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ABSTRACT OF THE DISSERTATION 

AZIDO- AND TRIAZOLYL-MODIFIED NUCLEOSIDE/TIDE ANALOGUES: 

CHEMISTRY, FLUORESCENT PROPERTIES, AND ANTICANCER ACTIVITIES 

By 

Zhiwei Wen 

Florida International University, 2018 

Miami, Florida 

Professor Stanislaw F. Wnuk, Major Professor 

Two classes of C5 azido-modified pyrimidine nucleosides were synthesized and 

explored as radiosensitizers. The 5-azidomethyl-2'-deoxyuridine (AmdU) was prepared 

from thymidine and converted to its cytosine counterpart (AmdC). The 5-(1-azidovinyl) 

modified 2'-deoxyuridine (AvdU) and 2'-deoxycytidine (AvdC) were prepared employing 

regioselective Ag-catalyzed hydroazidation of 5-ethynyl pyrimidine substrates with 

TMSN3. AmdU and AmdC were converted to 5'-triphosphates AmdUTP and AmdCTP, 

and incorporated into DNA-fragments via polymerase-catalyzed reaction during DNA 

replication and base excision repair. Radiation-mediated prehydrated electrons formed in 

homogeneous aqueous glassy (7.5 M LiCl) systems in the absence of oxygen at 77 K led 

to site-specific formation of π-type aminyl radicals (RNH•) from AmdU, AmdC, AvdU, 

and AvdC. The ESR spectral studies and DFT calculations showed RNH• undergo facile 

conversion to thermodynamically more stable σ-type iminyl radicals, R=N•. For AmdU, 

conversion of RNH• to R=N• was bimolecular involving α-azidoalkyl radical as 

intermediate; however, for AvdU, RNH• tautomerized to R=N•. Our work provides the 

first evidence for the formation of RNH• attached to C5 position of azidopyrimidine 
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nucleoside and its facile conversion to R=N• under reductive environment. These aminyl 

and iminyl radicals can generate DNA damage via oxidative pathways. The azido-

nucleosides were successfully applied as radiosensitizers in EMT6 cancer cells in both 

hypoxic and normoxic conditions. To explore the generation and reactivity of 

2'-deoxyguanosin-N2-yl radical (dG(N2-H)•) postulated to generate from guanine moiety 

towards •OH, 2-azido-2'-deoxyinosine (2-N3dI) was prepared by conversion of 2-amino 

group in protected dG into 2-azido via diazotization with tert-butyl nitrite followed by 

displacement with azide and deprotection. The investigation of dG(N2-H)• generated from 

2-N3dI and its subsequent reactions using ESR will be discussed. 

Cycloaddition between 5-ethynylpyrimidine or 8-ethynylpurine nucleosides and 

TMSN3 in the presence of Ag2CO3, CuI, or CuSO4/sodium ascorbate provided N-

unsubstituted 1,2,3-triazol-4-yl analogues of the parental DNA bases (i.e. 5-TrzdU, 

5-TrzdC, 8-TrzdA, and 8-TrzdG). These novel triazolyl nucleosides showed excellent 

fluorescent properties: 8-TrzdA exhibits the highest quantum yield (ΦF) of 44% while 

8-TrzdG had ΦF of 9%. The 5-TrzdU and 5-TrzdC showed a large Stokes shift of ~110 nm. 

The application of these fluorescent nucleosides to cell imaging and DNA modifications 

will also be discussed. 
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1. INTRODUCTION 

1.1. Anticancer nucleoside/tide analogues 

Globally, cancer is the second most common cause of death and is responsible for one 

out of every six deaths. The cancerous cells undergo uncontrolled growth, avoid 

programmed cell death, as well as invade into tissues and form metastases. It was estimated 

that there will be around 1.7 million new cancer cases and around 600 thousand deaths 

caused by cancer in USA in 2018 (Table 1).1 Cancer, a genetic disease,  arises from the 

changes to genes, which would be inherited from parents, unrepaired errors during cell 

divisions, or DNA damages from certain environmental exposure (like unhealthy diet, 

tobacco, etc.)  

Table 1. Estimated new cases of cancer and deaths in USA, 2018 

 Estimated New Cases Estimated Deaths 

All Sites 1,735,350 609,640 

Digestive system 319,160 160,820 

Genital system 286,390 62,330 

Breast 268,670 41,400 

Respiratory system 253,290 158,770 

Urinary system 150,350 33,170 

Others 457,490 153150 

Types of treatments of cancer include surgery, radiotherapy, chemotherapy, 

immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. As a chemist, 

I am most interested in the chemotherapy, radiotherapy, and their combination. Among the 

anticancer drugs, nucleoside/tide analogues (NAs) have been approved by US Food and 

Drug Administration (FDA) and European Medicines Agency (EMA) and been in clinical 

use for the treatment of various cancers for about 49 years since the first approved 

nucleoside analogue, i.e., cytarabine, for the treatment of acute myeloid leukemia.2 Some 
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currently approved NAs as anticancer agents are summarized in Figure 1, in which the 

modifications to the natural nucleoside/tides were highlighted in red.  The approval of some 

new nucleoside/tide analogues drugs in the past decade proves that nucleoside/tide 

analogues still have excellent potential for the cancer treatment.  

 
Figure 1. Approved anticancer nucleoside/tide drugs 

The differences between the nucleoside/tide analogues and their counterpart are tiny 

(Figure 1). Like gemcitabine 4, its difference from its counterpart deoxycytidine is the two 

fluorine atoms at C2' position instead of two hydrogen atoms. Nevertheless, this tiny 
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difference endows the NAs with anticancer properties.3 As demonstrated in Figure 2, firstly 

the NAs are taken up into cells through nucleoside transporters, organic anion/cation 

transporters, or peptide transporters.2 Then, the nucleosides mimic natural nucleosides and 

are metabolically phosphorylated by nucleoside kinase, nucleoside monophosphate kinase 

and nucleoside diphosphate kinase. The NAs would interact with and inhibit important 

proteins. Nucleotides may also be incorporated into DNA/RNA and block the division of 

cancer cells. The inhibition of important proteins (enzymes) and incorporation into DNA 

would both lead to the apoptosis of tumor cells. 2,3 

 

Figure 2. General mechanisms of anticancer activities of nucleoside/tide analogues 
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1.2. Cancer radiosensitization 

1.2.1. Radiotherapy  

Radiotherapy and its combination with other treatments (e.g., surgery, chemotherapy) 

are applied for the treatment of most common types of cancers to cure or control tumors.4,5  

Even though new types of cancer treatment with better selectivity against cancerous cells,6 

like immunotherapy and targeted therapy, are emerging, almost half of all the cancer 

patients are still treated with radiotherapy.7  

The mechanism of ionizing radiation during the radiotherapy is illustrated in Scheme 

1. The interaction of ionizing radiation with materials inside cancerous cells includes direct 

and indirect effects.7,8 Water in the cells undergo radiolysis to give ionized water cation 

(H2O•+) and electrons. The water cation reacts with another water to yield reactive oxygen 

species (ROS) hydroxyl radicals (HO•), which is related to oxidative DNA damage.9  The 

electron generated from water radiolysis is solvated to offer prehydrated electron e-
aq, 

which further interact with oxygen to give superoxide (O2•
-) or with hydronium (H3O

+) to 

give hydrogen atom (H•). The electrons are related to the reductive DNA damage. 

Approximately, the electrons with low energy are responsible for 67% of DNA damage, 

while the highly reactive HO• is responsible for the remaining 33%.10 This DNA damage 

caused by the radicals generated from the radiolysis of water is named as indirect effect 

(Scheme 1). On the other hand, the ionizing radiation would also directly ionize the base 

or backbones of DNA fragments, which is named as direct effect.  

DNA damage from the ionizing radiation includes damage to base or sugar, 

single/double-strand breaks, cross-linking of DNA and other biomolecules like DNA or 



5 

 

proteins, and so on. The DNA lesion frequency is revealed in Table 2.11 The DNA damage 

results in the death of cancerous cells.12-14  

 
Scheme 1. The rationale for the direct/indirect effects of irradiation in radiotherapy 

Table 2. The approximate number of DNA lesions per Gy per cell induced by ionizing 

radiation 

DNA damage induced by ionizing radiation Approximate number/Gy in one cell 

DNA DSB (double-strand breaks) 40 

DNA SSB (single-strand breaks) 1000 

DNA-DNA cross-links 30 

DNA-protein cross-links 150 

Damage at base 2,000 

Damage at sugar-phosphate backbone 1,000 

1.2.2. Radiosensitizers (Radiosensitizing agents) 

A high dose of ionizing radiation leads to both acute and cumulative side effects,15 thus 

it is significant to enhance the radiosensitiveness of tumor cells during radiotherapy to 

lower the dose of radiation required for same surviving fraction. Radiosensitizers have been 

developed to enhance the sensitiveness of cancerous cells to radiotherapy.3,16 Radiotherapy 
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employing radiosensitizers is used for most cancer patients and improves the survival 

compared to radiotherapy alone.3 Radiosensitizers include small molecules, 

macromolecules, and nanomaterials.8 The most conventional radiosensitizers include 

halogenated nucleosides, gemcitabine, and platinum analogues.3,7 

The C5 halogenated pyrimidine bases and nucleosides are well-investigated as 

radiosensitizers in cancer radiotherapy.3,7,17,18 5-Bromo-2'-deoxyuridine (5-BrdU, 12, 

Figure 3) has been recognized as a radiosensitizing agent with potential clinical 

applications.17 However, owing to toxicity of 5-BrdU, it did not show any increase in 

patient survival during phase III clinical trials and the trials were called off.19 On the other 

hand, 5-fluorouracil (5-FU, 13, Figure 3) via protracted venous infusion has become a 

typical treatment of rectal20 and pancreatic cancers.21 The radiosensitizing effect of 5-

fluorouracil is believed to derive from its inhibition of thymidylate synthase, which stops 

the DNA replication. The complex protracted venous infusion lasting for one to two 

months may lead to infection and/or thrombosis. As a consequence, capecitabine (7, 

Xeloda, Figure 1) was developed as a prodrug suitable for oral taken.22 Capecitabine is 

used for the treatment of colorectal cancer, breast cancer, oesophageal cancer, and gastric 

cancer.23 

 

Figure 3. Structures of C5 halogenated pyrimidine bases and nucleosides 
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Gemcitabine (4, Figure 1) was explored as radiosensitizer to enhance the sensitiveness 

of human colon carcinoma cells to radiation.24 The radiosensitizing effect of gemcitabine 

is a result of inhibition of ribonucleotide reductase, which depletes the dATP pools. The 

cells progressing into S phase suffer from the depletion of dATP and the consequent 

misincorporation and misrepair of wrong bases, which generate DNA lesions that lead to 

the cell apoptosis.3 

In addition to the nucleoside-based radiosensitizers, there are various non-nucleosides-

based radiosensitizing agents, among which platinum analogues have been applied 

clinically as a radiosensitizers to treat various cancerous tumors.3  

 

Figure 4. Platinum analogues applied clinically as a radiosensitizers 

Cisplatin analogues (Figure 4) are well known to interfere with DNA replication by 

forming 1,2-intrastrand crosslinks with two adjacent guanine/guanine (90%) along DNA 

fragment as well as with adjacent guanine and adenine, which induces apoptosis of fast 

proliferating cells (Figure 5).25 The mechanisms of the radiosensitizing effect of cisplatin 

analogues include formation of more toxic platinum intermediates from the interaction 

between the cisplatin and free radicals induced by irradiation (Irradiated hypoxic solutions 

of cisplatin were more toxic than unirradiated solutions),26 enhanced uptake of carboplatin 

into cells induced by irradiation,27 and repression of DNA repair.28 
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Figure 5. Mechanism of the anticancer activity of cisplatin 

1.2.3. Hypoxia and hypoxia-selective radiosensitizers 

Tumor cells replicate quickly and require nutrients from blood vessels. As solid tumors 

grow, angiogenesis allows the generation of new vascular beds to support the cancerous 

cells.29 Nevertheless, the morbid tumor vascular bed formed during the angiogenesis is 

twisting and irregular and thus lacks the ability to deliver blood to every part of the tumors. 

As a consequence, solid tumors encompass regions with transient and chronic low 

concentration of oxygen, which is named as transient hypoxia and chronic hypoxia, 

respectively.30-32  

The partial pressure of oxygen (pO2) in human tumors is less than 5 mmHg, while the 

pO2 in the surrounding normal cells is higher than 30 mmHg. As discussed in section 1.2.1 
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and shown in Scheme 1, oxygen is essential for the sensitiveness of cancerous cells in 

radiotherapy. The tumor cells under hypoxic microenvironment are resistant to 

radiotherapy and chemotherapy.30 On the other hand, the existence of hypoxia, unique 

features of solid tumors that is not found in normal cells, offers an chance for tumor-

selective therapy.  

One of the strategies exploiting the tumor hypoxia is to design prodrugs activated by 

hypoxia. Tirapazamine (17, TPZ, Scheme 2), the first developed specific cytotoxin for 

hypoxia, was demonstrated for its antitumor activity.33  The mechanism for the hypoxia-

selectivity of TPZ 17 was shown in Scheme 2.30 TPZ 17 undergoes one-electron reduction 

by reductases or aquated electron from radiolysis of water to give tirapazamine radicals 

(TPZ•). TPZ• further decays to hydroxyl radical (HO•) or benzotriazinyl radical (BTZ•), 

which poisons the topoisomerase II and leads to DNA double-strand breaks.33 

 

Scheme 2. The mechanism for the hypoxia-selectivity of tirapazamine 

However, the cells under hypoxic condition usually lack reductase enzymes and 

cofactors. Thus, developing radiosensitizers activated by irradiation-induced prehydrated 

electron is more attractive than activation by enzymes. Cobalt(III) complexes,34 

nitrobenzyl quaternary ammonium salts,35 and oxypropyl-substituted 5-fluorouracil 
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derivatives36 (Figure 6) were demonstrated to be capably triggered by ionizing radiation 

under hypoxic conditions. Nevertheless, none of the compounds has yet shown undisputed 

radiosensitizations in hypoxic tumors. As a result, more effort and research should be 

dedicated to the development of new hypoxia-selective radiosensitizers activated by 

irradiation. 

 
Figure 6. Radiosensitizers activated by irradiation-induced prehydrated electron 

1.3. Azido-modified nucleoside/tide analogues as biological probe for click reaction 

Because of the various novel properties, azido modified small molecules and 

biomacromolecules have been designed and investigated for a variety of applications 

including serving as biological probes for cycloaddition click reaction for bioconjugation, 

anticancer and antiviral agents, and potential radiosensitizers.37-42 

The absence of azides in almost all creatures and their inert reactivity with water, 

amines, oxidant, or other functional groups abundant in biological systems endow the 

azides with exquisite bioorthogonality. The bioorthogonal ligations employing azides 

include Staudinger ligation of azides with phosphines as wells as click reactions between 

azides and strain-promoted alkyne or  terminal alkyne catalyzed by copper (Table 3).43  
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Table 3. Azido-modified biomolecules for labeling and tracking   

Chemical 

Reporter 

Reactive partner 

(R' = probe) 

Ligation Product 

 

R-N3 

 

Target R: 

Nucleic acid 

Protein 

Glycan 

Lipid 

 

Staudinger Ligation 

 
 

Cu-catalyzed Cycloaddition 

 
 

Strain-promoted Cycloaddition 

  

In 2002, Sharpless and Meldal brought the Huisgen [3+2] cycloaddition between azide 

and alkyne  into focus by employing copper as a catalyst.44,45 The copper-catalyzed [3+2] 

azide-alkyne cycloaddition (CuAAC) could proceed smoothly under mild reaction 

condition in aqueous media to form 1,2,3-triazoles, and thus is biocompatible. The toxic 

copper limits the application of CuAAC in living cells and animals. The strain-promoted 

azide-alkyne cycloaddition (SPAAC) “click” reactions developed by Bertozzi in 200446 

expanded the application of [3+2] azide-alkyne cycloaddition in covalent interaction of 

biomolecule/biomolecule and biomolecule/probe in living systems. Azide as a reactive 

reporter introduced into a target biomolecule like nucleic acid, protein, glycans, and lipids 

reacts with probe or other biomolecules modified with terminal alkyne/cyclooctyne via 

CuAAC or SPAAC to label and track biomolecules.43,47 CuAAC and SPAAC are broadly 

used for bioorthogonal conjugation, new drug discovery, and proteomic profiling.48-51 

The chemically stable 5-azidomethyl-2'-deoxyuridine (AmdU, 18, Figure 7), as 

opposed to the highly photolyzable 5-azido-2'-deoxyuridine (5-AdU),52 serves as a 
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substrate for the synthesis of clickable triazoles.40,53-57 AmdU 18 was able to be 

metabolically incorporated into DNA in living cells for click labeling of DNA.40 

 

Figure 7. Azido-modified pyrimidine nucleoside/tide analogues 

1.4. Anticancer and radiosensitizing properties of azido-modified nucleoside/tide 

analogues 

1.4.1. Anticancer activities of azido-modified nucleoside/tide analogues 

Azido-modified pyrimidine nucleoside analogues were reported to exhibit anticancer 

and antiviral activities. The 3'-azido-3'-deoxythymidine (3'-AZT, 22, Figure 7), first 

prepared by Horwitz in 1964,58 has been widely investigated for its anticancer and antiviral 

activities. The 3'-AZT has been commonly used to treat HIV positive patients benefit from 

its antihuman telomerase reverse transcriptase activity59 and also used as a radiosensitizer 

for tumors of patients also carrying HIV.60 The mechanism of the formation of reactive 

aminyl radical responsible for the radiosensitivity of 3'-AZT will be detailed in section 1.5.  

The AmdU 18 and its monophosphate (AmdUMP 19, Figure 7)61,62 inhibited 

thymidylate synthetase activity derived from calf thymus and Ehrlich ascites tumor.61,63 

They also inhibited thymidine kinase activity64 and consequently affected the growth of 

murine sarcoma 180 and L1210,41,62 and the replication of herpes simplex virus type 1 

(HSV-1).41,65,66 The AmdU 5'-triphosphate (AmdUTP, 20) was found to be a substrate for 

DNA polymerases and PCR amplification.57 Moreover, the clickable triazole adducts of 
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5-AdU67 were incorporated into oligodeoxynucleotides; but, an attempt to synthesize  the 

peptide-siRNA covalent conjugates from AmdU-derived triazole was unsuccessful.53 

The 5-(1-azidovinyl)-2'-deoxyuridine (AvdU, 21) proved inhibitory to the replication 

of HSV-1 and VZV and became highly cytostatic against HSV-1 and HSV-2 TK gene 

transfected FM3A tumor cells; the cytostatic effect was enhanced by 5-fold after short 

exposure to UV irradiation at 254 nm.68 AvdU 21 showed also anti-mycobacterial activities 

in submicromolar range.69  

1.4.2. Azido-modified nucleoside/tide analogues as radiosensitizers 

The 3'-AZT 22 (Figure 7) has been employed as a radiation sensitizer in radiotherapy 

of tumors for HIV positive patients.60 Zhou and his colleagues reported their results on the 

investigation of the effects of 3'-AZT 22 combining with γ-radiation on telomere length, 

activity of telomerase, DNA single/double-strand breaks, and of its radiosensitizing effects 

in human malignant glioma cell line U251.70 The 3'-AZT 22 suppressed the telomerase 

activity and slowed down DNA strand breaks repair. The changes in radiosensitivity were 

quantified by the sensitization enhancement ratio (SER). The 3'-AZT 22 (800 μM) 

enhanced the radiosensitivity at 2 Gy γ-radiation of U251 cells with SER of 1.37. The 

3'-AZT 22 also increased the radiosensitivity of Hep-2 cells.71  

In addition to the radiosensitizing effect, 3'-AZT 22 was also reported to enhance 

cytotoxicity of the anticancer drugs in the irradiated cancerous cells.  The 3'-AZT 22 was 

able to enhance the radiosensitizing effects of (E)-2'-deoxy-(fluoromethylene)cytidine 

(FMdC) on human colon cancer cells.72  Various concentration (25 μM to 100 μM) of 22 

was added immediately before irradiation of the cancerous cells treated with FMdC. The 

combination of FMdC and 3'AZT 22 gave SER ranging from 1.25 to 2.26.  
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1.5. Formation of aminyl radicals on prehydrated one-electron attachment to 

azido-modified nucleosides and their subsequent reactions 

The formation of neutral and reactive aminyl radicals on prehydrated one-electron 

attachment to azido-modified nucleosides in γ-irradiated aqueous glassy (7.5 M LiCl) 

systems was characterized using electron spin resonance spectroscopy (ESR).42,73 

γ-Irradiated chloride ion in glassy system at 77 K produced chlorine radical and electron 

(Scheme 3), which was solvated to yield aquated electron.  Electron attachment to the azido 

group led to azide anion radical intermediate I (RN3•-), which formed nitrene anion radical 

intermediate II (RN•¯) after the loss of N2. Subsequently, rapid protonation of RN•¯ from 

the solvent led to RNH• formation.  

 
Scheme 3. The mechanism of formation of aminyl radicals on electron attachment to azido 

compounds in γ-irradiated aqueous glassy system 

Radical at C5' position (C5'•) was reported to cause DNA strand breaks and associate 

unaltered base release.9 To prove that the ring-opened C4'• is an intermediate in mechanism 

of C5'• mediated unaltered base release, methyl 2-azido-2-deoxy-α-D-lyxofuranoside (23, 

Scheme 4) as well as other azido-modified pentofuranoses were prepared and used for the 

ESR study (Scheme 4).73 In methyl 2-azido-2-deoxy-α-D-lyxofuranoside, the aminyl 

radical (I, Scheme 4) at the 2 position undergoes intramolecular H-abstraction to give C5'• 

(II), which further undergoes intramolecular conversion to the ring-opened C4'• (III). 
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Scheme 4.  Formation of aminyl radicals in methyl 2-azido-2-deoxy-α-D-lyxofuranoside 

and subsequent intramolecular H-atom transfer and ring opening 

In 3'-AZT 22, the aminyl radical at the C3'-site of sugar moiety underwent a 

bimolecular H-atom abstraction either from the methyl group at C5 to give dUCH2•, from 

the C5'-atom to give C5'•, or from the C3'-atom to give C3'• of a proximate 3'-AZT 

(Scheme 5A).42 On the other hand, the aminyl radical at the C3' site from 3'-azido-2',3'-

dideoxyguanosine (3'-AZddG, 24) resulted in one-electron oxidation of guanine base to 

give G(N1-H)• (Scheme 5B). The radicals formed at sugar are known to lead to strand 

breakage in RNA (Scheme 6A) and DNA (Scheme 6B), and further affects the apoptosis 

of cancer cells.9,17 The structural DNA damage, like formamidopyrimidines (e.g., FapyG) 

and 8-oxopurines (e.g., 8-oxoG), formed from the guaninyl radicals are cytotoxic.74   

 
Scheme 5. Prehydrated one-electron attachment to azido group on 3'-AZT(A) and 

3'-AZddG (B): Aminyl radical formation and subsequent reactions 
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Scheme 6. Mechanism of RNA/DNA single-strand breaks upon generation of sugar 

radicals 

The azido group in 3'-AZT 22 rather than the thymine moiety was proved to be the 

predominant site of electron capture, as a result of the higher electron affinity of the azido 

group in 22 than the most electron affinic DNA base, thymine.42 The formation of the 

reactive aminyl radicals in γ-irradiated system and their subsequent reactions provides a 

plausible mechanism for the radiosensitizing effects of 3'-AZT60,70,72,75 and meanwhile 

suggest that the azido-modified nucleoside/tide analogues are possible to be explored as 

potential radiosensitizing agents in hypoxia (bioreductive) microenvironments. 
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1.6. Electron-hole transfer in DNA 

As discussed at section 1.2.1 (Scheme 1), hydroxyl radical HO• generated from 

ionizing irradiation causes DNA damage by reaction with guanine residues having the 

lowest oxidation potential.76,77  Deeper understanding of the pathways for γ-radiolysis 

damage to nucleic acids and how cancerous cells respond to radiotherapy would help the 

design of new treatments and improve current-existing therapies. Thus, it is essential to 

understand reactions of guanine with the reactive radicals, like hydroxyl radical during the 

radiolysis, and the subsequent reactions. 

 

Scheme 7. Radical reactions of guanine with hydroxyl radicals and subsequent reactions 

One-electron oxidation of guanine 25 by oxidants leads to the formation of G•+, which 

undergoes deprotonation to give guanyl radical 27 (Scheme 7).78 The reaction between the 
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guanine 25 and hydroxyl radical was studied using optical absorption. On the basis of the 

absorption, the major radical (65%) was assigned to C5• generated from the addition of 

HO• at C4, which further dehydrate to yield radical 27.79,80 In addition to the 28, 17% of 

HO• involves in the addition at C8 to provide radical 29, which is further converted into 

8-oxoG 30 and FapyG 31 via oxidation and reduction, respectively. In 2009, Chatgilialoglu 

reevaluate the reactivity of guanine towards HO•. Based on the DFT-TD calculations they 

assign the major radical to guan-N2-yl radical (G(N2-H)•, 26).81 The more favored 

formation of 26 from H-atom abstraction from 25 by HO• than the formation of 28 was 

further established by a Car-Parrinello molecular dynamics study.82        

The 8-substituted (e.g., Cl, Br 32, I, and N3) guanine derivatives were designed for 

investigating the formation and tautomerizations of one-electron-oxidized guanine.77 The 

pulse radiolysis technique with optical absorption detection and DFT calculations reveal 

the formation of radicals 26 as well as N3• with iminic and aminic forms, the tautomers of 

27.77,83,84 

As mentioned in section 1.5, ESR could be applied as a powerful tool to characterize 

radicals from the reaction between guanine and HO•. Nevertheless, ESR was not popular 

for identifying the radicals in previous research. An attempt was made to use ESR to 

investigate the formation of dG(N2−H)• 26 from hydrazine was not successful and  the 

resulting product dG was the evidence for the formation of 26 during the photolysis.85  

On the basis of the formation of aminyl radicals on prehydrated one-electron 

attachment to 3'-AZT 2242 (detailed at section 1.5), it is possible to explore azido-modified 

guanine derivatives as efficient precursors for investigation of elusive guanine-based 

aminyl radical under reducing conditions. 
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1.7. Fluorescent nucleosides for investigating nucleic acid structure, location, 

activation, and interactions 

The natural purine and pyrimidine bases in nucleic acids have weak fluorescent 

properties (Figure 8).86 Modified fluorescent nucleoside analogues with minimal 

perturbation to the natural DNA/RNA structures have attracted attention for their 

application to studying the perturbations to the nucleic acids such as abasic site from 

depurination/depyrimidination,87 base flipping,88 interaction between DNA/RNA and 

ligands,89,90 and so on.91,92 

 
Figure 8. Fluorescence of the natural purine and pyrimidine bases 

Recently, Dr. Kool at Stanford University published a comprehensive review in Nature 

Chemistry on the design of various fluorescent nucleobases and their application as 

powerful tools for investigating DNA and RNA.93 The modification to purines (Figure 9A) 

and pyrimidines (Figure 9B)  includes substitution, conjugated ring substitution, ring 

structure modification, conjugated linker extension, and ring fusion. This type of 

modifications shown in Figure 9 preserves the hydrogen bonding structures (highlighted in 

red), and thus retains the abilities of paring to their counterparts and some or most of the 

enzyme recognition. This group of fluorescent nucleobases is named as canonical 

fluorescent nucleobases.  



20 

 

 
Figure 9. Canonical fluorescent nucleobase analogues 

On the other hand, non-canonical fluorescent nucleobases with more varied 

photophysical properties have also been developed (Figure 10). Since the fluorophore 

structures are not necessarily confined to the natural nucleobases, theoretically they can be 

any fluorescent architectures. The more widely varied emissive spectra would allow 

non-canonical fluorescent nucleobases wider applications in biochemistry and biology. 

Accompanying the advantages, the shortcomings of non-canonical fluorescent nucleobases 

consist of the loss of base-paring ability and limited recognition by base-related enzymes.  
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Figure 10. Non-canonical fluorescent nucleobases 

The novel fluorescent properties, especially the varied quantum yield under different 

microenvironments, make fluorescent nucleosides valuable tools for investigating nucleic 

acid interactions, location, activities, and structure. Some examples are shown in Figure 11. 

