origin of 

75% of “blind” heroin samples based upon a univariate logistic regression. Heroin 

originating from MEX-SA, SA and SEA regions were correctly classified over 83% of the 

time. The main difficultly was with SWA samples, which could be overcome by combining 

the elemental data from Chapter 2 with the 87Sr/86Sr data. The performance of a 

multivariate model of LOG10 (23Na, 52Cr, 66Zn, 90Zr, 111Cd, 238U) and 87Sr/86Sr isotope ratios 

correctly assigned 82% of unknown SWA samples and 88% of all unknown samples. Using 
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a complete data set, 93% of all heroin samples could be correctly assigned using the ideal 

combination of data of LOG10 (23Na, 52Cr, 66Zn, 90Zr, 111Cd, 238U) and 87Sr/86Sr. 

In summation, the 87Sr/86Sr results show promise for isotopic ratio analysis of 

strontium as a profiling technique of illicit heroin samples for geographic sourcing and 

perhaps, other intelligence purposes. When combined with the 6 of the elements from 

Chapter 2, the profiling potential greatly increases to 93% overall with no region <90% 

correctly associated. Whereas the elemental data experienced difficultly differentiating 

some samples of MEX-SA & SA and the 87Sr/86Sr confused some SWA samples, the 

combination of both elemental quantitative data, LOG10 (23Na, 52Cr, 66Zn, 90Zr, 111Cd, 

238U), and 87Sr/86Sr data into a single model minimized the misclassification of samples 

from those regions. 
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CHAPTER 5.  ADDITIONAL ANALYSIS FOR HEROIN PROFILING 

The following chapter describes additional methods developed for chemical 

profiling of heroin that are thus far unreported in literature. The techniques outlined in this 

chapter had reasonable hypotheses for delivering successful results for profiling heroin 

based upon their origin. In this chapter will be reported the background, method details and 

results on the study of isotope ratio analysis of boron (d 11B), the contributions of 

adulterants to the elemental profile of street-level heroin samples, the volatile organic 

compounds (VOCs) and semi volatile organic compounds (SVOCs) associated with heroin 

samples and the fusion of 87Sr/86Sr isotope data with elemental quantitative data for 

provenance determination of heroin samples.  

Because the systematics of d 11B and VOCs were unproven for profiling heroin and 

limited in scope relative to the trace element study, the analysis was performed upon a 

smaller subset of the total sample size to not consume valuable sample material provided 

by the US Drug Enforcement Administration. For d 11B analysis approximately 40 samples 

were chosen for analysis with n≥8 samples from each of the four heroin-producing regions, 

MEX-SA, SA, SEA and SWA. Each of the samples had previously been characterized by 

both trace element quantification as well as 87Sr/86Sr isotope ratios, therefore the data from 

those techniques could be combined if doing so proved helpful to characterizing the heroin 

samples. 

The study of VOCs (and SVOCs) was performed on four samples in total with 1 

sample represented from each of the four groups. The analysis by CMV-GC/MS was more 

time-consuming and non-destructive and therefore required a greater level of sample 
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security. As opposed to acid digestion, which could be initiated for 10 or more samples in 

less than one hour, the entire sampling and analytical procedure for CMV-GC-MS required 

approximately one hour for a single sample to be equilibrated, sampled and analyzed (per 

available GC-MS instrument). As a result, the purpose of the preliminary study was to 

demonstrate the utility of headspace compound detection by CMV-GCMS technique rather 

than confirming the ability to profile heroin; to do so would have required a working 

environment with a level of security greater than is likely to be found in an academic 

research laboratory.  

5.1 Boron Isotope Ratio Analysis, d 11B 

5.1.1 Background and Hypothesis 

Unlike for many isotope systems, there is a large relative mass difference, (10%) in 

the two naturally-occurring boron isotopes, 10B and 11B. For example, the other isotope 

systematic studied in this dissertation, 87Sr/86Sr, has only a 1.2% mass difference in the two 

isotopes being measured. However, the ratio of 87Sr/86Sr changes because of the abundance 

of Rb in the geological material and the age because 87Sr is radiogenic isotope produced 

through beta decay of 87Rb. On the other hand, variation in 11B/10B are as a result of their 

differences in geochemical reactivity, as the isotopes of boron are neither radioactive nor 

radiogenic. 

The main challenges of analysis of boron isotope determination are isotopic 

fractionation during sample digestion, through volatilization, and imprecise measurements 

because of low sample concentration of boron [85].  In an acidic system, the boric acid 

molecule, B(OH)3, is favored over the tetrahydroxyborate weak base, B(OH)4-. It is 
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reported that the heavier isotope, 11B, favors the boric acid species while the lighter, 10B 

favors the borate weak base [86]. Careful method development of a method for sample 

preparation to control this fractionation is likely the greatest obstacle to accurate boron 

isotope analysis. 

5.1.2 Preliminary Investigation 

In spite of the use of boron-free filter on the DI H2O system and using Optima-

grade acids, there was still challenges with boron contamination of method blanks and 

reagent blanks. Usually the background subtraction was an adequate means of addressing 

the background levels for quantitative analysis. As a particular obstacle for reliable isotope 

analysis, it was observed that boron isotopes were experiencing fractionation during the 

micro-wave assisted digestion process, as evident on Figure 33. Three replicates digestions 

were performed of NIST SRM 951a boric acid standard (NIST, USA) in the microwave 

and one using a closed vessel method in PFA vessels.  

The results of these analyses demonstrated that the closed vessel method showed 

no deviation from the accepted values for d 11B, while the microwave-assisted samples 

showed per-mille differences. The microwave digestion oven, as a safety feature, allows 

for sample venting in the event of over-pressurization. Additionally, the quartz micro-

vessels have vented caps that all for pressure equalization, as well as the escape of 

vaporized sample, into the chamber of the main vessel itself. The vaporization and loss of 

sample was observed to favor 11B, which led to greater than expected d 11B values in the 

resulting solution that was collected following the microwave-assisted acid digestion as 
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shown in Figure 33.  The values for the d 11B deviations were inconsistent such that they 

could not have been systematically corrected. 

 

Figure 33: Observing fractionation of boron isotopes using microwave assisted-acid digestion (blue dots) as 
compared to a closed vessel digestion method (PFA; green dots).  

It was determined that the results precluded boron isotope analysis on the basis that 

accurate and reproducible measurements could not be performed with the same sample 

preparation method as we had developed for the elemental analysis. Therefore, the method 

of hotplate digestion in sealed PFA, described above, was adopted for processing samples 

for analysis of d 11B. Resources were also limited in the analysis that could be performed 

at NIL and Sr isotopic analysis had shown greater promise for success with respect to 

geographic profiling.   

For these reasons and because having a high-throughput method for sample 

preparation was crucial for the large scale of analysis of samples for database creation, it 
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was agreed that boron isotope analysis would only be performed for a limited number of 

samples to evaluate the usefulness of the technique for the purpose of profiling heroin. 

Only samples which had been analyzed for strontium isotope ratios 87Sr/86Sr and composed 

of >10 µg/g boron (previously quantified by Q-ICP-MS) were attempted for d 11B analysis. 

The fact that quantitative analysis of boron had already been performed on the samples was 

advantageous. As such, it was not expected that low sample concentrations would 

negatively affect the analytical precision of the boron isotope measurement. 

One of the earliest reports of employing closed-vessel, microwave-assisted acid 

digestion for the inorganic analysis of SWA heroin samples was published in 2002 by Bora 

et al. wherein ten elements in total were analyzed quantitatively by electrothermal atomic 

absorption spectroscopy (Cd and Pb) and ICP-AES (Al, Ba, Ca, Cu, Fe, Mg, Mn and Zn) 

[36]. The authors reported calcium as the element of highest abundance, which was 

supported by the results of this research for SWA samples, as well as SEA samples 

(subchapter 2.4.5), presumably as a result of the employment of lime in the reduction of 

morphine to morphine base [36]. 

5.1.3 Methods and Materials 

As described in the previous section, the method of microwave-assisted acid 

digestion proved to cause irreproducible fractionation in the isotope abundance of 11B/10B. 

Despite the microwave vessels themselves were closed, venting of gases was designed in 

the micro-insert vessels that were used to reduce acid consumption, lower sample mass 

requirements and increase sample through-put (see Methods sections in Chapter 2-4 

beginning on pages 29 and 107). Therefore, a method that did not allow for vapors to escape 
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from solution was desirable. To do so, closed-vessel digestion in concentrated, Optima-

grade nitric acid (Fisher Scientific, USA) was performed in 4 mL PFA vessels (Savillex, 

USA) at sub-boiling temperature of 90°C for 24-28 hours on a hot plate followed by 

chilling the vessels on ice. The boiling point of a commercial solution of 68% HNO3 is 

~121°C [87]. 