Serva and coworkers employed 2-aminopurine for the study on DNA base flipping (Figure 

11A).88 Kim and coworkers used 8-pyrenylethynyl-2'-deoxyadenosine to detect base 

mismatch (Figure 11B).94 Tor and coworkers at UCSD explored the 5-furyl-2'-

deoxyuridine to locate abasic sites at DNA duplex (Figure 11C).87 They also used 

5-furyluridine to examine the interaction between RNA fragments and small molecules and 

to detect small molecules utilizing the increasing fluorescent intensity with increasing 

concentration of small molecules (Figure 11D).89 In Dr. Wnuk's lab, the strain-promoted 

azide-alkyne cycloaddition (SPAAC) “click” reactions were applied to form fluorescent 

triazoles in cells for cell imaging.51 The frequency domain fluorescence lifetime imaging 

microscopy (FD-FLIM) in MCF-7 cells is shown in Figure 11E. 
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Figure 11. Fluorescent nucleobase serving as powerful tools for investigating the 

perturbations to nucleic acids 

Among the fluorescent nucleosides, I was most interested in the triazolyl adenosine 

nucleosides because of their complex and interesting different fluorescent properties varied 

by N1 or C4 of the triazolyl moiety attached to the adenine base. The 2- or 8-azidopurine 

and 5-azidopyrimidine nucleosides were synthesized and ligated with cyclooctynes via 

strain promoted click chemistry to form 2- or 8-(1,2,3-triazol-1-yl) (ΦF = 0.6-10.6%) and 

5-(1,2,3-triazol-1-yl) pyrimidine (ΦF = 0.9-1.3%) for the application to living cell 

fluorescent imaging (e.g., 33 in Figure 12).51 The 2-(1,2,3-triazol-1-yl)adenosine analogues 

34 with triazole at C2 position gave relatively higher quantum yield of 20%,95 while 

8-(1,2,3-triazol-1-yl)-7-deazapurine nucleoside analogues 35 showed moderate quantum 

yields (ΦF = 0.2-1.4%)  and a large Stocks shifts.96 The photo-physical characterization of 

a series of 2-(4-amino-5-(1H-1,2,3-triazol-4-yl)-7H-pyrrolo-[2,3-d]pyrimidin-7-yl) and 

2-(4-amino-3-(1H-1,2,3-triazol-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl) analogues 

showed that compounds with a nitrogen atom in position 8 showed an approximately 

ten-fold increase in quantum yield (ΦF = ~5%) and decreased Stokes shift compared to 
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analogues with a carbon atom in position 8 (ΦF = ~0.6%).97 The 8-(1H-1,2,3-Triazol-4-

yl)adenosine derivatives 37 and 38 with the base attached to C4 position of triazole had 

promising quantum yield as high as 64%.98 It is noteworthy that the 8-(1,2,3-triazol-1-yl) 

adenosines 33 and 36 display fluorescence properties with significantly lower quantum 

yields than the 8-(1,2,3-triazol-4-yl) adenosines 37 and 38.99 

ΦF = 11%   ΦF = 20%   

ΦF = 0.21-0.64%   ΦF = 3-38%   ΦF = 49-64%   

ΦF = 0.2-1.4%   

 
Figure 12. Structure and the fluorescent properties of N-substituted triazoles 

According to the criteria87 of designing new fluorescent nucleosides: (i), sensitiveness 

to the microenvironment, (ii) absorption and emission at long wavelengths, (iii), high 

emission quantum efficiency, (iv) minimalistic modification, N-unsubstituted 1H-1,2,3-

triazol-4-yl modified adenine analogues as well as the other three nucleic acid bases would 

have novel fluorescent properties.   

The 5-(1H-1,2,3-triazol-4-yl)-2'-deoxyuridine (5-TrzdU, 39, Scheme 8) was 

synthesized by general CuAAC click reaction to give 40 followed by POM-deprotection 

(Scheme 8).100 The 5-TrzdU was also prepared via nucleobase-exchange reaction catalyzed 
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by thymidine phosphorylase from thymidine (41) to 1H-1,2,3-triazol-4-yl.101 The 5-TrzdU 

incorporated into DNA via solid-phase ODN synthesis stacks in the major groove and 

increases the stability of the DNA duplex.100  

 
Scheme 8. Strategies for the synthesis of 5-TrzdU 

The strategies developed for the synthesis of N-unsubstituted triazoles (Scheme 9) 

includes the [3+2] cycloaddition of terminal alkynes and trimethylsilyl azide (TMSN3) 

using CuI as catalyst,102 Pd103 or p-toluenesulfonic acid104 catalyzed cyclization between 

activated alkene and sodium azide, and deprotection of N-substituted triazole intermediates 

prepared by general CuAAC click reactions.96,105,106 All of these reaction conditions may 

be applied to synthesize the N-unsubstituted triazoles-modified nucleosides.  
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Scheme 9. Reported strategies for the synthesis of N-unsubstituted triazoles 

 



26 

 

1.8. Concept of prodrugs 

The anticancer activity of drugs would be limited by their inadequate diffusion into 

cancerous cells, especially into cells of a solid tumor under hypoxic condition.107 Designing 

chemically modified prodrugs, which are inactive, bio-reversible derivatives of active drug 

molecules, is a promising strategy to enhance pharmacokinetics of drug delivery. As shown 

in Figure 13, first prodrugs can pass through the physiological membranes more easily than 

the drugs. After entering the cells, the prodrugs undergo an enzymatic and/or chemical 

transformation and then the active parent drug can be released. Around 20% of all small 

molecular drugs approved in 2000-2008 were prodrugs.108 Even though designing a new 

prodrug can be challenging, the prodrug approach shows a practical path to minimize some 

undesirable properties of investigational drugs or commercially available drugs. Designing 

proTides is another gorgeous strategy that skips the metabolic phosphorylation and 

meanwhile increases the uptake of drugs.109  

 
Figure 13. A simplified illustration of the prodrug concept  
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2. RESEARCH OBJECTIVES 

The discovery of copper-catalyzed [3+2] azide-alkyne cycloaddition (CuAAC) 

developed by Sharpless and Meldal in 200244,45 as well as strain-promoted azide–alkyne 

cycloaddition (SPAAC) “click” reactions developed by Bertozzi in 200446 led to the 

application of azide as a reactive reporter introduced into a target biomolecule like nucleic 

acid, protein, glycans, and lipids to label and track biomolecules.43,47 Click chemistry is 

now widely used for bioorthogonal conjugation, new drug discovery, and proteomic 

profiling.48-51 However, in my dissertation I have explored the application of the azide 

group beyond the click chemistry. On the basis of the original discovery from Sevilla's 

group42 on the formation of neutral and reactive aminyl radicals upon one-electron 

attachment to the azido group in 3'-AZT, I have investigated C5 azido-modified pyrimidine 

nucleosides as precursors to the reactive aminyl radicals. I also planned to investigate their 

application as anticancer radiosensitizing agents. 

Objective 1: Exploring C5 azido-modified pyrimidine nucleosides as radiosensitizers   

The first objective of my dissertation was to investigate if C5 azido-modified 

pyrimidine nucleosides (AmdU 18, AvdU 21, AmdC 42, AvdC 43, Figure 14) can act as 

radiosensitizers under both normoxic and hypoxic microenvironments. To serve as useful 

radiosensitizing agents, the C5 azido-modified pyrimidine nucleosides are required to a) 

be easily synthesized chemically and be stable under biological environment, b) be able to 

generate active radicals under normoxic and/or hypoxic condition, c) be able to be 

incorporated into DNA and not block further polymerization, d) and eventually show 

radiosensitizing effect in cancerous cells. 
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Figure 14. 2'-Deoxyuridine and 2'-deoxycytidine with azidomethyl and azidovinyl 

modified at C5 

Initially, I chose to synthesize and explore the chemistry and biochemistry of AmdU 

18. Contrary to the 5-azido-2'-deoxyuridine, in which the azido group is attached directly 

to the pyrimidine base, AmdU 18 was reported to be stable in aqueous solution.40 AmdU 

was also reported to be able to be enzymatically57 and metabolically40 incorporated into 

DNA. AmdU could be conveniently prepared by bromination of protected thymidine and 

subsequent displacement of bromide with sodium azide.40 The 5-Azidomethyl-2'-

deoxycytidine (AmdC, 42), in turn, could be obtained by conversion of the uracil ring in 

the protected AmdU to cytosine. Another class of C5 azido-modified pyrimidine 

nucleosides I explored were 5-azidovinyl derivatives of 2'-deoxyuridine (AvdU, 21) and 

2'-deoxycytidine (AvdC, 43) in which azido group is attached to sp2 hybridized carbon. 

The synthesis of AvdU 21 and AvdC 43 could be accomplished via silver-catalyzed 

hydroazidation of 5-ethynyl pyrimidines nucleoside substrates. 

The formation of aminyl radicals on electron attachment to azido-modified nucleosides 

in γ-irradiated aqueous glassy (7.5 M LiCl) systems and the subsequent reactions would be 

characterized using electron spin resonance (ESR). Unlike elongation terminator 3'-AZT 

22, the 5-azidomethyl (18 and 42) and 5-azidovinyl (21 and 43) pyrimidine nucleosides 

with modification moieties at the 5-postion of pyrimidine bases were expected not only 
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able to be metabolically/enzymatically incorporated into DNA but also allow DNA 

elongation after incorporation during the DNA replication. To test this hypothesis, the 

corresponding C5 azido-modified nucleoside triphosphates will be synthesized and 

evaluated for their ability for polymerase-catalyzed incorporation and further extension 

during DNA replication and base excision repair (BER). The radiation response of cells in 

the presence of azido-modified nucleosides in vitro will be examined in both aerobic and 

hypoxic condition of selected cancerous cells. 

Objective 2: 2-Azido-2'-deoxyinosine as probe to investigate elusive guanine-based 

aminyl radical 

The second objective of my dissertation was to explore the generation and reactivity of 

2'-deoxyguanosyl radical 45 postulated to be generated during the ambident reactivity of 

the guanine moiety in 2'-deoxyguanosine (dG) towards hydroxyl radicals (HO•) by direct 

hydrogen abstraction from the NH2 moiety rather than the addition at C4 position81 (Figure 

15). Based on the previous knowledge that one-electron reduction of azido group generates 

aminyl radicals,42,73 I proposed that 2-azido-2'-deoxyinosine (2-N3dI, 44) could serve as 

convenient substrate for the  generation of elusive guaninyl aminyl radical 45. If successful, 

the structure of radical 45, its tautomers, and subsequent reactions will be investigated to 

understand nucleic acid damage pathways induced by γ-radiolysis.  

 
Figure 15. A plausible generation of 2'-deoxyguanosin-N2-yl radical (dG(N2-H)•) from 2-

azido-2'-deoxyinosine 
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Synthesis of the 2-N3dI 44 could be accomplished by conversion of 2-amino group in 

the protected 2'-deoxyguanosine into 2-azido group via diazotization reaction with tert-

butyl nitrite followed by nucleophilic displacement with azide and deprotection. The 

formation of 2-aminyl radical from 2-N3dI 44 and subsequent radical transfers will be 

characterized using electron spin resonance (ESR). 

Objective 3: N-unsubstituted 1,2,3-triazol-4-yl nucleosides: Chemistry and 

fluorescent properties 

Fluorescent nucleosides serve as powerful molecular tools for investigating nucleic 

acid structures, activities, locations, and interaction with other biomolecules or small 

molecules.93 The N-alkyl/aryl substituted 1,2,3-triazol-4-yl adenine showed higher 

quantum yield than 1,2,3-triazol-1-yl adenine.98,99 In light of the criteria of designing new 

fluorescent nucleosides, i.e., high emission quantum efficiency and minimalistic 

modification, the third objective of my dissertation was to synthesize N-unsubstituted 8-

(1H-1,2,3-triazol-4-yl)-2'-deoxyadenosine (8-TrzdA, 46). I also plan to expand this goal to 

other three nucleosides of natural DNA and prepare 8-(1H-1,2,3-triazol-4-yl)-2'-

deoxyguanosine (8-TrzdG, 47), 5-(1H-1,2,3-triazol-4-yl)-2'-deoxycytidine (5-TrzdC, 48), 

and 5-(1H-1,2,3-triazol-4-yl)-2'-deoxyuridine (5-TrzdU, 39) (Figure 16). 

 
Figure 16. Fluorescent N-unsubstituted 1,2,3-triazol-4-yl nucleosides 
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From several strategies developed for the synthesis of N-unsubstituted 1,2,3-triazoles, 

I expect Yamamoto's procedure for the cycloaddition of alkynes with TMSN3 catalyzed by 

CuI102 should provide C5-pyrimidine and C8-purine triazol-4-yl nucleosides. Other 

catalysts, like CuSO4/sodium ascorbate and Ag2CO3 will be also tried to optimize the 

cycloaddition between alkynyl nucleosides and TMSN3. The N-unsubstituted 1,2,3-triazol-

4-yl nucleosides (46-48 and 39) would be converted to 5'-triphosphates and their 

incorporation into DNA by polymerase-catalyzed reactions will be investigated. If triazolyl 

derivatives show good fluorescent properties they will be also explored for the potential 

application in cell imaging and investigating the perturbations to nucleic acids. 

Objective 4: Antiviral and cytostatic evaluation of 5-(1-halo-2-sulfonylvinyl) and 

5-(2-furyl)uracil nucleoside prodrugs 

My fourth objective was to evaluate the antiviral and cytostatic activities of the 

prodrugs recently synthesized in Dr. Wnuk's lab, uracil nucleosides substituted at C5 with 

1-halo-2-sulfonylvinyl (Figure 17, 49)110 or heteroaren-2-yl scaffolds (Figure 17, 50).111 In 

order to have a comprehensive biological evaluation of these uracil nucleosides analogues, 

I planned to increase uptake of compounds into cells by improving the lipophilicity of these 

compounds by esterification of the hydroxy group at sugar (Figure 17, 51) and/or 

incorporation of a permanent long lipophilic alkyl chain in the furan ring (Figure 17, 52). 

 
Figure 17. 5-(1-Halo-2-sulfonylvinyl) and 5-(2-furyl) uracil nucleosides prodrugs  
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3. RESULTS AND DISCUSSION 

3.1. Pyrimidine nucleosides with azidomethyl and azidovinyl modification at C5 

position: Chemistry and biology 

3.1.1. Synthesis of AmdU, AmdC, and their phosphoramidite analogues 

The 5-azidomethyl-2'-deoxyuridine (AmdU, 18) was synthesized from thymidine 41 

by successive (a) protection of sugar hydroxyl with tert-butyldimethylsilyl group (to give 

53), (b) i, bromination with N-bromosuccinimide (NBS); followed by ii, displacement of 

bromide with NaN3 (to give 54), and (c) desilylation with tetra-n-butylammonium fluoride 

(TBAF) with overall 45% yield (Scheme 10).40,54 The 1H NMR data of 18 were in good 

agreement with those published [e.g., δ 4.06 (s, 2H, CH2N3)].
40 Treatment of 54 with 

2,4,6-triisopropylbenzenesufonyl chloride (TIPBSCl), in the presence of triethylamine 

(TEA)/ 4-dimethylaminopyridine (DMAP) followed by in situ displacement of the 

resulting aryl sulfate with NH4OH provided 55. Subsequent desilylation with TBAF 

provided 5-azidomethyl-2'-deoxycytidine (AmdC, 42) in 76% overall yield from 54 

(Scheme 10). Treatment of AmdU 18 with acetyl anhydride in the presence of DMAP/TEA 

in ACN at room temperature for 1 h gave more lipophilic 3',5'-di-O-acetyl-AmdU 56 (70%). 

 
Reagents and conditions: (a) TBDMSCl, imidazole, 50 oC, overnight. (b) (i) NBS, 

azobisisobutyronitrile (AIBN), benzene, reflux, 1 h; (ii) NaN3, DMF, 60 oC, 1 h. (c) TBAF, THF, 

rt, 4 h. (d) (i) TIPBSCl, TEA, DMAP, CH2Cl2, rt, 1h; (ii) aq. NH4OH/THF, rt overnight. (e) acetic 

anhydride, DMAP, TEA, ACN, rt, 1 h. 

Scheme 10. Synthesis of AmdU 18 and AmdC 42 
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Since the synthesis of AmdU required multistep procedure (including protection and 

deprotection steps), I attempted synthesis of AmdU directly from thymidine via direct C-

H activation of the methyl group (Scheme 11) using C-H azidation protocols reported for 

the synthesis of alkyl azide.112 Thus, treatment of thymidine 41 with tosyl azide 57 in the 

presence of Na2S2O8 and base showed that all the starting material was converted to a new 

spot on TLC, which had same Rf as AmdU. Potassium iodide and sodium thiosulfate 

solutions were used to quench excess oxidant Na2S2O8. The reaction residue was column 

chromatographed to give a new product which was confirmed to be 5-(dimethoxymethyl)-

2'-deoxyuridine 58113 rather than AmdU 18. The presence of two methoxy group at the 

3.22 and 3.24 ppm in 1H NMR and downfield shifted signal for acetal carbon at 97.9 ppm 

in 13C NMR was diagnostic for structure 58. The spectroscopic data for 58 were also in 

agreement with the reported data for acetal 58 prepared by reaction of 2'-deoxyuridine-5-

aldehyde with MeOH.113 Modification of the procedure shown in Scheme 11 (like 

removing the tosyl azide 57) would provide a convenient one-step synthesis of 5-

(dimethoxymethyl)-2'-deoxyuridine 58, which can serve as precursor to 5-formyl-2'-

deoxyuridine. Compound 58 showed anti-orthopoxvirus activity in micromolar range.113 

 
Scheme 11. Attempted one-step synthesis of AmdU 

To study the formation of aminyl radicals and their subsequent reactions along DNA 

fragments, I made an attempt to introduce AmdU 18 into oligonucleotides using solid-
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phase oligodeoxynucleotides (ODN) synthesis (Scheme 12). Such a phosphoramidite 

approach  is believed to be not applicable for the synthesis of azido-modified ODN 

presumably due to Staudinger reduction.114 The synthesis of phosphoramidite precursor 

5'-(4,4'-dimethoxytrityl)-3'-(N,N-diisopropylamino-2-cyanoethoxychlorophosphinyl)-

AmdU (5'-DMT-3'-CEP-AmdU, 60) for solid-phase ODN synthesis is shown in Scheme 

12. Thus, AmdU 18 was selectively tritylated with 4,4'-dimethoxytrityl chloride (DMTCl) 

at the 5'-position to give 5'-DMT-protected AmdU 59. The phosphitylation at the 

3'-position of 59 with N,N-diisopropylamino-2-cyanoethoxychlorophosphine in the 

presence of N,N-diisopropylethylamine (DIEA) was completed in 10 min to give two 

phosphoramidite diastereomers 60. The DCM solution of 60 after extraction was dried over 

anhydrous Na2SO4 and used for solid-phase ODN synthesis without any further treatment. 

 
Reagents and conditions: (a) DMTCl, pyridine, rt, 2 h; (b) 2-Cyanoethyl N,N-

diisopropylchlorophosphoramidite, DIPEA, DCM, rt, 10 min. 

Scheme 12. Synthesis of AmdU phosphoramidite precursor for potential solid-phase 

preparation of azido-modified DNA fragments 
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For NMR and HRMS characterization, the solvent after extraction was removed under 

high vacuum [ice/acetone bath (-10 oC)]. The residue was column chromatographed 

(hexane/EtOAc/TEA) to give 5'-DMT-3'-CEP-AmdU 60 as a separable mixture of two 

diastereomers with 75.6% isolated yield as white solid. The structure of the 

phosphoramidite 60 was confirmed by 1H NMR, 13C NMR, 31P NMR as well as HRMS 

(see experimental section for completed data). The 1H NMR and 31P NMR of one of the 

two diastereomers (first eluted from column) is shown in Figure 18. The single 31P peak at 

148.8 ppm (Figure 18, B) indicates that phosphoramidite were obtained as single 

diastereomers after column chromatography. Interestingly, contrary to AmdU where 

methylene protons for CH2N3 group in 1H NMR resonates as singlet at δ 4.06, 

diastereotopic protons in CH2N3 group of 60 were split into two doublets (δ 3.32 and 3.57, 

2J = 13.4 Hz; Figure 18A). 

The CH2Cl2 solution of phosphoramidite 60 can be stored under -20 oC for over two 

months. However, it decomposes within 24 h when stored in a solid form even under low 

temperature (-20 oC) or in solution at ambient temperature. Figure 19 showed formation of 

new peaks resulting from decomposition of 60 (CD2Cl2/rt/15 h) in both 1H NMR (δ 5.67-

6.28 ppm: presumed signal from the terminal olefin CH2=CHCN) and 31P NMR (δ 12.70, 

14.34) spectra. Phosphoramidite 60 was also found to be unstable (removal of DMT-group) 

in CHCl3, and thus during any process, CHCl3 would be avoided.  

It is noteworthy that 60 is one of the first examples of azidonucleoside phosphoramidite 

building blocks which we attempted to employ for the synthesis of azido-modified DNA 

fragments using solid-phase ODN synthesis.  
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Figure 18. 1H (A) and 31P (B) NMR spectra of AmdU phosphoramidite 60 single 

diastereomer 
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Figure 19. 1H (A) and 31P (B) NMR spectra showing decomposition of phosphoramidite 

60 (in CD2Cl2 at room temperature for 15 h) 
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3.1.2. Synthesis of AvdU and AvdC by Ag2CO3 catalyzed hydroazidation 

From several methods  developed for the synthesis of vinyl azides,37,115-117 I adopted 

hydroazidation of alkyne with trimethylsilyl azide (TMSN3) in the presence of Ag2CO3 as 

catalyst.115 Thus, reaction of readily available acetyl-protected 5-ethynyl-2'-

deoxyuridine110,118 62 with TMSN3 in the presence of Ag2CO3 produced regioselectively 

α-vinyl azide 64 in 52% yield (Scheme 13). Deacetylation of 64 yielded 5-(1-azidovinyl)-

2'-deoxyuridine (AvdU, 21) in 90% yield. Peaks of the two terminal olefin protons at δ 

5.00 ppm and 5.91 ppm in 1H NMR and two vinylic carbons at δ 101.3 and 137.4 ppm in 

13C NMR were diagnostic for structure 21. 

 

Reagents and conditions: (a) TMSN3, Ag2CO3, H2O, DMF, 80 oC, 1 h; (b) NH3/MeOH, 0 oC to rt, 

overnight. (c) TIPBS-Cl, DMAP, TEA, CH2Cl2, rt, 1 h; (d) aq. NH3, THF, rt, overnight. 

Scheme 13. Strategies for the synthesis of 5-(1-azidovinyl)-2'-deoxyuridine (AvdU, 21) 

and 5-(1-azidovinyl)-2'-deoxycytidine (AvdC, 43). 
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Hydroazidation of the 3',5'-di-O-acetyl-5-ethylnyl-2'-doxycytidine 63a119 with 

TMSN3/Ag2CO3 gave desired vinyl azide 65 in addition to a fluorescent by-product, which 

was characterized as 3',5'-di-O-acetyl-5-(1H-1,2,3-triazol-4-yl)-2'-deoxycytidine (diAc-5-

TrzdC, 83, see Table 5 at section 3.3.1.1). The chemistry of these 1,2,3-triazol-4-yl 

analogues will be further discussed at section 3.3. Deacetylation of 65 provided 

5-(1-azidovinyl)-2'-deoxycytidine (AvdC, 43) in 51% overall yield from 63a. AvdC 43 

was also obtained in a 34% yield by hydroazidation of the unprotected 5-ethynyl-2'-

deoxycytidine120 63b. A third method to prepare AvdC 43 was developed via conversation 

of uracil ring in 64 to a cytosine counterpart. Thus, treatment of 64 with 

2,4,6-triisopropylbenzenesulfonyl chloride (TIPBSCl) followed by treatment of the 

resulting 4-O-TIPBS-protected intermediate 66 with aq. NH3 afforded AvdC 43.  

The vinylazides were reported to be involved in thermal- and photo-induced 

reactions,121 thus the decomposition of AvdU 21 under UV was carried out to investigate 

the potential application of AvdU 21 as a UV-activated/enhanced drug (Scheme 14). The 

UV-induced reaction was performed in a dark box equipped with a 254 nm UV lamp 

(UVG-11, 4 W, 0.16 Amps). After 1.5 h UV irradiation, AvdU 21 in the MeOH solution 

was all converted to two major products, which were characterized by NMR to be 

5-formyl-2'-deoxyuridine 67 and 5-azirinyl-2'-deoxyuridine 68. This result would support 

the reported enhancement of the cytotoxicity of AvdU by UV light.68   

 

 



40 

 

 

Scheme 14. Decomposition of AvdU under 254 nm UV 

Synthesis 3'-CEP-5'-DMT-AvdU 70 (Scheme 15) was also attempted following the 

procedure developed for AmdU (Scheme 12). Treatment of AvdU 21 with DMTCl in 

pyridine provided 5'-DMT-AvdU (69, 60%). After the phosphitylation, the desired 

phosphoramidite diastereomers could be observed on TLC with 90% conversion. However 

attempted purification on silica gel column resulted in excessive decomposition most 

probably as a result of the higher reactivity of the vinyl azide,121 as compared to the alkyl 

azides, towards   Staudinger reduction.    

 

Reagents and conditions: (a) DMTCl, pyridine, rt, 2 h; (b) 2-Cyanoethyl N,N-

diisopropylchlorophosphoramidite, DIPEA, DCM, rt, 10 min. 

Scheme 15. Attempted 3'-phosphitylation of AvdU 21 
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3.1.3.  Polymerase-catalyzed incorporation of AmdU 5'-triphosphate and AmdC 

5'-triphosphate into DNA 

3.1.3.1. Synthesis of C5 azido-modified pyrimidine nucleotides 

I attempted to synthesize C5 azido-modified pyrimidine nucleotide to investigate their 

polymerase-catalyzed incorporations into DNA. Moreover, these nucleotides can be used 

to study the effect of phosphate moiety on the subsequent radical reactions of the initial 

aminyl radicals generated from the azido group.  

For the triphosphorylation, tributylammonium pyrophosphate (TBAPP, 73), one of the 

necessary starting materials, was prepared by modified ion-exchange procedure using 

DOWEXR 50WX2 hydrogen form (Scheme 16).122 Sodium pyrophosphate 71 aqueous 

solution (0.5 M, pH = 9) was passed through DOWEX resin (15 g resin per 1mmol sodium 

pyrophosphate) to give pyrophosphoric acid 72 aqueous solution (pH = 1), into which 2 

equivalents of tributylamine (TBA) was added. The resulting mixture was stirred at rt until 

homogeneous solution (pH = 4-5) was obtained. Water was evaporated and coevaporated 

with acetonitrile to dry. The residue was dried under high vacuum for 24 h to give TBAPP 

73 as a pale solid, into which argon was filled and DMF was added to prepare 0.5 M 

solution for the triphosphorylation. The Dowex Resins can be recycled by washing the 

column with 2 column volumes of 5% (1.5 M) HCl and then with sufficient DI water until 

the pH return to be around 6.   

 
Scheme 16. Preparation of tributylammonium pyrophosphate (TBAPP) 
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AmdU 5'-monophosphate (AmdUMP, 19, 70%, Scheme 17) was prepared via the 

phosphorylation of AmdU 18 with POCl3 employing modified Yoshikawa protocols123,124 

in the presence of proton sponge followed by quenching of the crude reaction mixture with 

triethylammonium bicarbonate buffer (TEAB) and purification on a DEAE-Sephadex 

column. The reaction of AmdU 18 with POCl3 in the presence of proton sponge followed 

by addition of 0.5 M TBAPP in DMF and then tributylamine (TBA) yielded AmdU 

5'-triphosphate (AmdUTP, 20, 76%, Scheme 17) after DEAE-Sephadex purification. The 

phosphates were characterized by 1H, 13C, 31P NMR as well as HR-MS (see experimental 

section for the data). The 31P NMR showed two doublet peaks at δ -10.80 (J = 19.8, γ) and 

δ -11.64 (J = 19.8, α) as well as one triple peak at δ -23.25 (J = 19.7, β). The proton sponge 

was used to accelerate the phosphorylation and provide reaction conditions suitable for 

acid-labile deoxynucleosides by neutralizing the formed HCl.123 The AmdC 42 was 

converted to AmdC 5'-triphosphate (AmdCTP, 74, 23%) by analogous phosphorylation 

(Scheme 17).  

 

(a) PO(OMe)3, POCl3, proton sponge, 0 oC, 30 min; (b) TBAPP, TBA, DMF, 0 oC, 2 min. 

Scheme 17. Synthesis of AmdUMP, AmdUTP, and AmdCTP 

I was planning to synthesize AvdU 5'-triphosphate (AvdUTP 76, Scheme 18), 

following the analogous phosphorylation of AvdU 21, but because of the instabilities of 

azidovinyl unit in AvdU the reactions provided 5-acetyl-2'-deoxyuridine 5'-triphosphate 
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75125 rather than the desired AvdUTP 76. To circumvent instability of vinylazide moiety 

in the phosphorylation reactions, post-synthetic route was also designed for the synthesis 

of 76 (Scheme 19). Thus, 5-ethynyl-2'-deoxyuridine 5'-triphosphate 78 was prepared from 

77 (46%) employing analogous phosphorylation conditions. However, the hydroazidation 

of 78 also yielded 5-acetyl-2'-deoxyuridine 5'-triphosphate 75. Addition of 10 eq. Et3N into 

the hydroazidation reaction to stabilize the product 76 also failed. The presence of two 

peaks at the 5.04 and 5.54 ppm in the crude 1H NMR indicated the formation of desired 

AvdUTP 76, which was not stable and decompose in the reaction residue. Because of the 

instabilities of the AvdUTP 76, the enzymatic incorporation of AvdU 21 into DNA 

fragment could not be carried out.  