A subset of 42 heroin samples (n ≥ 8 from each region) were chosen for d 11B 

analysis. Sample masses ranged from 80 mg to 200 mg depending upon sample 

concentration, availability and density. Samples were weighed by difference directly into 

6 mL PFA digestion vessels along with their lids. To the vessels was added 2 mL of 

Optima-grade Nitric Acid (Fischer Scientific). The lids were tightened using two plastic 

wrenches (one on the vessel body and one on the lid, torqued in opposing directions) such 

that there would not be escape of liquid or gases during digestion. The gross mass of the 

heroin, acid and closed vessel was recorded and compared to the post-digestion mass to 

evaluate if there was any significant loss of mass. 

The digestion was accomplished by first sonicating the vessels for 30 minutes in 

DI H2O. The vessels were shaken vigorously by hand to rinse any undissolved solid 

material off of the inner walls. The vessels were then sonicated for an additional 30 minutes 

in DI H2O. The outer walls of the vessels were dried and subsequently placed onto an 

Isotemp (Fisher Scientific, USA) heating block with a digital temperature control.  A 

handheld thermocouple was used to find the areas on the surface of the heating mantle 

where the surface temperature was constant and most accurate to the desired temperature 

of 80°C, which required the hot-block to be set at 85°C. A slightly higher setting was 
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necessary to achieve the desired surface temperature. The vessels were allowed to remain 

on the hotplate for at least 24 hours. 

After the digestion had proceeded for 24 hours or longer, the vessels placed directly 

into ice to sublimate the accumulated vapors back into solution. The vessels were allowed 

to remain on ice for approximately one hour. Following the vessels were air dried and a 

final mass was recorded and compared to the initial mass to ensure than the total difference 

in initial and final sample mass was ≤ 20 mg. The samples were then diluted with 1 mL of 

Milli-Q boron-free water and split 1.5 mL for boron isotope ratio analysis and 1.5 mL for 

lanthanide series rare earth element (REE) analysis, which is described in the following 

subchapter. 

 

Figure 34. Luer lock assembly of boron exchange separation columns, packed with ground Amberlite IRA-
743 resin and filtered using Whatman ashless filter paper. 
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The separation of boron from other matrix elements was accomplished by column 

chromatography using Amberlite resin as a stationary phase. In slightly basic conditions at 

a pH of 8, the resin has a greater affinity for the resin solid phase compared to the liquid 

sample. Therefore, a basic titration with Optima grade ammonium hydroxide, NH4OH, was 

performed following on the fraction of sample reserved for boron isotope analysis. The 

solutions were titrated to approximately a pH of 8.5 – 9 by regularly testing on multicolored 

pH paper. However, the heroin samples changed from yellow to orange in this pH range 

which made the titrations much easier. Once the samples had been titrated to a basic pH, 

they were centrifuged for 30 s at 4000 rpm.  

Boron ion exchange columns were prepared similarly to the method described in 

Chapter 3 with luer lock microcolumns (see Figure 34), but for boron analysis the solid 

phase exchange media was Amberlite IRA-743, which was manually ground with a mortar 

and pestle and mesh filtered to utilize only resin particles with diameters between 50 - 100 

µM. The reason the beads were ground was to ensure the packing of the resin was dense 

and the flow rates through the columns was more consistent, and the resin surface area was 

maximized. It has been reported that column exchange separation with Amberlite IRA-743 

can cause fractionation in boron isotopes, but during optimization it was found that 

grinding the resin also mitigated the on-column boron isotope fractionation.   

5.1.4 Results 

The results of these experiments proved to be unsuccessful at producing 

reproducible ratios for even duplicate preparations of the same samples. This is likely in 

minor part from degassing upon addition of the 1 mL Milli-Q water but primarily during 
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titration of the sample with NH4OH to a pH which produced significant gases. 

Volatilization results in fractionation of 10B and 11B, with the lighter mass isotope favoring 

the gas phase over the solution. Fractionation to even a slight degree produces large 

variations in the per mille 0/00 calculation of d 11B because of the relatively large difference 

in atomic mass of the two isotopes. 

 

Figure 35. Box plot and data points of boron isotope ratio (d 11B) measured in heroin samples by region of 
production. Box plot shows 25% to 75% quantile within the boxes and 5% to 95% within the whiskers. The 
median value of each region is indicated by the horizontal line within the boxes and the mean value of the 
region by the star. 

As shown on Figure 35, there is a great deal of overlap in the data point of each of 

the four regions. While the data set of each group is limited, the ranges of SEA, SA and 
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SWA appear to be much tighter than that of MEX-SA. There are no data points 

representative of the mean and median value of MEX-SA, suggesting that the distribution 

of data in this region may not be normally distributed. As shown on Table 22, the 

comparison of data to the group means is not successful in profiling the samples and nearly 

60% of data is assigned to an incorrect origin. 

Table 22. Prediction of Origin by means comparison of boron d10/11 values by region 

Actual Origin 

 Predicted Count for Training Set 
 MEX-SA  SA  SEA  SWA  % Correct 

MEX-SA (n=8)  0  4  4  0  0% 

SA (n=9)  1  5  0  3  56% 

SEA (n=10)  0  0  6  4  60% 

SWA (n=14)  2  3  3  6  43% 

SUM (n=41)  3  12  13  13  41% 

% Confusion  100%  58%  54%  54%   

 

5.2 Pb Isotope Ratios 

Lead isotope analysis was also proposed as a potential system, however only 10% 

of all samples met concentrations similar to the specified concentrations set for strontium 

isotope analysis, which allowed for approximately 50% of the samples (n=195) to be 

analyzed. The median concentration of Pb was 0.269 µg/g, whereas the median Sr 

concentration was 2.3 µg/g. Table 23 shows that 90% of all samples contained < 1.7 µg/g 

of Pb. Given that the average dilution of samples was ~350x that would make the frequency 

of samples with more than 5 ppb in the diluted solutions ≤10% of the total. Because a 
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solution of >5 ppb was desired for precise isotope ratio measurement, analysis of Pb isotope 

ratios was not explored further in this research.  

Table 23: Quantiles of distribution of total Pb concentrations (µg/g). 

100.00% maximum 255.269 

99.50% 
 

212.501 

97.50% 
 

13.887 

90.00% 
 

1.689 

75.00% quartile 0.733 

50.00% median 0.269 

25.00% quartile 0.099 

10.00% 
 

0.033 

2.50% 
 

0.006 

0.50% 
 

0.002 

0.00% minimum 0.002 

 

5.3 Assessment of Adulterant Effects 

One of the concerns of the research project into provenance determination of heroin 

samples, was regarding the applicability of the method to street-level samples, which are 

typically moderately to heavily adulterated with diluent materials. Caffeine, 

dextromethorphan and lidocaine are commonly occurring small organic molecules with 

CNS activity which can be used to cut heroin samples and increase the profit of street-level 

dealers by increasing the mass of their product with cheap compounds. However, 

depending upon the appearance of the heroin, which can be extremely varied, it may be 

impossible to predict what a dealer might use to dilute their sample. 
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Figure 36. X/Y plot of measured elemental concentrations 23Na, 24Mg, 208Pb and 238U over the fraction of 
adulterant, 03402 – caffeine, in a mixture with a test heroin sample. The neat heroin sample is at the 0 fraction 
and the neat cut is at the 1.0 fraction. 

To assess the extent to which an elemental profile of a heroin sample might be 

affected by a diluent, a SA heroin sample was cut with 3 authentic seized adulterant 

compounds at varying ratios of heroin to adulterant. The first cutting agent (03402) was 

caffeine; the second (03539) was a mixture of caffeine and acetaminophen; and the third 

(89323) was a mixture of caffeine, acetaminophen and dextromethorphan. Table 24 shows 

the effect of the cutting material on elements relevant to provenance determination, which 

are given in Chapter 2. A negative slope indicates that increase cutting material will shift 

the elemental concentration of the bulk sample lower, while a positive slope indicates that 
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the cutting material will add to the elemental concentration of the bulk sample. The plots 

shown on Figure 36 show the results for the mixture of the 03402 caffeine sample with the 

test heroin sample. 

Table 24.  Pearson correlation coefficients and linear relationship slope shown for all elements 
with R2 > 0.7 

  03402  03539  89323 

Element  R2 Slope  R2 Slope  R2 Slope 
23Na    0.9899 -87.4  0.9955 -116  0.8252 26.3 
24Mg    0.9926 43.3     0.9949 147 
52Cr       0.0986 -0.682    
57Fe       0.7534 57.8  0.9731 145 
66Zn          0.8246 4.51 
90Zr            

111Cd            
208Pb    0.7734 0.045       
238U    0.7772 0.0013  0.9936 0.024  0.9975 0.023 

 

5.4 Analysis of Volatile and Semi-Volatile Organic Compounds 

5.4.1 Abstract 

A sampling method to chemically analyze the enclosed headspace of heroin was 

investigated for its utility in capturing and subsequently liberating volatile and semi-

volatile organic compounds for identification by gas chromatography/mass spectrometry 

(GC/MS). A packed capillary tube designed to capture compounds from headspace, known 

as capillary micro-extraction of volatiles (CMV), was set up to sample the headspace above 

heroin samples of approximately 50 mg in total mass. As a preliminary examination of this 

application, one heroin sample from each of the four major heroin-producing regions 

(Mexico, South America, Southeast Asia and Southwest Asia) was sampled by this method. 