 

(a) PO(OMe)3, POCl3, proton sponge, 0 oC, 30 min; (b) TBAPP, TBA, DMF, 0 oC, 2 min. 
Scheme 18. Attempted synthesis of AvdUTP 76 

 

 (a) PO(OMe)3, POCl3, proton sponge, 0 oC, 30 min; (b) TBAPP, TBA, DMF, 0 oC, 2 min. (c) 

TMSN3, Ag2CO3, H2O, DMF, 80 oC, 1 h 

Scheme 19. Attempted post-synthetic procedure for AvdUTP 76 

 



44 

 

3.1.3.2. Polymerase-catalyzed incorporation of AmdUTP and AmdCTP into DNA 

Since DNA replication is essential for proliferation of cancer cells, and cancer radiation 

therapy can induce DNA damage and initiate DNA repair such as base excision repair 

(BER) during which nucleotides are incorporated into double-strand DNA (dsDNA) by 

replication and repair DNA polymerases, it is important to determine whether an AmdUTP 

can also be incorporated into dsDNA during DNA replication and repair. The incorporation 

of AmdUTP will provide new insights into the potential application of AmdU 18 in cancer 

treatment. In collaboration with Dr. Liu from our department, I determined the 

incorporation of an AmdUTP 20 into dsDNA by the E. coli Klenow fragment of DNA 

polymerase I (pol I) and human repair DNA polymerase, DNA polymerase  (pol ) using 

AmdUTP 20 and synthesized oligonucleotide substrates that mimic the intermediates 

formed during DNA replication and repair (see section 4.2 for the DNA fragments 

sequences and other details). The incorporation of an AmdUTP 20 by the Klenow fragment 

and pol  during DNA leading and lagging strand synthesis, and BER was examined with 

an open template, one-nucleotide gap substrates, and one-nucleotide substrate containing 

a 5'-THF (a tetrahydrofuran ring which mimics a sugar residue) at the downstream strand, 

respectively (Figure 20). The results showed that the Klenow fragment at 0.1-5 U 

efficiently inserted an AmdUTP 20 with all the substrates to basepair with a template A 

(Figure 20A, lanes 2-6; Figure 20B, lanes 8-12; Figure 20C, lanes 14-17). With the open 

template, the Klenow fragment also continuously inserted an AmdUTP 20 to mispair with 

a template G, T and T, respectively (Figure 20A, lanes 2-6). On the other hand, pol  

incorporated only one AmdUTP 20 in the open template substrate at a concentration of 

10 nM (Figure 20D, lane 6), whereas it efficiently incorporated one AmdUTP to fill in the 
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one-nucleotide gap with the gapped substrate at concentrations of 0.5-10 nM (Figure 20E, 

lanes 8-12). Similarly, AmdUTP 20 was efficiently incorporated into one-nucleotide gap-

THF substrate by both pol I (Figure 20C, lanes 14-17) and pol  (Figure 20F, lanes 14-17) 

at 0.5-5 U and 1-25 nM, respectively.  

 

Figure 20. Incorporation of AmdUTP 20 into duplex DNA by pol I and pol β. 
Measurement of incorporation of an AmdUTP by Klenow fragment on the open template (A) and 

one-nucleotide gap substrate (B), and the one-nucleotide gap substrate containing a 5'-THF at the 

downstream strand (C). Measurement of incorporation of an AmdUTP by pol β on the open 

template (D) and one-nucleotide gap substrate (E), and substrate containing a 5'-THF at the 

downstream strand (F). Lanes 1, 7, and 13 represent substrate only. Lanes 2-6, 8-12, and 14-17 

represent the products resulting from incorporation of an AmdUTP. 

 

Further characterization of incorporation of the nucleotide in the presence of the other 

three nucleotides dATP, dGTP and dCTP, showed that an AmdUTP 20 inserted by pol I 

and pol  was further extended by the polymerases. Pol I (0.5-5 U) extended an AmdUTP 

and continued to perform DNA synthesis to the end of the template with all substrates 

(Figure 21A-C), whereas pol  at the concentrations of 1-25 nM extended the AmdUTP 

and further synthesized 9-10 nucleotides (Figure 21D-F). The results indicate that the 



46 

 

polymerase readily inserted the nucleotide into dsDNA and continued to extend the 

nucleotide during DNA replication and repair.  

 

Figure 21. Extension of an incorporated AmdUTP 20 into a duplex DNA by pol I (A-C) 

and pol β (D-E) during DNA leading and lagging strand synthesis and BER. 
DNA synthesis by pol I on the open template (A), one-nucleotide gap substrate (B), and one-

nucleotide gap substrate with a 5'-THF (C). DNA synthesis by pol β on the open template (D), one-

nucleotide gap substrate (E), and one-nucleotide gap substrate with a 5’-THF (F). Lanes 1, 6, and 

11 represent substrate only. Lanes 2-5, 7-10, and 12-15 represent DNA synthesis products. 

 

To further examine if AmdU residues incorporated by DNA polymerases can be ligated 

into duplex DNA during DNA replication and repair, we determined the formation of 

ligation products resulting from incorporation of AmdUTP in the presence of dATP, dGTP 

and dCTP with the one-nucleotide gap substrates without or with a THF residue that 

mimics a sugar residue. We found that with the one-nucleotide gap substrate, pol I ranging 

from 0.5-5 U efficiently incorporated AmdUTP and other nucleotides, and this allowed 

conversion of all of the substrates into the ligation products, i.e. ligated products by 10 nM 
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DNA ligase I (LIG I; Figure 22A, lanes 2-5). For the one-nucleotide gap substrate, 

incorporation of AmdUTP by pol  at 1 nM only resulted in a small amount of ligated 

products (Figure 22C, lane 2). With increasing concentrations of pol  from 5 nM to 25 

nM, the amount of the ligated products significantly increased (Figure 22C, lanes 3-5) 

indicating that increased incorporation of AmdUTP 20 facilitated the production of ligated 

products.  

 
Figure 22. Ligation after incorporation of AmdUTP 20 into duplex DNA during lagging 

strand maturation and BER.  
Measurement of ligation products, i.e. DNA lagging strand maturation products resulting from 

incorporation of AmdUTP by pol I (A) and pol β (C) on the one-nucleotide gap substrate. Lanes 1 

represents substrate only. Lanes 2-5 represent the ligation products resulting from incorporation of 

AmdU. Measurement of repaired products resulting from BER mediated by incorporation of 

AmdUTP by pol I (B) and pol β (D) on the one-nucleotide gap substrate with a 5'-THF at the 

downstream primer. Lane 6 represents substrate only. Lanes 7-10 represent repaired products 

resulting from incorporation of AmdUTP. 
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To determine if AmdUTP 20 incorporated by pol I and pol β can be also ligated into a 

dsDNA during DNA BER, we further determined the incorporation of 20 during BER with 

the one-nucleotide gap substrate with a 5'-phosphorylated THF residue in the presence of 

10 nM LIG I and 10 nM flap endonuclease 1 (FEN1). We found that similar to its 

incorporation of AmdUTP with the one-nucleotide gap substrate, pol I (0.5, 1, 2, and 5 U) 

performed strong DNA synthesis activity leading to the production of the full-length repair 

products (Figure 22B, lanes 7-10). The results indicate that AmdUTP can be efficiently 

incorporated into duplex DNA by Pol I during BER. On the other hand, incorporation of 

AmdUTP by pol β (1, 5, 10, and 25 nM) also resulted in the repaired products (Figure 22D, 

lanes 7-10). However, the repaired products resulting from pol β contain the repair products 

with the full-length or with the size that is one-nucleotide shorter than the full-length. With 

increasing concentrations of pol β, the amount of the full-length repaired products was 

significantly increased, whereas that of the short repair products was significantly 

decreased (Figure 22D, compare lanes 8-10 with lane 7). The result suggests that inefficient 

incorporation of AmdUTP 20 by a low concentration of pol β resulted in a gap during BER. 

This subsequently allowed the template to loop out leading to ligation and production of 

the short repaired product during BER. 

Our results further indicate that AmdUTP 20 can be efficiently incorporated into 

dsDNA by DNA replication and repair polymerases during DNA replication and repair. 

This is consistent with a recent finding showing that AmdU were efficiently incorporated 

into newly synthesized DNA in human cancer cells.40 Our results further demonstrated that 

the incorporation of AmdU in cancer cells is mediated by DNA replication and repair 

polymerases. 
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The incorporation of a AmdCTP 74 by pol  during DNA leading and lagging strand 

synthesis, and BER was also examined with an open template, one-nucleotide gap substrate, 

and one-nucleotide gap-THF substrate, respectively (Figure 23; see section 4.2 for the 

DNA fragments sequences and other details). The results showed that pol  at 1-25 nM 

efficiently inserted a AmdCTP in all three substrates to basepair with a template G (Figure 

23A, lanes 2-5; 23B, lanes 6-10; 23C, lanes 12-15). Compared with the incorporation of 

an AmdUTP by pol β (Figure 20), 1 nM pol β incorporated a significant amount of an 

AmdCTP into the open template substrate (Figure 23A, lane 2), whereas the same 

concentration of pol β failed to incorporate an AmdUTP (Figure 20D, lane 3). Also, pol β 

at 10 nM incorporated an AmdUTP on the substrate with significantly reduced amount 

(Figure 20D, lane 6) compared with its incorporation with AmdCTP (Figure 23A, lane 4). 

Similarly, for the one-nucleotide gap substrate with or without a 5'-THF pol β at 1 nM, 

5 nM, and 10 nM, incorporated an AmdUTP 20 with a reduced amount (Figure 20E, lanes 

8-12 and Figure 20F, lanes 14-17) compared with its incorporation of an AmdCTP 74 at 

the same concentrations (Figure 23B, lanes 7-10 and Figure 23C, lanes 12-15). 

 

Figure 23. Incorporation of AmdCTP into duplex DNA by pol β. 
Incorporation of a AmdCTP by pol β on the open template (A), one-nucleotide gap substrates (B), 

and one-nucleotide gap-THF substrates. Lanes 1, 6, and 11 represent substrate only. Lanes 2-5, 

7-10, and 12-15 illustrate the products resulting from incorporation of a AmdCTP by pol β. 
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3.1.4. One-electron formation of aminyl radicals from 5-azidomethyl and 

5-azidovinyl pyrimidine nucleosides and their subsequent reactions 

The combination of ESR spectral studies and theoretical calculations provide evidences 

of radiation-produced electron-mediated formation of π-type aminyl radical (RNH•) and 

of its conversion to the σ-type iminyl radical (R=N•) in samples of AmdU 18 (Figure 24), 

AmdC 42 (Figure 25), AvdU 21 (Figure 26) and AvdC 43 in glassy systems (7.5 M 

LiCl/D2O).    

3.1.4.1. Formation of π-type RNH• and its bimolecular conversion to the σ-type R=N• 

in AmdU and AmdC  

The ESR spectra of AmdU 18 after radiation-produced prehydrated one-electron 

attachment at 77 K and stepwise annealing as well as simulated spectra are shown in Figure 

24. Spectra in Figure 24A presents the ESR spectrum (blue) of the radicals formed by 

radiation (absorbed dose = 500 Gy at 77 K) -produced prehydrated electron attachment to 

18 (2.2 mg/mL) in supercooled homogeneous glassy (7.5 M LiCl/D2O) solutions at 77 K. 

Figure 24A has a total hyperfine splitting of ca. 178.5 G. Center of this spectrum does 

not show the reported doublet126-128 due to U•¯. Wings of this spectrum show line 

components due to axially symmetric anisotropic nitrogen hyperfine coupling due to a 

single nitrogen. Sum of two isotropic β-proton couplings of ca. 93.5 G is assigned to the 

central doublet. The HFCCs at Figure 24A are nearly-identical to the reported HFCCs 

values for T(C5')-ND• generated from 5'-azido-5'-deoxythymidine (5'-AZT),42 thus Figure 

24A is assigned to the π-type U-(5-CH2)-ND• generated from AmdU 18 (Scheme 20). The 

simulated spectrum (red) superimposed in Figure 24A nicely matches the line components 

due to nitrogen hyperfine couplings at the wings, the sharp outer peak of the doublet, and 
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qualitatively the broad line components at the center of the blue spectrum. Detailed analysis 

of HFCC will be published elsewhere.129  

 

Figure 24. ESR spectra of AmdU 18 after radiation-produced prehydrated one-electron 

attachment at 77 K and stepwise annealing as well as simulated spectra 
(A) ESR spectrum (blue) after radiation-produced prehydrated one-electron addition to AmdU 18 

at 77 K in 7.5 M LiCl/D2O. Spectra (B) to (E) were obtained via stepwise annealing of the sample 

for 15 min at 140, 160, 165, and 170 K. All spectra were recorded at 77 K. The red spectra in (A), 

(D) and in (E) are the simulated spectra. The radiation produced background Cl2•¯ spectrum has 

been subtracted from spectra A and B for clarity. 
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Scheme 20. Formation of π-type aminyl radical from AmdU 18 and its bimolecular 

conversion to the σ-type iminyl radical 

After subsequent annealing of AmdU sample at 140 K in the dark for 15 min, spectrum 

was recorded at 77 K and is shown in Figure 24B. Upon stepwise warming, new line 

components are gradually developed at the center of these spectra. The line components 

are due to a C-centered α-azidoalkyl radical U-(5-CH•)-N3 formed via a bimolecular 

H-atom abstraction by U-(5-CH2)-ND• from a proximate AmdU 18 (Scheme 20). After 

subsequent stepwise annealing for 15 min in the dark at 160 K, 165 K, and 170 K, spectra 

have been recorded at 77 K and are shown in blue color in (C) to (E). Although line 

components due to the U-(5-CH•)-N3 are present at the center of spectrum in (C), these 

line components become prominent with good resolution at the center of the blue spectrum 

in (D) but are not observed at the center of the blue spectrum in (E).  

The calculated HFCCs of the C-centered radicals (U-(5-CH•)-N3 using 

B3LYP/6-31G** method are found to be very similar to the HFCCs of the blue spectrum 

at Figure 24D. The simulated (red) spectrum of the U-(5-CH•)-N3 superimposed on the 
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center of blue spectrum in Figure 23D well matches the blue spectrum. See Ref129 for the 

theoretical calculation details. The π-type U-(5-CH2)-ND• from 18 undergoing bimolecular 

H-atom abstraction (Scheme 20) was studied employing samples of 5'-azido-2'5'-

dideoxyuridine 79 with different concentrations (0.5 mg/mL and 5 mg/mL), which is also 

detailed in Ref129. 

The broad central doublet of 82 G found in the blue spectrum in Figure 24E is due to 

one β-H of the methylene group that is attached to the C5 of the uracil base. In addition, 

anisotropic N HFCCs are very similar to those of H2C=N•.130 The simulated spectrum 

superimposed in (E) matched nicely with the blue spectrum.  Therefore, the blue spectrum 

in (E) was assigned to the σ-type iminyl radical, U-(5-CH)=N•. 

These results show that conversion of π-type U-(5-CH2)-ND• to σ-type U(C5-H)=N• 

was bimolecular involving an α-azidoalkyl radical as intermediate (Scheme 20). α-

Azidoalkyl radicals are known to undergo facile conversion to the σ-iminyl radicals.131-133 

ESR spectra of AmdC 42 after radiation-produced prehydrated one-electron attachment 

at 77 K and stepwise annealing as well as simulated spectra are shown in Figure 25. It is 

noted that AmdC 42 also shows the formation of C-(5-CH2)-ND• at 77 K along with its 

subsequent conversion to the σ-type iminyl radical, C-(5-CH)=N• in the temperature range 

(77 to 160 K) accompanied with decrease of total hyperfine splitting that is similar to 

U-(5-CH)=N• (Figure 25).  
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Figure 25. ESR spectra of AmdC after radiation-produced prehydrated one-electron 

attachment at 77 K and stepwise annealing as well as simulated spectra 
Spectra (A-D) were obtained from AmdC 42 (2.4 mg/mL) by subtraction of 250 G Cl2•¯ spectrum 

from the individual experimentally recorded spectrum. (A) ESR spectrum (blue) after radiation-

produced prehydrated one-electron addition to AmdC at 77 K in 7.5 M LiCl/D2O. Spectra (B, blue) 

to (E, blue) were obtained from the same sample of 7 via stepwise annealing of the sample for 15 

min at 134, 140, 150 and at 160 K. All spectra were recorded at 77 K. All spectra were recorded at 

77 K. The experimental spectra from AmdU 18 (2.2 mg/mL, sea-green) are superimposed in (A), 

(C), (D), and (E) for comparison. The red spectra in (A) and in (E) are the simulated spectra. 

3.1.4.2. Formation of π-type aminyl radical (RNH•) and its unimolecular conversion 

to the σ-type iminyl radical (R=N•) in AvdU and AvdC  

The 77 K ESR spectrum (black) of the radicals formed by radiation (absorbed dose = 

500 Gy at 77 K)-produced prehydrated electron attachment to AvdU 21 (1 mg/mL) in 

supercooled homogeneous glassy (7.5 M LiCl/D2O) solutions is shown in Figure 26A. This 

spectrum shows line components due to D-atoms, and due to axially symmetric anisotropic 
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nitrogen HFCCs due to a single nitrogen. Furthermore, it also showed line components due 

to two anisotropic protons of the =CH2 in AvdU 21 (or AvdC 43). Therefore, the (A) was 

assigned to the π-type aminyl radical, U-(5-C=CH2)-ND•. The ESR spectrum in (A) 

establishes that formation of U-(5-C=CH2)-ND• from 21 (Scheme 21) happens following 

the same pathway shown in Scheme 20. The simulated a spectrum (red) superimposed in 

Figure 26(A) nicely matches the line components of the black spectrum and supports the 

assignment of the black spectrum to the π-type aminyl radical, U-(5-C=CH2)-ND•. 

 

Figure 26. ESR spectra of AvdU 21 after radiation-produced prehydrated one-electron 

attachment at 77 K and stepwise annealing as well as simulated spectra 
(A) ESR spectrum (black) after radiation-produced prehydrated one-electron addition to AvdU at                   

77 K in 7.5 M LiCl/D2O. Spectra (B) to (D) were obtained via stepwise annealing of the sample for 

15 min at 135, 150 and 165 K. All spectra were recorded at 77 K. The red spectra in (A) and (D) 

are the simulated spectra. The background Cl2•¯ spectrum has been subtracted from spectra A and 

B for clarity. 
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Scheme 21. Tautomerization of the π-type aminyl radical generated from AvdU 21 to the 

σ-type iminyl radical 

ESR spectra (black) obtained upon progressively annealing the AvdU sample for 15 

min in the dark at 135 K, at 150 K and at 165 K, are shown in Figure 26B-D. Comparison 

of the black spectrum in (D) with the black spectra in (A)-(C) shows that upon progressive 

annealing, height of the singlet at the center increases; concomitantly, height of the line 

components due to the two anisotropic -CH2 protons decreases and eventually disappears 

upon annealing at 165 K. The black spectrum in (D) is only due to axially symmetric 

anisotropic nitrogen HFCCs. We assign this spectrum to the σ-type iminyl radical, 

U-(5-C-CH3)=N•. The simulated a spectrum (red) superimposed on the experimental 

spectrum in Figure 26D nicely matches the line components of the black spectrum and 

supports the assignment of the black spectrum to the σ-type iminyl radical, 

U-(5-C-CH3)=N•. Note that the axially symmetric anisotropic nitrogen HFCCs and the 

g-values of U-(5-C-CH3)=N• are found to be identical to the reported values of σ-type 

iminyl radicals from one-electron oxidized 1-methylcytosine and its derivatives.130  

 Thus, our ESR spectral studies show that the radiation-produced electron mediated 

U-(5-C=CH2)-ND• undergoes a facile tautomerization to U-(5-C-CH3)=N• (Scheme 21). 

Nearly identical spectra were obtained from matched samples of 21 and 43. Therefore, we 

conclude that, a facile tautomerization of the radiation-produced electron-mediated π-type 



57 

 

aminyl radical, C-(5-C=CH2)-ND•, to thermodynamically more stable σ-type iminyl 

radical, C-(5-C-CH2D)=N•, also occurs in 43. 

Increasing the concentration (1 to 5 mg/mL) of AvdU 21 in the solution appeared to 

have no effect on the extent of facile conversion from π-type RNH• to σ-type iminyl radical 

from the spectra recorded under the same microwave power, modulation, and gain. From 

these results, we conclude that the facile tautomerization from RNH• to iminyl radical 

observed in the samples of 21 and 43 occurs via very rapid intramolecular H-atom transfer 

from the aminyl group to the double bonded CH2 group in the π-type RNH•. The rapid 

H-atom transfer process that is involved in the tautomerization, is, most possibly, the 

proton-coupled electron transfer process. 

3.1.4.3. Summary and implication of aminyl radical and its resulting iminyl radicals 

In contrast to the ESR spectral results obtained using samples of 3′-AZT 22, 5'-azido-

5'-deoxythymidine, 2′,3′-AZddG, and of azidopentoses,42,73 that show the evidence of 

electron-induced π-type aminyl radical-mediated H-atom abstraction are not observed in 

the samples of AmdU, AmdC, AvdU, and AvdC. Rather, the π-type aminyl radicals, in 

AmdU, AmdC, AvdU, and AvdC undergo facile conversion to the σ-type iminyl radical. 

For AmdU and AmdC, the π-type RNH• to σ-type iminyl radical conversion is found to be 

bimolecular involving an α-azidoalkyl radical, while the corresponding conversion, 

observed for AvdU and AvdC is unimolecular (i.e., tautomerization).  

Owing to the high free radical scavenger concentrations in cells,9,16 the bimolecular 

conversion of the π-type RNH• to σ-type iminyl radical from AmdU 18 and AmdC 42 

(Scheme 20) should not take place as it has been observed in case of 5'-azido-5'-

deoxythymidine. However, the facile unimolecular tautomerization of the π-type RNH• to 
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σ-type iminyl radical from AvdU 21 and AvdC 43 (Scheme 21) should occur. Further, the 

reactivity of the σ-type iminyl radical from AvdU 21 and AvdC 43 would be lower than 

the iminyl radicals obtained from 18 and 42 owing to the positive inductive effect of its 

methyl group (Figure 26 and Scheme 21). Therefore, it is expected that the π-type RNH• 

from AmdU 18 and AmdC 42 should augment the radiation damage more effectively than 

the σ-type iminyl radical from AvdU 21 and AvdC 43. Tests of this hypothesis are reported 

in section 3.1.5. 

3.1.5. Radiosensitizing effect of 5-azidomethyl and 5-azidovinyl pyrimidine 

nucleosides in aerobic and hypoxic cells  

The radiation response of cells in the presence of 100 μM C5 azido-modified 

pyrimidine nucleosides in vitro was examined in both aerobic and hypoxic EMT6 cells.  

For the tests in aerobic cells, the cultures were treated with 100 μM azido compounds or 

vehicles for 48 h. For the test in hypoxic cells, hypoxic condition was applied for 4 h after 

the 44 h aerobic incubation with 100 μM azido compounds or vehicles. For the 

radiosensitizing effect tests, cells were irradiated with 7.5 Gy X-ray during the final few 

minutes of the 48 h aerobic incubation (aerobic cells) or of the 4 h hypoxic incubation 

(hypoxic cells). More experimental details are provided in section 4.4. The results are 

shown in Figure 27 and Table 4. 
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Figure 27. Radiosensitizing effect of 5-azidomethyl and 5-azidovinyl pyrimidine 

nucleosides at 100 μM concentration on EMT6 cells (A) normoxic, (B) hypoxic conditions 

AmdU 18 showed radiosensitizing effect under both normoxic and hypoxic 

environment with sensitization enhancement ratio (SER) at 7.5 Gy X-ray (SERSF7.5) of 4.57 

and 4.10, respectively (Figure 27, Table 4). These results showed that one electron-induced 

aminyl radicals in AmdU 18 augment radiation damage to cells. In hypoxic 

microenvironment, RNH• formed from electron addition to AmdU 18 can be involved in 

the H-atom abstraction reactions that might cause DNA-strand breaks and/or crosslink 

formation9,42,73 leading to lesions that can induce apoptosis of cancer cells.16,19,134-136 On 

the other hand, in the aerobic cells, the aminyl radical generated from AmdU 18 can react 

with oxygen to generate aminylperoxyl radical RNHOO• and eventually lead to aminoxyl 

(nitroxyl) radicals RNHO•,137 which also can lead to DNA damage.138,139 Other azido 

nucleoside tested showed lower radiosensitizing effect with SERSF7.5 index of 1.35 for 

AmdC 42 under hypoxic cells and 1.37 for AvdC 43 under aerobic cells. 

Reasons for the difference in radiosensitization shown between AmdU 18 and AmdC 

42 is unclear. Possible reasons include differences in drug uptake into cells, metabolic 

phosphorylation, and/or reactivity of the aminyl radical generated at the uracil and cytosine 
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base. The higher radiosensitizing effect of AmdU 18 than that of AvdU 21 and AvdC 43 

can be explained by the higher reactivity of -type RNH• from AmdU 18 than that of the 

-type iminyl radical from AvdU 21 and AvdC 43. The optimization of the radiosensitizing 

effect could involve increasing uptake of these azido-nucleosides into cancerous cells by 

designing more lipophilic prodrugs and/or skipping metabolic 5'-phosphorylation in cells 

by synthesizing their ProTides. 

Table 4. Radiosensitizing effect of azidomethyl and azidovinyl pyrimidine nucleosides at 

100 μM concentration in aerobic and hypoxic EMT6 cells 

 Aerobic Conditionsa 

X-Ray 0 Gy 7.5 Gy 

Cmpd Control AmdC AmdU AvdU AvdC Vehicle AmdC AmdU AvdU AvdC 

SF 1 1.135 0.577 1.145 0.753 0.352 0.449 0.077 0.502 0.256 

DERc 1 0.88 1.73 0.87 1.33 - - - - - 

SERSF7.5
d - - - - - 1 0.78 4.57 0.70 1.37 

 Hypoxic Conditionsb 

X-Ray 0 Gy 7.5 Gy 

Cmpd Control AmdC AmdU AvdU AvdC Vehicle AmdC AmdU AvdU AvdC 

SF 1 0.800 0.857 0.769 0.995 0.587 0.434 0.143 0.561 0.492 

DERc 1 1.25 1.17 1.30 1.00 - - - - - 

SERSF7.5
d - - - - - 1 1.35 4.10 1.05 1.19 

a Drugs or vehicles were added to the cultures for 48 h treatment under normoxic condition, 

followed by 0 or 7.5 Gy X-ray irradiation.  b Drugs or vehicles were added to the cultures for 44 h 

treatment under normoxic condtion and then for 4 h under hypoxic condition, followed by 0 or 7.5 

Gy X-ray. c DER (drug enhancement ratio) was defined as the ratio of survival fractions (SF) of 

vehicle and SF of azido compounds. d SERSF7.5 (sensitization enhancement ratio) was defined as 

the ratio of survival fractions at 7.5 Gy (SF7.5) of vehicle and SF7.5 of azido compounds. 

3.2. The 2-azido-2'-deoxyinosine as precursor to study elusive guanine-based aminyl 

radical 

3.2.1. Synthesis of 2-azido-2'-deoxyinosine 

The 2-azido-2'-deoxyinosine (2-N3dI, 44) was synthesized from 2'-deoxyguanosine 

(dG) as shown in Scheme 23. Acetyl protection of dG with acetic anhydride at 75 oC for 

4 h provided 3',5'-di-O-acetyl-2'-deoxyguanosine 80 in 81% yield. The attempts to convert 
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2-amino from 2'-deoxyguanosine (dG) directly to 2-azido via diazotransfer and 

diazotization were not successful (Scheme 22), which led to the requirement of protection 

of O6 with p-nitrophenethyl alcohol (NPEOH). The O6-NPE protection required absolute 

anhydrous reaction condition and thus all the starting materials were dried along with P2O5 

in a drying pistol (40 oC) for 12 hours and the solvent 1,4-dioxane was distillated with 

CaH2 and then collected into a dried flask filled with Ar and activated 3 A molecular sieves. 