Several of the detected compounds were identified with the use of chemical reference 
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standards. Some compounds, such as acetic acid and methylacetamide, were found in 

samples from each of the four regions; these compounds may have the potential to be used 

for heroin screening of seized drugs. On the other hand, compounds that were unique to 

one region may be used instead for chemical profiling strategies and origin prediction for 

the purpose of gathering strategic intelligence and combatting the illegal drug trade. 

5.4.2 Introduction 

The CMV device was developed from the principles of solid phase micro-extraction 

(SPME) wherein a fiber coated with polydimethylsiloxane (PDMS) is allowed to passively 

absorb volatile organic compounds (VOCs) from the headspace volume in a closed 

contained [88, 89]. A PDMS-coated glass filter is cut into uniform strips and packed inside 

of a 2 cm open-ended capillary tube with an inner diameter of 2 mm [89-91]. The open-

ended configuration enables dynamic air sampling via attachment of a vacuum pump. 

Chemical modifications to the sol-gel formula (Phenyl-PDMS versus the original PDMS) 

enabled tuning of the CMV device for improved sampling efficiency of more volatile 

organic compounds; the formula described was utilized in this application for sampling 

heroin headspace VOCs [92]. 

The analysis of headspace compounds by CMV-GC-MS has been used to sample 

forensic samples such as explosives resides, gunshot residues and controlled substances 

[90, 93-95]. Additionally, Nair and Miskelly used capillary microextraction devices for 

sampling methamphetamine vapor [96]. The analysis of VOCs by CMV is a dynamic 

headspace sampling method; therefore, there is no direct sample interaction and negligible 

loss of mass to the heroin samples. The ability to detect the VOCs in heroin samples can 
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permit rapid screening and the non-destructive nature of the method facilitates follow-up 

confirmatory techniques using the same sample aliquot.  

The four samples were selected for having substantial quantity for replicate testing 

and high-purity, between 64% and 74% heroin content by mass. They are referred to as 

MEX, SA, SEA and SWA (Mexico, South America, Southeast Asia and Southwest Asia) 

for the sake of discretion and simplicity. The SWA sample had unknown heroin purity, 

however it was used as the duplicate control standard for research related to the heroin’s 

inorganic analysis [62], so it was selected for the analysis by this method as well. However, 

as described in the results, the Southwest Asian sample appeared to suffer from chemical 

changes related to the heat, which was not observed in the other samples. 

5.4.3 Methods and Materials 

A set of three CMV devices were prepared and assembled in the laboratory 

according to the protocol described previously [90, 91]. All analyses were performed using 

the previously described CMV-A formulation [92]. A sand bath was heated with a Glas-

Col PL 100D heater with a 104A PL612K Digitrol II digital temperature control with 

thermocouple input (Glas-Col, Terre Haute, IN). Approximately 50 mg of the heroin 

samples were placed inside 15 mL glass headspace vials with silicone/PFTE septa 

(Supelco, Bellefonte, PA). Air sampling was performed with a Bailey Nurture III pump 

connected to a flow meter using Tygon tubing. The CMV device was connected to the 

pump via Silastic and PFA tubing. A 16-gauge needle was securely connected to the tubing 

in an airtight manner to pierce through the septa and facilitate headspace sampling.  
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Figure 37. Sampling setup for headspace extraction of heroin samples using CMV. 

First, CMVs were preconditioned in an oven at 250°C and desorbed in the GC inlet 

as a blank. Authentic heroin samples were weighed (50 mg) into headspace vials, sealed, 

and immersed in a sand bath at 150°C for 10 minutes of equilibrium time. The CMV was 

connected via airtight tubing to the air sampling pump as depicted in Figure 37. Next, the 

pump was turned on while piercing the septum of the vial with the needle to begin 

sampling. A second needle was inserted to allow ambient air entry to prevent a vacuum 

buildup. Sampling was performed at 0.2 L/min for 10 minutes for a total of 2 L of air 

sampled. These parameters were selected on the basis of the results of previous 

experiments using the CMV for extracting volatiles in ambient air [92, 97]. Immediately 

after pumping, the CMVs were placed in the thermal desorption probe and inserted into 
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the GC inlet for analysis. Three replicate analyses of each type of heroin were performed 

using this technique. Blanks of the entire setup were also analyzed using empty vials in an 

identical manner to the actual samples.  