The O6-NPE protection of 80 with p-nitrophenethyl alcohol via Mitsunobu reaction in the 

presence of triphenyl phosphite (Ph3P), diisopropyl azodicarboxylate (DIAD), and 

activated molecular sieves powder at room temperature overnight yielded 3',5'-di-O-acetyl-

O6-(p-nitrophenethyl)-2'-deoxyguanosine 81 in 72% yield. Activated powder molecular 

sieves are required for the reaction to happen and to give good yield under humid 

environment. 81 was easily converted to 82 in 74% yield by treatment with tert-butyl nitrite 

and trimethylsilyl azide (TMSN3) in ACN at -20°C for 12 h then at 0 °C for 24 h. Treatment 

of 82 with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) at room temperature for 3 h 

followed by treatment with NH3/MeOH  at room temperature overnight provided the final 

product 2-N3dI 44 in 83% yield.  

 

Scheme 22. Attempted one-step synthesis of 2-azido-2'-deoxyinosine 
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Scheme 23. Synthesis of 2-azido-2'-deoxyinosine 

3.2.2. The formation of 2-aminyl radical from 2-azido-2'-deoxyinosine and 

subsequent radical transfers characterized using electron spin resonance 

The ESR characterization of the formation of 2'-deoxyguanosin-N2-yl radical (dG(N2-

H)•, 45) on electron attachment to 2N3dI 44 is under investigation. The N2-center radical 

45 and its tautomers could be expected to be observed using ESR to offer direct evidence 

of electron-transfer process under γ-irradiation. 
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3.3. Design, synthesis, fluorescent properties, and cell imaging of 1H-1,2,3-triazol-4-

yl analogues of C5 pyrimidine and C8 purine nucleosides 

3.3.1. Synthesis of 5-(1H-1,2,3-triazol-4-yl) pyrimidine and 8-(1H-1,2,3-triazol-4-yl) 

purine nucleoside analogues 

3.3.1.1. Method A catalyzed by Ag2CO3  

As discussed in Section 3.1.2, during the synthesis of protected AvdC 65 (48%) from 

3',5'-di-O-acetyl-5-ethynyl-2'-deoxycytidine 63a119,140 (Scheme 13) also the fluorescent 

3',5'-di-O-acetyl-5-(1H-1,2,3-triazol-4-yl)-2'-deoxycytidine (diAc-5-TrzdC, 83) was 

obtained in low yield (7%; Table 5, Entry 1; Method A). Also as was noted above in Section 

3.1.2 the analogous hydroazidation of 3',5'-di-O-acetyl-5-ethynyl-2'-deoxyuridine 62110 

produced protected AvdU 64 (55%) as the only product without formation of the 

corresponding triazole product 84 (Table 5, Entry 2; Method A). 

Remarkably, contrary to the 5-ethynylpyrimidine nucleosides, hydroazidation of 

8-ethynylpurine nucleosides produced triazole adducts as major products. Thus, 

hydroazidation of 8-ethynyl-2'-deoxyadenosine 85141 with TMSN3 in the presence of 

Ag2CO3 produced 8-(1H-1,2,3-triazol-4-yl)-2'-deoxyadenosine (8-TrzdA, 46, 50%) as the 

major product in addition to the vinylazide 89 (8-AvdA, 15%; Table 6, Entry 1; Method 

A).  The estimated yield of 8-TrzdA 46 based on the TLC were approximately 70% (Table 

6) but due to the strong binding of triazoles to the silica gel, the products after silica gel 

column chromatography were isolated in relatively low yields. Interestingly treatment of 

3',5'-di-O-TBDMS-8-ethynyl-2'-deoxyadenosine 86141 by Method A provided 3',5'-di-O-

TBDMS-8-(1H-1,2,3-triazol-4-yl)-2'-deoxyadenosine (diTBDMS-8-TrzdA, 88, 30%; 

Table 6, Entry 2) as the only product without a trace of azidovinyl analogue 90. The 
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treatment of 8-ethynyl-2'-deoxyguanosine 87142 by Method A also yielded 8-(1H-1,2,3-

triazol-4-yl)-2'-deoxyguanosine (8-TrzdG, 47, 52%; Entry 3) as the sole product.  

Table 5. Synthesis of 5-(1H-1,2,3-triazol-4-yl) pyrimidine nucleoside analogues 

 

Entry SM Method Trz Yielda [%] azide Yielda [%] 

1 63a A  83 7 65 48 

2 62 A  84 0 64 55 

3 63a B 83 32 (50) 65 0 

4 63b B 48 10 (20) 43 0 

5 62 B 84 55 (85) 64 0 

6 77 B  39 50 (85) 3d 0 

7 77 Bb 39 42 (75) 3d 0 

8 63a C 83 65 (80) 65 0 

9 63b C 48 51 (85) 43 0 

10 62 C 84 81 (95) 64 0 

11 77 C 39 52 (90) 3d 0 

a Isolated yields; In parenthesis are estimated yields based on TLC; b Modified Method B: CuI, 2 eq. 

H2O, DMF, 90 oC, 5h.  

Since 5-triazolylpyrimidine and 8-triazolylpurine nucleosides show good fluorescent 

properties (section 3.3.4), it was significant to optimize reaction conditions to synthesize 

the triazolyl analogues of the four natural bases (i.e. dU, dC, dA, and dG) of DNA. To 

optimize the conditions to increase the percent yield of the triazoles and to be applicable 

for all four nucleosides, several strategies have been designed and performed. 



65 

 

Table 6. Synthesis of 8-(1H-1,2,3-triazol-4-yl) purine nucleoside analogues 

 

Entry 4 Method 5 Yieldb [%] 6 Yieldb [%] 

1 85 A 46 50 (70) 89 15 (25) 

2 86 A 88 30 (75) 90 0 

3 87 Aa 47 52 (90) 91 0 

4 85 B 46 17 (60) 89 0 

5 86 B 88 27 (70) 90 0 

6 87 B 47 31 (65) 91 0 

7 85 C 46 51 (85) 89 0 

8 86 C 88 58 (85) 90 0 

9 87 C 47 52 (80) 91 0 

   a Modified Method A: Ag2CO3, H2O, DMF, 80 oC, 4h.  

Alkynes bearing electron-withdrawing groups are better substrates for the direct 

addition to in-situ generated hydrazoic acid.102,143 Thus, to increase the yield for the 

preparation of the unsubstituted 5-triazol-4-yl pyrimidine nucleosides, insertion of 

electron-withdrawing group to the pyrimidine bases was considered. Initially, the electron-

deficiency of the pyrimidine nucleosides were attempted to be increased by preparing Boc-

protected analogues (Scheme 24 and Scheme 25). Thus, di-N4,N4-Boc-3',5'-di-O-acetyl-5-

ethynyl-2'-deoxycytidine (92, 70%) and N4-Boc-3',5'-di-O-acetyl-5-ethynyl-2'-

deoxycytidine (93, 10%) were synthesized by the treatment of 3',5'-di-O-acetyl-5-ethynyl-

2'-deoxycytidine 63a with (Boc)2O as shown in Scheme 24. Similarly, N3-Boc-3',5'-di-O-

acetyl-5-ethynyl-2'-deoxyuridine (94, 52%) was prepared from 3',5'-di-O-acetyl-5-
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ethynyl-2'-deoxyuridine (62, Scheme 25). Unfortunately, hydroazidation of the Boc-

protected pyrimidine nucleosides 92-94 by Method A resulted in unstable fluorescent 

products which were proved by NMR not to be the expected triazoles. The structures need 

to be further identified. The electron-withdrawing modification on pyrimidine bases did 

change the electron density that further led to different products rather than triazoles.  

 

Scheme 24. Synthesis of 4-N-Boc protected 3',5'-di-O-acetyl-5-ethynyl-2'-deoxycytidine 

derivatives 92 and 93 

 

Scheme 25. Synthesis of 3-N-Boc-3',5'-di-O-acetyl-5-ethynyl-2'-deoxyuridine 94 

3.3.1.2. Method B catalyzed by CuI  

Cycloaddition of the 5-ethynyl nucleosides and TMSN3 in the presences of CuI as a 

catalyst102 was found to produce triazoles as the sole products without formation of the 

vinylazides (Table 5, Entries 3-7; Table 6, Entries, 4-6; Method B). Thus, treatment of 

protected 5-ethynyl-2'-deoxycytidine 63a with TMSN3 in the presence of CuI gave 

diAc-5-TrzdC 83 with increased yield (32%; Table 5, Entry 3; Method B). Analogous 
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treatment of the unprotected 5-ethynyl-2'-deoxycytidine 63b140 by Method B gave 

5-(1H-1,2,3-triazol-4-yl)-2'-deoxycytidine (5-TrzdC, 48) even though with low isolated 

yield (10%; Table 5, Entry 4). Treatment of the uracil counterparts 62 and 77 under 

analogous reaction conditions yielded 3',5'-di-O-acetyl-5-(1H-1,2,3-triazol-4-yl)-2'-

deoxyuridine (diAc-5-TrzdU, 84, 55%;Table 5, Entry 5) and 5-(1H-1,2,3-triazol-4-yl)-2'-

deoxyuridine (5-TrzdU, 39, 50%; Entry 6), respectively. In Method B, DMF/H2O (9:1) was 

used as solvent, in which H2O was required for the reaction to give good yield.102 Treatment 

of 77 by modified Method B in the presence of 2 eq. of H2O in DMF (Entry 7) gave 39 

(42%) as sole product, which showed that stoichiometric amount of H2O was efficient for 

the reaction. It is noteworthy that 84 and 39 were not accessible under Ag2CO3 conditions 

(Method A). 

Treatment of the 8-ethynylpurine nucleoside analogues 85-87 with TMSN3 by Method 

B also yielded their corresponding 8-(1H-1,2,3-triazol-4-yl)-2'-deoxypurine nucleosides 46 

(17%), 88 (27%), and 47 (31%; Table 6, Entry 4-6). However, the isolated yields were 

lower than that of reactions using Method A with Ag2CO3 as catalyst. There were more 

unwanted by-products below the triazole products on TLC, which meanwhile troubled the 

purification. After purification by regular column chromatography, further purification by 

HPLC (C18; A: 100% ACN, B: 5% ACN/H2O; 0% A → 15% A in 30 min, flow rate = 2 

mL/min) was required to obtain pure triazoles.  

The explanation of substantial differences of reactions with various substrates and 

different catalysts (Ag2CO3 and Cu (I)) are still unclear. 
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3.3.1.3. Method C catalyzed by CuSO4/sodium ascorbate 

The relatively low yields of 83 and 48 from Method B using CuI as catalyst was due to 

the oxidation of Cu (I) to Cu (II) during the reaction, which was indicated by the color 

change of the reaction mixture from brown to dark green. To avoid the loss of catalytic 

ability of Cu (I), Method C employing in situ generation of Cu (I) from CuSO4/sodium 

ascorbate was proved to be a better strategy for the synthesis of triazolyl nucleosides (Table 

5, Entry 8-11; Table 6, Entries 7-9; Method C). The reaction mixtures stayed brown during 

the 5-hours reaction, which indicated the invariable catalytic activity of the in-situ 

generated Cu(I). Thus, the treatment of 63a with TMSN3 in the presence of CuSO4/sodium 

ascorbate gave 83, which had a better yield (Table 5, 65%; Entry 8) than that of reaction 

using CuI as catalyst (32%; Table 5, Entry 3). Compared to the Entry 4, the synthesis of 

5-TrzdC 48 using CuSO4/sodium ascorbate provided a much better yield of 51% (Entry 9). 

It is worth noting that the estimated yield based on the TLC was 85%. The hydroazidation 

of 62 by Method C gave 84 with quantitative conversion yield (Entry 10). When 77 was 

treated with TMSN3 by Method C, similar yield of 5-TrzdU 39 (52%; Entry 11) was 

obtained compared to Entry 6 using Method with CuI as catalyst.  

The treatment of the 8-ethynylpurine nucleoside analogues 85-87 with TMSN3 by 

Method C gave their corresponding 8-(1H-1,2,3-triazol-4-yl)-2'-deoxypurine nucleosides 

46 (51%; Table 6, Entry 7), 88 (58%; Entry 8), and 47 (52%; Entry 9), which were 

obviously much better than that given by Method B using CuI as catalyst. The unwanted 

by-products below the triazole products on TLC were much less. 

The substrate scope of Method C for the synthesis of N-unsubstituted triazoles would 

be broad rather than just ethynyl nucleosides. Three presentative p-substituted 
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phenylacetylene, i.e. 4-ethynylanisole 95a (CH3O-, EDG), phenylacetylene 95b (H-, 

neutral), and 4-ethynyl-α,α,α-trifluorotoluene 95c (F3C-, EWG) were chosen and applied 

to this CuSO4/sodium ascorbate catalyzed procedure, and thus affording the corresponding 

triaozles in good yields (63-83%, 96a-96c, Table 7). It is noteworthy that phenylacetylene 

modified with electron-withdrawing group at the p-position promotes the formation of 

triazole, which matched the proposal reported.102,144 

Table 7. Synthesis of p-substituted phenyl triazoles via cycloaddition catalyzed by 

CuSO4/sodium ascorbate (Method C) 

 

Entry 95 Method 96 Yieldb [%] 

1 95a C 96a 63 (80) 

2 95b C 96b 73 (90) 

3 95c C 96c 83 (95) 

In summary, the fluorescent sugar-protected/unprotected N-unsubstituted triazolyl 

analogues of the four natural bases of DNA can be readily prepared with good yields from 

the treatment of their corresponding 5- or 8-ethynyl-2'-deoxynucleosides with TMSN3 in 

the presence of CuSO4/sodium ascorbate as catalyst. Reactions catalyzed by CuI can also 

give triazole adducts as major products but suffered from the relatively low yield because 

of the loss of catalytic activities of Cu (I) to Cu (II) after oxidation. The synthesis of 8-(1H-

1,2,3-triazol-4-yl)-2'-deoxyguanosine using Ag2CO3 as catalyst gave comparable yield and 

easier purification.   
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3.3.1.4. Reaction mechanism study 

A tentative reaction mechanism to give the triazoles as sole products might involve first 

formation of vinylazide followed by 1,5-electrocyclization and tautomerization. However, 

attempts to validate this mechanism were performed by treatment of AvdU 21 under 

Method C and treatment of 8-AvdA 89 under Method A (Scheme 26) and were proved that 

vinyl azide did not undergo cyclization to 1,2,3-triazoles. Thus, the mechanism involving 

a [3+2] cycloaddition of the alkyne with in-situ generated HN3 seems more probable 

(Scheme 27). The terminal alkyne substrate 97 reacts with Cu (I) or Ag (I) and forms metal 

activated alkyne 98, which further reacts with hydrazoic acid 99 in-situ generated from 

TMSN3 and H2O to produce intermediate 100. Protonation of 100 yields the final product 

N-unsubstituted 1,2,3-triazol-4-yl nucleosides 101 and releases Cu (I) or Ag (I) as catalyst. 

 

Scheme 26. Attempted conversion of vinylazides to triazoles 
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Scheme 27. Mechanism for the formation of N-unsubstituted 1,2,3-triazoles 

3.3.2. Stabilities of N-unsubstituted triazolyl nucleosides 

The metabolic phosphorylation by kinase in cells and the following incorporation of 

modified nucleosides into DNA usually requires incubation of the cells with the 

compounds for more than one hour.145,146 Typically, the incubation time is one or two days 

or even longer. For animal test, the whole process may need several days. As a result, the 

biological applications demand the compounds be stable under physiological conditions. 

The chemical stabilities of 8-TrzdA 46, 8-TrzdG 47, 5-TrzdC 48, and 5-TrzdU 39 were 

evaluated in D2O/DMSO-d6 (500 µL/50 µL) by monitoring the decomposition using 

1H NMR. The samples were kept in a 37 oC oil bath in the dark (covered with aluminum 

foil). The 1H NMR spectra were recorded at 0 h, 20h, and 48 h. The 1H NMR spectra of 

8-TrzdA was shown in Figure 28A and the fraction remaining of the four compounds over 

the time was shown in Figure 28B. The results showed that 8-TrzdA 46, 8-TrzdG 47, 

5-TrzdC 48, and 5-TrzdU 39 were very stable and exhibited no detectable decomposition 

in aqueous solution after 48 h at 37 oC. 
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Figure 28. Stability of triazolyl nucleosides at 37 °C in aqueous solution 

(A) 1H NMR of 8-TrzdA in D2O solution (10% DMSO) incubated at 37 oC for 0 h, 20 h, 

and 48 h. (B) Fraction remaining of 8-TrzdA, 8-TrzdG, 5-TrzdU, and 5-TrzdC in D2O 

solution (10% DMSO) incubated at 37 oC vs. time 
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3.3.3. Inhibition of cell proliferation 

For effective metabolic labeling, the cytotoxicity of the labeling probe is an important 

consideration.146 Moreover, I was also interested in the potential application in anticancer 

of this group of novel nucleosides. Thus, 8-TrzdA 46, 8-TrzdG 47, 5-TrzdC 48, and 

5-TrzdU 39 were examined for their antiproliferative activity in HEL, HeLa, Vero, and 

MDCK cells. The results showed that all the compounds exhibited no cytotoxicity with 

CC50 > 100 µM.   

3.3.4. Fluorescent properties of triazolyl nucleosides 

The normalized fluorescence emission, absorption, and excitation spectra for the four 

1H-1,2,3-triazol-4-yl nucleosides in methanol were shown in Figure 29. Their 

photophysical data are summarized in Table 8. As expected, 8-TrzdA 46 with the C4 of 

triazolyl attaching to the C8 of adenine exhibits the high quantum yield (ΦF) of 44%. 

8-TrzdA 46 emits at 300-480 nm with the maximum emission at 355 nm. The diTBDMS-

protected 8-TrzdA analogue 88 exhibits matching fluorescent properties with a ΦF of 48%, 

which is reasonable since protection at sugar moiety does not change to the conjugated 

system and thus no difference would be expected. Similarly, the emission of 8-TrzdG 47 

starts at 300 nm but extends to 540 nm and the maximum emission is at 364 nm. Compared 

to the ΦF of 8-TrzdA 46, the ΦF of 8-TrzdG 88 is a little bit smaller as 9%.  
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Figure 29. Normalized fluorescence emission, absorption, and excitation spectra for (A) 

8-TrzdA, (B) 8-TrzdG, (C) 5-TrzdC, and (D) 5-TrzdU in MeOH 

Table 8. Photophysical data for 8-TrzdA (46), 8-TrzdG (47), 5-TrzdC (48), 5-TrzdU (39), 

and their analogues 

Comp'd  83 48 84 39 46 88 47 

εmax (M-1 cm-1) 4150 18750 10700 12400 17950 14100 14800 

λmax (abs) (nm) 293 295 291 291 287 285 283 

λmax (exc) (nm) 259 311 239 238 295 232 299 

λmax (exc) (nm) 312 254 294 302 235 292 - 

λmax (emi) (nm) 421 407 400 408 355 355 364 

Stokes shift (nm) 128 112 109 117 68 70 81 

ΦF 0.02  0.02 0.003 0.004 0.44 0.48 0.09 

τ1 (ns) 0.46 0.10 0.05 0.14 0.69 1.01 0.61 

τ2 (ns) 4.48 4.35 1.59 1.06 2.07 2.82 3.22 

τaverage (ns) 4.20 3.72 0.82 0.805 1.55 2.22 2.47 

f1 (%) 0.07 0.15 0.50 0.27 0.37 0.33 0.28 

f2 (%) 0.93 0.85 0.50 0.73 0.63 0.67 0.71 
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In contrast, the 5-pyrimidine analogues 5-TrzdU 39 and 5-TrzdC 48 showed a large 

Stokes shift of ~110 nm with the maximum emission approximately at 408 nm and much 

lower quantum yields. 5-TrzdC 48 emits at 320-550 nm (ΦF = 2%), while 5-TrzdU 39 emits 

at 320-500 nm (ΦF = 0.3%). Even though the quantum yield of 5-TrzdU is relatively low, 

it is still good enough to show bright fluorescence in solution and in cells (see cell imaging 

results in section 3.3.5). Similarly, the acetyl-protection at sugar doesn't alter the 

fluorescent properties of the triazolyl pyrimidine nucleosides.  

All triazoles showed biphasic fluorescence decay. The four unprotected triazoles 

present a fast lifetime of 0.1-4.4 ns (Table 8). 5-TrzdC 48 shows the longest lifetime of 

4.35 ns and longest average life time of 3.7 ns. 8-TrzdA (63%), 8-TrzdG (71%), 5-TrzdC 

(85%), and 5-TrzdU (73%) showed the larger contribution of the long lifetime (τ2).  

The application of these fluorescent nucleosides with the minimalistic modification at 

heterocyclic bases to cell imaging and DNA modifications will be discussed below.  

3.3.5. Cell imaging 

Primary mouse astrocytes were treated with vehicle (0.05% DMSO) or 10, 100, 1000 

uM of triazoles (with 0.05% DMSO) for 24 hours. The live cells were imaged using FV10i 

Confocal Laser Scanning Microscope from Olympus. The selected cell images were shown 

in Figure 30. In the negative controls, background fluorescence was indistinguishable in 

cells (Figure 30A). Due to the relatively high λ (exc) of the excitation filter at 405 nm while 

the λmax (exc) of those triazoles were at around 290-310 nm, the fluorescence was somewhat 

weak in Figure 30B-E. Nevertheless, we could still observe clear blue fluorescence from 

the triazoles in the cytosol of live cells rather than in the nucleus, which match our previous 

result on live cell imaging using in-situ generated fluorescent triazoles in cells.51 
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Figure 30. Fluorescence microscopy images and phase photos of primary mouse astrocytes 

cells treated with 8-TrzdA, 8-TrzdG, 5-TrzdC, and 5-TrzdU 
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To further prove that the fluorescent triazoles showed fluorescence in the cytosol, 

3T3-L1 mouse pre-adipocytes (Zen-bio #SP-L1-F) transfected with pMX-puro-GFP were 

employed to show clearly the edge of cells and to localize the cell nucleus with its green 

fluorescence. 3T3-L1 mouse pre-adipocytes transfected with pMX-puro-GFP were treated 

with the vehicle (0.05% DMSO), 200 uM of 8-TrzdA, or 200 uM of 5-TrzdU (with 0.05% 

DMSO) for 24 hours. Fixed cells were mounted with ProLong™ Gold Antifade Mountant 

(Thermo Fisher Scientific) and observed under the Olympus FV 1200 confocal microscope 

(Ex/Em = 473/519 nm for imaging of GFP; Ex/Em = 405/461 nm for triazoles). Figure 31 

showed clearly the cells and the nucleus. In the negative controls, background fluorescence 

was indistinguishable in cells incubated without any triazoles. The fluorescent 8-TrzdA 

(Figure 31B) and 5-TrzdU (Figure 31C) were localized at cytosol. 

 
Figure 31. Fluorescence microscopy images of fixed pMX-puro-GFP transfected 3T3-L1 

mouse pre-adipocytes treated with 8-TrzdA and 5-TrzdU 
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The reasons why the fluorescent stain was only found in cell cytosol rather than in the 

nucleus is still unclear. The possible reasons may be a) The triazolyl nucleosides are not 

substrates for polymerases, b) the triazoles are sensitive to the microenvironment and the 

fluorescence is quenched after being incorporated into duplex DNA.  

3.3.6. Polymerase-catalyzed incorporation of 8-TrzdA into DNA and fluorescent 

sensitivities to varied microenvironments 

3.3.6.1.  Synthesis of TrzdATP 

The 8-TrzdATP 102 was synthesized following the triphosphorylation reported in 

section 3.1.3. The reaction of 8-TrzdA 46 with POCl3 in the presence of proton sponge 

followed by addition of TBAPP 73 and then TBA yielded 8-TrzdATP (102, 30%, Scheme 

28) after DEAE-Sephadex purification. The phosphates were characterized by 1H (Figure 

32A), 13C, 31P NMR (Figure 32B) as well as HR-MS (details at experimental section 4.1.4). 

 

Scheme 28. Synthesis of TrzdATP 
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Figure 32. 1H (A) and 31P (B) NMR of 8-TrzdATP 
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3.3.6.2.  Enzymatic incorporation of 8-TrzdATP into DNA  

To determine the reasons leading to fluorescent stain localization to the cell cytosol 

rather than in the nucleus, 8-TrzdATP 102 was prepared to investigate if it could be 

substrate for polymerases and also to test the changes of fluorescent properties of the 

triazoles before and after being incorporated into duplex DNA (Figure 33).  

 
Figure 33. Proposed incorporation of 8-TrzdATP into DNA 

3.4. Antiviral and cytostatic evaluation of 5-(1-halo-2-sulfonylvinyl) and 5-(2-furyl) 

uracil nucleosides 

The work on section 3.4 as well as experimental section 4.1.5, 4.7 and 4.8 was 

published as an original paper at Arch Pharm/Wiley (Z. Wen, S. H. Suzol, J. Peng, Y. Liang, 

R. Snoeck, G. Andrei, S. Liekens, S. F. Wnuk, Archiv der Pharmazie 2017, 350, e1700023-

n/a).147  

3.4.1. Chemistry 

Tetrabutylammonium fluoride (TBAF)-mediated direct C-H arylation of 5-iodouracil 

nucleosides (103 or 105) with furan yielded 5-(fur-2-yl)-2'-deoxyuridine 106 (73%)111 or 

2',3',5'-tri-O-acetyl-5-(fur-2-yl)uridine 107 (67%, Scheme 29). Treatment of 5-iodo-2'-

deoxyuridine 103 with 2-heptylfuran gave 2'-deoxy-5-(5-heptylfur-2-yl)uridine 108 (61%) 

as a single isomer. Analogous cross-coupling of the protected 2'-deoxyuridine 104 or 
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uridine 105 with 2-heptylfuran provided regioselectively acetyl protected 5-(5-heptylfur-

2-yl) derivatives 109 (60%) and 110 (55%). Deacetylation of 110 with methanolic 

ammonia afforded 5-(5-heptylfur-2-yl)uridine (111; 81%). Esterification of 106 with 

undecanoic anhydride yielded 5'-O-undecanoyl- and 3',5'-di-O-undecanoyl-5-(fur-2-yl)-2'-

deoxyuridine 112 and 113. Analogously 108 was converted to 5-(5-heptylfur-2-yl) esters 

114 and 115.  

 

Scheme 29. Synthesis of 5-(fur-2-yl)- or 5-(5-heptylfur-2-yl)uracil nucleosides by direct 

C-H arylation 

For the synthesis of 5'-monoesters of the 5-furyl substituted uridines (e.g., 119 and 120), 

I have developed a three-step protocol starting from 2',3'-O-isopropylideneuridine 116 

(Scheme 30). Thus, treatment of 116 with undecanoic acid in the presence of DCC gave 

2',3'-O-isopropylidene-5'-O-undecanoyluridine (117) in 90% yield. Iodination of 117 with 

ICl in CH2Cl2 yielded 5'-O-undecanoyl-5-iodouridine (118). Direct C-H cross-coupling of 

118 with furan or 2-heptylfuran in the presence of TBAF111 gave 5'-O-undecanoyl-5-(fur-

2-yl)uridine (119, 63%) or 5'-O-undecanoyl-5-(5-heptylfur-2-yl)uridine (120, 44%), 

respectively.  



82 

 

 
Scheme 30. Synthesis of 5-(fur-2-yl)- or 5-(5-heptylfur-2-yl)uridine and their 5'-esters 

The 5-vinyl sulfone analogues: (E)-5-(1-bromo-2-tosylvinyl)-2'-deoxyuridine (121), 

(E)-3',5'-di-O-acetyl-5-(1-chloro-2-tosylvinyl)-2'-deoxyuridine (122), (E)-5-(1-chloro-2-

tosylvinyl)uridine (123), (E)-5-(1-bromo-2-tosylvinyl)uridine (124), (E)-1-(β-D-

arabinofuranosyl)-5-(1-chloro-2-tosylvinyl)uracil (125), (E)-5-(1-propylthio-2-

tosylvinyl)-2'-deoxyuridine (126), and (E)-5-(1-propylthio-2-tosylvinyl)uridine (127) were 

prepared as reported.110  The 5-heteroarene analogues: 3',5'-di-O-acetyl-5-(fur-2-yl)-2'-

deoxyuridine (128), 5-(fur-2-yl)uridine (129), 1-(β-D-arabinofuranosyl)-5-(fur-2-yl)uracil 

(130), 1-(2,3,5-tri-O-acetyl-β-D-arabinofuranosyl)-5-(fur-2-yl)uracil (131), 5-(thiophen-2-

yl)uridine (132), and 5-(5-methylthiophen-2-yl)uridine (133) were prepared as reported111  

(Figure 34).  

 

Figure 34. Structures of 5-(1-substituted-2-tosylvinyl) 121-127 and 5-(2-heteroaryl) 128-

133 uracil nucleosides tested 
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3.4.2. Inhibition of cell proliferation 

The C5 substituted pyrimidine nucleosides (106-115, 119-133) were first examined for 

their antiproliferative activity in murine leukemia (L1210), human leukemia (CEM) and 

human cervical carcinoma (HeLa) cells. From the (β-halo)vinyl sulfones tested (121-125), 

only the acetyl protected 2'-deoxyuridine (β-chloro)vinyl sulfone 122 inhibited  the growth 

of these cell lines in the lower M range (Table 9). From the 5-(fur-2-yl) analogues tested 

(106-115, 119, 120, 128-131), the 2'-deoxy-5-(5-heptylfur-2-yl)uridine 108 inhibited  the 

growth of CEM cell lines in the M range.  