An Agilent 7890A gas chromatograph connected to a 5975C inert XL mass 

spectrometer with a triple axis detector (Agilent Technologies, Santa Clara, CA) was used 

for sample analysis. The CMV devices were thermally desorbed by placing them on an 

Agilent Thermal Separation Probe installed on the split/splitless GC injection port. A VF-

624 column (30 m x 0.25 mm x 1.40 µm, Agilent Technologies, Santa Clara, CA) was used 

for chromatographic separation with a helium flow rate of 1.2 mL/min. A Sky® 4 mm ID 

single taper inlet liner (Restek, Bellefonte, PA) was used and the inlet was set at 150 °C in 

a split mode at 5:1 ratio. The oven temperature program of the GC began at 35 °C and held 

for 5 min, followed by an increase to 50 °C at 10 °C/min for 1 min, to 80 °C at 30 °C /min, 

then 150° C at a rate of 10 °C /min, to 240 °C at a rate of 20 °C/min, and finally to 270 °C 

at 30 °C /min for 1 min (22 min run time). The temperatures of the EI source, the transfer 

line to the mass spectrometer, and the quadrupoles were set to 230 °C, 280 °C, and 150 °C, 

respectively. The mass scan range was set at 33-300 amu. The resolution of the mass 

analyzer was 0.1 amu. The instrument was tuned before the experiments using the autotune 

feature as recommended by the manufacturer. 

5.4.4 Results 

The resulting chromatograms from each CMV analysis were processed using the 

accompanying Agilent ChemStation (version E.02.01.1177) software. Method blanks were 

overlaid with sample chromatograms to locate peaks of interest and their retention times. 
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Next, preliminary compound identification of these peaks was performed by searching 

background subtracted mass spectra with the NIST 08 Mass Spectral Library. Standard 

solutions of several of these compounds were prepared at either 50 or 100 ppm in HPLC 

grade methanol. A direct spike of 1 µL of each solution was spiked on the CMV one at a 

time and analyzed with the same GC-MS method. The mass spectra and retention times of 

the standard solutions were compared with the compounds previously found in the samples 

to confirm their presence.  

Table 25: List of compounds identified in headspace of four unique heroin samples using CMV-
GC/MS technique.  

  
Ranked #1-10 by Integrated Area (n=3) #=minor 

(< rank 10); *= NOT confirmed 
 Heroin Sample # (n=3) 

R.T. (min)   Compound Name   SA   SEA   MEX   SWA 

4.859   Diethyl ether*       8         
5.438   Acetone           9     

8.567   Ethyl methyl ketone (2-
butanone)*   4             

8.626   Ethyl acetate       3   1     
9.803   Acetic acid   1   1   2   1 
13.351   Butanoic acid   #             
13.780   Acetamide   3   4   5   3 
14.488   Isovaleric acid*               7 
14.598   2-Methylbutanoic acid*               9 
14.771   Methylacetamide   2   2   7   2 
16.584   Hexanoic Acid   8   7   4   # 
17.013   Ethylhexanol           3     
17.252   Phenol       5   6   8 

18.225   2-Ethyl-1-hexanol 
acetate           10     

18.304   p-cresol   7   10       10 
18.844   Octanoic acid*       9         
19.972   p-anisaldehyde   6           4 
20.321   Triacetin*   9             
20.870   Longifolene                6 
21.417   Meconin*   5   6   8     
21.512   Veratraldehyde   10           5 
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A list of compounds identified in the four heroin samples is presented in Table 25. The 

average integrated area (n=3) underneath each peak was obtained and ranked from 1 

(greatest area) to 10 (lower area) for each compound present in each sample. Acetic acid 

was present in all four samples with very large peak height and integrated area. Acetamide, 

methylacetamide, and hexanoic acid were also present in all four samples. 

 

Figure 38: Relative abundance of organic compounds in the headspace of heroin samples by region 

As shown in Figure 38 and Figure 39, the combined relative abundance of the first 

and second peaks is significantly larger than for the remaining peaks in the chromatograms. 

Apart from the MEX-SA sample, the primary compound is acetic acid. The very large peak 

for ethyl acetate within the MEX-SA (~72% relative abundance) sample may give some 

means of differentiation between MEX-SA heroin samples and those from the other three 

regions; ethyl acetate was only otherwise detected in the SEA sample at a relative 
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abundance of ~1%. Ethyl methyl ketone was uniquely detected in the SA sample. The SWA 

samples, which were visibly blackened upon heating, yielded chromatograms with the most 

peaks, which included several unidentified peaks. A notable compound detected in the 

SWA sample, longifolene, is found in the resin of a pine species that is native to the region 

[98]. Meconin, a constituent of the opium poppy, was detected in three samples and has 

been previously detected in GC-MS studies of illicit heroin [99]. 

 

Figure 39: Relative abundance of organic compounds in the headspace of heroin samples by region, 
compounds ≥ 15% relative abundance not shown. 

5.5 Conclusions 

The results of the boron isotope study were inconclusive as there were observed 

difficulties with both sample preparation and analysis. A more robust method for sample 

preparation may have greater success at evaluating the potential of the d 11B systematic for 
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provenance determination of heroin samples. However, the chemistry of boron isotopes 

makes the expectation of boron fractionation during illicit processing a near certainty. 

Therefore, the observed d 11B value would be more characteristic of the regional processing 

methodology rather than characteristic of the environment in which the opium poppies are 

grown, harvested and processed into heroin. 

The quantitative analysis of lead precluded its isotopic analysis on the basis of the 

infrequency at which sufficient lead abundances were found in heroin samples. This is 

especially the case because the 208Pb [µg/g] was actually calculated from measured 

206+207+208Pb [µg/g]. Using the same criterion for analysis as was made for 87Sr/86Sr in 

Chapter 4, fewer than 10% of samples would have had adequate lead concentrations for 

precise measurement of Pb isotope ratios by MC-ICP-MS. Perhaps digestion of a larger 

mass of sample and minimal post-digestion dilution may permit Pb isotope measurements 

in future studies. 

The analysis of elemental concentration of the authentic cutting materials showed 

that the elemental profile of several, key elements were significantly changed by the cutting 

agent even at a ratio of 4:1 heroin to cutting material. In some elements, sodium for 

example, the cutting agents may contain less than the test sample of heroin and reduced the 

measured mass concentration of the element when adulterated. However, in general, the 

cutting agents had greater concentrations for elements such as Mg, Fe and U than were 

found in the test sample of heroin. Generalizations from such a small experiment using a 

single sample of heroin should not be made hastily, but precautions should be made when 

attempting provenance determination using trace elements to avoid adulterated samples as 
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much as possible and to consider the effect of adulterant present. Forensic sample 

matching, on the other hand, likely would not be affected as the majority of the samples 

entered as evidence would either both be uncut, bulk samples or adulterated, street-level 

samples. 

The results of the headspace sampling experiments demonstrate the potential for 

analysis of volatile and semi-volatile organic compounds for profiling heroin samples via 

CMV-GC-MS. A variety of semi-volatile as well as volatile organic compounds were 

detected in the headspace, despite initially searching for residual solvents and VOCs that 

were identified by other researchers, some of which could be targets for heroin profiling as 

they were present in only one regional sample or in greatly different proportions between 

samples.  The CMV-GC-MS method utilized in this study is a fast and non-destructive 

analysis technique with the potential for identifying volatile signatures from heroin as well 

as other illicit drugs of interest. A much larger-scale analysis of heroin samples by CMV-

GC-MS is recommended given the observations, to determine if there are trends among 

heroin of common origin with respect to VOCs in their headspace.  
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CHAPTER 6. CONCLUSIONS 

In this dissertation is reported the method details of the first known large-scale 

provenance determination study of heroin on the basis of inorganic analysis, wherein 

authentic samples representing all four of major heroin producing regions are analyzed by 

ICP-MS. Using multivariate discriminant analysis of quantitative data for minor and trace 

elements, correct provenance was determined for 88% of samples in a test sample set. The 

modelling of data by linear discriminant analysis was made through carefully selecting the 

most informative elements and removal of highly correlated elements such as Ca/Sr and 

Zr/Hf. The most informative and uncorrelated elements which were included in the model 

were 23Na, 24Mg, 52Cr, 57Fe, 66Zn, 90Zr, 111Cd, 208Pb and 238U. Each element helped to 

differentiate and associate heroin samples in one of three ways, either by showing 

differences in the distribution of data between heroin from Eastern (SEA/SWA) and 

Western Hemispheres (MEX-SA/SA), differences between SEA and SWA or differences 

between MEX-SA and SA. 