Table 9. Inhibitory effects of 5-(1-substituted-2-tosylvinyl) and 5-(2-heteroaryl)uracil 

nucleosides on the proliferation of murine leukemia cells (L1210), human T-lymphocyte 

cells (CEM), and human cervix carcinoma cells (HeLa) 

Compound 
IC50

a
 (µM) 

L1210 CEM HeLa 

106 > 100 > 100 32 ± 1 

107 > 100 80 ± 8 > 100 

108 48 ± 6 16 ± 4 > 100 

109 65 ± 10 36 ± 3 > 100 

110 88 ± 17 53 ± 1 > 100 

111 95 ± 8 42 ± 2 > 100 

114 > 100 93 ± 4 > 100 

115 > 100 78 ± 16 > 100 

119 43 ± 8 70 ± 2 64 ± 5 

122 5.6 ± 4.7 11 ± 10 23 ± 8 

125 > 100 > 100 > 100 

127 > 100 > 100 93 ± 14 

129 > 100 60 ± 27 83 ± 25 

130 > 100 > 100 > 100 

131 40 ± 10 63 ± 3 > 100 

132 > 100 86 ± 6 > 100 

133 > 100 > 100 > 100 

   a 50% inhibitory concentration. 
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3.4.3. Antiviral activity 

The antiviral activity of all compounds was tested against a broad range of DNA and 

RNA viruses and the human immunodeficiency (HIV) virus. Some of the compounds 

proved active against herpesviruses though they were less potent than the reference anti-

herpesvirus drugs (Table 10). The 5-(5-heptylfur-2-yl) (108) and 3',5'-Di-O-acetyl-5-(5-

heptylfur-2-yl) (109) derivatives inhibited the replication of human cytomegalovirus 

(HCMV) and varicella-zoster virus (VZV) bearing a wild-type thymidine kinase (TK+) 

with 50% effective concentrations (EC50's) in the range of 10-20 µM. Compound 108 was 

equally active against TK+ and TK-deficient (TK-) VZV strains while compound 109 failed 

to inhibit a TK- VZV mutant virus. Neither compound 108 nor 109 were able to decrease 

herpes simplex virus 1 (HSV-1) and 2 (HSV-2) induced cytopathic effect. In contrast, the 

5-(fur-2-yl)uracil nucleoside 106 emerged among the compounds synthesized as the most 

potent inhibitor of the HSV-1 TK+ strain Kos with an EC50 of 4 µM. Compound 106 was 

less active against HCMV, HSV-2 and the VZV TK+ Oka strain than against HSV-1 while 

it lacked activity against TK- HSV-1 and VZV. The spectrum of activity of compound 130 

only included HSV-1 and VZV TK+ strains. The (β-chloro)vinyl sulfone 122 showed an 

EC50 of 4 µM for the Oka strain (VZV TK+) and marginal activity against HCMV. Except 

for compound 108 that displayed antiviral activity against parainfluenza virus (Table 11), 

none of the compounds showed activity against the other tested viruses. 
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Table 10. Anti-herpesvirus activity of 5-(1-substituted-2-tosylvinyl) and 

5-(2-heteroaryl)uracil nucleosides in HEL (human embryonic lung) fibroblasts 

Compound 

Cytotoxicity 

(µM) 
EC50 (µM)a   

MCCb 
HSV-1 

(KOS) 

HSV-2 

(G) 

HSV-

1  TK- 

(KOS 

ACVr) 

HCMV 

(AD-

169)  

HCMV 

(Davis) 

VZV 

TK+ 

(Oka) 

VZV 

TK- 

(07-1) 

106 >100 4 ± 0 47 ± 37 >100 45 20 32 >100 

108 100 >100 >100 >100 10 20 13 ± 2 12 ± 5 

109 100 >100 >100 >100 10 ± 2 12 ± 4 20 >20 

122 100 >100 >100 >100 >20 20 4 >20 

130 >100 14 ± 8 >100 >100 >100 >100 25 >100 

Acyclovir >440 
0.4 ± 

0.1 

0.3 ± 

0.1 

110 ± 

104 
ND ND 

0.7 ± 

0.1 
44 ± 7 

Brivudin >300 
0.04 ± 

0 

188 ± 

88 

27 ± 

32 
ND ND 

0.02 ± 

0.01 

29 ± 

10 

Ganciclovir >350 
0.06 ± 

0.04 

0.07 ± 

0.03 

4.4 ± 

3.4 

7.9 ± 

2.4 

4.3 ± 

3.6 
ND ND 

Cidofovir >350 
2.7 ± 

1.0 

1.5 ± 

0.7   

1.4 ± 

0.9 

0.9 ± 

0.6 

0.8 ± 

0.6 
ND ND 

a Required to reduce virus-induced cytopathogenicity by 50%. 
b Minimum cytotoxic concentration (MCC) required to cause a microscopically detectable alteration of 

normal cell morphology. 

 

Table 11. Activity of 5-(5-heptylfur-2-yl)-2'-deoxyuridine against Parainfluenza virus 

Compound 
Cytotoxicity (µM) EC50 (µM)a 

MCCb Parainfluenza-3 virus 

108 >100 14 ± 8 

 a Required to reduce virus-induced cytopathogenicity by 50%. 

 b Minimum cytotoxic concentration (MCC) required to cause a microscopically detectable 

  alteration of normal cell morphology. 
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4. EXPERIMENTAL SECTION 

4.1. Synthesis 

4.1.1. General Procedure 

1H (400 MHz) and 13C (100.6 MHz) NMR spectra were recorded in solutions of CDCl3 

unless otherwise noted. Reaction progress was monitored by TLC on Merck Kieselgel 

60-F254 sheets with product detection by 254-nm light. Products were purified by column 

chromatography using Merck Kiselgel 60 (230-400 mesh) or by automated flash 

chromatography using a CombiFlash system. Reagent grade chemicals were used and 

solvents were dried by reflux and distillation from CaH2 under N2 unless otherwise 

specified. All reactions were carried out under the Argon atmosphere.  

4.1.2. Synthesis of pyrimidine nucleosides with azidomethyl and azidovinyl 

modification at C5 position and their 5'-phosphates 

5-Azidomethyl-2'-deoxyuridine 5'-monophosphate (AmdUMP, 19). Phosphoryl 

chloride (11.2 μL, 18.4 mg, 0.12 mmol) was added to a stirred solution of AmdU 1840 (28.3 

mg, 0.1 mmol) and proton sponge (32 mg, 0.15 mmol) in trimethyl phosphate (1 mL) at 0 

oC. The resulting mixture was stirred at 0 oC for 30 min and then quenched by adjusting 

the pH to 7.5 with 2 M TEAB buffer. The residue was dissolved in water (5 mL) and was 

extracted with EtOAc (3 x 5 mL). The water layer was evaporated and coevaporated with 

mixture of EtOH/H2O (1:1, 5 mL).  The residue was column chromatographed (DEAE–

Sephadex®, TEAB 0.1 M → 0.4 M) and the appropriate fractions were evaporated in 

vacuum and coevaporate 5 times with mixture of EtOH/H2O (1:1, 10 mL) to remove excess 

of TEAB salt to give AmdU monophosphate triethylammonium salt 19. (25.5 mg, 70.4%): 

1H NMR (D2O) δ 2.36-2.39 (m, 2H, H2',2''), 3.99-4.08 (m, 2H, H5',5''), 4.16-4.20 (m, 1H, 



87 

 

H4'), 4.18 (s, 2H, CH2), 4.55-4.59 (m, 1H, H3'), 6.31 (t, J = 6.4 Hz, 1H, H1'), 8.09 (s, 1H, 

H6); 31P NMR (D2O) δ 1.16 (s); 13C NMR (D2O) δ 39.1, 47.0, 64.6, 71.0, 85.6, 85.8, 109.6, 

141.0, 151.5, 165.2; HRMS calcd for C10H14N5O8P [M-H]-
 362.05072, found 362.05042. 

5-Azidomethyl-2'-deoxyuridine 5'-triphosphate (AmdUTP, 20). Phosphoryl 

chloride (11.2 μL, 18.4 mg, 0.12 mmol) was added to a stirred solution of AmdU 1840 (28.3 

mg, 0.1 mmol) and proton sponge (32 mg, 0.15 mmol) in trimethyl phosphate (1 mL) at 0 

oC. The resulting mixture was stirred at 0 oC for 30 min. 0.5 M tributylammomium 

pyrophosphate solution in DMF (1 mL, 0.5 mmol) and then tributylamine (71.2 μL, 55.6 

mg, 0.3 mmol) were added to the reaction mixture and stirred at 0 oC for 2 min. The reaction 

was quenched by adjusting the pH to 7.5 with 2 M TEAB buffer. The residue was dissolved 

in water (5 mL) and was extracted with EtOAc (3 x 5 mL). The water layer was evaporated 

and coevaporated with mixture of EtOH/H2O (1:1, 5 mL). The residue was column 

chromatographed (DEAE–Sephadex®, TEAB 0.1 M → 0.6 M) and the appropriate 

fractions were evaporated in vacuum and coevaporate 5 times with mixture of EtOH/H2O 

(1:1, 10 mL) to give AmdU triphosphate triethylammonium salt 20. (39.5 mg, 75.6%). 1H 

NMR (D2O) δ 2.37-2.41 (m, 2H, H2',2''), 4.20 (s, 2H, CH2), 4.20-4.29 (m, 3H, H4',5',5''), 

4.64-4.67 (m, 1H, H3'), 6.32 (t, J = 6.0, 1H, H1'), 8.06 (s, 1H, H6); 31P NMR (D2O) δ -

23.25 (t, J = 19.7, 1P, β), -11.64 (d, J = 19.8, 1P, α), -10.80 (d, J = 19.8, 1P, γ); 13C NMR 

(D2O) δ 38.9, 47.1, 65.4, 70.8, 85.5, 85.8, 109.7, 141.0, 151.5, 165.2; HRMS calcd for 

C10H16N5O14P3 [M-H]-
 521.98338, found 521.98262. 

5-(1-Azidovinyl)-2'-deoxyuridine (AvdU, 21). Procedure A. Step a: Ag2CO3 (5.5 mg, 

0.02 mmol) was added to a solution of 62110 (67.3 mg, 0.2 mmol), TMSN3 (52.5 μL, 46 

mg, 0.4 mmol), and H2O (7 μL, 7 mg, 0.4 mmol) in DMF (2 mL). The resulting mixture 
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was stirred at 80 oC for 1 hour. After cooling to ambient temperature, the volatiles were 

evaporated under the reduced pressure and the residue was column chromatographed 

(hexane/EtOAc 50:50) to give 64 (39 mg, 52%): 1H NMR δ 2.07 (s, 6H, Ac), 2.33-2.46 (m, 

2H, H2',2''), 4.24-4.29 (m, 3H, H4', 5',5''), 5.06 (s, 1H, =CH2), 5.19-5.21 (m, 1H, H3'), 6.00 

(s, 1H, =CH2), 6.14 (t, J = 6.4 Hz, 1H, H1'), 7.83 (s, 1H, H6), 11.73 (s, 1H, NH); 13C NMR 

δ 20.37, 20.81, 36.71, 63.75, 74.19, 81.84, 85.36, 101.58, 107.30, 136.87, 138.33, 149.26, 

160.88, 170.09, 170.17. Step b: Methanolic ammonia (4 mL) was added to 64 (38.9 mg, 

0.1 mmol) in 2 mL MeOH and the resulting mixture was stirred at 0 oC → r.t for 12 hours. 

Volatiles were evaporated and the residue was column chromatographed (EtOAc/MeOH 

95:5) gave AvdU 21 (27.4 mg, 90%): UV (MeOH) λmax 227, 248 (sh), 286 nm (ε 10650, 

7600, 8700), λmin 204, 264 nm (ε 4050, 7200); 1H NMR (DMSO-d6) δ 2.09-2.19 (m, 2H, 

H2' & 2''), 3.54-3.64 (m, 2H, H5' & 5''), 3.82 (q, J = 3.1, 1H, H4'), 4.23-4.27 (m, 1H, H3'), 

5.00 (d, J = 0.7 Hz, 1H, =CH2), 5.11 (t, J = 4.5 Hz, 1H, 5'-OH), 5.28 (d, J = 4.2 Hz, 3'-OH), 

5.91 (d, J = 0.8 Hz, 1H, =CH2), 6.16 (t, J = 6.4 Hz, 1H, H1'), 8.26 (s, 1H, H6), 11.60 (s, 

1H, NH); 13C NMR (DMSO-d6) δ 40.2, 61.0, 70.3, 84.8, 87.6, 101.3, 107.1, 137.3, 139.4, 

149.4, 161.0; HRMS calcd for C11H13N5O5Na [M+Na]+ 318.0809, found 318.0784. 

5-Azidomethyl-2'-deoxycytidine (AmdC, 42). Step a: TIPBS-Cl (59 mg, 0.2 mmol) 

was added to a stirring solution of 5440 (67 mg, 0.13 mmol), DMAP (2 mg, 0.016 mmol), 

and triethylamine (27 µL, 19.7 mg, 0.2 mmol) in CH2Cl2 (1.5 mL) at ambient temperature. 

After 1 h, the residue was partitioned between CH2Cl2 and H2O. The organic layer was 

washed with NaHCO3/H2O and brine. Then 2.5 mL THF and 4 mL of aq. NH3 was added 

into the reaction residue and stirred at rt overnight. The volatiles were evaporated and the 

residue was partitioned between EtOAc and saturated brine and was column 
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chromatographed (CHCl3/MeOH, 0:100 → 85:15) to give 55 (57.4 mg, 86%) of sufficient 

purity to be used in next step: 1H NMR (DMSO-d6) δ 0.07 (s, 6H, 2 x CH3), 0.08 (s, 6H, 2 

x CH3), 0.87 (s, 9H, 3 x CH3), 0.88 (s, 9H, 3 x CH3), 2.00-2.07 (m, 1H, H2'), 2.15 (ddd, J 

= 13.6, 6.5, 3.4 Hz, 1H, H2''), 3.71-3.72 (m, 2H, H5',5''), 3.82 (q, J = 4.2 Hz, H4'), 4.22 (s, 

2H, CH2N3), 4.32-4.35 (m, 1H, H3'), 6.14 (t, J = 6.8 Hz, H1'), 7.13 (s, 1H, NH), 7.54 (s, 

1H, NH), 7.70 (s, 1H, H6); 13C NMR (DMSO-d6) δ -5.5, -5.0, -4.8, 17.6, 17.9, 25.6, 25.7, 

40.0, 47.3, 62.8, 72.2, 84.8, 86.9, 100.0, 141.4, 154.4, 164.0 Step b: 1 M TBAF/THF (330 

uL, 0.33 mmol) was added to a stirring solution of 55 (57.4 mg, 0.11 mmol) in THF (5 

mL). After 4 h, volatiles were evaporated and the residue was column chromatographed 

(CHCl3/MeOH, 100:0→85:15) and further purified by HPLC (C18; A: 100% ACN, B: 5% 

ACN/H2O; 0% A → 5% A in 30 min, flow rate = 2 mL/min) to give 42 (27.3 mg, 88%): 

UV (MeOH) λmax 206, 276 nm (ε 18 000, 6300), λmin 256 nm (ε 4800); 1H NMR (DMSO-d6) 

δ 1.91-1.98 (m, 1H, H2'), 2.14 (ddd, J = 13.4, 5.9, 3.5 Hz, H2''), 3.52-3.62 (m, 2H, H5',5''), 

3.78 (q, J = 4.0 Hz, 1H, H4'), 4.19-4.23 (m, 1H, H3'), 4.23 (s, 2H, CH2N3), 5.01 (t, J = 4.8 

Hz, 1H, 5'-OH), 5.22 (d, J = 4.0 Hz, 1H, 3'-OH), 6.12 (t, J = 6.1, 1H, H1'), 7.12 (s, 1H, 

NH), 7.49 (s, 1H, NH), 7.97 (s, 1H, H6); 13C NMR (DMSO-d6) δ 40.4, 47.4, 61.3, 70.2, 

85.0, 87.3, 99.9, 142.0, 154.6, 164.0; HRMS calcd for C10H14N6O4Na [M+Na]+ 305.0969, 

found 305.0969. 

5-(1-Azidovinyl)-2'-deoxycytidine (AvdC, 43).  Method A. Step a: Treatment of 

63a119 (297 mg, 0.88 mmol) with TMSN3 by procedure A, step a, (column chromatography; 

CHCl3/MeOH, 100:0 → 90:10) gave 3',5'-di-O-acetyl-5-(1-azidovinyl)-2'-deoxycytidine 

65 (169 mg, 51%): 1H NMR δ 2.03 (s, 3H, Ac), 2.06 (s, 3H, Ac), 2.32-2.42 (m, 2H, H2',2''), 

4.19-4.28 (m, 3H, H4',5',5''), 5.06 (d, J = 1.5 Hz, 1H, =CH2), (d, J = 1.4 Hz, 1H, =CH2), 
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5.16-5.18 (m, 1H, H3'), 6.15 (t, J = 6.5 Hz, 1H, H1'), 7.05 (s, 1H, NH), 7.64 (s, 1H, NH), 

7.69 (s, 1H, H6). Step b:  Treatment of 65 (160 mg, 0.42 mmol) with methanolic ammonia 

by Procedure A, step b, (HPLC, C18; A: 100% ACN, B: 5% ACN/H2O; 0% A → 5% A in 

50 min, flow rate = 2 mL/min; Rt = 15.6 min)  gave AvdC 43 (59 mg, 48%): UV (MeOH) 

λmax 213, 244 (sh), 283 nm (sh) (ε 18500, 10800, 5350); 1H NMR (DMSO-d6) δ 1.98-2.00 

(m, 1H, H2'), 2.16 (s, J = 3.8, 1H, H2''), 3.52-3.63 (m, 2H, H5' & 5''), 3.79 (q, J = 3.3, 1H, 

H4'), 4.20-4.23 (m, 1H, H3'), 5.00 (d, J = 1.7 Hz, 1H, =CH2), 5.05 (d, J = 1.7 Hz, 1H, 

=CH2), 5.06 (s, 1 H, 5'-OH), 5.22 (s, 1H, 3'-OH), 6.11 (t, J = 7.1 Hz, 1H, H1'), 6.93 (s, 1H, 

NH), 7.52  (s, 1H, NH), 8.05 (s, 1H, H6); 13C NMR (DMSO-d6) δ 40.7, 60.9, 70.0, 85.2, 

87.4, 101.8, 103.5, 139.2, 141.5, 154.1, 162.4; HRMS calcd for  C11H14N6O4Na [M+Na]+ 

317.0969, found 317.0976.  

Method B. Treatment of 5-ethynyl-2'-deoxycytidine 63b120 (40 mg, 0.16 mmol) with 

TMS-N3 by procedure A step a (column chromatography; CHCl3/MeOH, 95:5 → 85:15) 

gave 43 (16 mg, 34%). 

Method C. TIPBSCl (68 mg, 0.22 mmol) was added to a stirring solution of 64 (56.7 

mg, 0.15 mmol), DMAP (2.3 mg, 0.018 mmol), and TEA (32 µL, 22.8 mg, 0.22 mmol) in 

CH2Cl2 (1.5 mL) at ambient temperature. After 1 h, the residue was partitioned between 

CH2Cl2 and H2O. The organic layer was washed with NaHCO3/H2O and brine. Then 3 mL 

THF and 4.5 mL of aq. NH3 was added into the reaction residue and stirred at rt overnight. 

The volatiles were evaporated and the residue was column chromatographed 

(CHCl3/MeOH, 100:0 → 85:15) to give 43 (28 mg, 63%).  

3',5'-di-O-acetyl-5-azidomethyl-2'-deoxyuridine (diAcAmdU, 56). Into a solution 

of AmdU 1840 (85 mg, 0.3 mmol) and 4-dimehtylaminopyridine (3.7 mg, 0.03 mmol) in 3 
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mL acetonitrile was added triethylamine (209 µL, 151.8 mg, 1.5 mmol). The resulting 

mixture was stirred for 5 min. Acetic anhydride (85 µL, 91.9 mg, 0.9 mmol) was added 

and the reaction mixture was stirred at room temperature for 1 h. The volatiles were 

evaporated and the residue was dissolved in EtOAc and was extracted with NaHCO3 

aqueous solution. The organic layer was collected and dried over Na2SO4. The volatiles 

were evaporated under the reduced pressure and the residue was column chromatographed 

(hexane/EtOAc 70:30 → 40:60) to give 56 (71.3 mg, 65%): 1H NMR δ 2.11-2.20 (m, 1H, 

H2'), 2.12 (s, 3H, CH3), 2.14 (s, 3H, CH3), 2.53 (ddd, J = 14.2, 5.3, 1.7 Hz, 1H, H2''), 4.13 

(d, J = 5.2 Hz, 1H, CH2N3), 4.24 (d, J = 3.9 Hz, 1H, CH2N3), 4.27-4.33 (m, 2H, H4',5'), 

4.42 (dd, J = 12.6, 5.3 Hz, 1H, H5''), 5.21-5.24 (m, 1H, H3'), 6.31 (dd, J = 9.3, 6.0 Hz, 1H, 

H1'), 7.56 (s, 1H, H6), 9.04 (s, 1H, NH). 13C NMR δ 20.9, 21.1, 38.0, 47.3, 64.0, 74.3, 77.4, 

82.7, 85.5, 110.5, 137.2, 149.9, 162.2, 170.5, 170.6.   

5-(Dimethoxymethyl)-2'-deoxyuridine (58). The solution of thymidine 41 (72.7 mg, 

0.3 mmol), NaHCO3 (25.2 mg, 0.3 mmol), and Na2S2O8 (213 mg, 0.9 mmol) in H2O/MeCN 

(2:3, 4 mL) was degassed for 15 min. Tosyl azide (69 µL, 88.8 mg, 0.45 mmol) was added 

into the resulting mixture and then the reaction was stirred under 80 oC for 1 h. After the 

reaction, the temperature was lower down to room temperature and 0.5 mL aqueous 

solution Na2S2O3 (268mg, 1.08 mmol) and NaI (45 mg, 0.3 mmol) was added to quench 

the excess Na2S2O8. The volatiles were evaporated and the residue was column 

chromatographed (CHCl3/MeOH, 100:0→85:15) and further purified by HPLC (C18; A: 

100% ACN, B: 5% ACN/H2O; 0% A → 5% A in 60 min, flow rate = 2 mL/min) to give 

58 (58.1 mg, 64%):  1H NMR (DMSO-d6) δ 2.02-2.09 (m, 1H, H2'), 2.14 (ddd, J = 13.3, 

6.1, 3.4 Hz, H2''), 3.22 (s, 3H, CH3), 3.24 (s, 3H, CH3), 3.52-3.58 (m, 2H, H5',5''), 3.80 (q, 



92 

 

J = 3.3 Hz, 1H, H4'), 4.20-4.25 (m, 1H, H3'), 4.97 (t, J = 4.7 Hz, 1H, 5'-OH), 5.17 (s, 1H, 

CH), 5.25 (d, J = 4.2 Hz, 1H, 3'-OH), 6.16 (t, J = 6.9, 1H, H1'), 7.92 (s, 1H, H6), 11.39 (s, 

1H, NH).  

5'-DMT-5-azidomethyl-2'-deoxyuridine (5'-DMTAmdU, 59). AmdU 1840 (337 mg, 

1.19 mmol) and 4,4'-dimethoxytrityl chloride (484 mg, 1.43 mmol) were dissolved in 6 mL 

of pyridine. The resulting solution was stirred at rt for 2 h. The volatiles were removed. 

The residue was dissolved in EtOAc and washed with NaHCO3 solution followed by 

saturated NaCl solution and was column chromatographed (hexane/EtOAc/ triethylamine, 

70:30:2 → 80:20:2) to give compound 5'-DMT-5-azidomethyl-2'-deoxyuridine 59 (501.8 

mg, 72%): 1H NMR (CD2Cl2) δ 2.28-2.33 (m, 1H, H2'), 2.41 (ddd, J = 13.9, 6.2, 3.9 Hz, 

1H, H2''), 3.36-3.40 (m, 3H, CH2,H5',5''), 3.59 (d, J = 15.0, 1H, CH2), 3.79 (s, 6H, 2xOCH3), 

4.04 (q, J = 3.3, 1H, H4'), 4.60 (quin, J = 3.3, 1H, H3'), 6.32 (dd, J = 7.7, 6.2 Hz, 1H, H1'), 

6.84-6.88 (m, 4H, Ph), 7.26-7.34 (m, 7H, Ph), 7.39-7.41 (m, 2H, Ph), 7.75 (s, 1H, H6); 13C 

NMR (CD2Cl2) δ 41.6, 47.4, 55.8, 64.0, 72.7, 85.6, 86.8, 87.6, 110.2, 113.9, 127,8, 128.6, 

128.7, 130.7, 135.6, 136.1, 139.5, 145.1, 150,5, 159,5; HRMS calcd for C31H31N5O7Na 

[M+Na]+ 608.2116, found 608.2127. 

3'-CEP-5'-DMT-5-azidomethyl-2'-deoxyuridine (3'-CEP-5'-DMTAmdU, 60). 

2-Cyanoethyl N,N-diisopropylchlorophosphoramidite (54 μL, 56.8 mg, 0.24 mmol) was 

added to a solution of 5'-DMT-5-azidomethyl-2'-deoxyuridine 59 (117 mg, 0.2 mmol) and 

DIPEA (52 μL, 38.8 mg, 0.3 mmol) in DCM (2 mL). The resulting solution was stirred at 

rt for 10 min. The residue was diluted with CH2Cl2 and washed with saturated NaHCO3 

solution followed by brine solution and the organic layer was dried with anhydrous Na2SO4. 

The solvent was removed with high vacuum evaporator under ice/acetone bath (-10 oC). 
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The residue was column chromatographed (hexane/EtOAc/triethylamine, 50:50:2 → 

40:60:2) to give compound 3'-CEP-5'-DMT-5-azidomethyl-2'-deoxyuridine 60 (118 mg, 

75%): 1H NMR (CD2Cl2) δ 1.17 (d, J = 2.2 Hz, 6H, 2xCH3), 1.19 (d, J = 2.0 Hz, 6H, 

2xCH3), 2.31-2.38(m, 1H, H2'), 2.46 (t, J = 6.4 Hz, 2H, CH2CN ), 2.46-2.54 (m, 1H, H2''), 

3.32 (d, J = 13.4, 1H, CH2N3), 3.37 (dd, , J = 10.6, 3.1 Hz, 1H, H5'), 3.46 (dd, , J = 10.6, 

2.8 Hz, 1H, H5''), 3.57 (d, J = 13.4 , 1H, CH2N3), 3.55-3.71 (m, 4H, OCH2, 2xCH ), 3.79 

(s, 6H, OCH3), 4.19 (q, J = 2.6, 1H, H4'), 4.70 (ddd, J = 13.6, 6.4, 3.1 Hz, 1H, H3'), 6.33 

(dd, J = 7.3, 6.3 Hz, 1H, H1'), 6.84-6.88 (m, 4H, ph), 7.27-7.35 (m, 7H, ph), 7.40-7.42 (m, 

2H, ph), 7.81 (s, 1H, H6) ); 31P NMR (CD2Cl2) δ 148.85 (s); 13C NMR (CD2Cl2) δ 24.9, 

40.6, 47.4, 55.8, 59.0, 63.6, 73.8, 85.7, 86.4, 87.6, 110.2, 113.9, 118.2, 127.8, 128.6, 128.8, 

130.8, 135.9, 136.0, 139.6, 145.0, 150.4, 159.5, 163.0; HRMS calcd for C40H48N7O8PNa 

[M+Na]+ 808.3194, found 808.3154.  

5-Formyl-2'-deoxyuridine (67) and 5-azirinyl-2'-deoxyuridine (68) from the UV 

decomposition of AvdU 21. The solution of AvdU 21 (16.3 mg, 0.055 mmol) in 5 mL 

MeOH in a dark box was irradiated by a 254 nm UV lamp (UVG-11, 4 W, 0.16 Amps) for 

1.5 h. , The volatiles were evaporated under the reduced pressure and the residue was 

column chromatographed (CHCl3/MeOH, 100:0 → 95:5) to give 5-formyl-2'-deoxyuridine 

(67, 5.7 mg, 40.7%) and 5-azirinyl-2'-deoxyuridine (68, 5.1 mg, 34.7%). 5-Formyl-2'-

deoxyuridine (67) has 1H NMR (DMSO-d6) δ 2.12-2.29 (m, 2H, H2',2''), 3.56-3.66 (m, 2H, 

H5',5''), 3.86 (q, J = 3.2 Hz, 1H, H4'), 4.22-4.26 (m, 1H, H3'), 5.12 (t, J = 5.2 Hz, 1H, 5'-

OH), 5.28 (d, J = 4.4 Hz, 1H, 3'-OH), 6.09 (t, J = 6.4, 1H, H1'), 8.71 (s, 1H, H6), 9.76 (s, 

1H, CHO), 11.75 (s, 1H, NH).  13C NMR (DMSO-d6) δ 40.6, 60.7, 69.8, 85.9, 87.9, 110.7, 

147.1, 149.5, 161.6, 186.1. 5-Azirinyl-2'-deoxyuridine (68) has 1H NMR (DMSO-d6) δ 
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1.27 (d, J = 8.4 Hz, 1H, azirinyl), 1.31 (d, J = 8.4 Hz, 1H, azirinyl), 2.20-2.30 (m, 2H, 

H2',2''), 3.57-3.71 (m, 2H, H5',5''), 3.84 (q, J = 3.2 Hz, 1H, H4'), 4.27 (quin, J = 5.6 Hz, 

1H, H3'), 5.21 (t, J = 4.8 Hz, 1H, 5'-OH), 5.29 (d, J = 4.4 Hz, 1H, 3'-OH), 6.12 (t, J = 6.0, 

1H, H1'), 8.81 (s, 1H, H6), 11.82 (s, 1H, NH).  13C NMR (DMSO-d6) δ 14.7, 40.6, 60.3, 

69.2, 85.6, 87.7, 101.1, 148.3, 149.4, 158.0, 159.4.  

5'-DMT-5-(1-azidovinyl)-2'-deoxyuridine (69). AvdU 21 (24.8 mg, 0.084 mmol) and 

4,4'-dimethoxytrityl chloride (34 mg, 0.1 mmol) were dissolved in 0.5 mL of pyridine. The 

resulting solution was stirred at rt for 2 h. The volatiles were removed. The residue was 

dissolved in EtOAc and washed with NaHCO3 solution followed by saturated NaCl 

solution and was column chromatographed (hexane/EtOAc/ triethylamine, 70:30:2) to give 

compound 5'-DMT-5-(1-azidovinyl)-2'-deoxyuridine 69 (30 mg, 60%): 1H NMR (CD2Cl2) 

δ 2.23 (m, J = 13.7, 7.2, 6.4 Hz, 1H, H2'), 2.42 (ddd, J = 13.7, 6.4, 4.0 Hz, 1H, H2''), 3.33 

(dd, J = 10.2, 4.0 Hz, 1H, H5'), 3.44 (dd, J = 10.4, 4.0 Hz, 1H, H5''), 3.78 (s, 6H, 2xOCH3), 

4.05 (q, J = 3.5 Hz, 1H, H4'), 4.43 (quin, J = 3.3 Hz, 1H, H3'), 4.92 (d, J = 2.0 Hz, 1H, 

CH2), 6.10 (d, J = 1.8 Hz, 1H, CH2), 6.28 (dd, J = 7.3, 6.0 Hz, 1H, H1'), 6.82-6.85 (m, 4H, 

Ph), 7.21-7.35 (m, 7H, Ph), 7.43-7.46 (m, 2H, Ph), 7.97 (s, 1H, H6); 13C NMR (CD2Cl2) δ 

41.3, 55.6, 63.9, 72.5, 85.8, 86.6, 87.1, 101.5, 108.8, 113.5, 127.3, 128.2, 128.4, 130.4, 

136.0, 136.1, 137.0, 138.2, 145.0, 149.6, 159.2, 160.9, 171.2.  

3'-CEP-5'-DMT-5-(1-azidovinyl)-2'-deoxyuridine (70) (not obtained after column 

due to the Staudinger reaction). 2-Cyanoethyl N,N-diisopropylchlorophosphoramidite (9 

μL, 9.5 mg, 0.04 mmol) was added to a solution of 5'-DMT-5-(1-azidovinyl)-2'-

deoxyuridine 69 (20 mg, 0.033 mmol) and DIPEA (9 μL, 6.5 mg, 0.05 mmol) in DCM (1 

mL). The resulting solution was stirred at rt for 10 min. The residue was diluted with 
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CH2Cl2 and washed with saturated NaHCO3 solution followed by brine solution and the 

organic layer was dried with anhydrous Na2SO4. The solvent was removed with high 

vacuum evaporator under ice/acetone bath (-10 oC). The residue was column 

chromatographed (hexane/EtOAc/triethylamine, 70:30:2) to give compound, which was 

characterized as non-70(16.4 mg, 63%). The NMR data of the isomer with higher Rf of 

0.71 after column are provided: 1H NMR (CD2Cl2) δ 1.19-1.20 (m, 12H, 4xCH3), 2.47-

2.65 (m, 4H, CH2CN, H2',2''), 3.30-3.46 (m, 2H, H5',5''), 3.39 (s, 6H, OCH3), 3.95-4.04 

(m, 4H, OCH2, 2 x CH), 4.30-4.33 (m, 1H, H4'), 4.88 (d, J = 2.0 Hz, CH2), 4.92-4.96 (m, 

1H, H3'), 6.06 (d, J = 2.0 Hz, CH2), 6.31(dd, J = 8.8, 5.6 Hz, 1H, H1'), 6.82-6.84 (m, 4H, 

ph), 7.21-7.36 (m, 7H, ph), 7.42-7.47 (m, 2H, ph), 8.02 (s, 1H, H6); 31P NMR (CD2Cl2) δ 

7.52 (s, major) 148.85 (s); Based on the 1H and 31P NMR, it was concluded that the 

phosphoramidite was oxidized to P (IV) through the Staudinger reaction.  

5-Azidomethyl-2'-deoxycytidine triphosphate (AmdCTP, 74). POCl3 (19 μL, 31.2 

mg, 0.2 mmol) was added to a stirred solution of AmdC 42 (24 mg, 0.085 mmol) and proton 

sponge (54.6 mg, 0.255 mmol) in trimethyl phosphate (1 mL) at 0 oC. The resulting mixture 

was stirred at 0 oC for 30 min. 0.5 M tributylammomium pyrophosphate solution in DMF 

(1.275 mL, 0.5 mmol) and then tributylamine (90.9 μL, 70.9 mg, 0.38 mmol) were added 

to the reaction mixture and stirred at 0 oC for 2 min. The reaction was quenched by 

adjusting the pH to 7.5 with 2 M TEAB buffer. The residue was dissolved in water (5 mL) 

and was extracted with EtOAc (3 x 5 mL). The water layer was evaporated and 

coevaporated with mixture of EtOH/H2O (1:1, 5 mL). The residue was column 

chromatographed (DEAE–Sephadex®, TEAB 0.1 M → 0.6 M) and the appropriate 

fractions were evaporated in vacuum and coevaporate 5 times with mixture of EtOH/H2O 
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(1:1, 10 mL) to give AmdC triphosphate triethylammonium salt 74. (10.2 mg, 23%). 1H 

NMR (D2O) δ 2.36-2.43 (m, 1H, H2'), 2.49 (ddd, J = 14.4, 6.7, 4.4 Hz, 1H, H2''), 4.19-4.28 

(m, 3H, H4',5',5''), 4.41 (d, J = 15.0, 1H, CH2N3), 4.48 (d, J = 14.6, 1H, CH2N3), 4.61-4.64 

(m, 1H, H3'), 6.24 (t, J = 5.9, 1H, H1'), 8.33 (s, 1H, H6); 31P NMR (D2O) δ -23.41 (t, J = 

19.7, 1P, β), -11.72 (d, J = 20.5, 1P, α), -10.93 (d, J = 20.0 Hz, 1P, γ); 13C NMR (D2O) δ 

39.6, 47.4, 65.1, 70.3, 86.2, 86.9, 101.9, 144.6, 148.0, 158.3; HRMS calcd for 

C10H16N5O14P3 [M-H]-
 520.99937, found 520.99934. 

5-Acetyl-2'-deoxyuridine triphosphate (75). POCl3 (22.4 μL, 36.8 mg, 0.24 mmol) 

was added to a stirred solution of AvdU 21 (59 mg, 0.2 mmol) and proton sponge (64.3 

mg, 0.3 mmol) in trimethyl phosphate (1.5 mL) at 0 oC. The resulting mixture was stirred 

at 0 oC for 30 min. 0.5 M tributylammomium pyrophosphate solution in DMF (2 mL, 1 

mmol) and then tributylamine (142.5 μL, 111.2 mg, 0.6 mmol) were added to the reaction 

mixture and stirred at 0 oC for 2 min. The reaction was quenched by adjusting the pH to 

7.5 with 2 M TEAB buffer. The residue was dissolved in water (5 mL) and was extracted 

with EtOAc (3 x 5 mL). The water layer was evaporated and coevaporated with mixture of 

EtOH/H2O (1:1, 5 mL). The residue was column chromatographed (DEAE–Sephadex®, 

TEAB 0.1 M → 0.6 M) and further purified by HPLC (C18; A: 20 mM TEAA buffer (pH 

= 7.1, in ACN/H2O = 1:1), B: 20 mM TEAA buffer (pH = 7.1, in H2O); 0% A → 25% A 

in 20 min, flow rate = 1 mL/min then stay with 25% A for 40 min). The appropriate 

fractions were evaporated in vacuum and coevaporate 5 times with mixture of EtOH/H2O 

(1:1, 5 mL). to give 5-acetyl-2'-deoxyuridine triphosphate triethylammonium salt 75125 

(23.4 mg, 23%). 1H NMR (D2O) δ 2.40-2.53 (m, 5H, H2',2'', CH3), 4.22-4.25 (m, 2H, 

H5',5''), 4.28-4.30 (m, 1H, H4'), 4.64-4.67 (m, 1H, H3'), 6.25 (t, J = 6.0, 1H, H1'), 8.65 (s, 
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1H, H6); 31P NMR (D2O) δ -23.35 ("s", 1P, β), -11.64 ("s", 1P, α), -10.97 ("s", 1P, γ); 13C 

NMR (D2O) δ 28.7, 39.5, 65.5, 70.4, 86.4, 87.1, 112.3, 148.5, 150.5, 162.4, 197.8. 

5-Ethynyl-2'-deoxyuridine triphosphate (78). POCl3 (44.7 μL, 73.6 mg, 0.48 mmol) 

was added to a stirred solution of 5-ethynyl-2'-deoxyuridine 77110 (100 mg, 0.4 mmol) and 

proton sponge (128. 6 mg, 0.6 mmol) in trimethyl phosphate (3 mL) at 0 oC. The resulting 

mixture was stirred at 0 oC for 30 min. 0.5 M tributylammomium pyrophosphate solution 

in DMF (4 mL, 2 mmol) and then tributylamine (285 μL, 222.4 mg, 1.2 mmol) were added 

to the reaction mixture and stirred at 0 oC for 2 min. The reaction was quenched by 

adjusting the pH to 7.5 with 2 M TEAB buffer. The residue was dissolved in water (10 mL) 

and was extracted with EtOAc (3 x 10 mL). The water layer was evaporated and 

coevaporated with mixture of EtOH/H2O (1:1, 5 mL). The residue was column 

chromatographed (DEAE–Sephadex®, TEAB 0.1 M → 0.6 M) and the appropriate 

fractions were evaporated in vacuum and coevaporate 5 times with mixture of EtOH/H2O 

(1:1, 10 mL) to give 5-ethynyl-2'-deoxyuridine triphosphate triethylammonium salt 78 

(104 mg, 53%). 1H NMR (D2O) δ 2.28-2.37 (m, 2H, H2',2''), 3.55 (s, 1H, CH), 4.09-4.16 

(m, 3H, H4',5',5''), 4.53-4.56 (m, 1H, H3'), 6.20 (t, J = 6.8, 1H, H1'), 8.15 (s, 1H, H6); 31P 

NMR (D2O) δ -23.46 (t, J = 20.9, 1P, β), -11.68 (d, J = 19.9, 1P, α), -10.86 (d, J = 20.7, 

1P, γ); 13C NMR (D2O) δ 38.8, 65.3, 70.6, 83.4, 85.6, 85.8, 98.7, 145.6, 150.5, 164.5. 

4.1.3. Synthesis of 2-azido-2'-deoxyinosine 

3',5'-di-O-acetyl-2'-deoxyguanosine (80). Acetyl anhydrite (1.5 mL, 1.65 g, 16.5 

mmol) was added to a solution of 2'-deoxyguanosine (dG,1.3 g, 5 mmol) and pyridine (1.5 

ml) in DMF (4 mL). The resulting mixture was stirred at 75 oC for 4h. After cooling to 

ambient temperature, the volatiles were evaporated under the reduced pressure and the 
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residue was column chromatographed (CHCl3/MeOH, 100:0 → 85:15) to give 80148 (1.4 g, 

81%): 1H NMR (DMSO-d6) δ 2.04 (s, 3H, Ac), 2.08 (s, 3H, Ac), 2.42-2.48 (m, 1H, H2'), 

2.88-2.95 (m, 1H, H2''), 4.16 (m, 3H, H4',5',5''), 5.28-5.29 (m, 1H, H3'), 6.13 (dd, J = 8.4, 

5.6 Hz, 1H, H1'), 6.52 (s, 2H, NH2), 7.92 (s, 1H, H8), 10.69 (s, 1H, NH).   

3',5'-di-O-acetyl-O6-(p-nitrophenethyl)-2'-deoxyguanosine (81). 3',5'-di-O-acetyl-

2'-deoxyguanosine 80 (703 mg, 2 mmol), PPh3 (840 mg, 3.2 mmol), p-nitrophenethyl 

alcohol (500 mg, 3 mmol), and activated molecular sieves were dispersed in 40 mL 

1,4-dioxane and stirred for 30 min. Then DIAD (630 μL, 646 mg, 3.2 mmol) was added to 

the mixture and stirred at room temperature overnight. Molecular sieves were filtrated and 

the volatiles were evaporated under reduced pressure. The solid residue was washed with 

Et2O to remove triphenylphosphate and then column chromatographed (CHCl3/MeOH, 

100:0 → 95:5) to give 81148 (720 g, 72%): 1H NMR (DMSO-d6) δ 2.02 (s, 3H, Ac), 2.08 

(s, 3H, Ac), 2.43-2.47 (m, 1H, H2'), 2.97-3.04 (m, 1H, H2''), 3.25 (t, , J = 7.2 Hz, 2H, CH2),   

4.16-4.22 (m, 2H, 5',5''), 4.28 (t, J = 6.4 Hz, 1H, H4'), 4.67 (t, , J = 6.8 Hz, 2H, CH2), 5.30-

5.33 (m, 1H, H3'), 6.22 (dd, J = 7.6, 6.4 Hz, 1H, H1'), 6.53 (s, 2H, NH2), 7.63 (d, J = 8.4 

Hz, 2H, Ph), 8.07 (s, 1H, H8), 8.18 (d, J = 8.4 Hz, 2H, Ph).  

3',5'-di-O-acetyl-2-azido-O6-(p-nitrophenethyl)-2'-deoxyinosine (82). 3',5'-di-O-

acetyl-O6-(p-nitrophenethyl)-2'-deoxyguanosine 81 (200 mg, 0.4 mmol) was dissolved in 

5 mL acetonitrile. The mixture was cooled down to -10 oC (acetone/ice bath) and then tert-

butyl nitrite (264 μL, 206 mg, 2 mmol) and trimethylsilyl azide (TMSN3, 262 μL, 230 mg, 

2 mmol) were added. The resulting mixture was kept in -20 oC freezer and 12 h and then 4 

oC refrigerator for 24 h.  The volatiles were evaporated under the reduced pressure and the 

residue was column chromatographed (CHCl3/MeOH, 100:0 → 95:5) to give 82 (155.4 mg, 
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74%): 1H NMR (DMSO-d6) δ 1.99 (s, 3H, Ac), 2.09 (s, 3H, Ac), 2.56 (ddd, J = 14.4, 6.4, 

3.2 Hz, 1H, H2'), 3.04-3.11 (m, 1H, H2''), 3.29-3.30 (m, 2H, CH2),  4.16-4.30 (m, 3H, 

H4',5',5''), 4.81 (t, , J = 6.8 Hz, 2H, CH2), 5.38-5.41 (m, 1H, H3'), 6.35 (t, J = 6.4 Hz, 1H, 

H1'), 7.63 (d, J = 9.2 Hz, 2H, Ph), 8.18 (d, J = 8.0 Hz, 2H, Ph), 8.49 (s, 1H, H8). 

2-azido-2'-deoxyinosine (2-N3dI, 44). To a solution of 82 (79 mg, 0.15 mmol) in 

acetonitrile was added 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 449 μL, 456 mg, 3 

mmol). The resulting mixture was stirred at room temperature for 3 h. The volatiles were 

evaporated under the reduced pressure and dried under high vacuum. 2 mL MeOH was 

added to the reaction residue and cooled down to 0 oC (ice bath), followed by adding 3 mL 

NH3/MeOH. The resulting mixture was stirred at 0 oC to room temperature overnight.  The 

volatiles were evaporated under the reduced pressure and the residue was column 

chromatographed (CHCl3/MeOH, 100:0 → 85:25) and further purified by HPLC (C18; A: 

100% ACN, B:  100% H2O; 0% A then 0% A → 5% A in 30 min, flow rate = 2 mL/min) 

to give 44149 (36.6 mg, 83%): 1H NMR (DMSO-d6) δ 2.21 (ddd, J = 12.9, 6.3, 3.1 Hz, 1H, 

H2'), 2.68 (ddd, J = 13.7, 8.6, 6.3 Hz, 1H, H2''), 3.49-3.55 (m, 1H, H5'), 3.59-3.64 (m, 1H, 

H5''), 3.86 (q, J = 4.3 Hz, 1H, H4'), 4.37-4.40 (m, 1H, H3'), 5.24-5.29 (m, 2H, 3'OH,5'OH), 

6.29 (dd, J = 7.8, 5.9 Hz, 1H, H1'), 8.03 (s, 1H, H8); 13C NMR (DMSO-d6) δ 39.2, 48.6, 

62.0, 71.1, 83.4, 87.8, 115.1, 137.6, 150.4, 152.2, 156.3. MS (ESI): m/z calcd for 

[C10H12N7O4]+, 294.1; found 294.3. 
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4.1.4. Preparation of triazolyl nucleoside analogues 

3',5'-di-O-acetyl-5-(1H-1,2,3-triazol-4-yl)-2'-deoxycytidine (diAc-5-TrzdC, 83) 

Procedure A using Ag2CO3 as catalyst 

Ag2CO3 (2.8 mg, 0.01 mmol) was added to a solution of 63a119 (33.5 mg, 0.1 mmol), 

azidotrimethylsilane (26.3 μL, 23 mg, 0.2 mmol), and H2O (3.6 μL, 3.6 mg, 0.2 mmol) in 

DMF (1 mL). The resulting mixture was stirred at 80 oC for 1 hour. After cooling to 

ambient temperature, the volatiles were evaporated under the reduced pressure and the 

residue was column chromatographed (CHCl3/MeOH, 100:0 → 90:10) to give 83 (2.6 mg, 

7%): UV (MeOH) λmax 208, 238, 293 nm (ε 13050, 9400, 4150), λmin 225, 271 nm (ε 8350, 

3150); 1H NMR (DMSO-d6) δ 1.99 (s, 3H, CH3), 2.08 (s, 3H, CH3), 2.36 (ddd, J = 14.1, 

5.8, 2.0 Hz, 1H, H2''), 2.47-2.44 (m, 1H, H2'), 4.23-4.20 (m, 1H, H4'), 4.35-4.26 (m, 2H, 

H5', 5''), 5.22-5.20 (m, 1H, H3'), 6.21 (dd, J = 7.6, 6.2 Hz, 1H, H1'), 7.67 (s, 1H, NH), 7.90 

(s, 1H, NH), 8.07 (s, 1H, H6), 8.24 (s, 1H, CH), 15.28 (s, 1H, NH); 13C NMR (DMSO-d6) 

δ 20.5, 20.7 (Ac), 36.6 (C2'), 63.7 (C5'), 74.3 (C3'), 81.6 (C4'), 86.0 (C1'), 97.2 (C5), 126.9 

(triazolyl), 139.8 (C6), 153.6 (C4), 162.4 (C2), 170.0, 170.2 (Ac); HRMS (ESI): m/z calcd 

for C15H19N6O6 [M+H]+ 379.1361; found 379.1372. 

Procedure B using CuI as catalyst 

The stirred solution of 63a (33.5 mg, 0.1 mmol) in 1 mL DMF/H2O (9/1) was degassed 

with argon for 15 min. Azidotrimethylsilane (26.3 μL, 23 mg, 0.2 mmol) and CuI (1 mg, 

0.005 mmol) were added to the solution, which was further degassed for another 5 min. 

The resulting mixture was stirred at 90°C for 5 h. After cooling to ambient temperature, 

the volatiles were evaporated and the residue was column chromatographed (CHCl3/MeOH, 

100:0 → 90:10) to give 83 (12.0 mg, 32%) with the spectroscopic data as described above. 
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Procedure C using CuSO4/sodium ascorbate as catalyst 

63a (33.5 mg, 0.1 mmol) and CuSO4•5H2O (2.5 mg, 0.01 mmol) were dissolved in 

1 mL DMF/H2O (9/1) at ambient temperature. The stirred solution was degassed with 

argon for 15 min. Azidotrimethylsilane (26.3 μL, 23 mg, 0.2 mmol) and sodium ascorbate 

(4 mg, 0.02 mmol) were added to the solution, which was further degassed for another 5 

min. The resulting mixture was stirred at 90°C for 5 h. After cooling to ambient temperature, 

the volatiles were evaporated and the residue was column chromatographed (CHCl3/MeOH, 

100:0 → 90:10) to give 83 (24.6 mg, 65%) with the spectroscopic data as described above. 

5-(1H-1,2,3-triazol-4-yl)-2'-deoxyuridine (5-TrzdU, 39). Treatment of 77110 (25.1 

mg, 0.1 mmol) with CuI by Procedure B (column chromatography; CHCl3/MeOH, 100:0 

→ 85:15) gave 39 (14.8 mg, 50%): UV (MeOH) λmax 231, 292 nm (ε 12400, 11450), λmin 

259 nm (ε 3700); 1H NMR (DMSO-d6) δ 2.18 (dd, J = 6.3, 4.7 Hz, 2H, H2',2''), 3.63-3.55 

(m, 2H, H5',5''), 3.84 (q, J = 3.4 Hz, 1H, H4'), 4.31-4.25 (m, 1H, H3'), 5.04 ("s", 1H, 3'-OH), 

5.29 (d, J = 4.1 Hz, 1H, 5'-OH), 6.22 (t, J = 6.6 Hz, 1H, H1'), 8.14 (s, 1H, NH), 8.49 (s, 

1H, H6), 11.68 (s, 1H, 3-NH), 15.10 (s, 1H, NH); 13C NMR (DMSO-d6) δ 39.7 (C2'), 61.3 

(C5'), 70.5 (C3'), 84.7 (C1'), 87.6 (C4'), 136.4 (C6), 149.7 (C2), 161.3 (C4); HRMS (ESI): 

m/z calcd for C11H14N5O5 [M+H]+ 296.0989; found 296.0983. 

Treatment of 77 (25.1 mg, 0.1 mmol) with CuI by modified Procedure B with 2 

equivalents of H2O and DMF as solvent (column chromatography; CHCl3/MeOH, 100:0 

→ 85:15) gave 39 (12.5 mg, 42%) with the spectroscopic data as described above. 
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Treatment of 77 (25.1 mg, 0.1 mmol) with CuSO4/sodium ascorbate by Procedure C 

(column chromatography; CHCl3/MeOH, 100:0 → 85:15) gave 39 (15.3 mg, 52%) with 

the spectroscopic data as described above. 

8-(1H-1,2,3-triazol-4-yl)-2'-deoxyadenosine (8-TrzdA, 46). Treatment of 85141 (27.5 

mg, 0.1 mmol) with Ag2CO3 by Procedure A (column chromatography; CHCl3/MeOH, 

100:0 → 85:15) gave 46 (15.4 mg, 50%): UV (MeOH) λmax 203, 228, 287 nm (ε 15900, 

16050, 17950), λmin 213, 250 nm (ε 13800, 5100); 1H NMR (DMSO-d6) δ 2.20 (ddd, J = 

12.9, 5.9, 1.7 Hz, 1H, H2''), 3.18-3.12 (m, 1H, H2'), 3.55-3.49 (m, 1H, H5''), 3.72-2.69 (m, 

1H, H5'), 3.90 (q, J = 3.7 Hz, 1H, H4'), 4.51-4.46 (m, 1H, H3'), 5.27 (d, J = 3.7 Hz, 1H, 3'-

OH), 5.80-5.77 (m, 1H, 5'-OH), 7.08 (t, J = 7.2 Hz, 1H, H1'), 7.48 (s, 2H, NH2), 8.13 (s, 

1H, H2), 8.42 (s, 1H, NH), 15.64 (s, 1H, NH); 13C NMR (DMSO-d6) δ 38.1 (C2'), 62.4 

(C5'), 71.5 (C3'), 85.9 (C1'), 88.4 (C4'), 119.4 (C5), 130.3 (triazolyl), 141.5 (C8), 149.8 

(C4), 152.1 (C2), 156.2 (C6); HRMS (ESI): m/z calcd for C12H14N8O3Na [M+Na]+  

341.1081; found 341.1062. 

Treatment of 85 (27.5 mg, 0.1 mmol) with CuI by Procedure B (column 

chromatography; CHCl3/MeOH, 100:0 → 85:15; HPLC: C18, A: 100% ACN, B: 5% 

ACN/H2O; 0% A → 15% A in 30 min, flow rate = 2 mL/min) gave 46 (5.3 mg, 17%) with 

the spectroscopic data as described above. 

Treatment of 85 (27.5 mg, 0.1 mmol) with CuSO4/sodium ascorbate by Procedure C 

(column chromatography; CHCl3/MeOH, 100:0 → 85:15; HPLC: C18, A: 100% ACN, B: 

5% ACN/H2O; 0% A → 15% A in 30 min, flow rate = 2 mL/min) gave 46 (16.2 mg, 51%) 

with the spectroscopic data as described above. 
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8-(1H-1,2,3-triazol-4-yl)-2'-deoxyguanosine (8-TrzdG, 47). Treatment of 87142 (29.1 

mg, 0.1 mmol) with Ag2CO3 by Procedure A (column chromatography; CHCl3/MeOH, 

100:0 → 80:20) gave 47 (17.4 mg, 52%): UV (MeOH) λmax 205, 283 nm (ε 14450, 14800); 

λmin 238 (ε 2600); 1H NMR (DMSO-d6) δ 2.13-2.07 (m, 1H, H2''), 3.19-3.12 (m, 1H, H2'), 

3.50 (dd, J = 11.7, 5.3 Hz, 1H, H5''), 3.65 (dd, J = 11.8, 4.8 Hz, 1H, H5'), 3.81-3.78 (m, 

1H, H4'), 4.44-4.38 (m, 1H, H3'), 5.05 ("s", 1H, 5'-OH), 5.18 (d, J = 3.7 Hz, 1H, 3'-OH), 

6.43 (s, 2H, NH2), 8.34 (t, J = 7.8 Hz, 1H, H1'), 10.83 (s, 1H, NH), 15.42 (s, 1H, NH); 13C 

NMR (DMSO-d6) δ 37.4 (C2'), 62.3 (C5'), 71.4 (C3'), 84.8 (C1'), 88.0 (C4'), 117.6 (C5), 

128.8 (triazolyl), 151.9 (C4), 153.1 (C2), 154.0 (C6), 156.5 (C8); HRMS (ESI): m/z calcd 

for C12H15N8O4 [M+H]+,  335.1211; found 335.1214. 

Treatment of 87 (29.1 mg, 0.1 mmol) with CuI by Procedure B (column 

chromatography; CHCl3/MeOH, 100:0 → 80:20; HPLC: C18, A: 100% ACN, B: 5% 

ACN/H2O; 0% A → 15% A in 30 min, flow rate = 2 mL/min) gave 47 (10.2 mg, 31%) 

with the spectroscopic data as described above. 

Treatment of 87 (29.1 mg, 0.1 mmol) with CuSO4/sodium ascorbate by Procedure C 

(column chromatography; CHCl3/MeOH, 100:0 → 80:20; HPLC: C18, A: 100% ACN, B: 

5% ACN/H2O; 0% A → 15% A in 30 min, flow rate = 2 mL/min) gave 47 (26.0 mg, 52%) 

with the spectroscopic data as described above. 