 The results suggest that using a relatively affordable instrument, Q-ICP-MS, with 

highly efficient and reproducible sample preparation can determine provenance for 88% of 

heroin samples, which was a significant observation as many research labs do not have the 

budget to invest in HR-ICP-MS instrumentation. The use of HR-ICP-MS provided no clear 

advantages over the Q-ICP-MS because of the analytical challenges experienced, which 

were inaccurate recovery calculations and high inter-day relative standard deviations for 

several elements in the standard reference material and control heroin sample.  
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The data from the Q-ICP-MS also proved to be useful in sample-to-sample 

comparisons for seizure association purposes. Rates of false inclusion and false exclusion 

as well as evaluation of the sample comparison method performance was also evaluated 

using the quantitative data obtained in Chapter 2. The rate of type 1 errors, or false 

exclusions, was found to be 4.17% and the rate of type 2 errors, or false inclusions, was 

found to be 0.26% when using a match criterion of ±3s. Because the availability of 

background information related to the production and trafficking histories is limited even 

for authentic heroin samples, few assumptions about correct sample association can be 

made. However, many of the samples believed to be related were found to be 

indistinguishable based upon their elemental profiles. 

In addition, the manuscript comprising Chapter 4 of this dissertation is the first 

reporting of 87Sr/86Sr isotope ratio analysis of heroin and proves the usefulness of the 

radiogenic strontium systematic for the purpose of predicting geographic origin of heroin 

[62]. It was important to have a characterization of elemental concentration of samples, 

prior to an attempt at Sr (or other) isotopic ratio analysis. The results of the MC-ICP-MS 

strontium ratio analysis of 87Sr/86Sr have been demonstrated to perform at 80% or better 

correct classification rate of blind heroin samples when focusing on samples of only MEX-

SA and SA origins and only using the initial small training set of heroin samples. Adding 

the other two main producers (SEA and SWA) decreases the correct prediction rate of blind 

samples to 75%.  

The method for sample preparation, elemental instrumental analysis, column 

chemistry and isotope instrumental analysis were described in relevant chapters. The 
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methods were validated using reagent and method blanks, standard reference materials and 

duplicate matrix control samples at every step of method development and sample 

processing. 

Combining 6 elemental quantities with strontium isotopic data had similar 

performance as was observed in the 9 best elemental quantities (88%), but because the 

origins of the blind test samples are known to the DEA-STRL, these samples can be 

incorporated into a new, larger training set (database) that the DEA-STRL can use going 

forward. Combining all samples for which strontium data was available with the elemental 

data of those samples, produced correct associations for 93% of the samples. Since the 

number of samples in the database increased significantly over the testing set used here, 

model performance was shown to improve. The performance of the model using the 

complete data set was validated using leave-one-out cross-validation.  

Recommendations from this research for DEA-STRL scientists and other forensic 

drug chemists/analysts are to incorporate the validated methods of microwave-assisted 

digestion for the preparation of heroin samples and inorganic quantitative method via Q-

ICP-MS. Using the elemental data in conjunction with other signature techniques already 

used in casework are expected to help with any ambiguities in assignment of origin. On 

their own, minor and trace elemental profiles are estimated to be able to correctly assign 

provenance to 88% of unknown samples. In addition, minor and trace elemental profiles 

can associate heroin samples in forensic sample comparisons better than 95% of the time. 

Any laboratories attempting to use these methods should maintain rigorous use of 

reference standards and control standards, as well as review performance data daily to 
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verify the robustness of the method with different operators and under different 

maintenance conditions. Preparing samples via Sr affinity resin by this method is relatively 

easy and inexpensive and results in samples of 0.01 M HNO3 that can be safely be shipped 

to an external laboratory for 87Sr/86Sr determination if an in-house instrumental facility 

were not available. 

The results of the analysis of volatiles and semi-volatiles by CMV-GC/MS suggests 

that the method may have potential for provenance determination if investigated on a larger 

scale. There were unique compounds identified in each regional sample that may allow for 

heroin samples to be profiled based upon their presence and/or relative abundances. The 

method provides a means to sample headspace without sample destruction, however it must 

be performed at 150°C which can occasionally produce chemical changes within the 

sample matrix. A more comprehensive evaluation of the CMV-GC/MS technique applied 

to authentic heroin samples may produce a novel method for profiling heroin samples. 

The research described in this dissertation has produced methods for high-

throughput sample preparation and analysis of minor and trace elemental impurities of 

illicit powder heroin, which are amenable for conducting provenance determination studies 

for gathering strategic intelligence on heroin as well as for making forensic sample 

comparisons of heroin evidence for criminal investigations. The research also takes heroin 

research to new frontiers with radiogenic strontium isotope ratio analysis for provenance 

determination and may inspire future research into (87Sr/86Sr) analysis of other illicit drug 

matrices. Lastly the research opens the door for CMV-GC/MS as a new technique to be 

evaluated for use in the arsenal of drug chemists working to curtail the heroin epidemic. 
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