5-(1H-1,2,3-triazol-4-yl)-2'-deoxycytidine (5-TrzdC, 48). Treatment of 63b120 (25.1 

mg, 0.1 mmol) with CuI by Procedure B (column chromatography; CHCl3/MeOH, 100:0 

→ 80:20) gave 48 (2.9 mg, 10%): UV (MeOH) λmax 207, 238, 296 nm (ε 18750, 13900, 5 

500), λmin 224, 273 nm (ε 11900, 3500);  1H NMR (DMSO-d6) δ 2.14-2.08 (m, 1H, H2''), 
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2.21 (ddd, J = 13.2, 6.1, 4.7 Hz, 1H, H2'), 3.66-3.59 (m, 1H, H5''), 3.75-3.68 (m, 1H, H5'), 

3.82 (q, J = 3.3 Hz, 1H, H4'), 4.30-4.24 (m, 1H, H3'), 7.68 (s, 1H, 3'-OH), 5.29 (s, 1H, 

5'-OH), 6.18 (t, J = 6.1 Hz, 1H, H1'), 7.68 (s, 1H, NH), 7.80 (s, 1H, NH), 8.07 (s, 1H, NH), 

8.60 (s, 1H, H6), 15.18 (s, 1H, NH), 13C NMR (DMSO-d6) δ 40.9 (C2'), 60.6 (C5'), 69.5 

(C3'), 85.4 (C1'), 87.3 (C4'), 96.4 (C5), 128.0 (triazolyl), 140.1 (C6), 153.7 (C4), 162.2 

(C2); HRMS (ESI): m/z calcd for C11H15N6O4 [M+H]+  295.1149; found 295.1160. 

Treatment of 63b (25.1 mg, 0.1 mmol) with CuSO4/sodium ascorbate by Procedure C 

(column chromatography; CHCl3/MeOH, 100:0 → 80:20) gave 48 (15.0 mg, 51%) with 

the spectroscopic data as described above. 

3',5'-di-O-acetyl-5-(1H-1,2,3-triazol-4-yl)-2'-deoxyuridine (diAc-5-TrzdU, 84). 

Treatment of 62110 (33.6 mg, 0.1 mmol) with CuI by Procedure B (column chromatography; 

CHCl3/MeOH, 100:0 → 92:8) gave 84 (20.8 mg, 55%): UV (MeOH) λmax 231, 293 nm (ε 

10700, 9600), λmin 258 nm (ε 2900); 1H NMR (DMSO-d6) δ 2.08 (s, 3H, CH3), 2.13 (s, 

3H, CH3), 2.46-2.36 (m, 2H, H2',2''), 4.26-4.22 (m, 2H, H5', 5''), 4.31-4.27 (m, 1H, H4'),  

5.26-5.21 (m, 1H, H3'), 6.25 (t, J = 6.3 Hz, 1H, H1'), 8.18 (s, 1H, NH), 8.31 (s, 1H, H6), 

11.82 (s, 1H, 3-NH), 15.19 (s, 1H, NH); 13C NMR (DMSO-d6) δ 20.7, 20.8 (Ac), 36.7 (C2'), 

63.8 (C5'), 74.2 (C3'), 81.7 (C4'), 84.9 (C1'), 105.5 (C5), 135.8 (C6), 149.6 (C2), 161.2 

(C4), 170.1, 170.4 (Ac); HRMS (ESI): m/z calcd for [C15H18N5O7]
+, 380.1201; found 

380.1208. 

Treatment of 62 (33.6 mg, 0.1 mmol) with CuSO4/sodium ascorbate by Procedure C 

(column chromatography; CHCl3/MeOH, 100:0 → 92:8) gave 84 (30.6 mg, 81 %) with the 

spectroscopic data as described above. 
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3',5'-diTBDMS-8-(1H-1,2,3-triazol-4-yl)-2'-deoxyadenosine (diTBDMS-8-TrzdA, 

88). Treatment of 86141 (50.4 mg, 0.1 mmol) with Ag2CO3 by Procedure A (column 

chromatography; hexane/EtOAc 50:50 → 0:100) gave 88 (16.4 mg, 30%): UV (MeOH) 

λmax 225, 285 nm (ε 17 500, 14 100), λmin 247 nm (ε 3 900); 1H NMR (DMSO-d6) δ -0.08 

(s, 3H, CH3), -0.02 (s, 3H, CH3), 0.170 (s, 3H, CH3), 0.173 (s, 3H, CH3), 0.80 (s, 9H, 3 x 

CH3), 0.94 (s, 9H, 3 x CH3), 2.28-2.35 (m, 1H, H2'), 3.73 (dd, J = 11.3, 5.4 Hz, 1H, H5'), 

3.83-3.90 (m, 1H, H2''), 3.96 (dd, J = 11.3, 5.9 Hz, 1H, H5''), 4.05 ("q", J = 4.9, 1H, H4'), 

5.05 (q, J = 5.9 Hz, 1H, H3'), 6.72 (t, J = 6.9 Hz, 1H, H1'), 8.37 (s, 1H, H2), 8.53 (s, 1H, 

Htrz); 13C NMR (DMSO-d6) δ -5.4 (CH3), -5.3 (CH3), -4.6 (CH3), -4.4 (CH3), 18.2 (CH3), 

18.5 (CH3), 25.98 (CH3), 26.01 (CH3), 37.2 (C2'), 62.9 (C5'), 72.5 (C3'), 85.3 (C1'), 87.8 

(C4'), 119.7 (C5), 133.1(Htrz), 143.8 (C8), 151.0 (C4), 152.8 (C2), 155.4 (C6); HRMS 

calcd for C24H43N8O3Si2 [M+H]+ 547.2991, found 547.3004.  

Treatment of 86 (50.4 mg, 0.1 mmol) with CuI by Procedure B (column 

chromatography; hexane/EtOAc 50:50 → 0:100) gave 88 (14.8 mg, 27%) with the 

spectroscopic data as described above. 

Treatment of 86 (50.4 mg, 0.1 mmol) with CuSO4/sodium ascorbate by Procedure C 

(column chromatography; hexane/EtOAc 50:50 → 0:100) gave 88 (31.7 mg, 58%) with 

the spectroscopic data as described above. 

8-(1H-1,2,3-triazol-4-yl)-2'-deoxyadenosine 5'-triphosphate (8-TrzdATP, 102). 

Phosphoryl chloride (28 μL, 46 mg, 0.3 mmol) was added to a stirred solution of 8-TrzdA 

46 (48 mg, 0.15 mmol) and proton sponge (80 mg, 0.375 mmol) in trimethyl phosphate 

(2 mL) at 0 oC. The resulting mixture was stirred at 0 oC for 30 min. 0.5 M 

tributylammomium pyrophosphate solution in DMF (1.5 mL, 0.75 mmol) and then 
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tributylamine (106.8 μL, 83.4 mg, 0.45 mmol) were added to the reaction mixture and 

stirred at 0 oC for 2 min. The reaction was quenched by adjusting the pH to 7.5 with 2 M 

TEAB buffer. The residue was dissolved in water (5 mL) and was extracted with EtOAc 

(3 x 5 mL). The water layer was evaporated and coevaporated with mixture of EtOH/H2O 

(1:1, 5 mL). The residue was column chromatographed (DEAE–Sephadex®, TEAB 0.1 M 

→ 0.6 M) and the appropriate fractions were evaporated in vacuum and coevaporate 5 

times with mixture of EtOH/H2O (1:1, 10 mL) to give 8-TrzdATP triethylammonium salt 

102. (33.4 mg, 30%). 1H NMR (D2O) δ 2.33 (ddd, J = 13.4, 6.5, 3.9, 1H, H2'), 3.22-3.26 

(m, 1H, H2''), 4.04-4.10 (m, 1H, H5'), 4.14 (q, J = 5.2 Hz, 1H, H4'), 4.18-4.24 (m, 1H, H5''), 

4.66 (quin, J = 3.9 Hz, 1H, H3'), 6.74 (t, J = 7.8, 1H, H1'), 8.20 (s, 1H, H2), 8.41 (s, 1H, 

Trz); 31P NMR (D2O) δ -23.22 (t, J = 21.0, 1P, β), -11.34 (d, J = 21.0, 1P, α), -10.22 (d, J 

= 21.0, 1P, γ); 13C NMR (D2O) δ 36.2, 65.2, 70.6, 84.3, 84.8, 118.6, 128.8, 136.1, 143.0, 

149.9, 152.6, 155.0; HRMS calcd for C12H16N8O12P3 [M-H]- 557.0106, found 557.0091. 

4.1.5. Synthesis of 5-(1-halo-2-sulfonylvinyl) and 5-(2-furyl) uracil nucleoside 

analogues 

2',3',5'-Tri-O-acetyl-5-(fur-2-yl)uridine (107). Procedure B. Furan (0.7 mL, 680 mg, 

10 mmol) and TBAF (1 M/THF, 3.5 mL, 3.5 mmol) were added to a stirred solution of 

105150 (248 mg, 0.5 mmol) in DMF (5 mL) containing 

tris(dibenzylideneacetone)dipalladium (22.9 mg, 0.025 mmol) at ambient temerature. The 

resulting suspension was stirred for 1 h at 100oC. The volatiles were evaporated under 

reduced pressure and the residue was dissolved in EtOAc and washed with saturated 

NaHCO3/H2O and brine and the organic layer was dried over anhydrous Na2SO4. The 

residue was column chromatographed (CHCl3/MeOH, 95:5) to give 107 (146 mg, 67%): 
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1H NMR δ 2.10 (s, 3H, CH3), 2.15 (s, 3H, CH3), 2.22 (s, 3H, CH3), 4.38-4.40 (m, 3H, 

H4',5',5''), 5.38-5.42 (m, 2H, H2',3'), 6.24-6.28 (m, 1H, H1'), 6.47 (dd, J = 3.3, 1.8 Hz, 1H, 

furan), 7.09 (d, J = 3.4, 1H, furan), 7.33 (d, J = 1.4, 1H, furan), 7.91 (s, 1H, H6), 9.20 (s, 

1H, NH); 13C NMR  δ 20.5, 20.7, 20.8, 64.6, 70.9, 73.0, 80.6, 86.8, 108.4, 110.2, 112.3, 

132.5, 141.3, 145.6, 149.6, 157.8, 169.77, 169.83, 170.4; HRMS calcd for C19H21N2O10 

[M+H]+ 437.1191, found 437.1178. 

5-(5-Heptylfur-2-yl)-2'-deoxyuridine (108). Treatment of 5-iodo-2'-deoxyuridine 

103111 (53 mg, 0.15 mmol) with 2-heptylfuran (0.29 mL, 249 mg, 1.5 mmol) as described 

by Procedure B (column chromatography; hexane/EtOAc, 20:80) gave 108 (35 mg, 61%): 

UV (MeOH) λmax 256, 326 nm (ε 14 250, 11 300), λmin 287 nm (ε 4000); 1H NMR 

(DMSO-d6) δ 0.86 (t, J =6.7 Hz, 3H, CH3), 1.24-1.31 (m, 8H, 4 x CH2), 1.60 (quin, J = 6.7 

Hz, 2H, heptyl), 2.17 ("dd", J = 6.6, 4.9 Hz, 2H, H2',2''), 2.60 (t, J = 7.4 Hz, 2H, CH2), 

3.60-3.62 (m, 2H, H5',5''), 3.83 (q, J = 3.3 Hz, 1H, H4'), 4.29 (quin, J = 4.2, 1H, H3'), 5.05 

(t, J = 5.0 Hz, 1H, 5'-OH), 5.28 (d, J = 4.1 Hz, 1H, 3'-OH), 6.11 (d, J = 3.1 Hz, 1H, furan), 

6.21 (t, J = 6.6 Hz, 1H, H1'), 6.72 (d, J = 3.1 Hz, 1H, furan), 8.27 (s, 1H, H6), 11.58 (s, 1H, 

NH); 13C NMR δ 14.2, 22.1, 27.0, 28.6, 31.1, 39.4, 60.8, 70.3, 84.5, 87.4, 105.7, 106.8, 

108.6, 133.6, 144.5, 149.6, 154.8, 160.0; HRMS calcd for C20H29N2O6 [M+H]+ 393.2020, 

found 393.2023. 

3',5'-Di-O-acetyl-5-(5-heptylfur-2-yl)-2'-deoxyuridine (109). Treatment of 104118 

(150 mg, 0.34 mmol) with 2-heptylfuran (0.6 mL, 565 mg, 3.4 mmol) as described by 

Procedure B (column chromatography; hexane/EtOAc, 80:20 → 60:40) gave 109 (86 mg, 

60%): 1H NMR δ 0.87 (t, J = 7.1 Hz, 3H, CH3), 1.22-1.37 (m, 8H, 4 x CH2), 1.61 (q, J = 

7.4 Hz, 2H, CH2), 2.11 (s, 3H, CH3), 2.12 (s, 3H, CH3), 2.25 ("ddd", J = 16.6, 8.7, 2.2 Hz, 
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1H, H2'), 2.50-2.57 (m, 1H, H2"), 2.59 (t, J = 7.5 Hz, 2H, CH2), 4.30-4.34 (m, 1H, H4'), 

4.38-4.42 (m, 2H, H5',5"), 5.28 ("dt", J = 6.4, 1.6 Hz, 1H, H3'), 6.05 (d, J = 3.3 Hz, 1H, 

furan), 6.40 (dd, J = 8.6, 5.5 Hz, 1H, H1'), 6.98 (d, J = 3.3 Hz, 1H, furan), 7.85 (s, 1H, H6), 

9.30 (s, 1H, NH); 13C NMR δ 14.2 (CH3), 20.9, 21.1 (Ac), 22.8, 28.1, 28.2, 29.2, 29.3, 31.9 

(CH2), 38.1(C2'), 61.2 (C5'), 74.7 (C3'), 82.7 (C4'), 85.7 (C1'), 107.4 (furan), 108.2 (C5), 

111.0 (furan), 131.3 (C6), 143.8, 149.4 (furan), 156.2 (C2), 159.9 (C4), 170.3, 170.5 (Ac); 

HRMS calcd for C24H32N2NaO8 [M+Na]+ 499.2056, found 499.2078.  

2',3',5'-Tri-O-acetyl-5-(5-heptylfur-2-yl)uridine (110). Treatment of 2',3',5'-tri-O-

acetyl-5- iodouridine 105 (400 mg, 0.8 mmol) with 2-heptylfurane (1.5 mL, 665 mg, 4.0 

mmol) by Procedure B (column chromatography; hexane/EtOAc, 50:50) gave 110 (236 

mg, 55%): 1H NMR δ 0.88 (t, J = 6.7 Hz, 3H, CH3), 1.25-1.34 (m, 8H, 4 x CH2), 1.62 (quin, 

J = 7.8 Hz, 2H, CH2), 2.10 (s, 3H, Ac), 2.15 (s, 3H, Ac), 2.18 (s, 3H, Ac), 2.59 (t, J = 7.8 

Hz, 2H, CH2), 4.38-4.40 (m, 3H, H4',5',5''), 5.40-5.44 (m, 2H, H2',3'), 6.05 (d, J = 3.6 Hz, 

1H, furan), 6.21 (d, J = 5.5 Hz, 1H, H1'), 6.99 (d, J = 3.3 Hz, 1H, furan), 7.75 (s, 1H, H6), 

9.03 (s, 1H, NH); 13C NMR δ 14.0 (CH3), 20.4, 20.6, 20.8 (Ac), 22.6, 28.0, 28.1, 29.0, 29.2, 

31.7 (CH2), 63.4 (C5'), 70.8 (C3'), 72.7 (C2'), 80.4 (C4'), 87.0 (C1'), 107.3 (furan), 108.5 

(C5), 111.2 (furan), 131.2 (C6), 143.5, 149.4 (furan), 156.1 (C2), 160.0 (C4), 169.7, 169.7, 

170.1 (Ac); HRMS calcd for C26H35N2O10 [M+H]+ 535.2286, found 535.2288. 

5-(5-Heptylfur-2-yl)uridine (111). Methanolic ammonia (6.4 mL) was added to 110 

(100 mg, 0.19 mmol) in 1.6 mL MeOH and the resulting mixture was stirred at 0 oC → rt 

for 12 hours. Volatiles were evaporated and the residue was column chromatographed 

(EtOAc/MeOH, 95:5) to give 111 (62 mg, 81%): UV (MeOH) λmax 254, 326 nm (ε 13 600, 

10 950), λmin 287 nm (ε 3850); 1H NMR (DMSO-d6) δ 0.86 (t, J = 6.6 Hz, 3H, CH3), 1.24-



109 

 

1.31 (m, 8H, 4 x CH2), 1.60 (quin, J = 6.9, 2H, CH2), 2.60 (t, J = 7.3 Hz, 2H, CH2), 3.60 

(ddd, J = 12.0, 4.8, 3.1 Hz, 1H, H5'), 3.68 (ddd, J = 12.0, 4.8, 2.9 Hz, 1H, H5''), 3.89-3.91 

(m, 1H, H4'), 4.02 (q, J = 4.8 Hz, 1H, H3'), 4.10 (q, J = 5.0 Hz, 1H, H2'), 5.11 (d, J = 5.2 

Hz, 1H, 3'-OH), 5.15 (t, J = 4.8 Hz, 1H, 5'-OH), 5.44 (d, J = 5.6 Hz, 1H, 2'-OH), 5.86 (d, 

J = 4.8 Hz, 1H, H1'), 6.11 (d, J = 3.1 Hz, 1H, furan), 6.73 (d, J = 3.1 Hz, 1H, furan), 8.36 

(s, 1H, H6), 11.60 (s, 1H, NH). 13C NMR (DMSO-d6) δ 13.9, 22.0, 27.2, 27.3, 28.3, 28.5, 

31.2 (heptyl), 60.6 (C5'), 69.9 (C3'), 74.0 (C2'), 84.9 (C1'), 88.3 (C4'), 105.9 (C5), 106.7 

(furan), 108.7 (furan), 133.9 (C6), 144.5 (furan), 149.6 (furan), 154.7 (C2), 160.1 (C4); 

HRMS calcd for C20H29N2O7 [M+H]+ 409.1969, found 409.1982.  

5'-O-Undecanoyl-5-(fur-2-yl)-2'-deoxyuridine (112). Treatment of 106111 (25 mg, 

0.08 mmol) with undecanoic anhydride by Procedure A (column chromatography; 

hexane/EtOAc, 100:0 → 70:30) gave 112 (18 mg, 52%) and 113 (5 mg, 10%) in addition 

to unchanged 106 (~15%; TLC). Compound 112 had: 1H NMR δ 0.88 (t, J = 7.1 Hz, 3H, 

CH3), 1.22-1.40 (m, 14H, 7 x CH2), 1.60 ("quin", J = 7.3 Hz, 2H, CH2), 2.10-2.17 (m, 1H, 

H2'), 2.35 (t, J = 7.6 Hz, 2H, CH2), 2.50 (ddd, J =13.7, 6.3, 3.9 Hz, 1H, H2''), 3.05 (br s, 

1H, 3'-OH), 4.15 (q, J = 3.9, 1H, H4'), 4.25 (dd, J = 12.1, 3.3 Hz, 1H, H5'), 4.36-4.42 (m, 

2H, H3',5"), 6.26 (t, J = 6.3 Hz, 1H, H1'), 6.60 (dd, J = 3.3, 1.8 Hz, 1H, furan), 7.05 (d, J 

= 3.5 Hz, 1H, furan), 7.38 (d, J = 1.2 Hz, 1H, furan), 8.25 (s, 1H, H6), 8.38 (s, 1H, NH); 

HRMS calcd for C24H34N2NaO7 [M+Na]+ 485.2264; found 485.2271. 

3',5'-Di-O-undecanoyl-5-(fur-2-yl)-2'-deoxyuridine (113). Treatment of 106111 (25 

mg, 0.08 mmol) with undecanoic anhydride (84 mg, 0.24 mmol) by Procedure A (6 h) gave 

113 (38.5 mg, 77%): 1H NMR δ 0.82-0.91 (m, 6H, 2 x CH3), 1.20-1.40 (m, 28H, 14 x CH2), 

1.60-1.68 (m, 4H, 2 x CH2), 2.24 (ddd, J = 14.6, 8.6, 6.5 Hz, 1H, H2'), 2.33-2.40 (m, 4H, 
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2 x CH2), 2.54 (ddd, J = 14.1, 5.6, 1.3 Hz, 1H, H2"), 4.30 ("q", J = 2.7 Hz, 1H, H4'), 4.36 

(dd, J  = 12.2, 2.8 Hz, 1H, H5'), 4.45 (dd, J  =11.8, 3.5 Hz, 1H, H5"), 5.27 ("dt", J = 6.4, 

1.6 Hz, 1H, H3'), 6.40 (dd, J  = 8.8, 6.1 Hz, 1H, H1'), 6.47 (dd, J = 3.3, 1.8 Hz, 1H, furan), 

7.05 (d, J = 3.4 Hz, 1H, furan), 7.33 (d, J = 1.6 Hz, 1H, furan), 8.00 (s, 1H, H6), 8.95 (s, 

1H, NH); 13C NMR δ 14.5, 23.0, 25.1, 25.2, 29.3, 29.4, 29.6, 29.7, 29.9, 32.3, 34.1, 34.3, 

34.5, 39.0 (C2'), 64.0 (C5'), 74.6 (C3'), 83.2 (C4'), 86.0 (C1'), 108.0 (C5), 110.0 (furan), 

112.5 (furan), 133.0 (C6), 142.0 (furan), 146.0 (furan), 149.5 (C2), 160.2 (C4), 173.2, 

173.4 (C=O); HRMS calcd for C35H54N2NaO8 [M+Na]+ 653.3778, found 653.3778. 

5'-O-Undecanoyl-5-(5-heptylfur-2-yl)-2'-deoxyuridine (114). Treatment of 108 (25 

mg, 0.064 mmol) with undecanoic anhydride by Procedure A (hexane/EtOAc, 100:0 → 

80:20) gave 114 [17 mg, 48%; TLC (CHCl3/MeOH, 95:5), Rf = 0.50), 115 (4.7 mg, 10%; 

Rf = 0.90) and unchanged 108 (~15%, TLC; Rf = 0.10). Compound 114 had: 1H NMR δ 

0.85-0.90 (m, 6H, 2 x CH3), 1.28-1.31 (m, 22H, 11 x CH2), 1.54-1.64 (m, 4H, 2 x CH2), 

2.13-2.16 (m, 1H, H2'), 2.27-2.32 (m, 2H, CH2), 2.46 (ddd, J =13.9, 6.4, 4.3 Hz, 1H, H2''), 

2.56 (t, J = 7.4 Hz, 2H, CH2), 2.98 (s, 1H, 3'-OH), 4.19 (q, J = 3.5, 1H, H4'), 4.28 (dd, J = 

12.3, 3.4 Hz, 1H, H5'), 4.33-4.41 (m, 2H, H3',5"), 6.05 (d, J = 3.2 Hz, 1H-furan), 6.28 (t, 

J = 6.4 Hz, 1H, H1'), 6.90 (d, J = 3.2 Hz, 1H-furan), 8.10 (s, 1H, H6), 8.44 (s,1H, NH); 13C 

NMR δ 14.2, 22.9 (CH3), 24.9, 28.1, 28.2, 29.2, 29.2, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 

32.1, 34.2, 34.3, 34.4 (CH2), 40.7 (C2'), 63.6 (C5'), 71.8 (C3'), 84.4 (C4'), 85.5 (C1'), 108.2 

(C5), 110.6 (furan), 113.0 (furan), 129.0 (furan), 133.0 (C6), 149 (C2), 156.0 (furan), 159.6 

(C4), 174.0 (C=O); HRMS calcd for C31H48N2NaO7 [M+Na]+ 583.3359, found 583.3375. 
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Note: Also isolated from column chromatography was a product (2 mg, 5%; TLC, Rf = 

0.55) whose structure was tentatively assigned as 3'-O-undecanoyl-5-(5-heptylfur-2-yl)-2'-

deoxyuridine [1H NMR δ 5.39 ("dt", J = 8.1, 1.6 Hz, 1H, H3'). 

3',5'-Di-O-undecanoyl-5-(5-heptylfur-2-yl)-2'-deoxyuridine (115). Treatment of 

108 (25 mg, 0.064 mmol) with undecanoic anhydride (65 mg, 0.19 mmol) by Procedure A 

(6 h) gave 115 (36 mg, 80%). Compound 115 had: 1H NMR δ 0.83-0.92 (m, 9H, 3 x CH3), 

1.22-1.38 (m, 36H, 18 x CH2), 1.55-1.70 (m, 6H, 3 x CH2), 2.25 (ddd, J  = 14.7, 8.5, 6.6 

Hz, 1H, H2'), 2.30-2.40 (m, 4H, 2 x CH2), 2.53-2.57 (m, 1H, H2"), 2.60 (t, J = 7.6 Hz, 2H, 

CH2), 4.31 (q, J = 3.0 1H, H4'), 4.38 (dd, J  = 12.2, 2.8 Hz, 1H, H5'), 4.42 (dd, J  =11.3, 3.8 

Hz, 1H, H5"), 5.26 ("dt", J  = 6.8, 1.6 Hz, 1H, H3'), 6.05 (d, J = 3.2 Hz, 1H, furan), 6.37 

(dd, J  = 8.8, 6.1 Hz, 1H, H1'), 6.95 (d, J = 3.3 Hz, 1H, furan), 7.88 (s, 1H, H6), 9.00 (s, 

1H, NH); HRMS calcd for C42H68N2NaO8 [M+Na]+ 751.4873, found 751.4851. 

5'-O-Undecanoyl-5-(fur-2-yl)uridine (119). Step a. DDC (516 mg, 1.25 mmol) was 

added to a stirred solution of 2',3'-O-isopropylideneuridine 116 (142 mg, 0.5 mmol), 

undecanoic acid (163 mg, 0.875 mmol), and 4-dimethylaminopyridine (91.6 mg, 0.375 

mmol) in DMF (2 mL) at rt The resulting mixture was stirred at 60 oC overnight. Volatiles 

were evaporated and the residue was partitioned between EtOAc and 0.1 M HCl solution. 

The organic layer was washed with saturated solutions of NaHCO3 and brine and then was 

column chromatographed (hexane/EtOAc, 50:50) to give 2',3'-O-isopropylidene-5'-O-

undecanoyluridine (117; 203 mg, 90%) of sufficient purity to be used in next step: 1H NMR 

δ 0.88 (t, J = 7.1 Hz, 3H, CH3), 1.22-1.65 (m, 22H, 8 x CH2, 2 x CH3), 2.31 (t, J = 7.5 Hz, 

2H, CH2), 4.26-4.38 (m, 3H, H4',5',5''), 4.80 (dd, J = 5.7, 3.8 Hz, 1H, H3'), 4.98 (dd, J = 

6.2, 1.4 Hz, 1H, H2'), 5.65 (d, J = 1.3 Hz, 1H, H1'), 5.72 (d, J = 8.2 Hz, 1H, H5), 7.28 (d, 
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J = 8.2 Hz, 1H, H6), 8.98 (s, 1H, NH). Step b. ICl (1M/CH2Cl2; 0.75 mL, 0.75 mmol) was 

added to a stirred solution of 117 (224 mg, 0.5 mmol) in CH2Cl2 (4.3 mL) at ambient 

temperature and the resulting mixture was stirred at 40 oC (oil-bath) overnight. The reaction 

solution was washed with 2% NaHSO3 until the color turn into light yellow. The organic 

layer was washed with saturated solutions of NaHCO3 and brine and then was column 

chromatographed (hexane/EtOAc, 60:40 → 10:90) to give 5'-O-undecanoyl-5-iodouridine 

(118; 66 mg, 25%): 1H NMR δ 0.87 (t, J = 6.6 Hz, 3H, CH3), 1.25-1.31 (m, 14H, 7 x CH2), 

1.67 (quin, J = 7.0 Hz, 2H, CH2), 2.42-2.57 (m, 2H, CH2), 4.22-4.48 (m, 5H, H2',3',4',5',5''), 

5.91 (d, J = 2.9 Hz, 1H, H1'), 8.02 (s, 1H, H6), 10.69 (s, 1H, NH). Step c. Treatment of 118 

(27 mg, 0.05 mmol) with furan by Procedure B (column chromatography; hexane/EtOAc, 

20:80) gave 119 (15 mg, 63%); 1H NMR δ 0.87 (t, J = 6.7 Hz, 3H, CH3), 1.23-1.25 (m, 

14H, 7 x CH2), 1.59 (quin, J = 6.8, 2H, CH2), 2.35 (t, J = 7.5 Hz, 2H, CH2), 4.24 ("t", J = 

4.9 Hz, 1H, H3'), 4.35-4.40 (m, 4H, H2',4',5',5''), 5.95 (d, J = 4.1 Hz, 1H, H1'), 6.40 (dd, J 

= 3.3, 1.8 Hz, 1H, furan), 6.97 (d, J = 3.2 Hz, 1H, furan), 7.27 ("s", 1H, furan), 7.96 (s, 1H, 

H6), 9.89 (s, 1H, NH); HRMS calcd for C24H35N2O8 [M+H]+ 479.2388, found 479.2397 

5'-O-Undecanoyl-5-(5-heptylfur-2-yl)uridine (120). Treatment of 118 (27 mg, 0.05 

mmol) with 2-heptylfurane (96 μL, 83 mg, 0.5 mmol) by Procedure B (column 

chromatography; hexane/EtOAc, 30:70) gave 120 (13 mg, 44%):  1H NMR (DMSO-d6) δ 

0.82-0.87 (m, 6H, 2 x CH3), 1.18-1.30 (m, 22H, 11 x CH2), 1.48 (quin, J = 6.9, 2H, CH2), 

1.58 (quin, J = 7.2, 2H, CH2), 2.22-2.37 (m, 2H, CH2), 2.58 (t, J = 7.5 Hz, 2H, CH2), 3.95 

(q, J = 5.0 Hz, 1H, H3'), 4.08-4.13 (m, 2H, H2',4'), 4.22 (dd, J = 12.5, 2.2 Hz, 1H, H5'), 

4.30 (dd, J = 12.5, 5.6 Hz, 1H, H5''), 5.32 (d, J = 5.9 Hz, 1H, 3'-OH), 5.54 (d, J = 5.0 Hz, 

1H, 2'-OH), 5.82 (d, J = 5.3 Hz, 1H, H1'), 6.14 (d, J = 3.4 Hz, 1H, furan), 6.77 (d, J = 3.7 
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Hz, 1H, furan), 7.78 (s, 1H, H6), 11.68 (s, 1H, NH); 13C NMR (DMSO-d6) δ 13.87 (CH3), 

13.90 (CH3), 22.0, 24.4, 27.3, 27.4, 28.35, 28.37, 28.58, 28.61, 28.8, 28.9, 31.18, 31.23, 

33.2 (CH2), 63.4 (C5'), 69.9 (C3'), 73.3 (C2'), 81.5 (C4'), 88.9 (C1'), 101.1 (C5), 106.9 

(furan), 109.2 (furan), 132.8 (C6), 144.3 (furan), 149.5 (furan), 154.7 (C2), 160.0 (C4), 

172.6 (C=O); HRMS calcd for C31H49N2O8 [M+H]+ 577.3483, found 577.3509 

4.2. Polymerase-catalyzed synthesis of azidomethyl-modified DNA 

Materials of enzymatic reactions  

  All DNA primers and templates were synthesized by Integrated DNA Technologies 

(Coralville, IA). The radionucleotides [-32P] ATP (6000 mCi/mmol) was purchased from 

MP biomedicals Inc. (Santa Ana, CA). T4 polynucleotide kinase and deoxynucleoside 5’-

triphosphates (dNTPs) were purchased from Thermo Scientific (Pittsburgh, PA). Micro 

Bio-Spin TM 6 Columns were from Bio-Rad (Hercules, CA). All other chemicals were 

from Thermo Scientific (Pittsburgh, PA) and Sigma-Aldrich (St. Louis, MO). Purified 

human DNA polymerase β (pol β), flap endonuclease 1 (FEN1) and DNA ligase I (LIG I) 

were purified according to the procedures described previously.151,152  The Klenow 

fragment of E. Coli DNA polymerase I  (Pol I) was purchased from New England Biolabs 

(Ipswitch, MA).  

Oligonucleotide substrates 

 Substrates with an upstream primer annealed to the template strand were designated 

as open template substrates. The substrates were made by annealing an upstream primer 

(31nt) with the template strand (71 nt) at a molar ratio of 1:3. The substrate containing one-

nucleotide gap were made by annealing an upstream primer and downstream primer (Table 

12, Downstream primer 1) with the template strand at the molar ratio of 1:3:3. The open 
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template and one-nucleotide gap substrates were employed to mimic the intermediates 

formed during DNA replication. The substrate containing one-nucleotide gap with a 

5'-sugar at the downstream strand were made by annealing an upstream primer, a 

downstream primer with a 5’-tetrahydrofuran (THF), an analogue of a sugar (Table 12, 

Downstream primer 2) with the template strand at a molar ratio of 1:3:3. Substrates were 

labeled with -32P at the 5’-end of the upstream primers. Template 1 was designed for 

incorporation of AmdUTP 20, whereas Template 2 was for AmdCTP 74. 

Table 12. Oligonucleotide Sequences of primers and templates for polymerase-catalyzed 

synthesis of azido-modified DNA 

Oligonucleotide  nt Sequence (5’-3’) 

Upstream primer 31 GCA GTC CTC TAG TCG TAG TAG CAG ATC ATC A 

Downstream 
primer 1 

39 CAA CCG GCA TTA GGT GTA GTA GCT AGA CTT ACT CAT TGC 

Downstream 
primer 2 

39 THF CAA CCG GCA TTA GGT GTA GTA GCT AGA CTT ACT CAT TGC 

Template 1 71 GCA ATG AGT AAG TCT AGC TAC TAC ACC TAA TGC CGG TTG ATG 
ATG ATC TGC TAC TAC GAC TAG AGG ACT GC 

Template 2 71 GCA ATG AGT AAG TCT AGC TAC TAC ACC TAA TGC CGG TTG GTG 
ATG ATC TGC TAC TAC GAC TAG AGG ACT GC 

Note: THF denotes tetrahydrofuran, an abasic sugar analogue. 

Enzymatic activity assay and BER reconstitution assay 

Nucleotides incorporation by DNA polymerases was performed by incubating different 

concentrations of pol β or Klenow fragment with 25 nM 32P labeled substrates at 37°C for 

15 min. The enzymatic reactions were assembled with 50 μM AmdUTP 20 alone or with 

50 μM AmdUTP 20 along with 50 μM dATP, 50 μM dCTP and 50 μM dGTP. To examine 

if an AmdUTP residue can be directly incorporated into a double-strand DNA through 

DNA lagging strand maturation and base excision repair (BER) via ligation, ligation 

reactions with the gapped substrates were performed in the presence of various 

concentrations of pol β or Klenow fragment and 10 nM LIG I along with 50 μM AmdUTP 
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20 and 50 μM dATP, 50 μM dCTP and 50 μM dGTP. BER was reconstituted by incubating 

25 nM substrate containing a 5’-THF with 5 nM FEN1, 10 nM LIG I, 10 nM and 25 nM 

of pol β in the presence of 50 μM AmdUTP, 50 μM dATP, 50 μM dCTP and 50 μM dGTP. 

Reaction mixtures (20 μl) contained 5 mM Mg2+, 50 mM Tris-HCl (pH 7.5), 50 mM KCl, 

0.1 mg/ml BSA, 0.1 mM EDTA and 0.01% NP-40. For the reactions that contained LIG I, 

2 mM ATP were included in the reaction mixtures. Reactions were terminated with 20 μl 

2X stopping buffer contained 95 % formamide and 10 mM EDTA. Reaction mixtures were 

subsequently denatured at 95 °C for 10 min. DNA synthesis and ligation products were 

separated in a 15% urea denaturing polyacrylamide gel and were detected by Pharos FX 

Plus PhosphorImager (Bio-Rad Laboratory, CA).  

Incorporation of a AmdCTP 74 by pol β was measured by incubating various 

concentrations of pol β (1 nM, 5 nM, 10 nM and 25 nM) with 25 nM open template 

substrate, one-nucleotide gap substrate and one-nucleotide gap substrate containing a 

5'-THF along with 50 μM of a AmdCTP. Substrates were 32P-labeled at the 5'-end of the 

upstream primer. 

4.3. ESR studies of aminyl radical and its conversion to iminyl radical 

Sample preparation and methods 

As per the well-established methodologies,42,73,153 transparent glassy samples of AmdU 

18, AmdC 42, AvdU 21, and AvdC 43 were prepared. Subsequently, γ-irradiation and ESR 

spectral analyses of these samples were performed.  

Compounds purchased: Lithium chloride (LiCl) (ultra-dry, 99.995% (metals basis)) 

was obtained from Alfa Aesar (Ward Hill, MA, USA). Deuterium oxide (D2O) (99.9 atom % 
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D) was purchased from Aldrich Chemical Company Inc. (Milwaukee, WI, USA). All 

compounds were used without further purification. 

Glassy sample preparation:    

(i) Preparation of homogeneous solutions: First, homogeneous solution was prepared by 

dissolving ca. 2.2 to 2.4 mg/mL of a compound (e.g., 18) in either 7.5 M LiCl in D2O. 

The native pH of 7.5 M LiCl in D2O is ca. 5 and pH of these solutions was not 

adjusted.73 

(ii) Preparation of glassy samples and their storage: Homogenous solutions of azido 

compounds were thoroughly bubbled with nitrogen gas. Subsequently, those solutions 

were immediately drawn into 4 mm Suprasil quartz tubes (Catalog no. 734-PQ-8, 

WILMAD Glass Co., Inc., Buena, NJ, USA). Thereafter, the quartz tubes containing 

these solutions were rapidly immersed in liquid nitrogen (77 K). Owing to rapid cooling 

at 77 K, the homogeneous liquid solutions formed transparent homogeneous glassy 

solutions. Subsequently, these transparent homogeneous glassy solutions of azido 

compounds were γ-irradiated at 77 K and were subjected to progressive annealing 

experiments along with ESR spectral studies. All glassy samples were stored in the 

dark at 77 K in Teflon containers prior to and after γ -irradiation. 

γ-Irradiation of glassy samples and their storage: As per our well-established 

methodology of γ-irradiation of glassy samples of DNA and RNA-models,42,73,153 the 

glassy samples were γ (60Co)-irradiated (absorbed dose = 375-500 Gy (1.5 to 2 h)) at 77 K 

and stored at 77 K in Teflon containers in the dark. Owing to 2.2 to 2.4 mg per mL of 7.5 

M LiCl glass (D2O) and as per our previous work with 3′-AZT42 and 

azidopentofuranoses,73 the radiation-produced prehydrated electrons in the glass153 are 
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scavenged by the azide solute and Cl2•¯ is formed owing to scavenging of radiation-

induced holes by the matrix (7.5 M LiCl).42,73,153  

Annealing of glassy samples: As per our previous studies,42,73,153 a variable temperature 

assembly that passed liquid nitrogen cooled dry nitrogen gas past a thermister and over the 

glassy sample was employed for annealing. Stepwise (either 5 K or 10 K step) annealing 

of each glassy sample was conducted in the range (140 – 170) K for 15 min. The matrix 

radical, Cl2•¯, did not react with sample.42,73,153 Thus, by employing ESR spectroscopy, we 

were able to study directly the formation of RNH• via reaction of radiation-produced 

prehydrated electron with azido compounds and subsequent reactions of RNH•. 

Electron Spin Resonance: As per ongoing studies in our laboratory,42,73,153 we used a 

Varian Century Series X-band (9.3 GHz) ESR spectrometer with an E-4531 dual cavity, 

9-inch magnet, and a 200 mW Klystron. For the field calibration, Fremy’s salt (gcenter = 

2.0056, A(N) = 13.09 G) was employed. All ESR spectra were recorded at 77 K and at 45 

dB (6.3 µW) as well as 40 dB (20 μW). We note here that recording of ESR spectra at 77 

K maximizes the signal height and allows for comparison of signal intensities.73 

Employing the Bruker programs (WIN-EPR and SimFonia) and our ongoing studies 

on DNA and RNA-radicals,73,153 anisotropic simulations of experimentally recorded ESR 

spectra were carried out. The ESR parameters (e.g., hyperfine coupling constant (HFCC) 

values, linwidth, etc.) were adjusted to obtain the “best fit” simulated spectrum that 

matched the experimental ESR spectrum well (see our previous works42,73,153). In addition, 

each ESR spectrum reported are obtained after subtraction of line components due to Cl2•¯. 

Method of theoretical Calculations: Employing optimized geometries of radicals, 

energies of radicals and hyperfine coupling constant (HFCC) values were calculated using 
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DFT/B3LYP/6-31+G** method in Gaussian 09. Theoretically predicted HFCC values 

obtained employing B3LYP/6-31+G** method agree well with those obtained using 

experiment.73,154 Jmol molecular modeling freeware was used to plot optimized molecular 

structures.155,129 

4.4. Radiosensitizing effect of 5-azidomethyl and 5-azidovinyl pyrimidine nucleosides 

in aerobic and hypoxic cells 

The radiation response of cells in the presence of azido-modified nucleosides in vitro 

was examined using exponentially growing monolayers in Perma-nox Contour dishes (Lux 

Scientific).156 Clonogenic assay was used to do cell death assay. EMT6 mouse cells were 

allowed to grow for 1 day to produce cultures in mid exponential growth. For the tests in 

aerobic cells, the cultures were treated with 100 μM azido compounds in DMSO in small 

volumes or vehicles for 48 h. For the test in hypoxic cells, after the 44 h treatment under 

aerobic condition, hypoxia was produced by placing uncovered dishes, containing the 

monolayers overlaid with 2 mL of medium containing azido compounds or vehicle, into a 

pressure vessel and gassing the vessel at 37 oC with a humidified mixture of 95% N2/5% 

CO2 for 4 h. The radiosensitizing effect tests were divided into following groups: (a) 

Control: without azido compounds and without irradiation treatment under aerobic or 

hypoxic condition. (b) Drug: the cultures were treated with 100 μM azido compounds in 

small volumes for 44 h under aerobic followed by 4 h under aerobic or hypoxic condition. 

(c) Drug and irradiation in aerobic cells: the cultures were treated with 100 μM azido 

compounds in small volumes or vehicles for 48 h and irradiated with 7.5 Gy radiation 

during the final few minutes of the 48 h incubation. Cells were irradiated with 320 kV 

X-rays produced by an XRAD irradiator (Precision X-ray, Branford CT, USA) at 12.5 mA, 
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2 mm Al filtration, and a dose rate of 2.4 Gy/min. (d) Drug and irradiation in hypoxic cells: 

the cultures were treated with 100 μM azido compounds in small volumes or vehicles for 

44 h under aerobic condition and then 4 h under hypoxia condition. Cultures were irradiated 

with 7.5 GY radiation. Cells were irradiated with 320 kV X-rays produced by an XRAD 

irradiator at 12.5 mA, 2 mm Al filtration, and a dose rate of 1.9 Gy/min.  

4.5. Fluorescent properties of triazolyl nucleosides 

The fluorescent properties of the four N-unsubstituted triazolyl nucleosides (8-TrzdA 

46, 8-TrzdG 47, 5-TrzdC 48, and 5-TrzdU 39) and their lipophilic analogues (diTBDMS-

8-TrzdA 88, diAc-5-TrzdU 84, and diAc-5-TrzdC 83) were determined following the 

general procedure reported in the paper reported from our group.51 Triazoles samples were 

tested with varying concentration. The whose absorbance at the excitation wavelength did 

not exceed 0.1 absorbance units. For determination of quantum yield ΦF, the absorbance 

of the sample solution was kept below 0.06. Quinine sulfate (ΦF = 0.55) in 100 mM H2SO4 

was used as reference standard to quantify the quantum yield. All the triazoles were soluble 

enough in the methanol and thus were prepared in HPLC grade methanol. The test was 

performed in a 2 × 10 mm quartz cuvette at room temperature. Absorption spectra were 

measured using Cary 100Bio UV-Visible Spectrophotometer. Steady-state excitation and 

emission spectra were investigated on a PC1 spectrofluorometer with bandwidth and slit 

width for ex/em set at 2 nm. Frequency-domain fluorescence lifetime were measured using 

a ChronosFD spectrofluorometer. Sample solutions were excited using a frequency 

modulated 280 nm LED. The emission was gathered with a 305 nm long-pass filter 

(Andover). 2,5-diphenyloxazole (τ = 1.4 ns) solution in EtOH was employed as a lifetime 

reference. A multiple-exponential decay model employing GlobalsWE software were used 
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to fit the modulation phase data. The residual and χ2 parameter were employed as criteria 

for goodness of fit. 

4.6. Cell microscopy studies of triazoles 

4.6.1. Using primary mouse astrocytes 

Primary mouse astrocytes were plated on coverslips and acclimated for 24 hours. 1 M 

stock solution of compounds were prepared in DMSO. The cells were treated with the 

vehicle (0.05% DMSO) or 10 uM, 100 uM, 1 mM of compounds (each with 0.05% DMSO) 

in 10% FBS P-S DMEM F-12 media for 24 hours. The cells were mounted using Prolong 

Mounting Medium. Nail polish was used to seal. The live cells were imaged using FV10i 

Confocal Laser Scanning Microscope from Olympus (10x & 60x objectives with 405 laser 

and phase contrast).  

4.6.2. Using mouse pre-adipocytes transfected with pMX-puro-GFP 

cDNA Construction and cell transfection. 

cDNA of GFP was cloned into the pMX-puro vector at EcoRI and NotI restriction sites 

and plasmid DNA was purified according to the QIAprep Spin Miniprep Kit. 

The pMX-puro-GFP vector was then transfected into the Plat-A (Cell Biolabs, INC. # RV-

102) monolayer using Lipofectamine® 2000 Transfection Reagent (Thermo Fisher 

Scientific). Plat-A cells were grown in Plat-A growth media (1% penicillin/streptomycin, 

1 µg/mL puromycin, 10 µg/mL blasticidin and 10% fetal bovine serum in Dulbecco’s 

modified Eagle’s medium (DMEM)) and incubated under a humid atmosphere containing 

5% CO2 under 37°C. 48h after transfection, the supernatant of Plat-A media was filtered 

with 0.2 nm filter and applied to 90% confluent 3T3-L1 cells grown in 3T3-L1 growth 

media (1% penicillin/streptomycin, 1% L-glutamine and 10% FBS in DMEM). After 24h 
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of incubation, 3T3-L1 cells been transfected with pMX-puro-GFP will be selected with the 

3T3-L1 selection media (5µg/mL puromycin in 3T3-L1 growth media). 

 Confocal Microscopy. 3T3-L1 mouse pre-adipocytes (Zen-bio #SP-L1-F) that have been 

transfected with pMX-puro-GFP were seeded on glass coverslips at 1.0 × 105 per 3.8 

cm2 well for 24 hours in 3T3-L1 selection media. Stock solution of 8-TrzdA 46 and 

5-TrzdU 39 were prepared in DMSO. Then the cells were treated with the vehicle (0.05% 

DMSO), 200 uM of 8-TrzdA, or 200 uM of 5-TrzdU (with 0.05% DMSO) in 3T3-L1 

selection media for 24 hours. After the 24h incubation, cells were washed with PBS and 

fixed in 4% paraformaldehyde for 20 minutes. Fixed cells were mounted with ProLong™ 

Gold Antifade Mountant (Thermo Fisher Scientific) and observed under the Olympus FV 

1200 confocal microscope. Ex/Em = 473/519 nm were used for imaging of GFP and Ex/Em 

= 405/461 nm were used for imaging of the triazoles, respectively. 

4.7. Proliferation Assays 

Human cervical carcinoma (HeLa) cells were seeded in 96-well plates at 15,000 

cells/well in the presence of 5-fold dilutions of the compounds. After 4 days of incubation, 

the cells were trypsinized and counted by means of a Coulter counter (Analis, Belgium). 

Suspension cells (Mouse leukemia L1210 and human lymphoid CEM cells) were seeded 

in 96-well plates at 60,000 cells/well in the presence of the compounds. L1210 and CEM 

cells were allowed to proliferate for 48 h or 96 h, respectively and then counted. The 50% 

inhibitory concentration (IC50) was defined as the compound concentration required to 

reduce cell proliferation by 50%. 
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4.8. Antiviral Assays 

The compounds were evaluated against the following viruses: herpes simplex virus type 1 

(HSV-1) strain KOS, thymidine kinase-deficient (TK-) HSV-1 KOS strain resistant to ACV 

(ACVr), herpes simplex virus type 2 (HSV-2) strain G, varicella-zoster virus (VZV) strain 

Oka, TK- VZV strain 07-1, human cytomegalovirus (HCMV) strains AD-169 and Davis, 

vaccinia virus Lederle strain, respiratory syncytial virus (RSV) strain Long, vesicular 

stomatitis virus (VSV), Coxsackie B4, parainfluenza 3, influenza virus A (subtypes H1N1, 

H3N2), influenza virus B, Sindbis, reovirus-1, Punta Toro, human immunodeficiency virus 

type 1 strain IIIB and human immunodeficiency virus type 2 strain ROD. The antiviral, 

other than anti-HIV, assays were based on inhibition of virus-induced cytopathicity or 

plaque formation in human embryonic lung (HEL) fibroblasts, African green monkey cells 

(Vero), human epithelial cells (HeLa) or Madin-Darby canine kidney cells (MDCK). 

Confluent cell cultures in microtiter 96-well plates were inoculated with 100 CCID50 of 

virus (1 CCID50 being the virus dose to infect 50% of the cell cultures) or with 20 or 100 

plaque forming units (PFU) (VZV or HCMV) in the presence of varying concentrations of 

the test compounds. Viral cytopathicity or plaque formation was recorded as soon as it 

reached completion in the control virus-infected cell cultures that were not treated with the 

test compounds. Antiviral activity was expressed as the EC50 or compound concentration 

required to reduce virus-induced cytopathogenicity or viral plaque formation by 50%. 

Cytotoxicity of the test compounds was expressed as the minimum cytotoxic concentration 

(MCC) or the compound concentration that caused a microscopically detectable alteration 

of cell morphology.  
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5. CONCLUSION 

In this dissertation, I explored the C5 azido-modified pyrimidine nucleosides (AmdU 

18, AvdU 21, AmdC 42, and AvdC 43) as potential radiosensitizer under normoxic and 

hypoxic environment. I also synthesized 2-azido-2'-deoxyinosine (2-N3dI, 44) for the site-

specific formation and characterization of the elusive 2'-deoxyguanosin-N2-yl radical 

(dG(N2-H)•, 45) to investigate the nucleic acid damage pathways induced by γ-radiolysis.  

Moreover, novel fluorescent N-unsubstituted 1,2,3-triazol-4-yl nucleosides (5-TrzdU 39, 

8-TrzdA 46, 8-TrzdG 47, and 5-TrzdC 48) were designed and synthesized as potential tools 

for investigating the perturbations to nucleic acids. 

Two classes of C5 azido-modified pyrimidine nucleosides were synthesized and 

explored as radiosensitizers. 5-Azidomethyl-2'-deoxyuridine (AmdU, 18) was prepared 

from thymidine and was converted to its cytosine counterpart (AmdC, 42). The 

5-(1-azidovinyl)-2'-deoxyuridine (AvdU, 21) and 5-(1-azidovinyl)-2'-deoxycytidine 

(AvdC, 43) have been prepared by the regioselective Ag-catalyzed hydroazidation of the 

5-ethynyl substrates with TMSN3. Using Yoshikawa protocol followed by coupling with 

pyrophosphate, the AmdU 18 and AmdC 43 were converted to their 5'-triphosphate, i.e. 

AmdUTP 20 and AmdCTP 74, which were enzymatically incorporated into DNA fragment 

during DNA replication and base excision repair (BER). γ-Irradiation-mediated 

prehydrated electrons formed in homogeneous aqueous glassy (7.5 M LiCl) systems in the 

absence of oxygen at 77 K led to site-specific formation of novel and neutral π-type aminyl 

radicals (RNH•) from AmdU 18, AmdC 42, AvdU 21, and AvdC 43. The ESR spectral 

studies and DFT calculations showed that RNH• undergo facile conversion to 

thermodynamically more stable σ-type iminyl radicals, R=N•. For AmdU 18 and AmdC 
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42, conversion of aminyl RNH• to iminyl radiacl R=N• was found to be bimolecular 

involving an α-azidoalkyl radical as intermediate. On the other hand, aminyl radicals RNH• 

derived from AvdU 21 and AvdC 43 tautomerized to the iminyl radical R=N•. Our work 

provides the first evidence for the formation of aminyl radical RNH• attached to C5 

position of azidopyrimidine nucleoside and its facile conversion to R=N• under a reductive 

environment. These aminyl and iminyl radicals can generate DNA damage via oxidative 

pathways. Owing to the high free radical scavenger concentrations in cells, the bimolecular 

conversion of the π-type RNH• to σ-type iminyl radical from 18 and 42 should not take 

place. However, the facile unimolecular tautomerization of the π-type RNH• to σ-type 

iminyl radical from 21 and 43 should occur. Therefore, it is expected that the π-type RNH• 

from 18 and 42 should augment the radiation damage more effectively than the σ-type 

iminyl radical from 21 and 43, which was proved by the radiosensitizing effect tests. AmdU 

18 showed radiosensitizing effect under both normoxic and hypoxic environment with 

SERSF7.5 of 4.57 and 4.10, respectively. Other azido-modified nucleosides tested showed 

lower radiosensitizing effect with SERSF7.5 of 1.35 for AmdC 42 under hypoxic cells and 

1.37 for AvdC 43 under aerobic cells. 

To explore the generation and reactivity of 2'-deoxyguanosin-N2-yl radical 

(dG(N2-H)•) postulated to be generated during the ambidient reactivity of the guanine 

moiety in 2'-deoxyguanosine towards hydroxyl radicals (HO•), I prepared 2-azido-2'-

deoxyinosine (2-N3dI, 44) serving as convenient substrate to generate site-specific elusive 

guaninyl aminyl radical. Using ESR, the structure of guaninyl aminyl radical and its 

subsequent reactions as well as DNA-hole transfer processes were investigated to 

understand nucleic acid damage pathways induced by γ-radiolysis. I synthesized the 
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2-azido-2'-deoxyinosine 44 by conversion of 2-amino group in the protected 

2'-deoxyguanosine into 2-azido group via diazotization reaction with tert-butyl nitrite 

followed by nucleophilic displacement with azide and deprotection.  

The fluorescent N-unsubstituted 1,2,3-triazol-4-yl analogues of the four natural bases 

of DNA (i.e. 5-TrzdU 39, 5-TrzdC 48, 8-TrzdA 46, and 8-TrzdG 47) have been synthesized 

by metal-catalyzed reactions between the 5-ethynylpyrimidine or 8-ethynylpurine 

nucleosides with trimethylsilyl azide (TMSN3). CuI catalyzed cycloaddition (DMF/H2O, 

90 oC, 5 h) gave 1,2,3-triazoles as sole products however in low to moderate yield (10% 

for 5-TrzdC to 50% for 5-TrzdU) due to the oxidation of Cu (I) to Cu (II) during the 

reaction. Combination of CuSO4/sodium ascorbate gave triazoles in improved yields (38% 

for 5-TrzdC to 52% for 5-TrzdU). Interestingly, Ag2CO3 catalyzed cycloaddition (DMF, 

2 eq. H2O, 80 oC, 1 h) of 8-ethynylpurine nucleosides with TMSN3 produced 

8-triazolylpurines as sole products in good yields (8-TrzdG, 55%), while analogous 

cycloadditions of 5-ethynylpyrimidine nucleosides produced mixture of 

5-triazolylpyrimidine nucleosides (5-TrzdC, 7%) and the corresponding 

5-(1-azidovinyl)pyrimidine byproducts (5-(1-azidovinyl)-2'-deoxycytidine, 48%). The 

novel N-unsubstituted 1,2,3-triazol-4-yl nucleoside analogues showed excellent 

fluorescent properties in MeOH. The 8-purine analogue 8-TrzdA 46 exhibits the highest 

quantum yield of 44% while the 8-TrzdG 47 had quantum yield of 9%. In contrast, the 

5-pyrimidine analogues 5-TrzdU 39 and 5-TrzdC 48 showed a large Stokes shift of ~110 

nm with the maximum emission approximately at 408 nm and quantum yield of 2%. The 

fluorescent triazoles could enter living cells (primary mouse astrocytes and pre-adipocytes 

transfected with PMX-puro-GFG) and show fluorescence in the cytosol.  
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Transition metal-catalyzed halosulfonylation of 5-ethynyl uracil nucleosides provided 

(E)-5-(1-chloro-2-tosylvinyl)uridines. Tetrabutylammonium fluoride-mediated direct C-H 

arylation of 5-iodouracil nucleosides with furan or 2-heptylfuran gave 5-furyl-substituted 

nucleosides without the necessity of using the organometallic substrates. These two classes 

of 5-substituted uracil nucleosides as well their corresponding ester derivatives were tested 

against a broad range of DNA and RNA viruses and the human immunodeficiency virus 

(HIV). The 3',5'-di-O-acetyl-5-(E)-(1-chloro-2-tosylvinyl)-2'-deoxyuridine 122 inhibited 

the growth of L1210, CEM and HeLa cancer cells in the lower micromolar range. The 

(β-chloro)-vinyl sulfone 122 and 5-(5-heptylfur-2-yl)-2'-deoxyuridine 108 displayed 

micromolar activity against varicella zoster virus (VZV). The 5-(5-heptylfur-2-yl) analog 

108 and its 3',5'-di-O-acetyl-protected derivative showed similar activity against the 

cytomegalovirus (CMV). The 5-(fur-2-yl) derivatives of 2'-deoxyuridine and 

arabino-uridine inhibited the replication of herpes simplex virus (HSV) TK+ strains while 

the 5-(5-heptylfur-2-yl) derivative 108 displayed antiviral activity against the 

parainfluenza virus. 
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